
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

E

PROSA: A Case for Readable Mechanized Schedulability Analysis

Felipe Cerqueira Felix Stutz Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Motivated by a string of recent errata, the paper
argues that mechanized, yet readable schedulability proofs are
desirable, feasible to create with current tools and with rea-
sonable effort, and beneficial beyond the increase in confidence.
To facilitate such mechanized analyses, PROSA, a new open-
source foundation for formally proven schedulability analyses that
prioritizes readability, is presented. The approach is demonstrated
with a case study that mechanizes multiprocessor response-time
analysis, including new variants for parallel jobs and release jitter.

I. INTRODUCTION

For a field that prides itself in the development of analysis
techniques for safety-critical systems—famously, hard real-time
systems—there recently has been an alarming number of errata
correcting or retracting unsound schedulability analyses.

Examples abound. Most famously, Bril et al. found the
original response-time analysis (RTA) of the CAN bus [75]
to be partially incorrect [23], more than a decade after initial
publication, and well after industry adoption and deployment
in commercial tools [32]. More recently, Nelissen et al. [67]
discovered flaws in an analysis of self-suspending tasks [57], and
a subsequent review of the literature on self-suspensions by Chen
et al. [28] found many more issues (e.g., [6, 7, 55, 59, 65]). One
such flawed analysis [59] had particular impact, as it was reused
by a number of other papers (e.g., [21, 26, 52, 54, 79, 80, 82]),
thus spreading the issue even further. In 2013, a well-received
schedulability analysis of deferred preemptions [33] had to be
revised to account for push-through blocking [31]. Shortly after
presenting their work at ECRTS’15, von der Brüggen et al.
found a mistake in a proof in the appendix of their paper [76],
invalidating the originally claimed utilization bound. In fact,
even Liu and Layland’s seminal paper [62] contained incomplete
and incorrect proofs [36]. And finally, to conclude this by no
means exhaustive list with an example of particular relevance to
us, a recent paper by our group [50] also contained a subtly, but
thoroughly flawed analysis due to an incorrect generalization.

A. The Need for Mechanized Proofs
All of the above-mentioned papers were prepared with great

care, by experts in the field, and passed peer review, in some
cases even repeatedly (e.g., the flaw in [50] is also present in a
later journal version [51]). This suggests that these cases are
not outliers; rather, they are symptoms of a structural problem.

The common feature of all these partially incorrect results
is that they were established with conventional pen-and-paper
proofs, where the trust in the correctness of a result derives
solely from manual, human reasoning (by the authors, reviewers,
and readers). However, the long (and still growing [28]) list of
errata shows that this approach no longer scales to the complex,
difficult, and at times tedious scheduling problems studied in
contemporary real-time systems research.

Note: This paper has passed an Artifact Evaluation process. For additional
details, please refer to http://ecrts.org/artifactevaluation.

These issues further compound when results from different
sources are combined: because pen-and-paper proofs tend to
rely on implicit, informal assumptions, the composition of
individually correct results may still be incorrect due to subtle
differences in assumptions. Furthermore, the situation is not
helped by the fact that conference papers often contain only
proof sketches or abridged proofs, and that many proofs are
given in appendices that may receive only limited attention.

In this paper, we instead argue in favor of a more rigorous
approach based on formal, fully verified proofs: to eliminate
the chance of human error, schedulability proofs should be fully
mechanized, i.e., they should be prepared and automatically
checked with the help of a proof assistant such as COQ [1].

Of course, mature proof assistants of sufficient analytical
power have been available for many years, and have been
successfully employed both to formally verify large, complex
software, such as compilers [60], OS kernels [56] and file
systems [27], and to mechanize highly non-trivial mathematical
proofs such as the Four Color Theorem [44] and the Odd Order
Theorem [45]. Yet they have not been widely adopted by the
real-time systems community (§V surveys prior efforts).

As argued in more detail in §II, we posit that this regrettable
lack of adoption can be explained by: (i) a general lack of
readability and clarity (thus excluding researchers without a
background in formal methods); (ii) high startup costs (no
suitable, sufficiently flexible foundation exists); and (iii) the
(perceived) large cost of formalizing well-known, common
analysis techniques such as fixed-point searches.

To overcome these barriers, we present PROSA [4], a flexible
open-source foundation for formally proven schedulability
analyses that aims at enabling verification without compromising
readability or clarity, and importantly, with reasonable effort.

B. Readable Mechanized Schedulability Analysis is Feasible
PROSA provides a beginner-friendly, readable, yet formally

specified foundation for (multiprocessor) schedulability analysis
using the COQ proof assistant [1] and the SSREFLECT extension
library [2]. As a realistic case study, we mechanized Bertogna
and Cirinei’s RTA for global fixed-priority (FP) and earliest-
deadline first (EDF) scheduling [17], as well as several novel
extensions. Based on our experience, we claim that:
1) PROSA provides a flexible foundation that covers a large

section of existing real-time scheduling theory (§III),
2) mechanized schedulability proofs are feasible, to the point

that modern multiprocessor analyses can be formalized in
a reasonable time frame (§IV),

3) our framework offers a systematic approach for exploring
neighboring results (§IV-A), and

4) mechanized proofs help in nailing down a minimal set of
assumptions for each proof and identifying why and when
they are required (§IV-B).

http://ecrts.org/artifactevaluation

Furthermore, while our primary focus is on PROSA itself,
this paper also makes several novel contributions as part of
the case study: we report on the first mechanized proof of a
multiprocessor schedulability analysis (§IV), we present the first
global RTA that accounts for release jitter (§IV-A), we present
a global RTA for parallel tasks with unknown structure (§IV-B),
and finally we identify a fixed-point search strategy for EDF
RTA that dominates all others (§IV-C).

II. GOALS & PRINCIPLES

The goal of the PROSA project, and the scope of this paper,
is not to prove correct any particular schedulability analysis, but
to build reusable foundations for schedulability analyses that
are verifiably correct, extensible, and still easy to understand.

Although we propose the use of proof assistants towards this
end, we also recognize the potential drawbacks of this approach
in terms of legibility, complexity, and required effort. In fact, it
is relatively easy to (accidentally) build formal specifications
and proofs that are incomprehensible to non-experts, and
hence uncheckable, which makes them fundamentally no more
trustworthy than traditional pen-and-paper proofs (i.e., the trust
rests to some extent in the author, and not just the proof itself).

To some extent, these issues arise because standard practice
surrounding proof assistants today seemingly favors expressive
and terse notation, complex logics, and advanced programming
language techniques and abstractions. This has been the case also
for some of the prior efforts to formalize real-time scheduling
(reviewed in §V), which to date have not yielded a widely
accepted formal basis for schedulability analysis.

PROSA takes a different route and makes readability the
central goal. We believe that without an approach that involves
the community and in which formal proofs are part of a social
process [34], any attempt at formal schedulability analysis must
fail due to a lack of relevance. We hence target our work
explicitly at researchers without prior experience in mechanized
proofs and establish the following principles.

A. Readability Is Essential
The correctness of a mechanized proof only goes as far as

the correctness of the underlying specification, which must still
be manually vetted and accepted as valid by the community at
large. Hence, formal definitions and theorem statements should
be as comprehensible as their pen-and-paper counterparts.

Therefore, our primary goal is to make the specification
accessible to researchers familiar with real-time scheduling who
do not necessarily have a background in formal methods. As
part of our coding style, we favor the following guidelines.

a) Many lemmas, short proofs: To make proof strategies
easy to follow, we split the proof of theorems into many short
lemmas (so that each proof spans at most a few dozen lines of
code). This makes it possible to understand the proof outline at
a high level without diving into low-level proof scripts.

b) Long, verbose names: Our definitions and lemmas have
verbose names to make statements self-contained and clear, so
that the code can be followed even without comments. For
example, the following code, which states that a subsequent
proof assumes constrained deadlines, can be readily understood
without prior exposure to COQ:

Variable ts: taskset of sporadic task.
Hypothesis H constrained deadlines:
∀ tsk, tsk ∈ ts → task deadline tsk ≤ task period tsk.

c) Heavy use of documentation: We exploit COQ docu-
mentation facilities (e.g., coqdoc) to make the experience of
reading a specification closer to that of reading a paper. Taking
the example above, we aim for the following commenting style.

(* Consider any task set ts ... *)
Variable ts: taskset of sporadic task.
(* ... with constrained deadlines. *)

Hypothesis H constrained deadlines:
∀ tsk, tsk \in ts → task deadline tsk ≤ task period tsk.

That is, we intersperse paper-like explanations and matching
formal statements to provide guidance to the reader. This is
especially helpful in the few intermediary proof steps that require
advanced COQ notation, as readers may skip the minutiae of
the formalism and follow the appeal to intuition instead.

Importantly, such “skipping of detail” does not undermine
the trustworthiness of the schedulability analysis: as each proof
step is strictly checked by COQ, the trust in the validity of the
claimed schedulability analysis rests only in the understanding
of the specification (which we keep intentionally simple and
accessible), and not in the ability to follow each proof step.

d) Redundancy, if it aids readability: Excessive generality
and abstraction can harm readability, as it creates clutter,
indirection, and numerous dependencies across many files
and definitions. Therefore, in contrast to traditional software
engineering guidelines, we favor redundancy and immediacy
over reuse and abstraction in our definitions.

For instance, as discussed in §IV-A, we decided to completely
isolate the basic model from the model with release jitter, even
though the former is just an instantiation of the latter (by defining
the upper bound on release jitter to be zero). For readers who
are not interested in scheduling overheads and just want to
develop a new schedulability analysis, references to jitter in
every definition make the code less legible. On the other hand,
those readers who are interested in proof details might like to
compare the effects of introducing release jitter on the proofs
(e.g., how the definition of work conservation changes and
whether this invalidates any prior assumptions).

Generally speaking, by favoring redundancy and immediacy
over abstraction and terseness, we intentionally favor novice
readers (who can focus on the subject matter, i.e., scheduling
and questions of timeliness) over experienced authors of
specifications and proofs (who are forced to produce more
code). This is a deliberate choice in line with the observation
that formal proofs are of limited value if they are ignored by
the community at large—to be successful, a formal specification
must be read much more often than it is written.

B. We Maintain the Established Proof Culture

Instead of radically changing the way that proofs are carried
out (e.g., by switching to expressive, yet cryptic to the uninitiated
temporal logics [70, 78, 81, 83, 84]), we believe that formal
specifications should reuse the common notation and proof style
familiar to real-time scheduling experts. Doing so not only

allows existing results to be more easily formalized, but also
makes our formalization of scheduling concepts more accessible.

In our specification, we try not to use any complex logics or
COQ features that go beyond common mathematical concepts
(e.g., we avoid records, inductive types, canonical structures,
etc.), other than in a few exceptional cases for simplicity or
compatibility with libraries. Rather, as highlighted in §III, we
favor first-order logic, lists, functions and Peano arithmetic; basic
concepts that are readily familiar to any computer scientist.

C. Some Proofs Are More Important Than Others
Given that the literature on real-time scheduling is vast,

we focus our finite resources on those aspects of scheduling
theory that are most relevant from a safety perspective. In
particular, in schedulability proofs, we prioritize sufficient
over necessary conditions and other secondary issues, such
as algorithm termination and time complexity.

When deploying safety-critical systems, the scenario that must
be prevented at all costs is the use of potentially unsafe analysis.
In contrast, the failure modes of other possible issues such as a
fixed-point search that fails to converge, accidental pessimism,
or an erroneously derived time or memory complexity bound are
either readily apparent to the engineer (e.g., the analysis times
out or unexpectedly claims a system to be unschedulable) or are
of interest only to the academic community. Nevertheless, as
briefly discussed in §IV-C, our framework is expressive enough
to define and prove some of these additional properties.

In terms of generality, we also aim for a balance between
specifying simpler, classical results and directly moving to the
most generic scheduler model. First, starting with too restrictive
assumptions makes it difficult to incorporate extensions without
having to discard the entire codebase. For example, in this day
and age, any reasonable formalization should permit reasoning
about multiprocessors. On the other hand, it is also futile to
try to anticipate every possible use case and come up with
completely generic and reusable definitions.

Based on these considerations, we chose response-time
analysis on identical multiprocessors [17] as our case study for
two reasons. First, the problem is complex enough to include
many concepts that are not present in uniprocessor scheduling
such as parallelism, which in turn requires extensive background
theories on counting, list operations, sums, etc. Second, we
specifically seek to target state-of-the-art multiprocessor analysis
techniques, which are more complex and not as well-understood
as the canon of classic uniprocessor results.

D. The Promise of Provably Correct Schedulability Analysis
To enable peer review, and, we hope, ultimately community

involvement, we have made the work described in this paper
available as an open-source project [4]. As a long-term goal,
we envision a shared repository of formal definitions and proofs
for most major results in real-time scheduling, a vision that we
believe to hold substantial promise.

In particular, as shared specifications of common concepts
such as “sporadic tasks,” “constrained deadlines,” “identical
multiprocessors,” etc., are reviewed and become widely accepted,
mechanized proofs built on this foundation provide an opportu-
nity for trustworthy, non-disputable results. By increasing the

level of confidence in schedulability analysis, it is our hope
that a formal foundation will eventually help in convincing
practitioners to more readily adopt modern real-time resource
management approaches, especially in the context of safety-
critical systems subject to certification requirements.

Having made the case that formally verified, yet readable
schedulability analysis is highly desirable, we dedicate the rest
of this paper to showing that it is possible to realize this vision—
with simple techniques, current tools, and reasonable effort.

III. A SPECIFICATION FOR SCHEDULABILITY ANALYSIS

To develop mechanized schedulability analyses, we first
must precisely define all relevant real-time scheduling concepts.
Such a formalization, however, is essentially arbitrary—there
are many, fundamentally equivalent ways to model “real-time
scheduling.” Hence, the choice of specification is a matter of
design, tradeoffs, and ultimately taste.

On the one hand, a good specification should be powerful
and flexible: an overly simplistic or artificially constraining
model will limit the kind of proofs that can be carried out with
reasonable effort. Ideally, the adopted specification should cover
as much of the existing real-time literature as possible.

On the other hand, it is desirable for the specification to be as
simple as possible: all trust hinges on the specification; it should
hence be as readable as possible (as argued in §II) and facilitate
manual inspection. Furthermore, it shapes all subsequent proofs—
a convoluted or heavily abstracted specification will multiply
the effort required to prove anything but “toy results” and create
avoidable barriers to adoption.

Based on these considerations, we drafted, experimented with,
and iteratively refined several specifications before settling on
the one presented herein. We believe that our final choice of
specification is sufficiently powerful and flexible to support a
large part of real-time scheduling theory, while also advancing a
straightforward style that (we hope) will feel natural and elegant
to real-time systems researchers.

In the following, we show key excerpts of our actual COQ
development to convey the feel and design of PROSA. While
showing each definition, we discuss the steps taken to build
foundations that are both accessible and similar in style to
seminal works in the area of real-time scheduling (Principles
A and B in §II). Although in this initial work we restrict
our platform model to identical multiprocessors (formalized
in §III-F), a large part of our specification is already sufficiently
generic to incorporate several extensions. Thus, whenever
applicable, we also comment on how more general models
found in the literature could be incorporated.

Before going into further detail, we begin with a short tutorial
on the syntax of the proof assistant used in this project.

A. Background on COQ and SSREFLECT

Our specification and proofs have been developed with the
COQ proof assistant [1] and the SSREFLECT extension [2].

COQ is a widely used proof assistant developed at INRIA that
offers a higher-order logic with support for computations, which
allows the user to define algorithms (as functional programs) and
to prove facts about them. In the context of PROSA, this feature

is especially useful to define procedures such as iterative fixed-
point searches. In future work, it could also be used to formalize
task partitioning strategies or synchronization protocols and their
associated blocking analyses, etc.

COQ specifications are organized into sections (which in turn
are grouped into modules). Sections allow variables and lemmas
to be defined, and hypotheses (i.e., assumptions) to be explicitly
stated. For example, in the sample code in Specification 1, we
let x and y denote any natural numbers greater than one. Then,
we prove a trivial lemma stating that x · y ≥ x+ y.

Specification 1 Variables, hypotheses, and lemmas.
Section TrivialLemma.
(* Given positive numbers x and y... *)
Variable x y: nat.
(* ... that are larger than 1, ... *)
Hypothesis H x y gt one: x > 1 ∧ y > 1.

(* ... we prove that x * y >= x + y. *)
Lemma prod ge sum : x * y ≥ x + y.
Proof.
(* Omitted from paper for brevity. *)
Qed.

End TrivialLemma.

Since low-level proof steps are of limited significance to the
readers of a proof, we only show lemma statements in this
paper. To reiterate, all trust rests solely in the validity of the
specification and the COQ type checker, as any COQ code passes
type-checking only if every proof is correct up to the axioms of
the logic. As in other modern proof assistants, bugs in COQ’s
type checker itself are highly unlikely due to the use of a small
certification kernel (see [68] for an introduction).

In COQ, functions can be defined by directly specifying
their parameters, or more verbosely using sections, as shown in
Specification 2 for the functions double and S, respectively.
We tend to use the latter method to intersperse comments.

Specification 2 Defining functions.
(* Let double be the function f(x)=2*x. *)
Definition double (x: nat) := 2 * x.
Section VerboseDefinition.
(* Given any natural number x, ... *)
Variable x: nat.
(* ... let S be the sum of all natural

numbers less than x. *)
Definition S := \sum (y < x) y.

End VerboseDefinition.

The concise and elegant, LATEX-like notation “\sum” for
summation stems from SSREFLECT, an extension library for
COQ provided by the Mathematical Components project [2],
which provides support for large-scale mathematical proofs.
Most famously, it has enabled mechanized proofs of the Four
Color Theorem [44] and the Odd Order Theorem [45].

Finally, when applying functions with multiple parameters,
COQ follows the standard ML syntax, e.g., a function application

f(a, b, g(x)) is written as f a b (g x).
With the essential, straightforward COQ notation in place,

we are now ready to discuss our formalization of real-time
scheduling and the underlying design choices. We begin with
its most fundamental concept: time.

B. Time Representation

For the sake of simplicity, we adopt a discrete time represen-
tation, where time is just an alias to natural numbers:

Definition time := nat.

There are several reasons for this choice. First, if time
is discrete, properties that depend on the progression of job
arrivals can be proven easily by induction on time. For example,
by applying strong induction on time, one can obtain useful
induction hypotheses such as “all jobs that completed before
time t did not miss their deadline” and then analyze the finite
schedule up to time t. This technique was used in all of our
proofs of response-time bounds (§IV).

Second, apart from simplifying computations and proofs,
this definition also fits actual scheduler implementations in
practice, where all relevant times are necessarily defined by the
processor’s native cycle length (or lengths, in case of processors
capable of running at multiple speeds).

Third, in terms of analytical power, assuming discrete time
does not cause any major drawbacks: it has been shown for
both uniprocessor [14] and multiprocessor [20] scheduling that,
if arrival times are integer, any task set is feasible assuming
dense time iff it is feasible assuming discrete time.

Finally, COQ and SSREFLECT provide better support for
natural numbers, but representations of dense time could be
explored in the future using a library for real numbers [19].

C. Jobs and Arrival Sequences

Next, we define the universe of all jobs, i.e., the basic entities
that can be scheduled:

Variable Job: eqType.

This means we simply assume that there is an opaque type
Job that belongs to the class eqType, which corresponds to
any type that supports equality. Being a completely generic
definition, it does not impose any constraints on what a job is.
For instance, it does not imply the lack of self-suspensions or
critical sections. In fact, jobs can have as many properties as
required, which however must be stated and defined separately.

We consider the need to state all assumptions explicitly, rather
than defining a more high-level concept such as “sporadic task”
as the basic concept, to be a feature. For one, it allows us to
reason about mixed schedules of jobs of recurrent tasks and
aperiodic jobs (that do not belong to any task). Furthermore,
the need to make all assumptions explicit helps us to identify a
minimal set of assumptions required to prove a given claim, as
we discuss in more detail in §IV-B.

In order to reason about a particular collection of jobs, we
define the notion of an arrival sequence, which is a mapping
from time to finite sequences of jobs released at a given time:

Definition arrival sequence := time → seq Job.

nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes

That is, an arrival sequence defines, for any time t, a (possibly
empty, but finite) collection of arriving jobs. This definition
covers both finite and infinite job sets. It does not, however,
impose any arrival constraints, which must be introduced
explicitly as additional hypotheses. For instance, it is possible to
specify models such as periodic and sporadic tasks (see §III-H),
generalized event streams [47, 69], etc.

Because time is discrete, and since the type “seq Job”
describes finite job collections, this definition implies that the
set of jobs forming an arrival sequence is countable. This makes
it trivial to enumerate all jobs that arrive in a finite interval,
which is particularly useful when defining functions that bound
interference (see §III-J), load, and demand [13, 14].

Given an arrival sequence arr seq , we define a special type
called JobIn, which is simply a Job that is known to be a
part of arr seq . For such a job, job arrival denotes its arrival
time, which allows stating whether a job has arrived at time t:

Variable j: JobIn arr seq.
Definition has arrived (t: time) := job arrival j ≤ t.

In summary, jobs are the basic, atomic notion of a “schedu-
lable entity,” and an arrival sequence captures the notion of a
countable set of jobs with associated release times that are to
be scheduled. We next formalize the notion of such a schedule.

D. Multiprocessor Schedule

Given the number of processors and an arrival sequence,

Variable num cpus: nat,
Variable arr seq: arrival sequence Job,

a schedule for this arrival sequence is a mapping, for each
processor and each point in time, to possibly a job (or none, in
case the processor is idle). In COQ, this can be formalized as:

Definition schedule :=
processor num cpus → time → option (JobIn arr seq),

where processor num cpus denotes any natural number in the
interval [0,num cpus). The option type, in turn, is the standard
way of encoding partial functions in COQ. Any variable of type
option T is either Some x, where x is of type T , or None.
Hence, a schedule function either yields some job in the arrival
sequence, or nothing to indicate idleness.

Based upon this basic mapping, we define a number of simple
predicates to state whether a job is scheduled at all, on a specific
processor, etc. For example, for a given schedule

Variable sched := schedule num cpus arr seq,

we let scheduled on denote the predicate that, in the schedule
sched , job j is assigned to processor cpu at time t:

Definition scheduled on j cpu t :=
sched cpu t == Some j.

For the sake of generality, our definition of a schedule only
maps processors to jobs and carries no additional semantics. In
particular, it does not imply job sequentiality (i.e., multiple pro-
cessors could schedule the same job), which allows formalizing
parallel task models [53, 58]. It does, however, imply sequential
processors (i.e., at any time, at most one job per processor). For

proofs that use the notion of a fluid schedule (e.g., [15]), an
appropriate definition can be easily added.

To express additional properties of a schedule, relevant
hypotheses must be stated explicitly, as shown next.

E. Adding Schedule Constraints

Starting with a generic schedule maximizes flexibility and
makes all assumptions explicit. By introducing additional
hypotheses, we can precisely express when a job is allowed to
execute, according to the underlying task and platform models.
For example, given a schedule sched , we can selectively impose
that jobs do not execute before their arrival:

Definition jobs must arrive to execute :=
∀ j ∀ t, scheduled sched j t → has arrived j t,

where scheduled sched j t denotes whether job j is assigned to
any processor at time t. While it may at first seem surprising to
require such a near-universal assumption to be stated explicitly,
this constraint is in fact not appropriate when analyzing
schedules subject to early-releasing (e.g., [5, 63]). Making all
assumptions explicit avoids any accidental loss of generality.

Similar constraints can be used to arbitrarily restrict the
behavior of the schedule (e.g., to impose migration models
such as partitioned, clustered [9, 25], semi-partitioned [41],
and APA scheduling [50], or restricted migrations [11]). For
instance, dedicated interrupt handling [22, 72] prohibits jobs
from executing on a processor reserved for interrupts. With
COQ’s syntax for logical negation (∼), we can easily state that
no job is ever scheduled on some processor cpu int :

Hypothesis H cpu reserved :
∀ j ∀ t, ∼ scheduled on j cpu int t.

In addition to being simple, such fine-grained schedule
constraints are also highly composable and simplify the process
of extending the specification, as further discussed in §IV-A.

F. Job Cost and Job Completion

Each job has some finite cost, which in real-time terminology
denotes the job’s actual execution time (ACET):

Variable job cost: Job → time.

The execution requirement of a job is satisfied as it receives
service. The instantaneous service received by a job j at time t
is defined as the number of processors on which j is scheduled:

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

Thanks to the LATEX-like operators provided by SSREFLECT,
instantaneous service is defined as a straightforward sum over the
set of processors, quite literally matching its intuitive definition.
Note that it transparently accounts for service received by a job
in parallel on multiple processors (if any).

For the sake of simplicity, we focus on identical multi-
processors. However, uniform multiprocessors could be easily
supported by using processor speeds as a factor in the definition
of service (e.g., Funk et al. [42] provide a suitable definition).

Next, to measure the progress in job j’s execution, we define
a notion of cumulative service received before time t′:

nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
option.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes

Definition service (t’: time) :=
\sum (0 ≤ t < t’) service at t.

Based on the cumulative service received, we can impose
another basic constraint on valid schedules:

Definition completed jobs dont execute :=
∀ j ∀ t, service sched j t ≤ job cost j.

Finally, we say that job j has completed by time t iff its
cumulative service matches its cost:

Definition completed (t: time) :=
service sched j t == job cost j.

The constraints that jobs must arrive to execute, and that
completed jobs do not execute, constitute the two most basic
assumptions about a schedule. However, these two properties
are trivially satisfied by an empty schedule (i.e., one in which all
cores are always idle), and hence are insufficient by themselves
to prove meaningful bounds. In order to encode progress
guarantees, we must define new constraints.

G. Work-Conserving Schedules
Central to any schedulability analysis is the notion of a

“pending job,” i.e., any job j that has arrived but not yet finished:

Definition pending (t: time) :=
has arrived j t && ∼ completed j t.

Because timeliness can only be proven for schedules in which
pending jobs are eventually scheduled, actual schedulers are
implemented to be work-conserving. Based on the notion of a
backlogged job that is pending and not scheduled,

Definition backlogged (t: time) :=
pending j t && ∼ scheduled j t,

we say that a schedule is work-conserving iff, for any job j
in an arrival sequence, at any time t, if j is backlogged, then
every processor is busy scheduling some other job:

Definition work conserving :=
∀ j, ∀t,

backlogged job cost sched j t →
∀ cpu, ∃ j other,

scheduled on sched j other cpu t.

COQ’s type inference automatically determines that j other
must be a job in the same arrival sequence, based on the defini-
tion of schedule and the domain of the function scheduled on ,
which highlights the benefit of using the special type JobIn.

Basic work conservation is only a weak progress guarantee.
In a real-time context, we typically require also that schedules
reflect job priorities: when a job is backlogged, not only should
all processors be non-idle, but they should also execute jobs
of at least equal priority. This expectation can be easily added
akin to the above definition of work conservation.

However, it bears pointing out that any notion of expected
progress is closely tied to the assumed platform and workload
models. For example, when introducing self-suspensions, a
relaxed definition of work conservation is required since
suspended tasks should not count as backlogged, and when
introducing job placement constraints (e.g., partitioned schedul-
ing or scheduling with arbitrary processor affinities [50]), the

set of relevant processors with respect to each backlogged job
changes. Similarly, introducing release jitter (see §IV-A) affects
the definition of when a job is considered pending.

Nonetheless, all of these refinements are trivial to express
with definitions just as simple as those shown here. In fact,
taking a closer look at all definitions shown to this point, note
that most are straightforward and do not use involved notation.
The definition of pending , for example, closely resembles its
actual meaning. And even in more complex definitions such as
work conserving , verbosity and clear syntax help in clarifying
each statement (see Principle A in §II).

Next, to specify major results in real-time scheduling, we
need a notion of recurring tasks.

H. Tasks, Task Sets, and the Sporadic Task Model

Similar to Job, a task is simply a generic, opaque type:

Variable sporadic task: eqType.

In the sporadic task model [66], tasks are characterized by
three parameters: worst-case execution time (WCET), period
(i.e., the minimum job inter-arrival time) and relative deadline:

Variable task cost: sporadic task → time.
Variable task period: sporadic task → time.
Variable task deadline: sporadic task → time.

When formalizing refined task models, additional parameters
can be included as well (e.g., in §IV-A we define the worst-case
release jitter of a task).

In our specification, tasks are not scheduled directly. They
only represent restrictions on certain sets of jobs (e.g., they
determine job inter-arrival times and maximum execution costs).
Since jobs are the actual entities assigned to processors, it is
possible to define schedules with jobs that do not belong to any
task (and thus formalize aperiodic jobs, e.g., [12, 71]). However,
since our case study pertains to sporadic tasks only, for now
we associate every job with a task:

Variable job task: Job → sporadic task.

This mapping allows enforcing constraints on job parameters.
For example, a key constraint states that the ACET of any job
j cannot be larger than the WCET of the corresponding task:

Definition job cost le task cost :=
job cost j ≤ task cost (job task j).

Similarly, for any two distinct jobs j1 and j2 of the same
sporadic task, if j1 arrives before j2, then their arrival times
are separated by at least one period of the task:

Definition sporadic task model :=
∀ (j1 j2: JobIn arr seq),

j1 6= j2 →
job task j1 = job task j2 →
job arrival j1 ≤ job arrival j2 →
job arrival j2 ≥ job arrival j1 +

task period (job task j1).

Finally, tasks are grouped into (finite) task sets:

Definition taskset of (Task: eqType) := seq Task.

By referring to task sets, it is easy to impose workload
restrictions. For example, we can state that a task set ts has
constrained deadlines simply as follows:

Variable ts: taskset of sporadic task.
Definition constrained deadline model :=
∀ tsk, tsk ∈ ts → task deadline tsk ≤ task period tsk.

In summary, by mapping jobs to tasks and by adding just a
few more constraints, we defined the concept of sporadic tasks,
without compromising clarity or readability, which speaks to the
flexibility and extensibility of our basic model. More flexible
workload models such as generalized event streams [69] or
arrival curves [74] could be incorporated just as easily.

Next, we demonstrate how more complex concepts such as
response-time bounds and interference can be defined.

I. Response-Time Bounds

A task’s response-time bound determines how long any of its
jobs remains pending. We say that R is a response-time bound
of a given task tsk in a particular schedule iff every job of tsk
completes within R time units of its arrival:

Variable R: time.
Definition is response time bound of task :=
∀ (j: JobIn arr seq),

job task j = tsk →
job has completed by j (job arrival j + R),

where job has completed by is just an alias of completed for
the sake of readability.1 This definition already allows stating
the correctness condition of response-time analyses. To prove
such a result, however, we must reason about interference.

J. Job Interference

In a given time interval [t1, t2), the total interference incurred
by job j is the cumulative time during which it is backlogged:

Definition total interference (t1 t2: time) :=
\sum (t1 ≤ t < t2) job is backlogged j t,

where job is backlogged is an alias of backlogged . As it is
the case with service (defined in §III-F), interference is a
straightforward sum, which ensures readability. To bound the
interference caused by a specific job, we also define per-job
interference. Given some interfering job j other ,

Variable j other: JobIn arr seq,

the interference incurred by job j due to job j other during
the interval [t1, t2) is defined as follows:

Definition job interference (t1 t2: time) :=
\sum (t1 ≤ t < t2)
\sum (cpu < num cpus)

(job is backlogged j t &&
scheduled on sched j other cpu t).

All processors are considered in case that jobs are parallel.
To conclude this section, however, one important question

remains: having defined so many hypotheses, how do we ensure
that they are actually contradiction-free?

1In the actual COQ source, the alias aids readability since it not only changes
the name, but also binds some local parameters, which is not apparent here.

K. How to Avoid Contradictory Assumptions?
Recall that to capture the properties of a particular type of

schedule (e.g., “an EDF schedule”), we must explicitly declare
all relevant hypotheses, which are then used in the proof of a
particular schedulability analysis. However, as emphasized in
§II-A, the correctness of formal proofs only goes as far as the
validity of the specification—in particular, from contradictory
assumptions, anything may be proven “correct.”

In general, COQ cannot automatically detect contradictory
assumptions. Hence, to ensure that our proofs are meaningful,
not only must all assumptions be checked to be appropriate
(e.g., a proof about EDF schedules should not state assumptions
on fixed priorities), they must also not contradict each other.

Given the granularity of assumptions in our specification, this
would be a daunting, error-prone task if carried out manually.
We instead address both issues by exploiting COQ’s ability to
implement functional programs within the logic framework.

Specifically, after proving that a schedulability analysis is
sound based on a (large) number of assumptions, we implement
a concrete model scheduler (e.g., an EDF simulator) and prove
that it generates schedules that actually satisfy all assumptions
stated in the specification. More precisely, we instantiate the
analysis for the model scheduler, so that COQ ensures that no
assumptions are being overlooked.

Since absolutely no hypotheses are used in any of the proofs
about the algorithm, proving that our model scheduler ensures
all assumed hypotheses implies both that they are contradiction-
free, and that there is no accidental mix-up of different models.

As a final remark, we note that the definitions presented in this
section provide just a glimpse of our specification (albeit one
carefully chosen to convey the key points). We have formalized
many more concepts, such as deadline misses and schedulability,
task precedence constraints, and the classification of fixed and
dynamic priorities. In total, our foundations and simple lemmas
span about 1900 LOC for the basic scheduler model and 930
LOC to introduce release jitter.

Concepts that we have not yet formalized can, in our experi-
ence, typically be defined in just a few lines of straightforward
code, given the expressiveness of notations in COQ and the exten-
sibility of our existing specification. Therefore, we conclude that
the developed foundations are sufficiently flexible and powerful
to support a large fraction of the existing literature on real-time
scheduling, without compromising readability (Claim 1).

We next report on a case study showing how the developed
foundations facilitate actual proofs of published analyses.

IV. CASE STUDY: FROM DEFINITIONS TO PROOFS

An elegant specification is ultimately of little use if it does not
lend itself to proofs of correctness. To ensure our specification
is indeed practical, we developed several mechanized proofs
with it (available in full online [4]):

1) correctness of the workload-based interference bound
for work-conserving schedulers [16, p. 158, Eq. (17.3)]
(∼600 LOC) and the EDF-specific interference bound [16,
p. 161, Eq. (17.5)] (∼890 LOC);

2) definition and proofs of termination and correctness of
Bertogna and Cirinei’s RTA for FP scheduling [16, p. 167,
Eq. (18.4)] (∼1050 LOC);

3) definition and proofs of termination and correctness of
Bertogna and Cirinei’s RTA for EDF [16, p. 160, Fig.
17.3] (∼1320 LOC);

4) implementation of a work-conserving JLFP scheduler to
validate all stated assumptions (∼560 LOC);

5) extension of definitions and proofs for workloads with
release jitter (∼5620 LOC); and

6) extension of definitions and proofs for workloads with
parallel jobs (∼3030 LOC).

We chose Bertogna and Cirinei’s multiprocessor RTA as the
starting point for our case study not because of any particular
doubts, but because it is an influential, recent multiprocessor
result of manageable, but non-trivial scope. As RTA is based
on a fixed-point search (as opposed to a simple inequality as in
the density test [46]), it also provided an opportunity to explore
proofs for this important, but more challenging technique.

An important outcome of this project is that, trusting the
correctness of the proof assistant, and the validity of our
specification (§III), all above results are correct and not at
risk of lingering human errors necessitating later correction.

To date, we have invested roughly 8 person-months in this
project, of which a large fraction was spent on learning how
to use COQ and SSREFLECT, and in deriving a reasonable
specification, which we rewrote several times from scratch in
order to improve readability and to simplify proofs before finally
arriving at the formalization presented in §III.

Given that future efforts can reuse and extend the foundations
that we built, we conclude that, after some up-front time invest-
ment to learn the basics of COQ and SSREFLECT, mechanized
schedulability proofs are feasible, to the point that non-trivial
multiprocessor schedulability analyses can be formalized in a
reasonable time frame (Claim 2).

Nevertheless, end-to-end correctness is not the only advantage
of mechanization. In the following, we highlight benefits and
lessons that we discovered throughout the process.

A. Mechanization Allows Exploration of Neighboring Results
When it comes to extending specifications, proof assistants

provide substantial advantages. Differently from pen-and-paper
proofs, where any changes in assumptions are non-systematic
and error-prone, a proof assistant automatically tracks assump-
tions, flags any proofs that are invalidated, and hence allows
for an easy and confident exploration of neighboring results. To
support this claim with a case study, we extended Bertogna and
Cirinei’s overhead-oblivious RTA to incorporate release jitter.

Although a jitter-aware RTA was proposed by Audsley et al.
for uniprocessors more than 20 years ago [8], to the best of
our knowledge, release jitter has not been considered in any
(published) global schedulability analysis to date. While jitter
was understandably omitted from the initial exploration of global
scheduling, the task of incorporating jitter still has not attracted
the attention of any publication, perhaps due to the restricted
scope of the problem from a research point of view.

However, this places anyone seeking to apply RTA to
actual systems in an extremely difficult situation: release jitter,
especially in networked systems, is decidedly non-negligible in
practice, but simply “hoping” that Audsley et al.’s classic unipro-
cessor result translates without changes to the multiprocessor

case, more than two decades after the original publication, is
risky at best, and would be highly irresponsible in the context of
any critical system. Case in point, several recent corrections (e.g.,
see [18, 28, 67]) surrounding the response-time analysis of self-
suspending tasks on uniprocessors can be traced back precisely
to an incorrect generalization [55, 65] of Audsley et al.’s release
jitter theorem (i.e., release jitter and self-suspension time are
not interchangeable [18, 28]).

Fortunately, with a proof assistant, localized changes in
assumptions can be easily incorporated and, once all now-failing
proofs have been fixed, yield guaranteed-correct extensions of
idealized results. We demonstrate this with the following case
study, which introduces release jitter into our specification.

As discussed in §III, our specification favors generic,
assumption-free definitions coupled with fine-grained hypothe-
ses. Although having to assume the trivial fact that “jobs must
arrive to execute” might initially seem counterproductive,

Definition jobs must arrive to execute :=
∀ j ∀ t, scheduled sched j t → has arrived j t,

this choice is deliberate to simplify scheduler extensions. For
example, by assuming that jobs incur initial release jitter,

Variable job jitter: Job → time,

one can easily state whether the jitter has already passed for a
given job j at time t:

Definition jitter has passed (t: time) :=
job arrival j + job jitter j ≤ t.

In order to incorporate release jitter into the model, apart from
changing the definition of pending job,

Definition pending (t: time) :=
jitter has passed t && ∼ completed t,

we constrain jobs to execute only after the jitter has passed:

Definition jobs execute after jitter :=
∀ j t, scheduled sched j t → jitter has passed j t.

Note that changing only five lines in the specification suffices
to formalize the concept of release jitter. This reiterates the
point that mechanized schedulability analysis does not have to
compromise simplicity and readability (§II-A).

But even more important is that, after these changes,
every proof fails exactly at the steps that depended on
jobs must arrive to execute. Such a starting point for cor-
recting existing proofs provides a systematic way of expanding
the formalization to more realistic (and thus more complex and
tedious) models, while maintaining end-to-end correctness.

Using this approach, we were able to incorporate release jitter
into Bertogna and Cirinei’s response-time analysis for FP and
EDF scheduling with just a few days of work, yielding response-
time bounds similar to the uniprocessor case. To illustrate the
result, we state the theorem for FP scheduling. In the following,
given a sporadic task Ti, let ei be Ti’s WCET, let pi be Ti’s
period, and let di be Ti’s relative deadline.

Theorem 1. Let τ denote a set of sporadic constrained-deadline
tasks scheduled on m processors. For any task Ti ∈ τ , let hpi

denote the set of tasks with priority higher than Ti, let Ji be

Ti’s worst-case jitter, and let Ri denote a fixed point (if any)
of the recurrence

Ri = ei +
1

m
·

∑
Tk∈hpi

min (W ′
k(Ri), Ri − ei + 1) , (1)

where Wk
′(∆) = ηk

′(∆) · ek + min(ek, (∆ + Rk + Jk −
ek) mod pk) and ηk′(∆) = b(∆ +Rk + Jk − ek)/pkc. Under
global FP scheduling, if Ri + Ji ≤ di and Rk + Jk ≤ dk
for every higher-priority task Tk ∈ hpi, then Ti’s maximum
response time is bounded by Ri + Ji.

Proof. Omitted; formally verified in PROSA [3, result J5].

Given the short time required to prove the aforementioned
bounds, we conclude that our framework offers a simple and sys-
tematic approach for exploring neighboring results (Claim 3).

Most importantly, such extensions can be carried out with high
confidence without having to go through the classic academic
peer-review process. This makes extension efforts faster (no
waiting for reviews), independent of community appeal (whether
an extension is “worthy” of a paper is irrelevant), and actually
trustworthy (confidence in the extension’s correctness does not
derive from human review of the proofs).

Next, we highlight another benefit: minimizing assumptions
is easy as they are explicit and tracked by the proof assistant.

B. Nailing Down a Minimal Set of Assumptions
One of the basic assumptions in Bertogna and Cirinei’s

response-time analysis [17] is the fact that jobs are sequential:
Definition sequential jobs :=
∀ j ∀ t ∀ cpu1 ∀ cpu2,

scheduled on sched j other cpu1 t →
scheduled on sched j other cpu2 t →
cpu1 = cpu2.

Although (or perhaps because) this is a common assumption
in the literature, it often remains unclear from a pen-and-
paper-proof why exactly it is required—in fact, Bertogna and
Cirinei’s original proof does not even mention this standard
assumption [17]. We decided to investigate precisely how the
analysis is affected by job parallelism.

Since COQ tracks all hypotheses, this turned out to be trivial:
only a few parts of the proof actually depend on sequential jobs
as a hypothesis. In particular, we discovered that the original
workload and interference bounds no longer hold because
parallel jobs can receive more than one unit of service at a time,
which implies that interval lengths cannot be used to bound an
interfering job’s cumulative processor use.

However, we also found that the main proof remains intact,
which allowed us to obtain the following bound for parallel
jobs with unknown structure (i.e., no assumption is made on
the degree of parallelism actually present in each job).

Theorem 2. Let τ denote a set of sporadic, potentially parallel,
constrained-deadline tasks scheduled on m processors. For any
task Ti ∈ τ , let hpi denote the set of tasks with priority higher
than Ti, and let Ri denote a fixed point (if any) of the recurrence

Ri = ei +
1

m
·

∑
Tk∈hpi

Ik(Ri),

where Ik(∆) = d(∆ +Rk)/pke · ek. Under global FP schedul-
ing, if Ri ≤ di and Rk ≤ dk for every task Tk ∈ hpi, then Ti’s
maximum response time is bounded by Ri.

Proof. Omitted; formally verified in PROSA [3, result P5].

Although less-pessimistic analysis for parallel jobs is clearly
possible if each task’s structure is known [61, 64], this bound
may still be useful if such information is not known at analysis
time (e.g., in reservation-based environments where the “WCET”
is actually an enforced budget). In any case, this example
demonstrates how mechanized analysis improves upon current
practice both by identifying precisely where an assumption is
needed, and by making it easy to relax assumptions.

To summarize, we conclude that mechanized proofs aid in
nailing down a minimal set of assumptions (Claim 4).

Finally, the clarity of formal proofs yields additional insights.

C. Separating Correctness Proofs from Termination Proofs

Baruah et al. describe two strategies for performing EDF
RTA [16], which differ on how slack bounds2 are updated.
Before starting the fixed-point iteration, Strategy 1 [16, p. 160,
Fig. 17.2] assumes the initial slack bounds to be zero (i.e., a safe,
but pessimistic assumption). On the other hand, Strategy 2 [16,
p. 160, Fig. 17.3] begins the fixed-point iteration with task costs
as the initial response-time bounds, yielding initial slack bounds
of di − ei time units for each task Ti ∈ τ , which is clearly
not a consistent initial state in the general case. Despite the
differences in the two strategies, Baruah et al. do not discuss
how this affects the correctness of the procedure.

In our proof of Bertogna and Cirinei’s response-time analysis,
we clearly separated correctness and termination criteria, which
allowed us to show that the correctness of the response-time
analysis does not depend on how the fixed point is computed.
Because intermediate states of the computation can be safely
ignored, both Strategy 1 and Strategy 2 yield correct results.

Moreover, by adapting lemmas about fixed points from the
formalization of regular languages by Doczkal et al. [37], we
were able to prove in PROSA that Strategy 2 always yields
the least fixed point [3, result B11] and thus dominates any
other strategy, thereby obsoleting Strategy 1. To the best of our
knowledge, this was previously unknown.

To conclude, these examples highlight that the effort invested
into defining schedulability analysis more precisely can yield
dividends on top of the main goal of guaranteed correctness.

V. RELATED WORK

This work is not the first attempt to advocate a more formal
approach to schedulability analysis; however, to our knowledge,
it is the first work to emphasize readability, in particular making
the specification accessible to non-experts, and the first work
to investigate mechanized proofs for multiprocessor real-time
scheduling. In the following, we discuss the most relevant prior
approaches and how they differ in comparison with our work.
Formalisms for schedulability analysis. One of the earliest
attempts to formalize schedulability analysis dates back to

2Slack denotes the gap between a task’s response-time bound and its deadline,
which can be exploited to reduce the pessimism when bounding interference.

http://prosa.mpi-sws.org/releases/v0.1/artifact/#J5
http://prosa.mpi-sws.org/releases/v0.1/artifact/#P5
http://prosa.mpi-sws.org/releases/v0.1/artifact/#B11

work by Yuhua and Chaochen, with a proof of EDF optimality
on uniprocessors based on an interval logic called Duration
Calculus (DC) [81]. Using a similar approach, Shuzhen et al.
proved the sufficient schedulability condition of the Rate
Monotonic (RM) scheduler [70]. Later, the proof for EDF was
revised for clarity by Zhan [83]. More recently, Xu and Zhan
derived simpler DC proofs of RM and EDF schedulability and
published a comprehensive review [78].

Although these approaches share a motivation similar to ours
and make use of formalism to reduce ambiguity, they rely
on complex logics and manual proofs. This combination is
inherently limited in terms of readability and correctness (see
Principles A and D in §II), which however could be partly fixed
with a COQ library for DC [29].

Earlier mechanized proofs. The effort of mechanizing schedu-
lability analysis was started by Wilding, who developed a proof
of EDF optimality on uniprocessors using the early Nqthm
theorem prover (3 person-months) [77].

Dutertre [39] proved correct the uniprocessor Priority Ceiling
Protocol and the corresponding schedulability analysis using
the PVS proof assistant (∼2.5k LOC, 3 person-months). In
a follow-up work, Dutertre and Stavridou [38] discuss the
design decisions in the prior project and the importance of
formal schedulability proofs. Recently, Zhang et al. proved the
correctness of the blocking bound for the Priority Inheritance
Protocol with the Isabelle/HOL proof assistant [85]. Using COQ,
De Rauglaudre proved a schedulability condition for periodic
tasks based on their phases and hyperperiod [35] (1.2k+ LOC).
Most recently, Zhang et al. implemented EDF in a verification
language based on Propositional Projection Temporal Logic
(PPTL), and also provided an optimality proof using a COQ-
based PPTL axiomatization [84].

In contrast to our work, none of the mentioned approaches
considers readability as the primary goal (Principle A in §II).
In some cases, readability is impaired either by the choice of
tools available at the time (as in the Nqthm approach), by the
complexity of the logic (in case of PPTL), or simply because it
was not a priority and standard practice favors terseness.

Contrary to Principle C in §II, previous work focused only
on restricted scheduling scenarios (e.g., uniprocessor scheduling
with periodic job arrivals). To the best of our knowledge,
our work is the first to formalize a recent, highly influential
multiprocessor schedulability analysis under the sporadic task
model and to cover both FP and EDF policies with extensions
(∼16kLOC, ∼8 person-months). Moreover, thanks to the syntax
and lemmas from SSREFLECT, our formalization more closely
resembles the definitions and proof style found in the real-time
scheduling literature (Principle B in §II).

Schedulability analysis based on model checking. An alter-
native approach for provably correct schedulability analysis is
the use of model checking techniques, which provide automated
procedures for verifying (also temporal) properties.

In earlier work, Fersman et al. used timed automata to analyze
real-time tasks under uniprocessor FP scheduling [40]. Later,
Guan et al. proposed schedulability analysis for multiprocessor
FP scheduling with periodic tasks, based on the NuSMV model
checker [48], with a follow-up work that also covers EDF

scheduling [49]. Also assuming periodic tasks, Cordovilla et al.
proposed a timed-automata-based schedulability analysis using
UPPAAL, applicable to static and dynamic priorities [30].

The periodicity assumption was first relaxed by Baker and
Cirinei, who modeled the sporadic schedulability problem as
a finite automaton reachability problem [10]. Geeraerts et al.
later improved this approach with antichain techniques [43].

Bonifaci and Marchetti-Spaccamela proposed an exact schedu-
lability analysis for global FP scheduling of sporadic tasks
based on an exhaustive state-space exploration [20], which was
intended primarily as a proof of concept and not as a practical
analysis. This approach was later improved by Burmyakov et al.
with state pruning techniques to reduce the search space [24].

More recently, Sun and Lipari used linear hybrid automata
and pre-order simulation relations to model the schedulability
problem using symbolic constraints instead of explicit discrete
variables [73]. Differently from previous work, this approach
does not artificially restrict task parameters to small integers
(e.g., task periods in the interval [3, 10] combined with a low
min/max period ratio as in Burmyakov et al.’s approach [24]).

Although we believe that model checking and timed automata
are valuable techniques, all mentioned approaches suffer from
state-space explosion issues and do not scale beyond small
task and processor counts under more complex task models
(e.g., in case of sporadic tasks, no more than 10 tasks or 4
processors [24, 73]). Unless there is a major breakthrough in the
field of model checking, we expect conventional schedulability
analyses to remain a standard approach. Consequently, we do not
see the need for conventional, but formally proven schedulability
analysis to diminish in the foreseeable future.

VI. CONCLUSION AND FUTURE WORK

We have argued that mechanized, formally verified, and
yet still readable schedulability proofs are desirable, feasible
to create with current tools and with reasonable effort, and
beneficial beyond the increase in confidence.

We have substantiated these claims with concrete case studies.
While prioritizing readability, we formally specified a foundation
for schedulability analysis (§III) and proved correct an influential
multiprocessor response-time analysis (§IV). To demonstrate
that our framework is flexible and extensible, we added release
jitter (§IV-A), removed the assumption that jobs are sequential
(§IV-B), and discussed how the formalization effort allowed us
to prove a previously unknown dominance result (§IV-C).

In the next steps, we plan to extend our specification and
proofs to other real-time scheduling problems, such as APA
scheduling [50], analysis of self-suspensions, overhead account-
ing and event stream models [47, 69]. In the long term, it will be
interesting to investigate how mechanized schedulability analysis
can be integrated into commercial schedulability analysis tools
such as RT-Druid, Rapid RMA, RTaW-Pegase, or SymTA/S.

To conclude, we believe that the time is right for readable
mechanized schedulability analysis and that, despite the in-
creased upfront proof effort, it is well worth the cost. Overall,
formally verified schedulability analysis is an important, and
perhaps even inevitable, step in the design of provably-correct
real-time systems. PROSA is an open-source project [4] and we
gladly welcome any involvement and contributions.

ACKNOWLEDGMENTS

We thank Sophie Quinton and Pascal Fradet of INRIA Greno-
ble – Rhône-Alpes and Jean-François Monin of Verimag for
insightful discussions, and the MPI-SWS COQ user community,
in particular Jan-Oliver Kaiser and Viktor Vafeiadis, for their
help and valuable advice.

REFERENCES
[1] “The COQ Proof Assistant,” project web site, https://coq.inria.fr.
[2] “Mathematical Components Library,” project web site, http://

math-comp.github.io/math-comp.
[3] “PROSA – Artifact Evaluation,” supplemental material and formal

proofs, http://prosa.mpi-sws.org/releases/v0.1/artifact.
[4] “PROSA: The Proven Schedulability Analysis Repository,” project

web site, http://prosa.mpi-sws.org.
[5] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in

Proc. of the 12th Euromicro Conference on Real-Time Systems
(ECRTS’00), 2000.

[6] N. Audsley and K. Bletsas, “Fixed priority timing analysis of
real-time systems with limited parallelism,” in Proc. of the 16th
Euromicro Conference on Real-Time Systems (ECRTS’04), 2004.

[7] ——, “Realistic analysis of limited parallel software/hardware
implementations,” in Proc. of the 10th Real-Time and Embedded
Technology and Applications Symposium (RTAS’04), 2004.

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,
“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, no. 5, pp. 284–
292, 1993.

[9] T. Baker and S. Baruah, “Schedulability analysis of multiprocessor
sporadic task systems,” Handbook of Real-Time and Embedded
Systems, 2007.

[10] T. Baker and M. Cirinei, “Brute-force determination of multi-
processor schedulability for sets of sporadic hard-deadline tasks,”
in Proc. of the 11th International Conference on Principles of
Distributed Systems (OPODIS’07), 2007.

[11] S. Baruah and J. Carpenter, “Multiprocessor fixed-priority schedul-
ing with restricted interprocessor migrations,” in Proc. of the 15th
Euromicro Conference on Real-Time Systems (ECRTS’03), 2003.

[12] S. Baruah and G. Lipari, “A multiprocessor implementation of the
total bandwidth server,” in Proc. of the 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), 2004.

[13] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proc. of the 11th
Real-Time Systems Symposium (RTSS’90), 1990.

[14] S. Baruah, L. Rosier, and R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks
on one processor,” Real-time systems, vol. 2, no. 4, pp. 301–324,
1990.

[15] S. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel, “Proportionate
progress: A notion of fairness in resource allocation,” Algorith-
mica, vol. 15, no. 6, pp. 600–625, 1996.

[16] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Schedul-
ing for Real-Time Systems. Springer, 2015.

[17] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Proceedings of
the 28th Real-Time Systems Symposium (RTSS’07).

[18] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen,
“Errata for three papers (2004-05) on fixed-priority scheduling with
self-suspensions,” CISTER, Tech. Rep. CISTER-TR-150713, July
2015.

[19] S. Boldo, C. Lelay, and G. Melquiond, “Coquelicot: A user-
friendly library of real analysis for Coq,” Mathematics in Computer
Science, vol. 9, no. 1, pp. 41–62, 2015.

[20] V. Bonifaci and A. Marchetti-Spaccamela, “Feasibility analysis of
sporadic real-time multiprocessor task systems,” in Proc. of the
18th Annual European Symposium on Algorithms (ESA’10), 2010.

[21] B. Brandenburg, “Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling,” in Proc. of the 19th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’13), 2013.

[22] B. Brandenburg and J. Anderson, “On the implementation of
global real-time schedulers,” in Proc. of the 30th Real-Time Sys-
tems Symposium (RTSS’09), 2009.

[23] R. Bril, J. Lukkien, R. Davis, and A. Burns, “Message response
time analysis for ideal controller area network (CAN) refuted,”

Proc. of the 5th International Workshop on Real-Time Networks
(RTN’06), 2006.

[24] A. Burmyakov, E. Bini, and E. Tovar, “An exact schedulability
test for global FP using state space pruning,” in Proc. of the
23rd International Conference on Real Time and Networks Systems
(RTNS’15), 2015.

[25] J. Calandrino, J. Anderson, and D. Baumberger, “A hybrid real-
time scheduling approach for large-scale multicore platforms,” in
Proc. of the 19th Euromicro Conference on Real-Time Systems
(ECRTS’07), 2007.

[26] A. Carminati, R. de Oliveira, and L. Friedrich, “Exploring the
design space of multiprocessor synchronization protocols for real-
time systems,” Journal of Systems Architecture, vol. 60, no. 3, pp.
258–270, 2014.

[27] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and
N. Zeldovich, “Using Crash Hoare logic for certifying the FSCQ
file system,” in Proc. of the 25th Symposium on Operating Systems
Principles (SOSP’15), 2015.

[28] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Ra-
jkumar, and D. de Niz, “Many suspensions, many problems: A
review of self-suspending tasks in real-time systems,” Department
of Computer Science, TU Dortmund, Tech. Rep. 854, 2016.

[29] S. Colin, V. Poirriez, and G. Mariano, “Thoughts about the im-
plementation of the duration calculus with Coq,” in Proc. of
the 4th International Workshop on the Implementation of Logics
(IWIL’03), 2003.

[30] M. Cordovilla, F. Boniol, E. Noulard, and C. Pagetti, “Multiproces-
sor schedulability analyser,” in Proc. of 26th ACM Symposium on
Applied Computing (SAC’11), 2011.

[31] R. Davis, A. Burns, J. Marinho, V. Nelis, S. Petters, and
M. Bertogna, “Global fixed priority scheduling with deferred pre-
emption revisited,” Univ. of York, Tech. Rep. YCS-2013-483,
2013.

[32] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area
network (CAN) schedulability analysis: Refuted, revisited and
revised,” Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[33] R. Davis, A. Burns, J. Marinho, V. Nelis, S. M. Petters, and
M. Bertogna, “Global fixed priority scheduling with deferred
pre-emption,” in Proc. of the 19th International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA’13), 2013.

[34] R. De Millo, R. Lipton, and A. Perlis, “Social processes and proofs
of theorems and programs,” Communications of the ACM, vol. 22,
no. 5, pp. 271–280, 1979.

[35] D. De Rauglaudre, “Vérification formelle de conditions
d’ordonnancabilité de tâches temps réel périodiques strictes,”
in Actes des 23e Journées Francophones des Langages Applicatifs
(JFLA’12), 2012.

[36] R. Devillers and J. Goossens, “Liu and Layland’s schedulability
test revisited,” Information Processing Letters, vol. 73, no. 5, pp.
157–161, 2000.

[37] C. Doczkal, J.-O. Kaiser, and G. Smolka, “A constructive theory
of regular languages in Coq,” in Proc. of the 3rd International
Conference on Certified Programs and Proofs (CPP’13). Springer,
2013.

[38] B. Dutertre and V. Stavridou, “Formal analysis for real-time
scheduling,” in Proc. of the 19th IEEE Digital Avionics Systems
Conference (DASC’00), 2000.

[39] B. Dutertre, “The priority ceiling protocol: formalization and anal-
ysis using PVS,” in Proc. of the 21st Real-Time Systems Symposium
(RTSS’99), 1999.

[40] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Schedu-
lability analysis of fixed-priority systems using timed automata,”
in Proc. of the 12th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’06),
2006.

[41] S. Funk and S. Baruah, “Restricting EDF migration on uniform
multiprocessors,” in Proc. of the 12th International Conference on
Real-Time Systems (RTS’04), 2004.

[42] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” in Proc. of the 22nd Real-Time Systems
Symposium (RTSS’01), 2001.

[43] G. Geeraerts, J. Goossens, and M. Lindström, “Multiprocessor
schedulability of arbitrary-deadline sporadic tasks: complexity and
antichain algorithm,” Real-Time Systems, vol. 49, no. 2, pp. 171–
218, 2012.

https://coq.inria.fr
http://math-comp.github.io/math-comp
http://math-comp.github.io/math-comp
http://prosa.mpi-sws.org/releases/v0.1/artifact
http://prosa.mpi-sws.org

[44] G. Gonthier, “A computer-checked proof of the Four Colour
Theorem,” 2005. [Online]. Available: http://research.microsoft.
com/en-us/um/people/gonthier/4colproof.pdf

[45] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry, “A machine-
checked proof of the Odd Order Theorem,” in Proc. of the 4th In-
ternational Conference on Interactive Theorem Proving (ITP’13),
2013.

[46] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Real-time systems,
vol. 25, no. 2-3, pp. 187–205, 2003.

[47] K. Gresser, “An event model for deadline verification of hard real-
time systems,” in Proc. of the 5th Euromicro Workshop on Real-
Time Systems (EWRTS’93), 1993, pp. 118–123.

[48] N. Guan, Z. Gu, Q. Deng, S. Gao, and G. Yu, “Exact schedula-
bility analysis for static-priority global multiprocessor scheduling
using model-checking,” in Proc. of the 5th International Workshop
on Software Technologies for Embedded and Ubiquitous Systems
(SEUS’07), 2007.

[49] N. Guan, Z. Gu, M. Lv, Q. Deng, and G. Yu, “Schedulability
analysis of global fixed-priority or edf multiprocessor scheduling
with symbolic model-checking,” in Proc. of the 11th International
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC’08), 2008.

[50] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Schedulability
analysis of the Linux push and pull scheduler with arbitrary pro-
cessor affinities,” in Proc. of the 25th Euromicro Conference on
Real-Time Systems (ECRTS’13), 2013.

[51] ——, “Multiprocessor real-time scheduling with arbitrary proces-
sor affinities: from practice to theory,” Real-Time Systems, vol. 50,
no. 1, pp. 1–44, 2014.

[52] G. Han, H. Zeng, M. Di Natale, X. Liu, and W. Dou, “Experimental
evaluation and selection of data consistency mechanisms for hard
real-time applications on multicore platforms,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 2, pp. 903–918, 2014.

[53] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task
systems,” in Proc. of the 30th Real-Time Systems Symposium
(RTSS’09), 2009.

[54] H. Kim, S. Wang, and R. Rajkumar, “vMPCP: A synchronization
framework for multi-core virtual machines,” in Proc. of the 35th
Real-Time Systems Symposium (RTSS’14), 2014.

[55] I.-G. Kim, K.-H. Choi, S.-K. Park, D.-Y. Kim, and M.-P. Hong,
“Real-time scheduling of tasks that contain the external blocking
intervals,” in Proc. of the 2nd International Workshop on Real-
Time Computing Systems and Applications (RTCSA’95), 1995.

[56] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al.,
“seL4: Formal verification of an OS kernel,” in Proc. of the 22nd
Symposium on Operating Systems Principles (SOSP’12), 2009.

[57] K. Lakshmanan and R. Rajkumar, “Scheduling self-suspending
real-time tasks with rate-monotonic priorities,” in Proc. of the 16th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’10), 2010.

[58] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in Proc. of the 31st Real-
Time Systems Symposium (RTSS’10), 2010.

[59] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in
Proc. of the 30th IEEE Real-Time Systems Symposium (RTSS’09),
2009, pp. 469–478.

[60] X. Leroy, “Formal verification of a realistic compiler,” Communi-
cations of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[61] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global
EDF scheduling for parallel real-time tasks,” Real-Time Systems,
vol. 51, no. 4, pp. 395–439, 2014.

[62] C. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the ACM
(JACM), vol. 20, no. 1, pp. 46–61, 1973.

[63] C. Liu and J. Anderson, “Supporting sporadic pipelined tasks with
early-releasing in soft real-time multiprocessor systems,” in Proc.
of the 15th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’09), 2009.

[64] C. Maia, M. Bertogna, L. Nogueira, and L. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,”
in Proc. of the 22nd International Conference on Real-Time Net-
works and Systems (RTNS’14), 2014.

[65] L. Ming, “Scheduling of the inter-dependent messages in real-
time communication,” in Proc. of the 1st International Workshop
on Real-Time Computing Systems and Applications (RTCSA’94),
1994.

[66] A. K. Mok, “Fundamental design problems of distributed sys-
tems for the hard-real-time environment,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1983.

[67] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis, “Timing analysis
of fixed priority self-suspending sporadic tasks,” in Proc. of the
27th Euromicro Conference on Real-Time Systems (ECRTS’15),
2015.

[68] B. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu,
V. Sjoberg, and B. Yorgey, Software Foundations. Electronic
textbook, 2015. [Online]. Available: http://www.cis.upenn.edu/
∼bcpierce/sf

[69] K. Richter and R. Ernst, “Event model interfaces for heterogeneous
system analysis,” in Proc. of the 2002 Design, Automation and Test
in Europe Conference and Exhibition (DATE’02), 2002.

[70] D. Shuzhen, X. Qiwen, and Z. Naijun, “A formal proof of the rate
monotonic scheduler,” in Proc. of the 6th International Conference
on Real-Time Computing Systems and Applications (RTCSA’99),
1999.

[71] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for
hard-real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–
60, 1989.

[72] J. Stankovic and K. Ramamritham, “The Spring kernel: a new
paradigm for real-time systems,” IEEE Software, vol. 8, no. 3, pp.
62–72, 1991.

[73] Y. Sun and G. Lipari, “A pre-order relation for exact schedulabil-
ity test of sporadic tasks on multiprocessor global fixed-priority
scheduling,” Real-Time Systems, vol. 52, no. 3, pp. 323–355, May
2015.

[74] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus
for scheduling hard real-time systems,” in Proc. of the 2000 IEEE
International Symposium on Circuits and Systems (ISCAS’00),
2000.

[75] K. Tindell, H. Hansson, and A. J. Wellings, “Analysing real-time
communications: Controller Area Network (CAN),” in Proc. of the
15th Real-Time Systems Symposium (RTSS’94), 1994.

[76] G. von der Brüggen, J.-J. Chen, and W.-H. Huang, “Schedulabil-
ity and optimization analysis for non-preemptive static priority
scheduling based on task utilization and blocking factors,” in
Proceedings of 27th Euromicro Conference on Real-Time Systems
(ECRTS’15), 2015.

[77] M. Wilding, “A machine-checked proof of the optimality of a
real-time scheduling policy,” in Proc. of the 10th International
Conference on Computer-Aided Verification (CAV’98), 1998, pp.
369–378.

[78] Q. Xu and N. Zhan, “Formalising scheduling theories in duration
calculus,” Nordic Journal of Computing, vol. 14, no. 3, pp. 173–
201, Sep. 2008.

[79] M. Yang, H. Lei, Y. Liao, and F. Rabee, “PK-OMLP: An OMLP
based k-exclusion real-time locking protocol for multi-GPU shar-
ing under partitioned scheduling,” in Proc. of the 11th Interna-
tional Conference on Dependable, Autonomic and Secure Comput-
ing (DASC’13), 2013.

[80] ——, “Improved blocking time analysis and evaluation for the
multiprocessor priority ceiling protocol,” Journal of Computer
Science and Technology, vol. 29, no. 6, pp. 1003–1013, 2014.

[81] Z. Yuhua and Z. Chaochen, “A formal proof of the deadline driven
scheduler,” in Proc. of the 3rd International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’94),
1994.

[82] H. Zeng and M. Di Natale, “Mechanisms for guaranteeing data
consistency and flow preservation in AUTOSAR software on multi-
core platforms,” in Proc. of the 6th International Symposium on
Industrial Embedded Systems (SIES’11), 2011.

[83] N. Zhan, “Another formal proof for deadline driven scheduler,” in
Proc. of the 7th International Conference on Real-Time Computing
Systems and Applications (RTCSA’00), 2000.

[84] N. Zhang, Z. Duan, C. Tian, and D. Du, “A formal proof of the
deadline driven scheduler in PPTL axiomatic system,” Theoretical
Computer Science, vol. 554, pp. 229 – 253, 2014.

[85] X. Zhang, C. Urban, and C. Wu, “Priority inheritance protocol
proved correct,” in Proc. of the 3rd International Conference on
Interactive Theorem Proving (ITP’12), 2012.

http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

