
Augmenting Criticality-Monotonic Scheduling
with Dynamic Processor Affinities

Björn B. Brandenburg
bbb@mpi-sws.org

Keywords: multiprocessors, arbitrary processor affinities (APAs)

Extended Abstract
Consider the problem of scheduling a dual-criticality workload consisting of high- and
low-criticality sporadic real-time tasks on top of a fixed-priority (FP) scheduler. Each
high-criticality (HC) task Ti has both a high- and a low-criticality WCET estimate,
denoted eLi and eHi , resp., and low-criticality (LC) tasks are required to meet their
deadlines only if no HC task exceeds its LC WCET estimate.

From a pragmatic point of view, FP scheduling with criticality-monotonic priori-
ties [1], where HC tasks have higher priority than LC tasks, holds considerable appeal:
it is simple, provides obvious isolation for HC tasks, and imposes no runtime overheads.

Unfortunately, as LC tasks may be more urgent than HC tasks (i.e., they may
have shorter periods or more constraining deadlines), it is not always feasible to assign
criticality-monotonic priorities [1]. For example, the task set τ1 = {Ta, Tb} (as specified
in Fig. 1), which consists of a LC task Ta that is urgent (i.e, it has a short period pa = 2)
and a HC task Tb that is less urgent (pb = 10) but more costly (eLb = 3), cannot be
scheduled on a uniprocessor with criticality-monotonic priorities: the LC task Ta, if
given a lower priority than Tb, may miss deadlines even if no job of Tb exceeds eLb .

Similar urgency vs. criticality conflicts also arise on multiprocessors. For instance,
the task set τ2 = {Ta, Tb, Tc, Td} cannot be scheduled with criticality-monotonic
priorities on m = 2 cores using either global or partitioned FP scheduling: under global
scheduling, the HC tasks Tb and Td can cause the more-urgent LC tasks Ta and Tc to
miss deadlines even with LC execution costs, and under partitioned scheduling, Tb and
Td need to be assigned to different partitions, but neither can be co-located with Ta
or Tc. However, while scheduling τ1 with criticality-monotonic priorities is infeasible
on a uniprocessor, τ2 can be scheduled with criticality-monotonic priorities on two
processors—provided processor affinities are used to shield urgent tasks in the LC case.

Exploiting Arbitrary Processor Affinities (APAs). Contemporary OSs such as Linux,
Windows, QNX, or VxWorks provide flexible APIs to explicitly set a task’s processor
affinity, which is the set of processors on which it may execute. In particular, task affini-

1



task criticality pi eLi eHi
Ta low 2 1 –
Tb high 10 3 6
Tc low 2 1 –
Td high 10 2 5

Ta

Tb

Tc

Td

1 2 3 4 5 6 7 8 9 10

P1

P2

0

P1

P2

P2

P2

P1 P1

P2 P2

P1

P2 P2

Figure 1: In this example, Tb exceeds eLb at time 3. Its affinity is then set to {P1, P2},
which allows Tb to finish on P2. Td is isolated; Ta and Tc miss one and three deadlines.

ties can be restricted to arbitrary processor sets and changed at arbitrary times during
runtime. This can be exploited to render criticality-monotonic scheduling feasible.

Consider the following strategy for scheduling τ2 on two processors P1 and P2:
(1) Tasks are assigned criticality-monotonic priorities. (2) Ta and Tc may execute on
both P1 and P2. (3) Tb and Td may initially execute only on processor P1. (4) When a
HC job Jx of Tb (resp., Td) fails to complete after eLb (resp., eLd ) time units, it updates
its processor affinity to include both P1 and P2. (The processor affinity of any other
task is not changed.) (5) A HC task’s affinity is reset when it completes its job.

A possible schedule is shown in Fig. 1: at time 3, when it becomes known that
Tb’s job requires more than eLb = 3 time units to complete, it relaxes its processor
affinity to include P1 and P2. Consequently, under a FP scheduler with strong APA
semantics [2] — which, intuitively, is an APA scheduler that shifts higher-priority tasks
from one processor to another if that is required to enable lower-priority tasks with
more-constraining affinities to be scheduled — Tb shifts to P2, which enables Td to be
scheduled on P1. As Tb handles its increased demand on P2, Td is protected from undue
interference. LC tasks are not dropped, but may temporarily incur deadline misses.

Remarks and outlook. We have observed that an APA interface — readily available
in current, already certified RTOSs — allows the timeliness requirements of urgent LC
tasks to be reconciled with the desirable simplicity of criticality-monotonic scheduling.
The sketched approach offers several practical benefits: HC tasks exceeding their LC
WCET are effectively given a “dedicated” processor to cope with increased demand;
only the currently executing task’s affinity is adapted, which keeps runtime overheads
low and independent of the number of tasks; there is no “mode change” and LC tasks
are not abandoned, just temporarily delayed; and budget enforcement is not required.

Of course, the above example works only because of simplifying assumptions. We
believe, however, that it is possible to generalize the approach to an arbitrary number of
HC tasks and also to weak APA schedulers [2] such as those found in QNX and Linux.

References
[1] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed criticality

systems. In RTSS’11, 2011.

[2] F. Cerqueira, A. Gujarati, and B. Brandenburg. Linux’s processor affinity API,
refined: Shifting real-time tasks towards higher schedulability. In RTSS’14, 2014.

2


