An Adaptive Framework for Multiprocessor Real-Time Systens*

Aaron Block, Bjorn Brandenburg James H. Andersénand Stephen Quiht
Department of Computer Sciericand Department of Biomedical Engineering
University of North Carolina at Chapel Hill

Abstract this shortcoming by presenting a multiprocessor framework
In this paper, we develop an adaptive scheduling framé"] which share allocations are adjusted using feedback and
! ggtimization techniques. This framework is directed at-mul

work for changing the processor shares of tasks—a procetlprocessor workloads specified as soft real-time sporadic
called reweighting—on real-time multiprocessor platforms. . . ) =
g b P tasks for which bounded deadline tardiness is acceptable.

Our particular focus is adaptive frameworks that are de-
ployed in environments in which tasks nfiguentlyrequire Whisper. To motivate the need for this work, we con-

significantshare changes. Prior work on enabling real- gjqer the Whisper tracking system, which performs fulljpod

time adaptivity on multiprocessors has focused exclugiveg s ying in virtual environments [22]. Whisper tracks sser
on scheduling algorithms that camacteeded adaptations. via an array of wall- and ceiling-mounted microphones that

The_ allgorllthm proposed in this paperuses b_oth.feedback afdtect white noise emitted from speakers attached to each
op_t|m|zat|ontechn|questo determine atruntwieichadap- | cor's hands, feet, and head. Like many tracking systems,
tations are needed. Whisper usegredictive techniqueso track objects. The
workload on Whisper is intensive enough to necessitate a
multiprocessor design. Furthermore, adaptation is reguir
Real-time systems that a@daptivein nature have re- because the computational cost of making the “next” pre-
ceived considerable recent attention [3, 6, 7, 8, 15, 20]. Adiction in tracking an object depends on the accuracy of the
multicore platforms become ever more ubiquitous, such sygrevious one. In fact, the processor shares of the tasks that
tems will be deployed with increasing frequency on multire deployed to implement these tracking functions may vary
processor platforms. In the multiprocessor case, priokwoRY &s much asvo orders of magnitude
on real-time adaptivity has focused exclusively on schedul . _ .
ing algorithms thgt cg/enactneeded adaptatio}r:s [6, 7, 8].Adapt|ve feedback-based scheduling algorithms. In
This paper is directed at the related issue of devising mec
anisms that determine at runtimehich adaptations are
needed.

1. Introduction

ﬁgaptive feedback-based scheduling algorithezch task’s
processor share is defined as a function oé#imated exe-
cution time which is calculated by using its prior jobettual

Under traditional task models g, periodic, sporadic, execution tlmesMorepver, a user can fm_e—tune a feedback-
kbéased system to achieve desired behaviors.

etc), the scheduability of a system is based on each tas Lu et al.[14] were the first to propose such a scheduling

worst-case execution tinfgCET), which defines the maxi- loorith hich directed at uni Bitd
mum amount of time each of its jobs can execute. The disalﬁ;gor' m, which was directed at uniprocessor systeia-

vantage of using WCETs is that systems may be deemed er their algorithm, calle&C-EDF?, each task has multiple

schedulable even if they would function correctly most @f th ve;sllonsl (c:llled;ervu;e Ieo\ll_?fl)s er?tgh (_)f VIVh'Ch has a dr']ﬁer'
time when deployed. Adaptive real-time scheduling algogn cevel o QoS an a difteremominal processor share
8resentlng the fraction of a processor the task will nexjui

rithms allow per-task processor shares to be adjusted badé& i it ¢ t that ice level A task
upon runtime conditions, instead of always using consta {1 average It it executes at that service level. ask can

share allocations based upon WCETSs. It is desirable thgply execute at one service level at a time. (The idea of us-

the share of each task be selected in a way that attempts:[?g kmi“t'ple Eebrvu_:re Il(e\:jels to dcoKr_lttrol a tasl2< 15 bef:jaworetsfa:
maximize overall quality-of-service (QoS). Moreover, te ack to work by Tokuda and Kitayama [21] and was later

location scheme should not “over-react” in adjusting siaareexmnded upon by other authors [2, 9, 10].) In order to con-

g 2 . it
when transient overloads occur. To the best of our knowf—rOI the systemfC-EDF" monitors the systemtilization

edge, the problem of devising adaptation mechanisms t %’Pd miss-ratiq i.e., the fraction of jobs with missed dead-

satisfy these requirements has not been considered bafor Ies. In order to maximize utlllzat|02n su_bject to the con-
raints of a target miss-rati&;C-EDF* adjusts the set of

work on multiprocessor systems. In this paper, we remed? . .
P y pap cheduled tasks and their service levels. More recently, Lu

*Work supported by Intel and IBM Corps., NSF grants CCR 046899 €t al.extended this work to create a comprehensive feedback
CCR 0541056, and CCR 0615197, and ARO grant W911NF-06-5-042
The first author was also supported by the UNC Alumni Fellopish 1specifically, the firstorrectfeedback algorithm was proposed in [14].




scheduling framework [15] that more explicitly incorpaat independently schedules its assigned tasks using a unipro-
the value to the system associated with each service levekssor scheduling algorithm. An example of such an algo-
This framework is the basis for the approach we propose nithm is the partitioned&DF (PEDF) algorithm, wherein the
this paper. One drawback BC-EDF? is that, because only uniprocessor earliest-deadline-fir&¥F) algorithm is used
the utilization and theystem-wideniss-ratio are monitored, as the per-processor scheduler. The advantage of paetition
the system cannot identify whether an individual task has approaches is that tasks have lower runtime overheads since
actual execution time that deviates substantially frorasts  they never migrate among processors. The disadvantage of
mated execution time. Thus, the system can only responddach approaches is that, to ensure that every job completes
differences between the actual and estimated executi@stimwithin a bounded range of its deadline, overall utilization
of tasks by changing the entire system instead of only a femay need to be restricted substantially (by up to approxi-
tasks. mately50%). In global scheduling algorithme.g, global
Alternatively, Abeniet al. have proposed a uniprocessorEDF (GEDF), tasks are scheduled from a single priority
feedback algorithm in which each task has its own feedbackueue and may migrate among processors. While global al-
controller rather than one controller for the entire sysfgln  gorithms incur higher overheads than partitioned algorgh
In order to attempt to maintain an accurate processor shatae to migration, recent work has shown that global algo-
for each task, their algorithm monitcier each taskhe dif- rithms (in particular, GEDF) can guarantee that every job
ference between the estimated and actual execution timesomimpletes within some time bound of its deadline in any sys-
each job. Once the system has calculated a new estimatedh that is not overutilized [13].
execution time for a future job, it adjusts the task’s weight In recent work, Calandrinet al. [11] constructed a mul-
More recently, Cucinottat al. extended this approach to tiprocessor real-time extension of Linux called LITMES
provide stochastic guarantees concerning per-task ocesthat allows different scheduling policies to be linked as-pl
shares [12]. One drawback of their approach is that it iggins. They showed that, for soft real-time systerms,
nores the possibility that some tasks are more important thaystems in which bounded deadline tardiness is acceptable,
others. global scheduling algorithms tend to be better than par-
In addition to general-purpose real-time scheduling algditioned approaches from the standpoint of schedulability
rithms, feedback-based scheduling has become incregsinglhen real overheads are considered. Furthermore, recent
important for managingontrol tasksi.e., tasks that control work by Block et al. [8] has shown that partitioned ap-
external devices. In work by Mart al.[16], an approach is proaches are ill-suited for adaptive scenarios becaude suc
proposed that is similar to that of Abesti al,, except thatin systems would likely require frequent repartitioning te-pr
[16], each period of each task has an associated “importaneent unbounded tardiness. Frequent repartitioning méga
value” that denotes the task’s value to the system in that pthe primary advantage of partitioned systems, which is that
riod. By using importance values, Mast al. determined tasks do not migrate. Thus, in this paper, we focus our atten-
the optimal period for each task via standard linear prograntion on global scheduling algorithms, in particul@&DF.
ming techniques. One limitation of this approach is that the o
system can only adjust task periods, and not execution timggntnbunons.

(as done by Liet al. [15]). _ _ e We present anadaptive GEDF framework called
There has also been substantial work on using feedback A_GEDF that consists of three componentspradic-

mechanisms within distributed real-time systems [1, 19].  tor which uses feedback techniques to estimate the pro-
However, because such systems are “loosely coupled,” and essor share of future jobs; aptimizer which uses
because distributed systems must deal with issues notjirese  he estimated processor shares of tasks to determine a
in multiprocessor designe(g, end-to-end delays), work in new set of service levels; and sevamkeighting rules

this area is less directly applicable to multiprocessodfee which change the service levels to match that deter-
back systems. . ~ mined by the optimizer. To the best of our knowledge,

In the multiprocessor case, there has been relatively lit- s is the first such adaptive global framework for mul-

tle work on feedback algorithms. The little multiprocessor tiprocessor systems to be proposed. Our focusiah

based work that has been done has focused on non- i ncessomplatforms is the main distinguishing aspect
preemptive systems where WCETSs, best-case execution o our work compared to prior efforts.

times, and deadlines are static [4, 18]. As such, this work
is too restrictive to apply in applications like Whisper. e We (briefly) discuss an implementation A&fGEDF in
LITMUSRET,

Our novel contributions are:

Multiprocessor scheduling. All multiprocessor schedul-

ing algorithms can be classified as eithgartitioned or e \We present an experimental evaluation of AUGEDF
global. Under partitioned algorithms, each task is perma-  implementation using code derived from Whisper. In
nently assigned to a specific processor and each processor this evaluation A-GEDF proved to be an extensible



framework that can be easily configured to support diftu et al.[15] and extends the notion of a sporadic task sys-
ferent optimization criteria. Also, it performed well in tem in two major ways. Firstyworst-caseexecution times
scenarios where a non-adapt®EDF algorithmwould are not assumed. Second, each taskas a set ofervice
result in significant system over-utilization. (We alsolevels denotedSL(7;), each of which represents a different
evaluatedA-GEDF using code derived from a night- level of QoS forT;, and aweight translation functionde-
vision system and found similar results, which we ominotedg(73;, e, k, ¢), which is used to compute the weight of
due to space constraints.) T; at different service levels, as explained below.

We developed daptive f K b ¢ The k' service level ofSL(T;) is defined by anmpor-
h te eveloped a rtle;v chaptr;ve rameW(;r X ecause Pnce valuev(T;, k), aperiod, p(7T3, k), and acode segment
shortcomings associated with other approaches. Without loss of generality, we assume that the service ¢evel

e Our experiments show that Whispeill not work prop-  in SL(T;) are indexed by increasing importance value from

erly if partitioned or non-adaptive scheduling is used 1 t0 |SL(T;)|, where|SL(T;)| is the number of elements in
SL(T;). The importance value represents some user-defined

e For GEDF, the miss-ratio, proposed by lat al.[14], notion of “goodness,” wher8.0 represents a service level
cannot be used to determine if a system is overutilizetthat has no value antl0 represents the maximal possible
because deadline misses are expected behavior. value associated with any service level of any task in the sys

tem

* Because the approach proposed by Atiral. [3] as- At any point in timet, one service level iBL(T;) is said

sumes that all tasks are equally important, it is msufflfo be thefunctional service level of;. The index of the

cient for Whisper, which values some tasks over 0ther?l'mctional service level df; attimet is denoted(T;, t). For

The rest of this paper is organized as follows. In Sec. 310W: we assume that the functional service level of a Task
we discuss needed background. In Sec. 3, we describe glges not change withi(r(7}), d(7})) for any jobT} of T;.
A-GEDF algorithm in greater detail. In Sec. 4, we discuss" S€c. 3.3, we discuss how to change the functional service
our implementation oA-GEDF in LITMUSET. In Sec. 5 level of a task at any time. K is the functional service level

. . atr(T? i is sai ioni i
we present our experimental evaluation. We conclude fRtf(77), thenT} is said to befunctioning at service leve.

Sec. 6. If T/ is functioning at service level, then bothr(7/™") >
r(T?) + p(T;, k) andd(T7Y) = r(T?) + p(T;, k) hold. We
2. Definitions consider a tasK’; to beactiveat timet if there exists a job

T7 (calledT;'s active job such that e [r(T7), d(T7)). We
In this section, we define our system model and descriseACT(t) to denote the set of active jobs at tithe
the GEDF scheduling algorithm, upon which-GEDF is The code segment associated with e service level is
based. the code segment that a j@i will execute if77 is function-
ing at service levet. There are numerous different methods

H sth
is;”ra(s\llﬁ;?j(;sk\gvzgeemggzg b;assgn(w);aatrabistl:asrg/srtﬁjhodfr defining such code segments, depending on the specific
i . lication. For some applications, each service level ma
and denote thg" job of the task7; asT (where jobs are PP PP y

, ) , execute the same code segment, and the only difference be-
ordered by the sequence in which they are invoked$pa-

, - , A tween service levels is the period. For other applicatitires,
radic taskis defined by avorst-case execution timéenoted i rance between service levels may be something as sim-
e(Z;), andperiod denotedh(7;). The fraction of a proces- o a5 the number of iterations in a loop, while for others,
sor r_equwe_d byT’; is called the/ve|ght_ofT_Z-, denotedv(T;), each service level may use entirely different code. As we
a”‘?' is defined ae(Tl-)/p(Ti).. The first job O,f atask may i giscuss in Sec. 3, how the code segment is implemented
be invoked oreleasedat any time at or after time zero. The 4, impact the efficacy oA-GEDF at adapting tasks.
release time of jolf” is denoted(77). Successive job re- Just as for sporadic tasks, the valueAgf(77) denotes
leases of task; must be separated by at leg®f;) time P e i
units. Theabsolute deadlinéor justdeadiing of job 77, de- the amour]t of t|me.for \;vh|cﬂ} is actualjly scheduled. The
notedd(7?), equals (7} )+p(7;). Theactual execution time actual weight of a jolilY, denotedAw(T}'), represents the
of job 7/, denotedAe(T?), is the amount of time for which actual fraction of a processor tHA¢ requlresf and is .def.med
T/ i scheduled; this value is upper-boundedssy). we BY AW(TY) = Ae(T7)/p(T}, k), whereT} is functioning

: ’ P i at service levek. Just as with sporadic tasks, we assume
assume that the value 8&(77) is not known untilZ; fin- that the value of\e(77) (and by extensiodw(T?)) is not
ishes execution. ! ’

known until T/ finishes execution.

Adaptable sporadic tasks. Our notion of anadaptable As we will discuss in Sec. 3.1, since the actual weight of
sporadic task systems based on a task model presented by job is not known until it completeg-GEDF uses aresti-
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ForTi, g(T1,e, 1, 2) = 2e andg(T1, e, 1, 3) = 3e, and for
Ty, g(To, e, 1,2) = e'/* andg(Tz, ¢, 1, 3) = /8, where

e is the estimated weight while functioning at service level
one. For bothTy and T3, this graph depicts the scenario
wheree = 0.1.

Figure 2. Atwo-processor systeffi scheduled b{GEDF
with five tasks:T1, with a period of7, for which Ae(T}) =
2 andAe(Tf) = 1; Te, with an initial period of7/3 that
changes t@ at time7 (via a functional service-level change),
) for which Ae(T%) = 1 for any j; T, with an initial period
mated weighfor incomplete jobs, denotefw(7;). When of 7/3 that at time7 changes ta/2, for whichAe(T%) = 1
A-GEDF calculates the estimated weight for a jpbit does for 1 < j < 3andAe(Ty) = 2for j > 4; Ty, with a period
so for a specific service level (typically, the same service of 7, for which Ae(7}) = 3 andAe(T7) = 5; Ts with a
level at WhiChTiJ_1 was functioning). The weight trans-  period of7, for which Ae(T?) = 3 for anyj. Notice that
lation function is used to map the estimated weight as cal- 73 misses a deadline by one quantum unit at timand72
culated byA-GEDF for a specific jobT? functioning at a misses a deadline by one time quantum at tirhe
specific service level to what the estimated Weighﬂﬁf

would be if it functioned at aiiﬁ_erentsej;rvice level. Spet;_if- required byT;. Statically assigning an estimated weight to
!cally, 'f. €IS the esumated weight df; assuming thaﬂ, a task implies that the task has a typical behavior and that
is fuqct|on|ng at service levdl, then thg weight tr_anslat[on if it requires a smaller or larger fraction of a processoenth
fu_nctlon, g(Ti e k, Q)’_ re_turns ttge est|_mated W?'ght af such a scenario is an anomaly. While this may be true for
'L't vt\flere tq belfun::tlonlng a4 Iserwce_dleveLlnstead O; many applications, for systems like Whisper, predetemgjni

the & g ser(;nce 'EVG(; For examp e,h_conS| er It e_ftwo taskSihe nominal weight of a task can be difficult if not impossi-
Ty andT; described in Fig. 1. Inthis example,df= 0.1, 0 Thyg as we will discuss in Sec. 3, rather than stagicall

k " L, andg — 3, theng(Tl, & k fl) = 0.3, which is the determining estimated weight8-GEDF will dynamically
estimated weight of a job of} if it had been calculated calculate the estimated weight for each job
for the third service level instead of the first. Also, By, '

g(Tz, e, k, q) = 0.75, which is the estimated weight of a job gcpeqyling.  Under GEDF, “ready” jobs (see below) are
of Ty if it had_ been calculated for the third service level 'n'prioritized by deadline, with earlier deadlines havingHeg
stead of the first. priority. Deadline ties are resolved arbitrarily, but cisas
As we will discuss in Sec. 3.2, the weight translation functently. Additionally, an arriving job with higher priority
tion is used by the optimizer to determine the effect on thgreempts the executing job with the lowest priority if no
system caused by changing the functional service level gfocessor is available. The preempted job may later re-
a task. We make only two assumption about the behaviguime execution on a different processor. It is important
of g(Ti, e, k, q): if ¢ < k, theng(T;, e, k,q) < e; andif to note that if a sporadic task system, adaptive or not, is
g(Ti, e1, k, q) = ez, theng(T}, e2, ¢, k) = e1. Itisimpor-  scheduled byGEDF then deadlines may be missed; how-
tant to note that the functiat(7, e, k, ¢) can return approx- ever, in the absence of over-utilization, such misses are by
imate values; however, the accuracyg(T’, e, k, ¢) willim-  hounded amounts only [13]. As an example, consider the
pact the performance of the optimizer. Like service levelyo-processor system depicted in Fig. 2 (described in the
and code segments, the weight translation function is d&fingaption). Notice thafl; misses a deadline at times 7 and
by the application developer and can be determined empiri4.
cally. For an arbitrary scheduling algorithp and task system
The primary difference between the task model presentdd we letS denote anl/-processor scheduld of 7', and
by Lu et al. [15] and our task model is that in [15] eachlet A(S, T7, ¢1, t2) denote the total time allocated & in
service level of a task; has astatic notion of “estimated S in [t1, t2). Similarly, we useA(S, T;, t1, t2) to denote
weight” that represents the nominal fraction of a processdhe total time allocated to all jobs &F; in S over the in-



terval [t1, t2). We say that the value oA(S,T7,0,1) is

the amount for whichf hasexecuted by. For example,
in Fig. 2, A(S,T4,0,8) = 3, A(S,T4,0,14) = 3, and

A(S,T2,7,8) = 0 (sinceTy and notT? is executing over
the rangd?7, 8)).

Definition (Completed, Pending, and Ready). If S'is an
M -processor schedule of the task systEnthen a jobl? €
T'is said to haveompleted by timein S iff Tij has executed
for at leastAe(T/) time units byt in S. For example, in
Fig. 2, T} is complete by time 4, anfl} is complete by time
8. For an arbitrary scheduling algorith#, if S is an M-
processor schedule of the task systEmnder.A, then a job
T! is said to bepending at time in S if r(T}) < t and7} is
incomplete at in S. For example, in Fig. 2]} is pending
until time 4, andrl’}
can be pending, but not active, if it misses its deadline.
pending jobT? is said to beeady at timef in S if all prior
jobs of taskT; have completed by. For example7? is not
ready until time 8 becausg! is incomplete until time 8. A
job T/ can be pending but not readyif " is incomplete at
r(T7).

3. A-GEDF

We now present th&-GEDF scheduling algorithm and
its three components: tharedictor (Sec. 3.1), which uses

ing rules are used to change the service levels of those
tasks.

Itis worthwhile to note that the optimization componentdan
hence large-scale changes to task functional services)egel
only executed after some user-specified threshold. We offer
some guidelines for choosing this threshold in Sec. 3.4.

3.1. The Feedback Predictor

Before continuing, we first review the basicsfeédback
systems Most feedback systems consist of the following
components, most of which are labeled in the model of our
system in Fig. 3(b): thénput value the output value the
actuator, theerror, theplant, and thecontroller. The input
value is the reference value for the system, while the output
value is value computed by the system. The actuator calcu-

is pending until time 8. Note that a job lates the error by subtracting the output from the input. The

lant is the system we wish to control. The controller modi-

fies the input to change the behavior of the output.

The performance of a feedback system is measured in
terms oftransient responsesteady-state errqgrand stabil-
ity. The transient response of a system is the initial output of
the system to a change in input. The steady-state error de-
notes the difference between the output and the input of the
system as time increases. A system is consideredstalbée
if every bounded input causes the system’s steady-state err
to be bounded.

It is worthwhile to note that while feedback-based tech-

feedback-based techniques to estimate the actual Weightan)queS are primarily used to control the behavior of a plant

future jobs; theoptimizer(Sec. 3.2), which given estimated -\ hich the (reference) input is known, another viable use

job weights, attempts to determine an optimal set of funGe, ¢k techniques is foredictfuture values of a changing
tional service levels; and severaleighting rulegSec. 3.3), and unknown input. The design of such a system is exactly
which are used to change the functional service level ofia tag, o same as the typical feedback systexeept that the feed-
to match that chosen by the optimizer. In the following, we, loop does not directly impact the behavior of the system
assume thab-GEDF is used on an/-processor system. (15 the plant and the controller can be one-in-the-same.
The major components 8 GEDF are depicted in Fig. 3. |, q,ch a system, the transient response describes the ini-
Ata high level, these components function as follows. 5| accuracy of predictions after there has been a change in
t the input, and the steady-state error describes the diftere
between the predicted and actual values as system time in-
creases.

e At each instantthe M pending jobs with the smalles
deadlines are scheduled.

o At Tg’s completionthe predictor is used to estimate the . . . .
weight for the next job release @t. If maintaining a The feedback predictor. Since the predictor il\-GEDF

constant weight is important, then the reweighting rule¥>€S feec_iback-based_techni_ques to predict the weight of fu-
may changd”*!'s functional service level. ture jobs mstead_gf1 using a smpler approach, such asgettin
! Ew(TY) = Aw(T} "), the predictor both produces values of

e After some user-specified thresholthe optimization EW(TZ-j) that are less susceptible to ephemeral fluctuations
component is run to determine new service levels foin the workload and is capable of closely tracking trends in
each task. Then, the following two steps are performedhe actual weightd.g, when the actual weight of the task
First, if some tasks require an estimated weigbt changes at a constant rate). Using a feedback loop to predict
creasethen the reweighting rules are used to change thte weight of future jobs is similar to the approach by Abeni
service levels of those tasks. This creates spare capadadtyal. [3].
in the system. Second, as the spare capacity created byAs depicted in Fig. 3(a), in the predictor, each task has its
weight decreases becomes available, if some tasks @wvn feedback loop. Also, as depicted in Fig. 3(b), for each
quire an estimated weiglicrease then the reweight- feedback loop, the inputis the actual weight; the outputés t
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Figure 3. (a) The A-GEDF scheduling algorithm(b) The model ofA-GEDF's feedback component.

estimated weight; the error is the actual weight minus the es/ie chose to use a PI controller instead gbraportional-
timated weight; and the controller ispgoportional-integral  integral-derivative(PID) controller. Since PID controllers
(PI) controller that uses information about the currenverr arethird-order systems.e., such systems have three poles,
and the sum of all previous errors in order to calculate a nethe transient response analysis is substantially more com-
estimated weight. Specifically, the controller is defined as plex. In fact, the typical means for determining the transie
response of a third-order system is to approximate it as a

kit second-order system.

Ew(T/™) =a-e(T))+b Y «(TF), (1)
k= Feedback characteristics. The stability, steady-state er-

) ] ) ror, and transient response of the predictor can be easily

whereEw(T}') = 0, ¢(T}) = Aw(T?) —Ew(T}) and bothu  derived from (2), (3), and (4) by using standard feedback

andb are user-defined values that we discuss shortly. Takingntrol techniques. Due to space constraints, we present

the Z-transform of (1) and rearranging the values we get, a limited overview of these characteristics in the body of

this paper, and refer the reader to an appendix of the pa-

—

G(z) = M’ (2) per, which can be found on the third author’'s webpage at
2(z—-1) http://ww. cs. unc. edu/ ~ander son, for a thor-
wherec — (a — b)/a. (The convention is to write Z- ough discussion of these topics. The predictostableif

: : R(Pm) < 1 holds. The predictor ianstablef R(P.,,) > 1
transformed functions as a function of the complex vaije holds. If the predictor is unstable, then it cannot make mean

In control theory parlance, (2) is called tbpen-loop trans- . C . .
. . , ingful predictions. Since we are using a Pl controller, the
fer functionbecause it represents the behavior of the con-

: . steady-state error for the predictor in response $te@ in-
troller ignoring the feedback looprheclosed-loop transfer ) .
. Y . put(i.e., a sudden change from one actual weight to another)
function which incorporates both the behavior of the con: . :
o is zero and the steady-state error faramp input(i.e., the
troller and feedback loop is given by : .
actual weight changes at a constant rate) is a non-zero value
G(z) a(z —¢) given as a function o andc (given in the appendix). The
1T G(2) 27 @—1)z —ac (3) transient response is also a functiom@ndc (as specified in
the appendix). The fact that a PI controller has zero steady-
From the above equation, the predictor hakaed-loop zero state error for a step response is the reason why we chose a Pl
(the value ofz for which H(z) = 0) atz = ¢, andclosed- controller instead of @roportional-derivative(PD), which
loop polegq(the values ot for which H(z) is undefined) at  would have a superior transient response but would have a
non-zero value for a step inputd,, if the actual weight is
constant, a PD controller would still have error).

H(z)

(I1—a)t+/(a—1)2+4ac
5 .

(4)
3.2. Optimization

Let P,,, denote the pole from (4) that is the farthest from the

origin. We henceforth usB(P) andd(P) to denote, respec- ~ As mentioned above, the optimization component of

tively, the radius and angle (in radians) of the pBlm polar- A-GEDF uses the estimated weights of tasks in order to

complex form. Because the predictor has two closed-logghoose service levels for each task. There are a variety-of di

poles, it is asecond-order systeniThis is the reason why ferent methods for implementing this component depending

on what metric the user wants to optimize and the behavior
2The Z-transformis a function used for analytic purposes that maps Bf g(T- e k q)
k2] ’ L] .

formula to thefrequency-domaini.e., as a function of frequencies. Dis- T -
cussing the Z-transform in detail is beyond the scope ofgihjser, and we For example, Suppose the ObJeC“V? Isto opt-|m|ze the t_Otal
refer the reader to [17] for a review of this subject. importance value in the system. In this case, if the relation




ship between the importance value and weight is linear (liki¢ “initiates” the change and when the change is “enacted.”

Ty in Fig. 1), then an approximate solution for this objectiveThe time at which the change isitiated is defined exter-

could be achieved by assigning the highest service level pasally to the reweighting component (by either the optimiza-

sible to those tasks with the highestlue densityas given tion component or the mails-GEDF algorithm); the time at

by, which the change isnactedi.e., the functional service level
V(T,, |SL(T)|) — (T3, 1) is changed, is dictated by reweighting rules.

g(Ts, EW(Tij), k, |SL(Ty)|) — (T, EW(Tij), k1) Changing the code segment. Whether the code segment

: : L of the taskT; that released? can change depends on the
while ensuring at least every task receives its minimum Sefmplementation of’;. For example, if theZ> and¢!" service
vice level and the system is not over-utilized. (This apphoa |eyels have substantially different code segments, thién
is similar to theh|ghest-value-densnyffirapproaqh use_d bY cannot change its code segment. On the other hand, suppose
Luetal [15]') On the other hand, ”_c the_ relatior_iship b_e'that the difference between the code segments fofthand
tween the importance value and weight is non-linear (likg:: geyice levels is simply the number of iterations in a loop.
Ts in Fig. 1), then an approximate solution for this ObJeCThen, as long ag;_j is not complete and this change would

tive could be achieved by using nonlinear programming tech- . j b
niques such asteepest descent Newton’s methodb]. If Wmt cause eithew(7}') > 1 OrZTé’GACT(t) Ew(Ty) > M,

exact solutions are required, then techniques bkanch- 7} can change its code segment immediately. Moreover, if
and-bounctan be used offline, and the optimization compothe code segment is changed, tfiew(7?) is changed to
nent could then switch between several predetermined sys-
tem states.

It is important to note that the use of weight translation P(Ts, bo)
functions is the reason why the optimization component ighere S is the A-GEDF schedule, andNw =

extensibl_e because it aIIo_ws any optimizing fun_ction to asy(;, Ew(T?), o, ¢1). Notice that the estimated amount of
sess the impact of changing the functional service level. me for whichT? will execute as a consequence of chang-
H H H H 3
prior work on adaptive real-time systems, the two PrMary,q its code segment is the larger of the amount of time it
methods for optimizing service levels have been to assume g already been schedule by timee., A(S T r(Tj) )
" 1 7 Al ’

either that (_each service level has a F‘O”"“a' Ut'“z.at'mﬁ][ and the amount of time th&if would have been scheduled if
or the relationship between the service level and impoganc

value is linear [16]. As we discussed in Sec. 2, the prot}-hegih service level was the flinctional s.terviceigveii(dtf),

lem with the first approach is that assessing a meaningfOW - P(Zi, £1). Thus, the estimated weight @f' is the es-
“nominal” utilization may be difficult if not impossible for timated amount of time thaf} will be scheduled divided
many applications. The problem with the second approad P(Z:. {o). For example, consider the three-processor sys-
is that there exist applications for which linearity canhet tem depicted in Fig. 4. In this exampEw(T} ) is changed
assumed. For example, consider any video application 1 4/7, EW(T3) is changed t@/7, andEw(73) is changed
which each service level corresponds to a different resol{@ 1/7. Notice thatEw(73) is changed td /7 even though
tion. Typically, in such a system, as the service level (and b8(Z5. 3/7. o, {1) = 1/14. The reason for this is that
extension the resolution) increases, the amount of beoefitA(S, 75, 0, 1) > Nw - p(T5, £1).

user perception per pixel added decreases.

max(Nw - p(T3, 1), A(S, T}, 1(T7), 1))

3

Itis easy to ?ﬁ?anging the period. The rules for changing the period

thTt in sudch a scengrio,_thhe _relatiolr_iship between IMPO&aNGs 5 task have been presented in prior work [8]. Unfortu-
value and estimated weight is nonlinear. nately, due to space constraints, we cannot describe these
3.3. Reweighting rules in full detail. For our purposes, the most important as

pect of these rules is that weight changes cannot always be

Whenever atask is reweightdde(, changes its functional immediately enacted. This is because doing so may cause
service level) either by the optimization component or byinbounded tardiness. Thus,AaGEDF, whenever the op-
the mainA-GEDF algorithm, its code segment and/or periodimization component establishes new service levels for al
may change. If no job of a task is active wher{; changes tasks in the system, service level decreases mushheted
its functional service level from thé&* to ¢t service level before service levelincreases caritiated. If service level
at timet, then the change is simple—the next released job @ficreases were immediately enacted, the@EDF would
T; has the period and code segment associated witfi!the knowingly overload the system, which is against the de-
service level. If a job off; is active att, then the situation sign objectives oA-GEDF. For example, consider the one-
is more complicated. For the remainder of this section, lgirocessor system depicted in Fig. 5. In this examfblg,
T; denote the active job ¢f; att. When a task with an ac- 75, andT; are allowed to decrease their weights immedi-
tive job reweights, there can be a difference between whextely after being scheduled. Thus, the system is never over-
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Figure 4. A three-processor systeffi scheduled by Time
A-GEDF with three tasks, all of which have a period of
an estimated weight df/7, and in the absence of a weight Figure 5. A one-processor systeffi scheduled byEDF
change, would be scheduled ftime units. At time 1, all with four tasks. 71, T», and 75 all have a period of two,

three tasks experience a service level change that changes 4 actual execution cost of one, decrease their weights to
the code segment for each job. Moreover, the value of zero immediately after being scheduled, and have one job

g(Ti, EW(TY), Lo, £1) as a result of the functional service released at, respectively, timesl, and2 (each increases its
level change ist/7, 2/7, and1/14, for Ty, T>, and T3, re- weight from zero to 0.5 when its first job is releaseh) has
spectively. Thus, as a result of the charifje executes for an actual execution cost of two and a period of four. Since
time unitsf,T21 executes foe time units, and’’; executes for tasks are allowed to decrease their weights immediatady, th
1 ime unit. system is never over-utilized, y& misses a deadline.

utilized; however,T, misses a deadline by one time unit,

which should not occur und&DF. components [11]. Our implementation 8fGEDF con-

sists of both a user-space library and kernel support added t
LITMUSRT, In this section, we briefly discuss both parts.
Unfortunately, a detailed description is not possible, ttue

_ = . ) _ space constraints.

Choosing a specific user-defined threshold for invoking' gacause LITMUST was designed for sporadic tasks
the optimizer will depend largely on the targeted applmati o\ isioned using WCETs, several modifications were
Some possible thresholds could include a duration of time, feded to support adaptable sporadic tasks. These included
substantial change in the estimated weight for one task, oL@ sting the internal structure of the task control blozk t
substantial change in the total estimated weight for akdas 50, each task to have multiple service levels; disablie t
While running the optimizer more frequently will increaseganiorcement of WCETSs to allow tasks to overrun their ex-
the accuracy of the system, it will also increase the amou%cted allocation; and modifying LITMUY to allow task
of time the scheduler is active with the system not producistics such as actual execution times to be gathered.
ing “useful” work. Additionally, as we discussed in Sec.,3.3  pfer making these changes, we implementeGEDF
the reweighting rules cannot always be enacted immediategg, changing th&EDF scheduling algorithm (which had al-
Thus, if the optimizer is called before all changes have bquady been implemented in LITMUS) in two ways. First
enacted, then it may produce an inaccurate result. NOtGE, inyoquced a system call to query the kernel in order for
that, if the weight translation function is accurate, thliera  , 1551 1o determine its current service level. Second, we im-
all reweighting events have been enacted the system will e mented the feedback, optimization, and reweighting-com
main in an “optimal” state, unless the actual weight of a tasg,nents in kernel space. Since in Linux floating point opera-
changes. Thus, if the separation between optimizer invoCgs s cannot be used in kernel space, these components were

tiong is sufficiently Iarge for all tasks to enact thgirfdnnal_ implemented using fixed-point calculations instead.
service level changesé€., at least the largest period of a job

in the system), then it is possible to guarantee that no ta
will unnecessarily “thrash” between service levels.

3.4. User-Defined Threshold

% Experiments

) In this section, we report on experiments conducted using
4. Implementation LITMUSRET to evaluate the performance AfGEDF when

running the core operations of Whisper.
Recently, our research group developed a testbed

called LITMUSRT (LInux Testbed forMUIltiprocessor Whisper. As noted earlier, Whisper tracks users via speak-
Scheduling inReal-Time systems), which is an extension ofers that emit white noise attached to each user’s hands, feet
Linux (currently, version 2.6.20) that allows different mu and head. Microphones located on the wall or ceiling re-
tiprocessor scheduling algorithms to be linked as plug-ioeive these signals and a tracking computer calculates each



speaker’s position by measuring signal delays. Whisper is <~ >

able to compute the time-shift between the transmitted and © ©

received versions of the sound by performingaarelation 10m / \ C’)?\f_eake;
calculation on the most recent set of samples. By varying “ Lo

the number of samples, Whisper can trade measurement ac- o o

curacy for computation—with more samples, the more accu-

rate and more computationally intensive the calculatios. A Figure 6. The simulated Whisper system.

the signal-to-noise ratio decreases, the number of samples

is increased to maintain the same level of accuracy. As thghisper experiments. In our Whisper experiments, we
distance between a speaker and microphone increases, $ifiulated three speakers (one per object) revolving atedspe
signal strength decreases. This behavior (along with the ugf 2m/s (this is within the speed of human motion) in a 10m
of predictive techniques mentioned in the introductiom) cax 10m room with a microphone in each corner, as shown in
cause frequent task share changes. Fig. 6. Tracked objects were sampled at a rate of 2,000 kHz,

and the distance of each object from the room’s center was

set at 5m. While this test scenario may seem simple (since
Experimental system set-up. Unfortunately, it is cur- the path of each object is simple and pre-determined), it is
rently not feasible to produce experiments involving a comactually a challenging test case for Whisper. This is bezaus
plete implementation of Whisper, for two reasons. Firstobjects moving at a relatively high speed of 2m/s require sig
as Whisper currently exists, it is single-threaded (and-nomificant computational resources to track. Moreover, wihile
adaptive) and consists of several thousand lines of code.possible to simulate objects that start, stop, and chdiage
Converting it to a multi-threaded implementation is a nonrections, such scenarios actually requ@sscomputational
trivial task. Indeed, because of this, itéssentialthat we resources and adapt task service levessfrequently, be-
first understand the scheduling and resource-allocatioletr cause user motion is typically slower when motion is not
offs involved. Second, support ftask synchronizatiois re- continuous.

quired, and this issue is beyond the scope of this paper. For |n the above scenario, one task is required per speaker-
these reasons, we have chosen to conduct our evaluation Hiicrophone pair, for a total of 12 tasks. Each task was con-
ing the core operation of Whisperg, a correlation compu- fiqyred to have three service levels, with periods/imparean

tation). (We emphasize that the experiments discussed hgi8 es of 66ms/0.25 33ms/0.5, 22ms/0.75, respectivety, a
involved runningreal code on aeal OS kernel and are not g(Ti, e, 1,2) ~ 5¢ andg(T}, e, 1, 3) ~ 9e. The importance

merely simulations.) values were selected somewhat arbitrarily after some- trial

The development platform used in our experiments is aand-error experimentation; in an actual deployment, user
SMP consisting of four 32-bit Intel(R) Xeon(TM) processorsstudies would be required to assess the impact of different
running at 2.7 GHz, with 8K L1 instruction and data cachesettings. Since the weight/importance value relationghip
and a unified 512K L2 cache per processor, and 2 GB of malimear, we used the approach in Sec. 3.2 to optimize the sys-
memory. For each task, each job was implemented as a lotgm. The other parameters were selected based upon the ex-
in which the core operation of Whisper is performed iteraisting Whisper implementation. In Whisper, the QoS pro-
tively. The exact manner in which jobs behave is discussedded is directly related to the number of correlation com-
below. In implementing the optimizing component, we asputations (CCs) performed per second. When the signal-
sumed that there is a linear relationship between impoetanto-noise ratio decreases, the number of CCs must be in-
value and estimated weight, and attempted to maximize tloeeased to maintain the same QoS. Similarly, the QoS pro-
total importance value for all tasks, as discussed eafllge. vided can be increased by increasing the number of CCs per
optimizer was configured to run at least once every seconskcond. A change in the functional service level of a Whisper
and also whenever the estimated weight of a task changedtagk changes the number of CCs per second. We estimated
at least50%, or upon a job completion, the total estimatedhat the existing Whisper implementation, ifimplementad o
system weight exceeded four. However, it was constrainesir test platform, would perform approximately 27,600,000
to run at most once every 200ms. Note that in a full Whispe€Cs per second in the average case. The task periods and
implementation, these choices could possibly be improveg(T;, e, ¢1, £2) values given above were defined so that the
upon by carefully considering human-factors issues of relaverage number of CCs per second for the second service

vance to virtual-reality systems. level matches this rate. Note that, because the code segment
In all experiments, we defined the PI controller using of the three service levels differ only in the number of CCs
0.102 andc = —1.975. We chose these values because weerformed, the code segment of an active job can be changed.

believe that they represent a good tradeoff between tnainsie The first experiment we discuss was conducted to see if
response and steady-state error (for a ramp input). adaptivity is even needed in implementing Whisper. In this
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encounters noise, error briefly spikes but quickly fallskbac

09 | T Sovice Lovel2 within the rangg—0.05, 0.05]. Third, when the task in inset
Lt -~ - Service Level 3 : . . . .

08 N . (a) encounters noise at time 5.5, its service level is chénge

o AN and there is a substantial drop in its weight; however, when

0.6

, it encounters noise at time 12.3, its service level is not de-
I creased because its actual weight is so low. Note that its low
L weight at this time is coincidental: its weight varies betwe

weight

0.5
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0z times 8 and 20 as depicted because of the movement of the
' R corresponding object, and that object happens to be closest
e — to the microphone for which this task is defined at approxi-

10 12 1
time (in seconds)

mately time 14. Fourth, when a job of the task in inset (b)
completes after the noise at time 12.3, the total estimated
weight is greater than four, so the optimizer is invoked eaus
ing this task to decrease its service level. This is why the
actual weight of this task is briefly greater than one. Fifth,
the total utilization of the system is typically close to #da

experiment, we ran one task as a normal Linux task for Ahe systemis briefly over-uti!izeq when noise is enc_:oumtere
seconds at all three service levels and measured its actf§cause the total actual weight IS always ql_ose_:‘ thid,sys-
weight. Results are shown in Fig. 7. After approximately sif€™M would not be schedulable using a partitioning approach
and 13 seconds, the system experiences 48ms of noise that the total importance value of the system is typicly
doubles the number of correlation computations required p'€ '2ng&7.5, 8] and drops below 6.0 only when noise is en-
job. The average weight of the task at the first, second, affguntered. |!’l contrast, if tasks were statically assighed t
third service level is, respectively,05, 0.25, and0.45. No- _second service level and scheduleddyDF, then the total
tice that, for a system with 12 tasks, operating each tagk at [TPOrtance value would nevexceed;.0.

highest-service level and allocating it a processor shasedb .

on its worst-case weight (which is 1.0) gives a total actua@- Conclusion

weight of 12, which substantially over-utilizes the system

Even W:.th Zn avehrage-clase prlows_|or?|pg,5t£r11_e s%/_ster;;ls Stulses feedback and optimization techniques, and allows the
over-utilized, as the total actual weightis 5.4 In this 438, 4cessor shares of tasks running on a multiprocessor to be

the other hand, configuring each task to run at its second sggnrolled dynamically at runtime. We have also presented
vice level using its average-case weight gives a total &ctugn evaluation oA-GEDF'’s performance that uses Whisper
weight of 3.0, which does not over-utilize the system; howas a test case. These experiments clearly demonstrate the
ever, using a constant average-case allocation wouldylikeheed for adaptivity in this application. They also show that
cause the system to be over-utilized when noise is encou-GEDF is capable of enacting needed adaptations in a way
tered. Thus, from this experiment, we can infer that, in ordéhat enhances overall QoS. In future work, we plan to incor-
for Whisper to schedule tasks at any service level higher th&0rate synchronization supportimeGEDF and investigate

the lowest one, adaptive scheduling is needed (as is a mugile application of feedback control in other (nG&DF-

processor). ased) multiprocessor scheduling algorithms.
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