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Abstract
In this paper, we develop an adaptive scheduling frame-

work for changing the processor shares of tasks—a process
called reweighting—on real-time multiprocessor platforms.
Our particular focus is adaptive frameworks that are de-
ployed in environments in which tasks mayfrequentlyrequire
significant share changes. Prior work on enabling real-
time adaptivity on multiprocessors has focused exclusively
on scheduling algorithms that canenactneeded adaptations.
The algorithm proposed in this paper uses both feedback and
optimization techniques to determine at runtimewhichadap-
tations are needed.

1. Introduction

Real-time systems that areadaptivein nature have re-
ceived considerable recent attention [3, 6, 7, 8, 15, 20]. As
multicore platforms become ever more ubiquitous, such sys-
tems will be deployed with increasing frequency on multi-
processor platforms. In the multiprocessor case, prior work
on real-time adaptivity has focused exclusively on schedul-
ing algorithms that canenactneeded adaptations [6, 7, 8].
This paper is directed at the related issue of devising mech-
anisms that determine at runtimewhich adaptations are
needed.

Under traditional task models (e.g., periodic, sporadic,
etc.), the scheduability of a system is based on each task’s
worst-case execution time(WCET), which defines the maxi-
mum amount of time each of its jobs can execute. The disad-
vantage of using WCETs is that systems may be deemed un-
schedulable even if they would function correctly most of the
time when deployed. Adaptive real-time scheduling algo-
rithms allow per-task processor shares to be adjusted based
upon runtime conditions, instead of always using constant
share allocations based upon WCETs. It is desirable that
the share of each task be selected in a way that attempts to
maximize overall quality-of-service (QoS). Moreover, theal-
location scheme should not “over-react” in adjusting shares
when transient overloads occur. To the best of our knowl-
edge, the problem of devising adaptation mechanisms that
satisfy these requirements has not been considered before in
work on multiprocessor systems. In this paper, we remedy
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this shortcoming by presenting a multiprocessor framework
in which share allocations are adjusted using feedback and
optimization techniques. This framework is directed at mul-
tiprocessor workloads specified as soft real-time sporadic
tasks for which bounded deadline tardiness is acceptable.

Whisper. To motivate the need for this work, we con-
sider the Whisper tracking system, which performs full-body
tracking in virtual environments [22]. Whisper tracks users
via an array of wall- and ceiling-mounted microphones that
detect white noise emitted from speakers attached to each
user’s hands, feet, and head. Like many tracking systems,
Whisper usespredictive techniquesto track objects. The
workload on Whisper is intensive enough to necessitate a
multiprocessor design. Furthermore, adaptation is required
because the computational cost of making the “next” pre-
diction in tracking an object depends on the accuracy of the
previous one. In fact, the processor shares of the tasks that
are deployed to implement these tracking functions may vary
by as much astwo orders of magnitude.

Adaptive feedback-based scheduling algorithms. In
adaptive feedback-based scheduling algorithms, each task’s
processor share is defined as a function of itsestimated exe-
cution time, which is calculated by using its prior jobs’actual
execution times. Moreover, a user can fine-tune a feedback-
based system to achieve desired behaviors.

Lu et al. [14] were the first to propose such a scheduling
algorithm, which was directed at uniprocessor systems.1 Un-
der their algorithm, calledFC-EDF2, each task has multiple
versions (calledservice levels), each of which has a differ-
ent level of QoS and a differentnominal processor share,
representing the fraction of a processor the task will require
on average if it executes at that service level. A task can
only execute at one service level at a time. (The idea of us-
ing multiple service levels to control a task’s behavior dates
back to work by Tokuda and Kitayama [21] and was later
expanded upon by other authors [2, 9, 10].) In order to con-
trol the system,FC-EDF2 monitors the system’sutilization
andmiss-ratio, i.e., the fraction of jobs with missed dead-
lines. In order to maximize utilization subject to the con-
straints of a target miss-ratio,FC-EDF2 adjusts the set of
scheduled tasks and their service levels. More recently, Lu
et al.extended this work to create a comprehensive feedback

1Specifically, the firstcorrect feedback algorithm was proposed in [14].



scheduling framework [15] that more explicitly incorporates
the value to the system associated with each service level.
This framework is the basis for the approach we propose in
this paper. One drawback ofFC-EDF2 is that, because only
the utilization and thesystem-widemiss-ratio are monitored,
the system cannot identify whether an individual task has an
actual execution time that deviates substantially from itsesti-
mated execution time. Thus, the system can only respond to
differences between the actual and estimated execution times
of tasks by changing the entire system instead of only a few
tasks.

Alternatively, Abeniet al. have proposed a uniprocessor
feedback algorithm in which each task has its own feedback-
controller rather than one controller for the entire system[3].
In order to attempt to maintain an accurate processor share
for each task, their algorithm monitorsfor each taskthe dif-
ference between the estimated and actual execution times of
each job. Once the system has calculated a new estimated
execution time for a future job, it adjusts the task’s weight.
More recently, Cucinottaet al. extended this approach to
provide stochastic guarantees concerning per-task processor
shares [12]. One drawback of their approach is that it ig-
nores the possibility that some tasks are more important than
others.

In addition to general-purpose real-time scheduling algo-
rithms, feedback-based scheduling has become increasingly
important for managingcontrol tasks, i.e., tasks that control
external devices. In work by Martı́et al.[16], an approach is
proposed that is similar to that of Abeniet al., except that in
[16], each period of each task has an associated “importance
value” that denotes the task’s value to the system in that pe-
riod. By using importance values, Martı́et al. determined
the optimal period for each task via standard linear program-
ming techniques. One limitation of this approach is that the
system can only adjust task periods, and not execution times
(as done by Luet al. [15]).

There has also been substantial work on using feedback
mechanisms within distributed real-time systems [1, 19].
However, because such systems are “loosely coupled,” and
because distributed systems must deal with issues not present
in multiprocessor designs (e.g., end-to-end delays), work in
this area is less directly applicable to multiprocessor feed-
back systems.

In the multiprocessor case, there has been relatively lit-
tle work on feedback algorithms. The little multiprocessor-
based work that has been done has focused on non-
preemptive systems where WCETs, best-case execution
times, and deadlines are static [4, 18]. As such, this work
is too restrictive to apply in applications like Whisper.

Multiprocessor scheduling. All multiprocessor schedul-
ing algorithms can be classified as eitherpartitioned or
global. Under partitioned algorithms, each task is perma-
nently assigned to a specific processor and each processor

independently schedules its assigned tasks using a unipro-
cessor scheduling algorithm. An example of such an algo-
rithm is the partitionedEDF (PEDF) algorithm, wherein the
uniprocessor earliest-deadline-first (EDF) algorithm is used
as the per-processor scheduler. The advantage of partitioned
approaches is that tasks have lower runtime overheads since
they never migrate among processors. The disadvantage of
such approaches is that, to ensure that every job completes
within a bounded range of its deadline, overall utilization
may need to be restricted substantially (by up to approxi-
mately50%). In global scheduling algorithms,e.g., global
EDF (GEDF), tasks are scheduled from a single priority
queue and may migrate among processors. While global al-
gorithms incur higher overheads than partitioned algorithms
due to migration, recent work has shown that global algo-
rithms (in particular,GEDF) can guarantee that every job
completes within some time bound of its deadline in any sys-
tem that is not overutilized [13].

In recent work, Calandrinoet al. [11] constructed a mul-
tiprocessor real-time extension of Linux called LITMUSRT

that allows different scheduling policies to be linked as plu-
gins. They showed that, for soft real-time systems,i.e.,
systems in which bounded deadline tardiness is acceptable,
global scheduling algorithms tend to be better than par-
titioned approaches from the standpoint of schedulability
when real overheads are considered. Furthermore, recent
work by Block et al. [8] has shown that partitioned ap-
proaches are ill-suited for adaptive scenarios because such
systems would likely require frequent repartitioning to pre-
vent unbounded tardiness. Frequent repartitioning mitigates
the primary advantage of partitioned systems, which is that
tasks do not migrate. Thus, in this paper, we focus our atten-
tion on global scheduling algorithms, in particular,GEDF.

Contributions. Our novel contributions are:

• We present anadaptive GEDF framework called
A-GEDF that consists of three components: apredic-
tor, which uses feedback techniques to estimate the pro-
cessor share of future jobs; anoptimizer, which uses
the estimated processor shares of tasks to determine a
new set of service levels; and severalreweighting rules,
which change the service levels to match that deter-
mined by the optimizer. To the best of our knowledge,
this is the first such adaptive global framework for mul-
tiprocessor systems to be proposed. Our focus onmul-
tiprocessorplatforms is the main distinguishing aspect
of our work compared to prior efforts.

• We (briefly) discuss an implementation ofA-GEDF in
LITMUSRT.

• We present an experimental evaluation of ourA-GEDF
implementation using code derived from Whisper. In
this evaluation,A-GEDF proved to be an extensible



framework that can be easily configured to support dif-
ferent optimization criteria. Also, it performed well in
scenarios where a non-adaptiveGEDF algorithm would
result in significant system over-utilization. (We also
evaluatedA-GEDF using code derived from a night-
vision system and found similar results, which we omit
due to space constraints.)

We developed a new adaptive framework because of
shortcomings associated with other approaches:

• Our experiments show that Whisperwill not work prop-
erly if partitioned or non-adaptive scheduling is used.

• For GEDF, the miss-ratio, proposed by Luet al. [14],
cannot be used to determine if a system is overutilized
because deadline misses are expected behavior.

• Because the approach proposed by Abeniet al. [3] as-
sumes that all tasks are equally important, it is insuffi-
cient for Whisper, which values some tasks over others.

The rest of this paper is organized as follows. In Sec. 2,
we discuss needed background. In Sec. 3, we describe the
A-GEDF algorithm in greater detail. In Sec. 4, we discuss
our implementation ofA-GEDF in LITMUSRT. In Sec. 5,
we present our experimental evaluation. We conclude in
Sec. 6.

2. Definitions

In this section, we define our system model and describe
the GEDF scheduling algorithm, upon whichA-GEDF is
based.

Sporadic tasks. We denote theith task of a task systemT
asTi (where tasks are indexed by some arbitrary method),
and denote thejth job of the taskTi asT j

i (where jobs are
ordered by the sequence in which they are invoked). Aspo-
radic taskis defined by aworst-case execution time, denoted
e(Ti), andperiod, denotedp(Ti). The fraction of a proces-
sor required byTi is called theweight ofTi, denotedw(Ti),
and is defined ase(Ti)/p(Ti). The first job of a task may
be invoked orreleasedat any time at or after time zero. The
release time of jobT j

i is denotedr(T j
i ). Successive job re-

leases of taskTi must be separated by at leastp(Ti) time
units. Theabsolute deadline(or justdeadline) of job T j

i , de-
notedd(T j

i ), equalsr(T j
i )+p(Ti). Theactual execution time

of jobT j
j , denotedAe(T j

i ), is the amount of time for which

T j
i is scheduled; this value is upper-bounded bye(Ti). We

assume that the value ofAe(T j
i ) is not known untilT j

i fin-
ishes execution.

Adaptable sporadic tasks. Our notion of anadaptable
sporadic task systemis based on a task model presented by

Lu et al. [15] and extends the notion of a sporadic task sys-
tem in two major ways. First,worst-caseexecution times
are not assumed. Second, each taskTi has a set ofservice
levels, denotedSL(Ti), each of which represents a different
level of QoS forTi, and aweight translation function, de-
notedg(Ti, e, k, q), which is used to compute the weight of
Ti at different service levels, as explained below.

Thekth service level ofSL(Ti) is defined by animpor-
tance value, v(Ti, k), aperiod, p(Ti, k), and acode segment.
Without loss of generality, we assume that the service levels
in SL(Ti) are indexed by increasing importance value from
1 to |SL(Ti)|, where|SL(Ti)| is the number of elements in
SL(Ti). The importance value represents some user-defined
notion of “goodness,” where0.0 represents a service level
that has no value and1.0 represents the maximal possible
value associated with any service level of any task in the sys-
tem.

At any point in timet, one service level inSL(Ti) is said
to be thefunctional service level ofTi. The index of the
functional service level ofTi at timet is denotedf(Ti, t). For
now, we assume that the functional service level of a taskTi

does not change within(r(T j
i ), d(T j

i )) for any jobT j
i of Ti.

In Sec. 3.3, we discuss how to change the functional service
level of a task at any time. Ifk is the functional service level
at r(T j

i ), thenT j
i is said to befunctioning at service levelk.

If T j
i is functioning at service levelk, then bothr(T j+1

i ) ≥

r(T j
i ) + p(Ti, k) andd(T j

i ) = r(T j
i ) + p(Ti, k) hold. We

consider a taskTi to beactiveat timet if there exists a job
T j

i (calledTi’s active job) such thatt ∈ [r(T j
i ), d(T j

i )). We
useACT(t) to denote the set of active jobs at timet.

The code segment associated with thekth service level is
the code segment that a jobT j

i will execute ifT j
i is function-

ing at service levelk. There are numerous different methods
for defining such code segments, depending on the specific
application. For some applications, each service level may
execute the same code segment, and the only difference be-
tween service levels is the period. For other applications,the
difference between service levels may be something as sim-
ple as the number of iterations in a loop, while for others,
each service level may use entirely different code. As we
will discuss in Sec. 3, how the code segment is implemented
will impact the efficacy ofA-GEDF at adapting tasks.

Just as for sporadic tasks, the value ofAe(T j
i ) denotes

the amount of time for whichT j
i is actually scheduled. The

actual weight of a jobT j
i , denotedAw(T j

i ), represents the
actual fraction of a processor thatT j

i requires and is defined
by Aw(T j

i ) = Ae(T j
i )/p(T j

i , k), whereT j
i is functioning

at service levelk. Just as with sporadic tasks, we assume
that the value ofAe(T j

i ) (and by extensionAw(T j
i )) is not

known untilT j
i finishes execution.

As we will discuss in Sec. 3.1, since the actual weight of
a job is not known until it completes,A-GEDF uses anesti-
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Figure 1. Estimated weight vs. importance value/service
level for two tasks:T1 and T2, each of which have three
service levels with importance values of0.1, 0.2, and0.3.
ForT1, g(T1, e, 1, 2) = 2e andg(T1, e, 1, 3) = 3e, and for
T2, g(T2, e, 1, 2) = e1/4 andg(T2, e, 1, 3) = e1/8, where
e is the estimated weight while functioning at service level
one. For bothT1 and T2, this graph depicts the scenario
wheree = 0.1.

mated weightfor incomplete jobs, denotedEw(T j
i ). When

A-GEDF calculates the estimated weight for a jobT j
i it does

so for a specific service level (typically, the same service
level at whichT j−1

i was functioning). The weight trans-
lation function is used to map the estimated weight as cal-
culated byA-GEDF for a specific jobT j

i functioning at a
specific service level to what the estimated weight ofT j

i

would be if it functioned at adifferentservice level. Specif-
ically, if e is the estimated weight ofT j

i assuming thatT j
i

is functioning at service levelk, then the weight translation
function, g(Ti, e, k, q), returns the estimated weight ofT j

i

if it were to be functioning atqth service level instead of
the kth service level. For example, consider the two tasks
T1 andT2 described in Fig. 1. In this example, ife = 0.1,
k = 1, andq = 3, theng(T1, e, k, q) = 0.3, which is the
estimated weight of a job ofT1 if it had been calculated
for the third service level instead of the first. Also, forT2,
g(T2, e, k, q) ≈ 0.75, which is the estimated weight of a job
of T2 if it had been calculated for the third service level in-
stead of the first.

As we will discuss in Sec. 3.2, the weight translation func-
tion is used by the optimizer to determine the effect on the
system caused by changing the functional service level of
a task. We make only two assumption about the behavior
of g(Ti, e, k, q): if q < k, theng(Ti, e, k, q) ≤ e; and if
g(Ti, e1, k, q) = e2, theng(Ti, e2, q, k) = e1. It is impor-
tant to note that the functiong(Ti, e, k, q) can return approx-
imate values; however, the accuracy ofg(Ti, e, k, q) will im-
pact the performance of the optimizer. Like service levels
and code segments, the weight translation function is defined
by the application developer and can be determined empiri-
cally.

The primary difference between the task model presented
by Lu et al. [15] and our task model is that in [15] each
service level of a taskTi has astatic notion of “estimated
weight” that represents the nominal fraction of a processor
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Figure 2. A two-processor systemT scheduled byGEDF
with five tasks:T1, with a period of7, for whichAe(T 1

1 ) =

2 and Ae(T 2

1 ) = 1; T2, with an initial period of7/3 that
changes to7 at time7 (via a functional service-level change),
for which Ae(T j

2
) = 1 for any j; T3, with an initial period

of 7/3 that at time7 changes to7/2, for whichAe(T j
3
) = 1

for 1 ≤ j ≤ 3 andAe(T j
3
) = 2 for j ≥ 4; T4, with a period

of 7, for which Ae(T 1

4 ) = 3 andAe(T 2

4 ) = 5; T5 with a
period of7, for which Ae(T j

5
) = 3 for any j. Notice that

T 1

5 misses a deadline by one quantum unit at time7, andT 2

5

misses a deadline by one time quantum at time14.

required byTi. Statically assigning an estimated weight to
a task implies that the task has a typical behavior and that
if it requires a smaller or larger fraction of a processor, then
such a scenario is an anomaly. While this may be true for
many applications, for systems like Whisper, predetermining
the nominal weight of a task can be difficult if not impossi-
ble. Thus, as we will discuss in Sec. 3, rather than statically
determining estimated weights,A-GEDF will dynamically
calculate the estimated weight for each job.

Scheduling. UnderGEDF, “ready” jobs (see below) are
prioritized by deadline, with earlier deadlines having higher
priority. Deadline ties are resolved arbitrarily, but consis-
tently. Additionally, an arriving job with higher priority
preempts the executing job with the lowest priority if no
processor is available. The preempted job may later re-
sume execution on a different processor. It is important
to note that if a sporadic task system, adaptive or not, is
scheduled byGEDF then deadlines may be missed; how-
ever, in the absence of over-utilization, such misses are by
bounded amounts only [13]. As an example, consider the
two-processor system depicted in Fig. 2 (described in the
caption). Notice thatT5 misses a deadline at times 7 and
14.

For an arbitrary scheduling algorithmA and task system
T , we letS denote anM -processor scheduleA of T , and
let A(S, T j

i , t1, t2) denote the total time allocated toT j
i in

S in [t1, t2). Similarly, we useA(S, Ti, t1, t2) to denote
the total time allocated to all jobs ofTi in S over the in-



terval [t1, t2). We say that the value ofA(S, T j
i , 0, t) is

the amount for whichT j
i hasexecuted byt. For example,

in Fig. 2, A(S, T 1
5 , 0, 8) = 3, A(S, T 1

5 , 0, 14) = 3, and
A(S, T 2

5 , 7, 8) = 0 (sinceT 1
5 and notT 2

5 is executing over
the range[7, 8)).

Definition (Completed, Pending, and Ready). If S is an
M -processor schedule of the task systemT , then a jobT j

i ∈

T is said to havecompleted by timet in S iff T j
i has executed

for at leastAe(T j
i ) time units byt in S. For example, in

Fig. 2,T 1
1 is complete by time 4, andT 1

5 is complete by time
8. For an arbitrary scheduling algorithmA, if S is anM -
processor schedule of the task systemT underA, then a job
T j

i is said to bepending at timet in S if r(T j
i ) ≤ t andT j

i is
incomplete att in S. For example, in Fig. 2,T 1

1 is pending
until time 4, andT 1

5 is pending until time 8. Note that a job
can be pending, but not active, if it misses its deadline. A
pending jobT j

i is said to beready at timet in S if all prior
jobs of taskTi have completed byt. For example,T 2

5 is not
ready until time 8 becauseT 1

5 is incomplete until time 8. A
job T j

i can be pending but not ready ifT j−1

i is incomplete at
r(T j

i ).

3. A-GEDF

We now present theA-GEDF scheduling algorithm and
its three components: thepredictor (Sec. 3.1), which uses
feedback-based techniques to estimate the actual weights of
future jobs; theoptimizer(Sec. 3.2), which given estimated
job weights, attempts to determine an optimal set of func-
tional service levels; and severalreweighting rules(Sec. 3.3),
which are used to change the functional service level of a task
to match that chosen by the optimizer. In the following, we
assume thatA-GEDF is used on anM -processor system.

The major components ofA-GEDF are depicted in Fig. 3.
At a high level, these components function as follows.

• At each instant, theM pending jobs with the smallest
deadlines are scheduled.

• At T j
i ’s completion, the predictor is used to estimate the

weight for the next job release ofTi. If maintaining a
constant weight is important, then the reweighting rules
may changeT j+1

i ’s functional service level.

• After some user-specified threshold, the optimization
component is run to determine new service levels for
each task. Then, the following two steps are performed.
First, if some tasks require an estimated weightde-
crease, then the reweighting rules are used to change the
service levels of those tasks. This creates spare capacity
in the system. Second, as the spare capacity created by
weight decreases becomes available, if some tasks re-
quire an estimated weightincrease, then the reweight-

ing rules are used to change the service levels of those
tasks.

It is worthwhile to note that the optimization component (and
hence large-scale changes to task functional service levels) is
only executed after some user-specified threshold. We offer
some guidelines for choosing this threshold in Sec. 3.4.

3.1. The Feedback Predictor

Before continuing, we first review the basics offeedback
systems. Most feedback systems consist of the following
components, most of which are labeled in the model of our
system in Fig. 3(b): theinput value, the output value, the
actuator, theerror, theplant, and thecontroller. The input
value is the reference value for the system, while the output
value is value computed by the system. The actuator calcu-
lates the error by subtracting the output from the input. The
plant is the system we wish to control. The controller modi-
fies the input to change the behavior of the output.

The performance of a feedback system is measured in
terms of transient response, steady-state error, andstabil-
ity. The transient response of a system is the initial output of
the system to a change in input. The steady-state error de-
notes the difference between the output and the input of the
system as time increases. A system is considered to bestable
if every bounded input causes the system’s steady-state error
to be bounded.

It is worthwhile to note that while feedback-based tech-
niques are primarily used to control the behavior of a plant
for which the (reference) input is known, another viable use
for such techniques is topredict future values of a changing
and unknown input. The design of such a system is exactly
the same as the typical feedback system,except that the feed-
back loop does not directly impact the behavior of the system.
(Thus, the plant and the controller can be one-in-the-same.)
In such a system, the transient response describes the ini-
tial accuracy of predictions after there has been a change in
the input, and the steady-state error describes the difference
between the predicted and actual values as system time in-
creases.

The feedback predictor. Since the predictor inA-GEDF
uses feedback-based techniques to predict the weight of fu-
ture jobs instead of using a simpler approach, such as setting
Ew(T j

i ) = Aw(T j−1

i ), the predictor both produces values of
Ew(T j

i ) that are less susceptible to ephemeral fluctuations
in the workload and is capable of closely tracking trends in
the actual weight (e.g., when the actual weight of the task
changes at a constant rate). Using a feedback loop to predict
the weight of future jobs is similar to the approach by Abeni
et al. [3].

As depicted in Fig. 3(a), in the predictor, each task has its
own feedback loop. Also, as depicted in Fig. 3(b), for each
feedback loop, the input is the actual weight; the output is the
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Figure 3. (a) TheA-GEDF scheduling algorithm.(b) The model ofA-GEDF’s feedback component.

estimated weight; the error is the actual weight minus the es-
timated weight; and the controller is aproportional-integral
(PI) controller that uses information about the current error
and the sum of all previous errors in order to calculate a new
estimated weight. Specifically, the controller is defined as

Ew(T j+1

i ) = a · ǫ(T j
i ) + b

k=j−1
∑

k=1

ǫ(T k
i ), (1)

whereEw(T 1
i ) = 0, ǫ(T j

i ) = Aw(T j
i )−Ew(T j

i ) and botha
andb are user-defined values that we discuss shortly. Taking
the Z-transform2 of (1) and rearranging the values we get,

G(z) =
a(z − c)

z(z − 1)
, (2)

where c = (a − b)/a. (The convention is to write Z-
transformed functions as a function of the complex valuez.)
In control theory parlance, (2) is called theopen-loop trans-
fer functionbecause it represents the behavior of the con-
troller ignoring the feedback loop. Theclosed-loop transfer
function, which incorporates both the behavior of the con-
troller and feedback loop is given by

H(z) =
G(z)

1 + G(z)
=

a(z − c)

z2 + (a − 1)z − ac
. (3)

From the above equation, the predictor has aclosed-loop zero
(the value ofz for which H(z) = 0) at z = c, andclosed-
loop poles(the values ofz for whichH(z) is undefined) at

(1 − a) ±
√

(a − 1)2 + 4ac

2
. (4)

LetPm denote the pole from (4) that is the farthest from the
origin. We henceforth useR(P) andθ(P) to denote, respec-
tively, the radius and angle (in radians) of the poleP in polar-
complex form. Because the predictor has two closed-loop
poles, it is asecond-order system. This is the reason why

2The Z-transformis a function used for analytic purposes that maps a
formula to thefrequency-domain, i.e., as a function of frequencies. Dis-
cussing the Z-transform in detail is beyond the scope of thispaper, and we
refer the reader to [17] for a review of this subject.

we chose to use a PI controller instead of aproportional-
integral-derivative(PID) controller. Since PID controllers
arethird-order systems, i.e., such systems have three poles,
the transient response analysis is substantially more com-
plex. In fact, the typical means for determining the transient
response of a third-order system is to approximate it as a
second-order system.

Feedback characteristics. The stability, steady-state er-
ror, and transient response of the predictor can be easily
derived from (2), (3), and (4) by using standard feedback
control techniques. Due to space constraints, we present
a limited overview of these characteristics in the body of
this paper, and refer the reader to an appendix of the pa-
per, which can be found on the third author’s webpage at
http://www.cs.unc.edu/∼anderson, for a thor-
ough discussion of these topics. The predictor isstable if
R(Pm) < 1 holds. The predictor isunstableif R(Pm) ≥ 1
holds. If the predictor is unstable, then it cannot make mean-
ingful predictions. Since we are using a PI controller, the
steady-state error for the predictor in response to astep in-
put (i.e., a sudden change from one actual weight to another)
is zero and the steady-state error for aramp input(i.e., the
actual weight changes at a constant rate) is a non-zero value
given as a function ofa andc (given in the appendix). The
transient response is also a function ofa andc (as specified in
the appendix). The fact that a PI controller has zero steady-
state error for a step response is the reason why we chose a PI
controller instead of aproportional-derivative(PD), which
would have a superior transient response but would have a
non-zero value for a step input (i.e., if the actual weight is
constant, a PD controller would still have error).

3.2. Optimization

As mentioned above, the optimization component of
A-GEDF uses the estimated weights of tasks in order to
choose service levels for each task. There are a variety of dif-
ferent methods for implementing this component depending
on what metric the user wants to optimize and the behavior
of g(Ti, e, k, q).

For example, suppose the objective is to optimize the total
importance value in the system. In this case, if the relation-



ship between the importance value and weight is linear (like
T1 in Fig. 1), then an approximate solution for this objective
could be achieved by assigning the highest service level pos-
sible to those tasks with the highestvalue density, as given
by,

v(Ti, |SL(Ti)|) − v(Ti, 1)

g(Ti, Ew(T j
i ), k, |SL(Ti)|) − g(Ti, Ew(T j

i ), k, 1)
,

while ensuring at least every task receives its minimum ser-
vice level and the system is not over-utilized. (This approach
is similar to thehighest-value-density-firstapproach used by
Lu et al. [15].) On the other hand, if the relationship be-
tween the importance value and weight is non-linear (like
T2 in Fig. 1), then an approximate solution for this objec-
tive could be achieved by using nonlinear programming tech-
niques such assteepest descentor Newton’s method[5]. If
exact solutions are required, then techniques likebranch-
and-boundcan be used offline, and the optimization compo-
nent could then switch between several predetermined sys-
tem states.

It is important to note that the use of weight translation
functions is the reason why the optimization component is
extensible because it allows any optimizing function to as-
sess the impact of changing the functional service level. In
prior work on adaptive real-time systems, the two primary
methods for optimizing service levels have been to assume
either that each service level has a “nominal” utilization [15]
or the relationship between the service level and importance
value is linear [16]. As we discussed in Sec. 2, the prob-
lem with the first approach is that assessing a meaningful
“nominal” utilization may be difficult if not impossible for
many applications. The problem with the second approach
is that there exist applications for which linearity cannotbe
assumed. For example, consider any video application in
which each service level corresponds to a different resolu-
tion. Typically, in such a system, as the service level (and by
extension the resolution) increases, the amount of benefit to
user perception per pixel added decreases. It is easy to see
that in such a scenario, the relationship between importance
value and estimated weight is nonlinear.

3.3. Reweighting

Whenever a task is reweighted (i.e., changes its functional
service level) either by the optimization component or by
the mainA-GEDF algorithm, its code segment and/or period
may change. If no job of a taskTi is active whenTi changes
its functional service level from theℓth0 to ℓth1 service level
at timet, then the change is simple—the next released job of
Ti has the period and code segment associated with theℓth1
service level. If a job ofTi is active att, then the situation
is more complicated. For the remainder of this section, let
T j

i denote the active job ofTi at t. When a task with an ac-
tive job reweights, there can be a difference between when

it “initiates” the change and when the change is “enacted.”
The time at which the change isinitiated is defined exter-
nally to the reweighting component (by either the optimiza-
tion component or the mainA-GEDF algorithm); the time at
which the change isenacted, i.e., the functional service level
is changed, is dictated by reweighting rules.

Changing the code segment. Whether the code segment
of the taskTi that releasedT j

i can change depends on the
implementation ofTi. For example, if theℓth0 andℓth1 service
levels have substantially different code segments, thenT j

i

cannot change its code segment. On the other hand, suppose
that the difference between the code segments for theℓth0 and
ℓth1 service levels is simply the number of iterations in a loop.
Then, as long asT j

i is not complete and this change would
not cause eitherEw(T j

i ) > 1 or
∑

T b
a∈ACT(t) Ew(T b

a) > M ,

T j
i can change its code segment immediately. Moreover, if

the code segment is changed, thenEw(T j
i ) is changed to

max(Nw · p(Ti, ℓ1), A(S, T j
i , r(T j

i ), t))

p(Ti, ℓ0)
,

where S is the A-GEDF schedule, and Nw =
g(Ti, Ew(T j

i ), ℓ0, ℓ1). Notice that the estimated amount of
time for whichT j

i will execute as a consequence of chang-
ing its code segment is the larger of the amount of time it
has already been schedule by timet, i.e., A(S, T j

i , r(T j
i ), t),

and the amount of time thatT j
i would have been scheduled if

theℓth1 service level was the functional service level atr(T j
i ),

Nw · p(Ti, ℓ1). Thus, the estimated weight ofT j
i is the es-

timated amount of time thatT j
i will be scheduled divided

by p(Ti, ℓ0). For example, consider the three-processor sys-
tem depicted in Fig. 4. In this example,Ew(T 1

1 ) is changed
to 4/7, Ew(T 1

2 ) is changed to2/7, andEw(T 1
3 ) is changed

to 1/7. Notice thatEw(T 1
3 ) is changed to1/7 even though

g(T3, 3/7, ℓ0, ℓ1) = 1/14. The reason for this is that
A(S, T 1

3 , 0, 1) > Nw · p(Ti, ℓ1).

Changing the period. The rules for changing the period
of a task have been presented in prior work [8]. Unfortu-
nately, due to space constraints, we cannot describe these
rules in full detail. For our purposes, the most important as-
pect of these rules is that weight changes cannot always be
immediately enacted. This is because doing so may cause
unbounded tardiness. Thus, inA-GEDF, whenever the op-
timization component establishes new service levels for all
tasks in the system, service level decreases must beenacted
before service level increases can beinitiated. If service level
increases were immediately enacted, thenA-GEDF would
knowingly overload the system, which is against the de-
sign objectives ofA-GEDF. For example, consider the one-
processor system depicted in Fig. 5. In this example,T1,
T2, andT3 are allowed to decrease their weights immedi-
ately after being scheduled. Thus, the system is never over-
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Figure 4. A three-processor systemT scheduled by
A-GEDF with three tasks, all of which have a period of7,
an estimated weight of3/7, and in the absence of a weight
change, would be scheduled for3 time units. At time 1, all
three tasks experience a service level change that changes
the code segment for each job. Moreover, the value of
g(Ti, Ew(T j

i ), ℓ0, ℓ1) as a result of the functional service
level change is4/7, 2/7, and1/14, for T1, T2, andT3, re-
spectively. Thus, as a result of the change,T 1

1 executes for4
time units,T 1

2 executes for2 time units, andT 1

3 executes for
1 time unit.

utilized; however,T4 misses a deadline by one time unit,
which should not occur underEDF.

3.4. User-Defined Threshold

Choosing a specific user-defined threshold for invoking
the optimizer will depend largely on the targeted application.
Some possible thresholds could include a duration of time, a
substantial change in the estimated weight for one task, or a
substantial change in the total estimated weight for all tasks.
While running the optimizer more frequently will increase
the accuracy of the system, it will also increase the amount
of time the scheduler is active with the system not produc-
ing “useful” work. Additionally, as we discussed in Sec. 3.3,
the reweighting rules cannot always be enacted immediately.
Thus, if the optimizer is called before all changes have been
enacted, then it may produce an inaccurate result. Notice
that, if the weight translation function is accurate, then after
all reweighting events have been enacted the system will re-
main in an “optimal” state, unless the actual weight of a task
changes. Thus, if the separation between optimizer invoca-
tions is sufficiently large for all tasks to enact their functional
service level changes (i.e., at least the largest period of a job
in the system), then it is possible to guarantee that no task
will unnecessarily “thrash” between service levels.

4. Implementation

Recently, our research group developed a testbed
called LITMUSRT (LI nux Testbed forMU ltiprocessor
Scheduling inReal-Time systems), which is an extension of
Linux (currently, version 2.6.20) that allows different mul-
tiprocessor scheduling algorithms to be linked as plug-in

T2

T

T3

1

T4

Scheduled
Job release

Job deadline

1 2 3 4 50
Time

Figure 5. A one-processor systemT scheduled byEDF
with four tasks. T1, T2, andT3 all have a period of two,
an actual execution cost of one, decrease their weights to
zero immediately after being scheduled, and have one job
released at, respectively, times0, 1, and2 (each increases its
weight from zero to 0.5 when its first job is released).T4 has
an actual execution cost of two and a period of four. Since
tasks are allowed to decrease their weights immediately, the
system is never over-utilized, yetT 1

4 misses a deadline.

components [11]. Our implementation ofA-GEDF con-
sists of both a user-space library and kernel support added to
LITMUSRT. In this section, we briefly discuss both parts.
Unfortunately, a detailed description is not possible, dueto
space constraints.

Because LITMUSRT was designed for sporadic tasks
provisioned using WCETs, several modifications were
needed to support adaptable sporadic tasks. These included:
adjusting the internal structure of the task control block to
allow each task to have multiple service levels; disabling the
enforcement of WCETs to allow tasks to overrun their ex-
pected allocation; and modifying LITMUSRT to allow task
statistics such as actual execution times to be gathered.

After making these changes, we implementedA-GEDF
by changing theGEDF scheduling algorithm (which had al-
ready been implemented in LITMUSRT) in two ways. First,
we introduced a system call to query the kernel in order for
a task to determine its current service level. Second, we im-
plemented the feedback, optimization, and reweighting com-
ponents in kernel space. Since in Linux floating point opera-
tions cannot be used in kernel space, these components were
implemented using fixed-point calculations instead.

5. Experiments

In this section, we report on experiments conducted using
LITMUSRT to evaluate the performance ofA-GEDF when
running the core operations of Whisper.

Whisper. As noted earlier, Whisper tracks users via speak-
ers that emit white noise attached to each user’s hands, feet,
and head. Microphones located on the wall or ceiling re-
ceive these signals and a tracking computer calculates each



speaker’s position by measuring signal delays. Whisper is
able to compute the time-shift between the transmitted and
received versions of the sound by performing acorrelation
calculation on the most recent set of samples. By varying
the number of samples, Whisper can trade measurement ac-
curacy for computation—with more samples, the more accu-
rate and more computationally intensive the calculation. As
the signal-to-noise ratio decreases, the number of samples
is increased to maintain the same level of accuracy. As the
distance between a speaker and microphone increases, the
signal strength decreases. This behavior (along with the use
of predictive techniques mentioned in the introduction) can
cause frequent task share changes.

Experimental system set-up. Unfortunately, it is cur-
rently not feasible to produce experiments involving a com-
plete implementation of Whisper, for two reasons. First,
as Whisper currently exists, it is single-threaded (and non-
adaptive) and consists of several thousand lines of code.
Converting it to a multi-threaded implementation is a non-
trivial task. Indeed, because of this, it isessentialthat we
first understand the scheduling and resource-allocation trade-
offs involved. Second, support fortask synchronizationis re-
quired, and this issue is beyond the scope of this paper. For
these reasons, we have chosen to conduct our evaluation us-
ing the core operation of Whisper (i.e., a correlation compu-
tation). (We emphasize that the experiments discussed here
involved runningreal code on areal OS kernel and are not
merely simulations.)

The development platform used in our experiments is an
SMP consisting of four 32-bit Intel(R) Xeon(TM) processors
running at 2.7 GHz, with 8K L1 instruction and data caches,
and a unified 512K L2 cache per processor, and 2 GB of main
memory. For each task, each job was implemented as a loop
in which the core operation of Whisper is performed itera-
tively. The exact manner in which jobs behave is discussed
below. In implementing the optimizing component, we as-
sumed that there is a linear relationship between importance
value and estimated weight, and attempted to maximize the
total importance value for all tasks, as discussed earlier.The
optimizer was configured to run at least once every second,
and also whenever the estimated weight of a task changed by
at least50%, or upon a job completion, the total estimated
system weight exceeded four. However, it was constrained
to run at most once every 200ms. Note that in a full Whisper
implementation, these choices could possibly be improved
upon by carefully considering human-factors issues of rele-
vance to virtual-reality systems.

In all experiments, we defined the PI controller usinga =
0.102 andc = −1.975. We chose these values because we
believe that they represent a good tradeoff between transient
response and steady-state error (for a ramp input).

10 m
Speaker

Microphone

10 m

Figure 6. The simulated Whisper system.

Whisper experiments. In our Whisper experiments, we
simulated three speakers (one per object) revolving at a speed
of 2m/s (this is within the speed of human motion) in a 10m
× 10m room with a microphone in each corner, as shown in
Fig. 6. Tracked objects were sampled at a rate of 2,000 kHz,
and the distance of each object from the room’s center was
set at 5m. While this test scenario may seem simple (since
the path of each object is simple and pre-determined), it is
actually a challenging test case for Whisper. This is because
objects moving at a relatively high speed of 2m/s require sig-
nificant computational resources to track. Moreover, whileit
is possible to simulate objects that start, stop, and changedi-
rections, such scenarios actually requirelesscomputational
resources and adapt task service levelsless frequently, be-
cause user motion is typically slower when motion is not
continuous.

In the above scenario, one task is required per speaker-
microphone pair, for a total of 12 tasks. Each task was con-
figured to have three service levels, with periods/importance
values of 66ms/0.25, 33ms/0.5, 22ms/0.75, respectively, and
g(Ti, e, 1, 2) ≈ 5e andg(Ti, e, 1, 3) ≈ 9e. The importance
values were selected somewhat arbitrarily after some trial-
and-error experimentation; in an actual deployment, user
studies would be required to assess the impact of different
settings. Since the weight/importance value relationshipis
linear, we used the approach in Sec. 3.2 to optimize the sys-
tem. The other parameters were selected based upon the ex-
isting Whisper implementation. In Whisper, the QoS pro-
vided is directly related to the number of correlation com-
putations (CCs) performed per second. When the signal-
to-noise ratio decreases, the number of CCs must be in-
creased to maintain the same QoS. Similarly, the QoS pro-
vided can be increased by increasing the number of CCs per
second. A change in the functional service level of a Whisper
task changes the number of CCs per second. We estimated
that the existing Whisper implementation, if implemented on
our test platform, would perform approximately 27,600,000
CCs per second in the average case. The task periods and
g(Ti, e, ℓ1, ℓ2) values given above were defined so that the
average number of CCs per second for the second service
level matches this rate. Note that, because the code segments
of the three service levels differ only in the number of CCs
performed, the code segment of an active job can be changed.

The first experiment we discuss was conducted to see if
adaptivity is even needed in implementing Whisper. In this
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Figure 7. The actual weight of a Whisper task at three
different service levels over a 20-second run with two bursts
of noise at approximately times 6 and 13.

experiment, we ran one task as a normal Linux task for 20
seconds at all three service levels and measured its actual
weight. Results are shown in Fig. 7. After approximately six
and 13 seconds, the system experiences 48ms of noise that
doubles the number of correlation computations required per
job. The average weight of the task at the first, second, and
third service level is, respectively,0.05, 0.25, and0.45. No-
tice that, for a system with 12 tasks, operating each task at its
highest-service level and allocating it a processor share based
on its worst-case weight (which is 1.0) gives a total actual
weight of 12, which substantially over-utilizes the system.
Even with an average-case provisioning, the system is still
over-utilized, as the total actual weight is 5.4 in this case. On
the other hand, configuring each task to run at its second ser-
vice level using its average-case weight gives a total actual
weight of 3.0, which does not over-utilize the system; how-
ever, using a constant average-case allocation would likely
cause the system to be over-utilized when noise is encoun-
tered. Thus, from this experiment, we can infer that, in order
for Whisper to schedule tasks at any service level higher than
the lowest one, adaptive scheduling is needed (as is a multi-
processor).

In the second experiment, we ran all 12 Whisper tasks on
LITMUSRT, scheduled byA-GEDF, for 20 seconds with
1,100ms bursts of ambient noise after 5.5 and 12.3 seconds
that double the number of CCs required to maintain the same
QoS. Insets (a) and (b) of Fig. 8 depict the actual and esti-
mated weights and error for two different tasks as a func-
tion of time. It also shows the functional service level for
each task as a function of time. (The other 10 tasks exhib-
ited similar behaviors, but plots for them are omitted due to
space constraints.) Inset (c) shows the total actual weight
and the total importance value of the system as a function
of time. There are several interesting things to notice about
these graphs. First, for the tasks depicted in insets (a) and
(b), error is typically within the range[−0.05, 0.05]. Second,
whenever the functional service level changes or the system

encounters noise, error briefly spikes but quickly falls back
within the range[−0.05, 0.05]. Third, when the task in inset
(a) encounters noise at time 5.5, its service level is changed
and there is a substantial drop in its weight; however, when
it encounters noise at time 12.3, its service level is not de-
creased because its actual weight is so low. Note that its low
weight at this time is coincidental: its weight varies between
times 8 and 20 as depicted because of the movement of the
corresponding object, and that object happens to be closest
to the microphone for which this task is defined at approxi-
mately time 14. Fourth, when a job of the task in inset (b)
completes after the noise at time 12.3, the total estimated
weight is greater than four, so the optimizer is invoked caus-
ing this task to decrease its service level. This is why the
actual weight of this task is briefly greater than one. Fifth,
the total utilization of the system is typically close to 4, and
the system is briefly over-utilized when noise is encountered.
Because the total actual weight is always close to 4,this sys-
tem would not be schedulable using a partitioning approach.
Sixth, the total importance value of the system is typicallyin
the range[7.5, 8] and drops below 6.0 only when noise is en-
countered. In contrast, if tasks were statically assigned their
second service level and scheduled byGEDF, then the total
importance value would neverexceed6.0.

6. Conclusion

We have presented an adaptive framework,A-GEDF, that
uses feedback and optimization techniques, and allows the
processor shares of tasks running on a multiprocessor to be
controlled dynamically at runtime. We have also presented
an evaluation ofA-GEDF’s performance that uses Whisper
as a test case. These experiments clearly demonstrate the
need for adaptivity in this application. They also show that
A-GEDF is capable of enacting needed adaptations in a way
that enhances overall QoS. In future work, we plan to incor-
porate synchronization support intoA-GEDF and investigate
the application of feedback control in other (non-GEDF-
based) multiprocessor scheduling algorithms.
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