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Abstract This paper presents the first suspsension-based multiprocessor real-time locking protocols with
asymptotically optimal blocking bounds (under certain analysis assumptions). These protocols can be applied
under any global, clustered, or partitioned job-level fixed-priority scheduler and support mutual exclusion,
reader-writer exclusion, and k-exclusion constraints. Notably, the reader-writer and k-exclusion protocols
are the first analytically-sound suspension-based multiprocessor real-time locking protocols of their kind. To
formalize a notion of “optimal blocking,” precise definitions of what constitutes “blocking” in a multiprocessor
real-time system are given and a simple complexity metric for real-time locking protocols, called maximum
priority-inversion blocking (pi-blocking), is introduced. It is shown that, in a system with m processors, Ω(m)
maximum pi-blocking is unavoidable. This bound is shown to be asymptotically tight with the introduction of the
O(m) multiprocessor locking protocol (OMLP) family presented herein, which includes protocols that ensure
an upper bound on maximum pi-blocking that is approximately within a factor of two of the lower bound. In
addition to the coarse-grained asymptotic bounds, detailed blocking bounds suitable for schedulability analysis
are derived using holistic blocking analysis. Based on the detailed bounds, the proposed locking protocols are
compared with each other and with previously-proposed protocols in an empirical schedulability study involving
more than one billion task sets. In this study, the OMLP was found to perform better than two variants of the
classic (but non-optimal) multiprocessor priority-ceiling protocol (MPCP).

Keywords real-time synchronization · priority inversion · optimal locking protocol · mutual exclusion ·
reader-writer exclusion · k-exclusion · schedulability study

1 Introduction

When semaphores are used to coordinate access to shared resources such as I/O devices or shared data structures,
some blocking among tasks is unavoidable. In real-time systems, such blocking gives rise to priority inversions,
which, intuitively, occur when a high-priority task must wait for a low-priority one. As this can endanger
temporal correctness, a real-time locking protocol is required to bound the maximum duration of priority
inversion. In this paper, we present the first such protocols for multiprocessors that are provably optimal (within
a factor of the lower bound that approaches two or four, depending on the protocol).
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There are two approaches to realizing locks in multiprocessor systems: in spin-based (or spinlock) protocols,
jobs wait for resources by executing a delay loop, and in suspension-based (or semaphore) protocols, waiting
jobs relinquish their processor. In principle, suspension-based protocols are preferable because waiting jobs
waste processor cycles under spin-based protocols. In practice, spin-based protocols benefit from low overheads
(compared to the cost of suspending and resuming tasks), so that spinning can in fact be preferable if all critical
sections are short, that is, if tasks use resources for at most a few microseconds [14, 15, 20]. Nonetheless,
suspension-based protocols are still needed to support shared resources that inherently cause critical sections to
be long (e.g., stable storage), as spinning would result in substantial wastage in such cases. In this paper, we
focus on suspension-based protocols.

Clearly, an “optimal” real-time locking protocol should minimize blocking to the extent possible. However,
while optimal uniprocessor real-time locking protocols have long been known [43, 47], no provably optimal
suspension-based multiprocessor real-time locking protocols have been proposed to date. In fact, prior work
(reviewed below) did not provide a general, precise definition of what constitutes “blocking” in a multiprocessor
real-time system. Rather, the design goal of “minimal blocking” was only informally understood and existing
protocols have been analyzed by providing upper bounds on lock-acquisition delays that would be sufficient
under any reasonable definition of blocking. We close this gap by showing that there are actually two different
notions of priority inversion, called suspension-oblivious and suspension-aware, that arise due to differences
in how task suspensions (which are notoriously hard to analyze [45]) are handled in existing schedulability
tests (Section 3.1). Intuitively, suspension-aware analysis allows task suspensions to be accounted for explicitly,
whereas suspension-oblivious analysis requires such suspensions to be modeled as computation instead. Based
on these definitions, we propose maximum priority inversion blocking (maximum pi-blocking) as a natural
complexity metric for locking protocols (Section 3.2). Notably, suspension-oblivious and suspension-aware
schedulability analysis yield different lower bounds on maximum pi-blocking.

In this paper, we focus on locking protocols for suspension-oblivious analysis. We show that, in a mul-
tiprocessor system with m processors under suspension-oblivious analysis, Ω(m) maximum pi-blocking is
unavoidable in the general case (Section 3.3). This bound is asymptotically tight, which we show by introducing
a family of O(m) locking protocols (OMLP) in Section 4. The OMLP family includes two mutual exclusion
(or mutex) protocols for serially-reusable resources, a protocol for reader-writer (RW) exclusion, where only
updates must be exclusive and reads may overlap with each other, and a protocol for k-exclusion constraints,
where there are k replicas of a resource and tasks require exclusive access to any one replica. Notably, the
latter two are the first suspension-based multiprocessor real-time locking protocols for RW and k-exclusion. We
prove the OMLP to be asymptotically optimal under suspension-oblivious analysis: the mutex protocols and
the k-exclusion protocol ensure a bound on maximum pi-blocking that is approximately within a factor of two
of the lower bound, and the RW protocol’s bound is within a factor of four of the lower bound (Section 4.6).
In addition to being asymptotically optimal, the OMLP is also of considerable practical interest because it
compares favorably with previously-proposed protocols for both suspension-aware and suspension-oblivious
analysis (Section 5), and because it can be applied under a wide range of multiprocessor real-time schedulers.

With regard to the latter, a real-time locking protocol must be tightly integrated with the scheduler since
real-time tasks typically require (some) processor service while using shared resources (e.g., this is the case
when accessing shared data structures or when executing driver routines to access an I/O device). Most prior
work on multiprocessor real-time locking protocols has focused on either partitioned scheduling (where tasks are
statically assigned to processors and each processor is scheduled individually) or global scheduling (where all
processors serve a single ready queue and tasks may migrate freely). Because partitioning requires a bin-packing-
like task assignment problem to be solved, global scheduling offers some theoretical advantages over partitioning,
but does so at the expense of higher runtime costs. Clustered scheduling [5, 21] is an attractive compromise
between (or generalization of) the two extremes, where tasks are partitioned onto disjoint clusters of cores
and a global scheduling policy is used within each cluster. Clustered scheduling simplifies the task assignment
problem (there are fewer and larger bins) and incurs less overhead than global scheduling (by aligning clusters
with the underlying hardware topology). Recent experimental work has confirmed the effectiveness of clustered
scheduling on large multicore, multi-chip platforms [9, 10, 14] and we expect clustered scheduling to grow in
importance as multicore platforms become larger and less uniform.
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However, clustered scheduling poses significant challenges from a locking point of view, and there is
only scant support for clustered scheduling among prior locking protocols. Since clustered scheduling com-
bines aspects from both global and partitioned scheduling, the established mechanisms for bounding priority
inversions—priority inheritance under global scheduling and priority boosting under partitioned scheduling—do
not transfer to clustered scheduling (Section 4.1). To overcome this limitation, we introduce “priority donation,”
a new mechanism to bound priority inversions. Using priority donation as a basis, all but one of protocols in
the OMLP family support any global, partitioned, or clustered job-level fixed-priority (JLFP) scheduler [23], a
large class of schedulers that includes the commonly-used fixed-priority (FP) and earliest-deadline first (EDF)
policies. As discussed next, these are the first suspension-based multiprocessor real-time locking protocols
designed specifically for clustered scheduling.

Related work Most prior work has been directed at EDF and FP scheduling and their partitioned and global
multiprocessor extensions (denoted as P-FP, P-EDF, G-FP, and G-EDF, respectively). On uniprocessors,
real-time locking is well-understood. The classic uniprocessor stack resource policy (SRP) [3] and the priority
ceiling protocol (PCP) [25, 43, 47] both support multi-unit resources, which is a generalized resource model that
can be used to realize mutex, RW, and k-exclusion constraints. In the case of mutual exclusion, both protocols
limit the maximum duration of priority inversion to the length of one (outermost) critical section, which is
arguably optimal.

Work on multiprocessor protocols has mostly focused on mutex constraints to date. The first such pro-
tocols were proposed by Rajkumar et al. [42–44], who designed two suspension-based PCP extensions for
P-FP-scheduled systems, the distributed and the multiprocessor priority ceiling protocol (DPCP and MPCP,
respectively). In later work, improved analysis of the MPCP incorporating uniprocessor response-time analy-
sis [2, 35] was independently developed by both Schliecker et al. [46] and Lakshmanan et al. [36]; Lakshmanan
et al. further proposed a variant of the MPCP for suspension-oblivious analysis and a partitioning heuristic [36].
Recently, Hsiu et al. [34] studied the problem of finding optimal and near-optimal task and resource assignments
in distributed systems employing a protocol similar to the DPCP.

In early work on P-EDF-scheduled systems, suspension- and spin-based protocols were presented by
Chen and Tripathi [24] and Gai et al. [32]. Devi et al. [28] presented an analysis of spinlocks under G-EDF
scheduling. Block et al. [13] presented the flexible multiprocessor locking protocol (FMLP), which can be used
under G-EDF, P-EDF, and P-FP [16] scheduling, supports both spinlocks and semaphores, and generalizes
Gai et al.’s and Devi et al.’s protocols.

More recently, Easwaran and Andersson [29] considered suspension-based protocols for G-FP-scheduled
systems. They presented an analysis of the priority inheritance protocol (PIP) and proposed the parallel
priority-ceiling protocol (PPCP). Andersson and Easwaran [1] also designed a multiprocessor locking protocol
with a bounded resource augmentation factor.1 Extending Easwaran and Andersson’s work [29], Macariu and
Cretu [39] proposed an extension of the PIP under G-FP scheduling that limits the extent of priority inversions
caused by resource-holding lower-priority jobs with raised effective priorities.

In work aimed at maintaining temporal isolation among tasks in mixed real-time/non-real-time environments,
Faggioli et al. [31] presented the multiprocessor bandwidth-inheritance protocol (MBWI), a scheduler-agnostic
locking protocol under which tasks wait both by spinning and by suspending. Because it is scheduler agnostic,
the MBWI can be applied to clustered scheduling, but, in contrast to the OMLP, actual spinning takes place
under the MBWI. Finally, Nemati et al. [40] proposed a suspension-based locking protocol for partitioned
scheduling that facilitates the integration of independently-developed, opaque application components consisting
of multiple tasks each by abstracting their joint resource requirements into interface specifications.

To the best of our knowledge, none of the cited suspension-based real-time locking protocols has been
analyzed under clustered scheduling. Further, even under the schedulers for which they were designed, none of
the cited suspension-based real-time locking protocols ensures asymptotically optimal maximum pi-blocking,
irrespective of whether the underlying schedulability analysis is suspension-aware or suspension-oblivious.

1 A protocol has a resource augmentation factor x if any feasible task set that is not schedulable under it is guaranteed to be
schedulable on an x-times faster processor.
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In prior work on spin-based locking protocols [18], we presented the first spin-based real-time multiprocessor
RW protocol. We showed that existing non-real-time RW locks are undesirable for real-time systems and
proposed phase-fair RW locks, under which readers incur only constant delays, as an alternative. In recent work,
the analysis of mutex and RW spinlocks under JLFP schedulers has been extended to clustered scheduling [14].
To the best of our knowledge, suspension-based RW and k-exclusion protocols have not been considered in prior
work on real-time multiprocessors. While PCP variants could conceivably be used under partitioned scheduling,
we are not aware of relevant analysis.

The material presented in this paper extends two prior conference papers [17, 19]. In particular, we

– have added a detailed derivation and discussion of the constant factors in the OMLP’s blocking bounds
(Section 4.6),

– report on new large-scale schedulability experiments involving more than one billion task sets (Section 5),
– have developed a new objective methodology for reporting schedulability results based on bootstrap

confidence intervals (Section 5.1.3),
– discuss in detail when each protocol is most appropriate (Sections 5.2–5.5), and
– present detailed (i.e., non-asymptotic) blocking analysis suitable for schedulability analysis for each of the

proposed locking protocols using a holistic blocking analysis framework (Appendix A).

We begin by providing needed background and definitions.

2 System Model

We consider the problem of scheduling a set of n sporadic tasks τ = {T1, . . . , Tn} onm ≥ 2 identical processors.
We let Ti(ei, pi) denote a task with a worst-case per-job execution time ei and a minimum job separation pi,
where Ti’s utilization ui is given by the ratio ui = ei/pi. Ji,j denotes the jth job (j ≥ 1) of Ti. Ji,j is pending
from its arrival (or release) time ai,j ≥ 0 until it finishes execution, where successive releases are seperated by
at least pi time units (ai,j+1 ≥ ai,j + pi).

Task Ti’s maximum response time ri denotes the maximum time that any Ji,j remains pending. Task Ti is
schedulable if it can be shown that ri ≤ pi, that is, if each Ji,j completes within pi time units of its release.
Note that we assume implicit deadlines only for the sake of simplicity; the presented results do not depend on
the choice of deadline constraint. We omit the job index j if it is irrelevant and let Ji denote an arbitrary job.

A pending job is in one of two states: a ready job is available for execution, whereas a suspended job cannot
be scheduled. A job resumes when its state changes from suspended to ready. Pending jobs are presumed ready
unless suspended by a locking protocol. We consider the effect of allowing locking-unrelated suspensions in
Section 4.6.

2.1 Scheduling

Under clustered scheduling [5, 21], processors are grouped into m
c non-overlapping sets (or clusters) of c

processors each, which we denote as C1, . . . , Cm
c

.2 Global and partitioned scheduling are special cases of
clustered scheduling, where c = m and c = 1, respectively. Each task is statically assigned to a cluster. Jobs
may migrate freely within clusters, but not across cluster boundaries.

When bounding locking-related delays, it is often required to consider the subset of jobs assigned to a
particular cluster. We let τk denote the set of tasks assigned to the kth cluster, and let Pi denote the cluster (or
partition) to which Ti is assigned. A task Tl is local to task Ti if Pl = Pi, and remote otherwise.

We assume that, within each cluster, jobs are scheduled from a single ready queue using a work-conserving
job-level fixed-priority (JLFP) policy [23]. A JLFP policy assigns each job a fixed base priority, but a job’s
effective priority may temporarily exceed its base priority when raised by a locking protocol (see below). Within

2 Without loss of generality, we assume uniform cluster sizes and m
c
∈ N. Non-uniform cluster sizes could be trivially integrated

into the presented analysis at the expense of additional notation.
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each cluster, at any point in time, the c ready jobs (if that many exist) with the highest effective priorities are
scheduled. We assume that ties in priority are broken in favor of lower-indexed tasks (i.e., priorities are unique).

We consider global, partitioned, and clustered EDF (G-EDF, P-EDF, and C-EDF, respectively) as
representative algorithms of the class of JLFP policies.

2.2 Resource Model

We consider three types of shared resources that differ with respect to their sharing constraint. Mutual exclusion
of accesses is required for serially-reusable resources, which may be used by at most one job at any time.
Reader-writer exclusion (RW exclusion) [26] is sufficient if a resource’s state can be observed without affecting
it: only writes (i.e., state changes) are exclusive and multiple reads may be satisfied simultaneously. Resources of
which there are k identical replicas are subject to a k-exclusion constraint: each replica is only serially reusable
and thus requires mutual exclusion, but up to k requests may be satisfied at the same time by delegating them to
different replicas.

Mutex constraints are most common in practice. However, the need for RW synchronization arises naturally
in many situations, too. Two common examples are few-producers/many-consumers relationships (e.g., obtaining
and distributing sensor data) and rarely changing shared state (e.g., configuration information). Of the three
constraints, we expect k-exclusion constraints to be the least common. However, k-exclusion is required
whenever there are multiple identical co-processors. For example, a system might contain multiple graphics
processing units (GPUs) or digital signal processors (DSPs). Theoretically, one could further consider replicated
resources with RW constraints, but we are not aware of any practical applications where such constraints arise
and do not consider this combination of constraints.

We formalize resource sharing among sporadic tasks as follows. The system contains nr shared resources
`1, . . . , `nr (such as shared data structures and I/O devices) besides the m processors. When a job Ji requires
a resource `q it issues a resource request for `q . We let Ri,q,v denote the vth resource request by task Ti for
resource `q , where v ≥ 1. In the case of RW constraints, we analogously let RR

i,q,v and RW
i,q,v denote the vth

read and write request for `q , respectively.
A request Ri,q,v is satisfied as soon as Ji holds `q , and completes when Ji releases `q . The request length

is the time that Ji must execute before it releases `q .3 We let Li,q,v denote the request length of Ri,q,v , let Ni,q

denote the maximum number of times that any Ji requests `q , and let Li,q denote the maximum length of such a
request (i.e., Li,q,v ≤ Li,q for each Ri,q,v), where Li,q = 0 if Ni,q = 0. A task is independent if it does not
require any shared resources. In the case of RW constraints, we analogously define NR

i,q , NW
i,q , LR

i,q , and LW
i,q

with respect to read and write requests, where Ni,q = NR
i,q +NW

i,q and Li,q = max(LW
i,q, L

R
i,q).

We assume that jobs request or hold at most one resource at any time and that tasks do not hold resources
across job boundaries. Nesting could be supported with group locks as in the FMLP [13, 14], albeit at the
expense of reduced parallelism.

2.3 Locking Protocols

To enforce sharing constraints, the operating system employs a locking protocol to order conflicting requests. If
a requestRi,q,v of a job Ji cannot be satisfied immediately, then Ji incurs acquisition delay and cannot proceed
with its computation while it waits for Ri,q,v to be satisfied. In this paper, we focus on protocols in which
waiting jobs relinquish their processor and suspend. The request span of Ri,q,v starts when Ri,q,v is issued and
lasts until it completes, that is, it includes the request length and any acquisition delay.

Locking protocols may temporarily raise a job’s effective priority. Under priority inheritance [43, 47], the
effective priority of a job Ji holding a resource `q is the maximum of Ji’s priority and the priorities of all jobs

3 For the sake of simplicity, we assume that jobs require a processor for the entirety of each critical section. This is accurate for
shared data structures, but may be somewhat pessimistic when accessing devices. The assumption could be relaxed at the expense of
additional notation by splitting each request length parameter into a processor component and a suspension component.
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waiting for `q . Alternatively, under priority boosting [16, 17, 36, 42–44], a resource-holding job’s priority is
unconditionally elevated above the highest-possible base (i.e., non-boosted) priority to expedite the completion
of requests.

2.4 Priority Inversion and Blocking

The main goal in the design of real-time locking protocols is to minimize the worst-case duration of priority
inversions. A priority inversion occurs when a job that should be scheduled (according to its base priority) is
not scheduled (i.e., either when a lower-priority job is scheduled instead or when a processor in its assigned
cluster is idle). Priority inversions are problematic because they delay a job’s completion and hence must be
bounded and accounted for during schedulability analysis. It is important to note that acquisition delay and
priority inversion are two different, although closely related, concepts: if a suspended job would not have been
scheduled anyway due to the presence of higher-priority jobs, then there is no priority inversion. This matches
the intuition that high-priority jobs should be granted access to contended resources sooner than lower-priority
jobs.

In the real-time literature, acquisition delay that coincides with a priority inversion is traditionally called
“blocking,” whereas acquisition delay that does not coincide with a priority inversion lacks an established name
(since it is irrelevant for analysis purposes). We avoid the term “blocking” because it is overloaded. In a real-time
context, many other sources of schedulability-relevant delays are also commonly labeled “blocking,” even if
they do not coincide with a priority inversion. For example, release jitter and deferred execution are causes of
“blocking” without priority inversion [38]. In the (non-real-time) synchronization literature, “blocking” is simply
a synonym for acquisition delay. To further confuse matters, in an OS context, “blocking” is often used as a
synonym for “suspending,” which is not the same as the intended interpretation: in suspension-based locking
protocols, the length of a suspension corresponds to the incurred acquisition delay, but not necessarily to the
duration of priority inversion.

In this paper, we consider the definition specific to real-time resource sharing, which we denote as priority
inversion blocking (pi-blocking) to avoid ambiguity. To reiterate, pi-blocking occurs whenever a job Ji’s
completion is delayed and this delay cannot be attributed to higher-priority demand—that is, if and only if Ji
suffers a priority inversion. We let bi denote a bound on the total pi-blocking incurred by any Ji.

3 Blocking Optimality

In the uniprocessor case, locking protocols that ensure a provably optimal upper bound on pi-blocking have long
been known. Indeed, under both the PCP [43, 47] and the SRP [3], jobs incur pi-blocking for the duration of at
most one (outermost) critical section, which is obviously asymptotically optimal.

In the multiprocessor case, however, the question of “blocking optimality” had not received much, if any,
attention. In fact, general, precise definitions of what actually constitutes “blocking” had not been formalized
prior to our work. Rather, existing protocols have been analyzed using informally defined notions of blocking; to
the effect that different locking protocols were analyzed using different assumptions. Without a precise definition
of blocking, we clearly have no understanding of what constitutes optimal pi-blocking on multiprocessors.

Motivated by these considerations, we next formalize two notions of pi-blocking and define a notion of
“blocking complexity,” which we then use to establish the optimality of the protocols presented in this paper.

3.1 Priority Inversions in Multiprocessor Systems

The need for two notions of pi-blocking arises because multiprocessor schedulability analysis has not yet
matured to the point that suspensions can be efficiently analyzed under all schedulers. In particular, most of
the major G-EDF hard real-time schedulability tests do not inherently account for self-suspensions. Such
analysis is suspension-oblivious (s-oblivious): jobs may suspend, but each ei must be inflated by bi prior
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Fig. 1 S-oblivious and s-aware pi-blocking in a G-EDF schedule of three jobs sharing one resource on m = c = 2 processors

to applying the test to account for all additional delays. This approach is safe—converting execution time
to idle time does not increase response times—but pessimistic, as even suspended higher-priority jobs are
(implicitly) considered to prevent lower-priority jobs from being scheduled. In contrast, suspension-aware
(s-aware) schedulability analysis that explicitly accounts for bi is available for FP, P-FP, and, to some extent,
for G-FP scheduling [2, 29, 36, 43]. Notably, suspended jobs are not considered to occupy a processor under
s-aware analysis.

Consequently, priority inversion is defined differently under s-aware and s-oblivious analysis: since sus-
pended higher-priority jobs are counted as demand under s-oblivious analysis—the maximum time of priority
inversion of each such job is included in its execution requirement ei—the mere existence of c pending higher-
priority jobs (in Ji’s cluster) rules out a priority inversion. In contrast, under s-aware schedulability analysis
only ready higher-priority jobs can nullify a priority inversion (since suspension times are not included in ei).

The difference in what constitutes a priority inversion leads to two notions of pi-blocking. Since schedulabil-
ity tests are applied on a cluster-by-cluster basis, pi-blocking is defined in both cases with respect to the tasks in
each cluster. Recall from Section 2 that Pi denotes the cluster that Ti has been assigned to, and that τPi

denotes
the set of tasks assigned to cluster Pi.

Definition 1 Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-blocking at time t if Ji is
pending but not scheduled and fewer than c higher-priority jobs of tasks in τPi

are pending.

Definition 2 Under s-aware schedulability analysis, a job Ji incurs s-aware pi-blocking at time t if Ji is
pending but not scheduled and fewer than c higher-priority ready jobs of tasks in τPi

are scheduled.

In both cases, “higher-priority” is interpreted with respect to base priorities. Notice that Definition 1 is
weaker than Definition 2. Thus, lower bounds on s-oblivious pi-blocking apply to s-aware pi-blocking as well,
and the converse is true for upper bounds.

Example 1 The difference between s-oblivious and s-aware pi-blocking is illustrated in Figure 1, which shows
a G-EDF schedule of three jobs sharing one resource. Job J1 suffers acquisition delay during [1, 3), and since
no higher-priority jobs exist it is pi-blocked under either definition. Job J3 is suspended during [2, 4). It suffers
pi-blocking under either definition during [3, 4) since it is among the c = m = 2 highest-priority pending jobs.
However, J3 suffers only s-aware pi-blocking during [2, 3) since J1 is pending but not ready then.

The focus of this paper is locking protocols for s-oblivious schedulability analysis. The rationale for this
choice is twofold. First, we are most interested in C-EDF [10, 21], for which G-EDF schedulability tests
are required to establish the schedulability of each cluster. As noted above, most G-EDF schedulability tests
are s-oblivious. And second, even though s-aware analysis seems intuitively to be much less pessimistic than
s-oblivious analysis, locking protocols for s-oblivious analysis can in fact be superior to those for s-aware
analysis, as we report in detail in Section 5.
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3.2 A Blocking Complexity Measure

As mentioned in Section 2.4, the principal goal in designing a real-time locking protocol is to minimize pi-
blocking. Some amount of pi-blocking is inherently unavoidable if (some) resource accesses require mutual
exclusion. A locking protocol must hence strike a balance between favoring resource requests of some jobs
over those of others. For example, in the extreme, a protocol could guarantee a task to never incur pi-blocking
if resources are never granted to other tasks. Clearly, such a protocol is not useful, but it highlights that just
considering the pi-blocking bound of only high-priority (or privileged) tasks is not representative of the overall
pi-blocking caused by a particular locking protocol.

To compare locking protocols, we thus consider maximum pi-blocking, formally max1≤i≤n{bi}, to charac-
terize a protocol’s overall blocking behavior. Maximum pi-blocking reflects the per-task bound required for
schedulability analysis of the task that incurs the most pi-blocking. It is worth emphasizing that it does not
necessarily reflect the maximum acquisition delay, which is irrelevant from a schedulability analysis point of
view (recall Section 2.4).

Concrete bounds on pi-blocking must necessarily depend on each Li,q—long requests will cause long
priority inversions under any protocol. Similarly, bounds for any reasonable protocol grow linearly with the
maximum number of requests per job.4 Thus, when deriving asymptotic bounds, we consider, for each Ti,∑

1≤q≤nr
Ni,q and each Li,q to be constants and assume n ≥ m. All other parameters are considered variable

(or dependent on m and n). In particular, we do not impose constraints on the ratio max{pi}/min{pi}, the
number of resources nr, or the number of tasks sharing each `q . To simplify our notation, we let Lmax ,
max

{
Li,q | 1 ≤ i ≤ n ∧ 1 ≤ q ≤ nr

}
denote the the maximum critical section length when deriving asymp-

totic bounds. To reiterate, we assume Lmax = O(1).
In accordance with the goal of minimal pi-blocking, we seek to design protocols under which the amount of

time lost to pi-blocking (by any task set) is bounded within a constant factor of the loss shown to be unavoidable
in the worst case (for some task sets). To this end, we next establish a lower bound on maximum pi-blocking
under s-oblivious schedulability analysis.

3.3 Lower Bound on Maximum S-Oblivious Pi-Blocking

The importance of differentiating between s-oblivious and s-aware pi-blocking stems from the fact that each
definition gives rise to a different lower bound on maximum pi-blocking. In the case of s-oblivious schedulability
analysis, Ω(m) maximum pi-blocking is unavoidable in some cases. Consider the following pathological
high-contention task set.

Definition 3 Let τ seq(n) denote a task set of n identical tasks that share one resource `1 such that ei = 1,
pi = 2n, Ni,1 = 1, and Li,1 = 1 for each Ti, where n ≥ m ≥ 2.

Lemma 1 There exists an arrival sequence for τ seq(n) such that max1≤i≤n{bi} = Ω(m) under any locking
protocol and JLFP scheduler under s-oblivious analysis.

Proof Without loss of generality, assume that n is an integer multiple of m. Consider the schedule resulting from
the following periodic arrival sequence: each Ji,j is released at time ai,j = (di/me − 1) ·m+ (j − 1) · pi, and
issues one request Ri,1,j , where Li,1,j = 1. That is, releases occur in groups of m jobs and each job requires `1
for its entire computation. A resulting G-EDF schedule is illustrated in Figure 2.

There are n/m groups of m tasks each that release jobs simultaneously. For each group g, where g ∈
{0, . . . , n/m− 1}, jobs of Tg·m+1, . . . , Tg·m+m issue m concurrent requests for `1. Since `1 cannot be shared,
any locking protocol must impart some order, and thus there exists a job in each group that incurs d time units

4 Interestingly, in the uniprocessor case, the PCP [43, 47] and the SRP [3] both ensure O(1) maximum pi-blocking regardless
of the number of requests, which is possible due to the lack of concurrency (after a job has acquired a resource once, lower-priority
jobs cannot lock it again while higher-priority jobs are ready). In the multiprocessor case, resources may be repeatedly locked by
concurrently-scheduled remote jobs, which implies that a job may incur pi-blocking each time that it issues a request.
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Fig. 2 Illustration of Lemma 1. The depicted example shows a G-EDF schedule of τ seq (n) for n = 6 and m = 3, and thus
g ∈ {0, 1}. The first group of jobs (J1,1, J2,1, J3,1) is released at time 0; the second group (J4,1, J5,1, J6,1) is released at time 3.
Each group incurs 0 + 1 + 2 =

∑m−1
i=0 i total s-oblivious pi-blocking. (Jobs J1,2, J2,2, and J3,2 have been omitted for clarity.)

of pi-blocking for each d ∈ {0, . . . ,m− 1}. Hence, for each g,
∑g·m+m

i=g·m+1 bi ≥
∑m−1

i=0 i = Ω(m2), and thus,
across all groups,

n∑
i=1

bi =

(n/m−1)∑
g=0

g·m+m∑
i=g·m+1

bi =
n

m
·Ω(m2) = Ω(nm),

which implies max1≤i≤n{bi} = Ω(m).
By construction, the schedule does not depend on G-EDF scheduling since no more than m jobs are pending

at any time, and thus applies to other global JLFP schedulers as well. The lower bound applies equally to
clustered JLFP schedulers with c < m since τ seq(n) can be trivially partitioned such that each processor serves
at least bn/cc and no more than dn/ce tasks. ut

Perhaps surprisingly, the improvement in analysis accuracy in suspension-aware analysis comes at the cost
of an increased lower bound for mutex protocols: in prior work, we established a lower bound of Ω(n) on
maximum s-aware pi-blocking [17]. Intuitively, this difference arises because, under s-oblivious analysis, at
most m jobs can incur pi-blocking at the same time (a job incurs s-oblivious pi-blocking only if it is among the
c highest-priority jobs in its cluster—see Definition 1), whereas no such limit exists for s-aware pi-blocking.
That is, under s-oblivious schedulability analysis, high-priority jobs that incur pi-blocking implicitly “shield”
lower-priority jobs from incurring pi-blocking at the same time, which allows some of the s-oblivious approach’s
inherent pessimism to be “reused” to obtain less pessimistic analysis of locking protocols.

The remainder of this paper is exclusively concerned with the design of locking protocols tailored to take full
advantage of the properties of s-oblivious schedulability analysis; an in-depth discussion of locking protocols
for s-aware pi-blocking and a formal derivation of the Ω(n) lower bound on maximum s-aware pi-blocking can
be found elsewhere [14].

4 The O(m) Locking Protocol Family

In light of the lower bound of Ω(m) maximum s-oblivous pi-blocking, which is asymptotically tight, an
optimal s-oblivious locking protocol must ensure O(m) maximum s-oblivious pi-blocking. In fact, an O(m)
bound on acquisition delay has long been known to be tight for spin-based protocols: when jobs busy-wait
non-preemptively in FIFO order, they must wait for at most m− 1 earlier requests (e.g., see [14, 18, 28, 32]).
However, prior work has not yielded an O(m) suspension-based locking protocol.
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The family of O(m) locking protocols (the OMLP family), in part inspired by spin-based protocols and
first described in [17, 19], includes a mutex protocol, an RW protocol, and a k-exclusion protocol for clustered
scheduling with arbitrary cluster sizes (1 ≤ c ≤ m) and a mutex protocol for the special case of global
scheduling.5 The OMLP family’s main features are the following.

– Both mutex protocols ensure maximum pi-blocking that is optimal within a factor that approaches two
under s-oblivious analysis. All previously proposed suspension-based locking protocols are asymptotically
suboptimal with respect to maximum pi-blocking under s-oblivious analysis.

– The OMLP’s RW and k-exclusion variants are the first suspension-based multiprocessor locking protocols
of their kind (prior work on suspension-based multiprocessor locking protocols was focused on mutex
constraints).

– The RW protocols ensure maximum pi-blocking for writers that is optimal within a factor that approaches
four for large m under s-oblivious analysis (the lower bounds on maximum pi-blocking do not apply to
readers since they assume mutual exclusion—see Section 4.6 below).

– The k-exclusion protocol ensures O( m
min{kq} ) maximum pi-blocking. The ensured bound on maximum

pi-blocking is optimal within a factor that approaches two for large m under s-oblivious analysis.
– The OMLP is the first published suspension-based locking protocol that has been designed and analyzed

specifically for the case of 1 < c < m (prior work focused on global or partitioned scheduling).

The last point, support for truly clustered scheduling, poses significant challenges from a locking perspective
because clusters with 1 < c < m exhibit aspects of both partitioned and global scheduling, which seem to
necessitate fundamentally different means for bounding priority inversions. We begin by describing a novel
method for controlling priority inversions that is key to the OMLP’s optimality for the case of 1 < c < m.

4.1 Resource-Holder Progress

To prevent maximum pi-blocking from becoming unbounded or unsuitably large (i.e., bounds should not include
job execution costs in addition to request lengths), a locking protocol must ensure that resource-holding jobs
progress in their execution when high-priority jobs are waiting. That is, low-priority jobs must be scheduled
in spite of their low base priority when they cause other higher-priority jobs to incur pi-blocking. A real-time
locking protocol thus requires a mechanism to raise the effective priority of resource holders, either on demand
(when a waiting job incurs pi-blocking) or unconditionally. All prior protocols employ priority inheritance or
priority boosting to this end—unfortunately, neither generalizes to clustered scheduling with 1 < c < m.

4.1.1 Limits of Priority Boosting

Priority inheritance is ineffective at bounding maximum priority inversions if c < m because comparing
priorities across cluster boundaries is meaningless from an analytical point of view (the highest priority in one
cluster may be numerically low in another—an example can be found in [14]). For this reason, all prior protocols
for partitioned scheduling instead rely on priority boosting to ensure resource-holder progress. Priority boosting
prevents preempted jobs from transitively delaying waiting higher-priority jobs by unconditionally raising the
effective priority of resource-holding jobs above that of non-resource-holding jobs. While conceptually simple,
the unconditional nature of priority boosting may itself cause pi-blocking. Under partitioning (c = 1), this effect
can be controlled such that jobs incur at most O(m) s-oblivious pi-blocking [17], but this approach does not
extend to c > 1. This is best illustrated with an example.

Example 2 For the sake of simplicity, suppose that requests are satisfied in FIFO order, and that a resource
holder’s priority is boosted. A possible result is shown in Figure 3: jobs of tasks in τ2 repeatedly request `1
and `2 in a pattern that causes low-priority jobs of tasks T2, . . . , T5 in τ1 to be priority-boosted simultaneously.

5 The initial description of the OMLP [17] contained a variant for partitioned scheduling. This special case is not considered herein
because, from an analytical point of view, it has since been superseded by the OMLP’s mutex protocol for clustered scheduling.
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Fig. 3 Seven tasks sharing two resources (`1, `2) across two two-processor clusters under C-EDF scheduling (the digit within each
critical section indicates which resource was requested)

Whenever c = 2 jobs are priority-boosted at the same time, J1 is necessarily preempted, which causes it to be
pi-blocked repeatedly. In general, as c jobs must be priority-boosted to force a preemption, priority boosting
may cause Ω(nc ) pi-blocking, which makes it unsuitable for constructing a protocol with O(m) maximum
pi-blocking.

The example shows that priority boosting may cause a job to incur pi-blocking repeatedly, and independently
of its own requests, if c > 1. If instead c = 1, then lower-priority jobs cannot issue requests while higher-priority
jobs execute and repeated pi-blocking due to priority boosting is not an issue. That is, while priority inheritance
fundamentally works only if m = c, priority boosting is only appropriate for c = 1 and leads to sub-optimal
pi-blocking if c > 1.

4.1.2 Priority Donation

To overcome the gap in the range of 1 < c < m, the OMLP uses a novel progress mechanism named priority
donation that ensures the following two properties.

P1 A resource-holding job is always scheduled.
P2 The duration of s-oblivious pi-blocking caused by the progress mechanism (i.e., the rules that maintain P1)

is bounded by the maximum request span (with regard to any job).

Priority boosting unconditionally forces resource holders to be scheduled (Property P1), but it does not
specify which job will be preempted as a result. As the example in Figure 3 demonstrates, if c > 1, this is
problematic since an “unlucky” job can repeatedly be a preemption “victim” (like J1 in Figure 3), thereby
invalidating P2.

Priority donation is a form of priority boosting in which the “victim” is predetermined such that each job
is preempted at most once. This is achieved by establishing a donor relationship when a potentially harmful
job release occurs (i.e., one that could invalidate P1). In contrast to priority boosting, priority donation only
takes effect when needed. In the examples and the discussion below, we assume mutex locks for the sake of
simplicity; however, the proposed protocol applies equally to RW and k-exclusion locks.

Request rule In the following, let Ji denote a job that requires a resource `q at time t1, as illustrated in Figure 4.
Priority donation achieves P1 and P2 for 1 ≤ c ≤ m in two steps: it first requires that Ji has a sufficiently high
base priority, and then ensures that Ji’s effective priority remains high until Ji releases `q .
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Fig. 4 Request phases under priority donation

D1 Ji may issue a request only if it is among the c highest-priority pending jobs in its cluster (with regard to
base priorities). If necessary, Ji suspends until it may issue a request.

Rule D1 ensures that a job has sufficient priority to be scheduled without delay at the time of request. That
is, Property P1 holds at time t2 in Figure 4. However, some—but not all—later job releases during [t2, t4]
could preempt Ji. Consider a list of all pending jobs in Ji’s cluster sorted by decreasing base priority, and let
x denote Ji’s position in this list at time t2. In other words, Ji is the xth highest-priority pending job at time
t2. By Rule D1, x ≤ c. If there are at most c− x higher-priority jobs released during [t2, t4], then Ji remains
among the c highest-priority pending jobs and no protocol intervention is required. However, when Ji is the cth

highest-priority pending job in its cluster, a higher-priority job release may cause Ji to be preempted or to have
insufficient priority to be scheduled when it resumes, thereby violating P1. Priority donation intercepts such
releases.

Donor rules A priority donor is a job that suspends to allow a lower-priority job to complete its request. Each
job has at most one priority donor at any time. We first define how jobs become donors and when they suspend,
and illustrate the rules with an example thereafter. Let Jd denote Ji’s priority donor (if any), and let ta denote
Jd’s release time.

D2 Jd becomes Ji’s priority donor at time ta if (a) Ji was the cth highest-priority pending job prior to Jd’s
release (with regard to its cluster), (b) Jd has one of the c highest base priorities, and (c) Ji has issued a
request that is incomplete at time ta (i.e., ta ∈ [t2, t4) with regard to Ji’s request as illustrated in Figure 4).

D3 Ji inherits the priority of Jd (if any) during [t2, t4).

The purpose of Rule D3 is to ensure that Ji will be scheduled if ready. However, Jd’s relative priority could
decline due to subsequent releases. In this case, the donor role is passed on.

D4 If Jd is displaced from the set of the c highest-priority jobs by the release of Jh, then Jh becomes Ji’s
priority donor and Jd ceases to be a priority donor. (By Rule D3, Ji thus inherits Jh’s priority.)

Rule D4 ensures that Ji remains among the c highest-effective-priority pending jobs (with regard to its cluster).
The following two rules ensure that Ji and Jd are never ready at the same time, thereby freeing a processor for
Ji to be scheduled on.

D5 If Ji is ready when Jd becomes Ji’s priority donor (by either Rule D2 or D4), then Jd suspends immediately
(i.e., Jd’s release is effectively delayed).

D6 If Jd is Ji’s priority donor when Ji resumes at time t3, then Jd suspends (if ready).

Further, a priority donor may not execute a request itself and may not prematurely exit.

D7 A priority donor may not issue requests. Jd suspends if it requires a resource while being a priority donor.
D8 If Jd finishes execution while being a priority donor, then its completion is postponed, that is, Jd suspends

and remains pending until it is no longer a priority donor.

Jd may continue once its donation is no longer required, or when a higher-priority job takes over.

D9 Jd ceases to be a priority donor as soon as either (a) Ji completes its request (i.e., at time t4 in Figure 4),
(b) Ji’s base priority becomes one of the c highest (with regard to pending jobs in Ji’s cluster), or (c) Jd is
relieved by Rule D4. If Jd suspended due to Rules D5–D7, then it resumes.
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Fig. 5 Six tasks sharing two serially-reusable resources across two two-processor clusters under C-EDF scheduling (the digit within
each critical section indicates which resource was requested)

Under a JLFP scheduler, Rule D9b can only be triggered when higher-priority jobs complete.

Example 3 Figure 5 shows a resulting schedule assuming jobs wait in FIFO order. Priority donation occurs
first at time 3, when the release of J1 displaces J3 from the set of the c = 2 highest-priority pending jobs of
tasks in τ1. Since J3 holds `1, J1 becomes J3’s priority donor (Rule D2) and suspends immediately since J3 is
ready (Rule D5). J1 resumes when its duties cease at time 6 (Rule 9a). If J1 would not have donated its priority
to J3, then it would have preempted J3, thereby violating P1. At time 3, J6 also requests `1 and suspends as
`1 is unavailable. It becomes a priority recipient when J4 is released at time 4 (Rule D2). Since J6 is already
suspended, Rule D5 does not apply and J4 remains ready. However, at time 5, J4 requires `2, but since it is still
a priority donor, it may not issue a request and must suspend instead (Rule D7). J4 may resume and issue its
request at time 7 since J5 finishes, which causes J6 to become one of the two highest-priority pending jobs of
tasks in τ2 (Rule 9b). If priority donors were allowed to issue requests, then J4 would have been suspended
while holding `2 when J6 resumed at time 6, thereby violating P1.

Taken together, Rules D1–D9 ensure resource-holder progress under clustered scheduling with arbitrary
cluster sizes (1 ≤ c ≤ m).

Lemma 2 Priority donation ensures Property P1.

Proof Rule D7 prevents Rules D5 and D6 from suspending a resource-holding job. Rule D1 establishes
Property P1 at time t2. If Ji’s base priority becomes insufficient to guarantee P1, its effective priority is raised
by Rules D2 and D3. Rules D4 and D8 ensure that the donated priority is always among the c highest (with
regard to pending jobs in Ji’s cluster), which, together with Rules D5 and D6, effectively reserves a processor
for Ji to run on when ready. ut

By establishing the donor relationship at release time, priority donation ensures that a job is a “preemption
victim” at most once, even if c > 1.

Lemma 3 Priority donation ensures Property P2.

Proof A job incurs s-oblivious pi-blocking if it is among the c highest-priority pending jobs in its cluster and
either (i) suspended or (ii) ready and not scheduled (i.e., preempted). We show that (i) is bounded and that (ii) is
impossible.
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Case (i). Only Rules D1 and D5–D8 cause a job to suspend. Rule D1 does not cause s-oblivious pi-blocking:
the interval [t1, t2) ends as soon as Ji becomes one of the c highest-priority pending jobs. Rules D5–D8 apply
to priority donors. Jd becomes a priority donor only immediately upon release or not at all (Rules D2 and D4),
that is, each Jd donates its priority to some Ji only once. By Rule D2, the donor relationship starts no earlier
than t2, and, by Rule D9, ends at the latest at time t4. By Rules D8 and D9, Jd either resumes or completes
when it ceases to be a priority donor. Jd suspends thus for at most the duration of one entire request span.

Case (ii). Let Jx denote a job that is ready and among the c highest-priority pending jobs (with regard to
base priorities) of tasks in cluster τj , but not scheduled. Let A denote the set of ready jobs of tasks in τj with
higher base priorities than Jx, and let B denote the set of ready jobs of tasks of τj with higher effective priorities
than Jx that are not in A. Only jobs in A and B can preempt Jx. Let D denote the set of priority donors of jobs
in B.

By Rule D3, every job in B has a priority donor that is, by construction, unique: |B| = |D|. By assumption,
|A|+ |B| ≥ c (otherwise Jx would be scheduled), and thus also |A|+ |D| ≥ c.

Rules D5 and D6 imply that no job in D is ready (since every job in B is ready): A ∩D = ∅, and hence
|A ∪D| = |A|+ |D|.

By the definition of B, every job in D has a base priority that exceeds Jx’s base priority. Similarly, by the
definition of A, every job in A has a higher base priority than Jx as well. Thus, since every job in A ∪D has a
higher base priority than Jx, there exist |A ∪D| = |A|+ |D| ≥ c pending jobs of tasks in τj with higher base
priority than Jx. Contradiction. ut

Priority donation further limits maximum concurrency, which is key to the analysis of the protocols presented
next in Sections 4.2–4.4.

Lemma 4 Let Rj(t) denote the number of requests issued by jobs of tasks in cluster τj that are incomplete at
time t. Under priority donation, Rj(t) ≤ c at all times.

Proof Similar to Case (ii) above. Suppose Rj(t) > c at time t. Let H denote the set of the c highest-priority
pending jobs of tasks in τj (at time t and with regard to base priorities), and let I denote the set of jobs of tasks
in τj that have issued a request that is incomplete at time t.

Let A denote the set of high-priority jobs with incomplete requests (i.e., A = H ∩ I) and let B denote the
set of low-priority jobs with incomplete requests (i.e., B = I \A).

Let D denote the set of priority donors of jobs in B. Together, Rules D2, D4, D8, and D9 ensure that every
job in B has a unique priority donor. Therefore |B| = |D|.

By definition, |A| + |B| = |I| = Rj(t). By our initial assumption, this implies |A| + |B| > c and thus
|A|+ |D| > c. By Rules D2 and D4, D ⊆ H (only high-priority jobs are donors).

By Rule D7, A ∩ D = ∅ (donors may not issue requests). Since, by definition, A ⊆ H, this implies
|H| ≥ |A|+ |D| > c. Contradiction. ut

In the following, we show that Lemmas 2–4 provide a strong foundation that enables the design of simple,
yet asymptotically optimal, locking protocols.

4.2 The Clustered OMLP for Mutual Exclusion

We begin with ensuring mutex constraints for 1 ≤ c ≤ m, which is the most straightforward case. An
asymptotically optimal mutex protocol can be layered on top of priority donation by using simple FIFO queues
just as they are used in non-preemptive spinlocks. The following protocol’s simplicity demonstrates that priority
donation is a powerful aid for worst-case analysis.

Structure For each serially-reusable resource `q , there is a FIFO queue FQq that is used to serialize conflicting
accesses. The job at the head of FQq holds `q .
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Rules Access to each resource is granted according to the following rules. Let Ji denote a job that issues a
request Ri,q,v for `q .

X1 Ji is enqueued in FQq when it issuesRi,q,v . If FQq was non-empty, then Ji suspends untilRi,q,v is satisfied.
X2 Ri,q,v is satisfied when Ji becomes the head of FQq .
X3 Ji is dequeued from FQq when Ri,q,v is complete. The new head of FQq (if any) is resumed.

Rules X1–X3 correspond to times t2–t4 in Figure 4.

Example 4 Figure 5 depicts an example of the clustered OMLP for serially-reusable resources. (Figure 5 was
previously discussed in the context of priority donation.) At time 2, J3 requests `1 and is enqueued in FQ1

(Rule X1). Since FQ1 was empty, J3’s request is satisfied immediately (Rule X2). When J6 requests the same
resource at time 3, it is appended to FQ1 and suspends. When J3 releases `1 at time 6, J6 becomes the new
head of FQ1 and resumes (Rule X3). At time 7, J4 acquires `2 and enqueues in FQ2, which causes J2 and J1
to suspend when they, too, request `2 at times 8 and 9. Importantly, priorities are ignored in each FQq: when
J4 releases `2 at time 10, J2 becomes the resource holder and is resumed, even though J1 has a higher base
priority. While using FIFO queues instead of priority queues in real-time systems may seem counterintuitive,
priority queues are in fact problematic in a multiprocessor context since they allow starvation, which renders
them unsuitable for constructing protocols with O(m) maximum pi-blocking (as discussed in more detail in
Section 4.5 below).

Priority donation is in two ways crucial to the OMLP: requests complete without delay and maximum
contention is limited.

Lemma 5 At most m jobs are enqueued in any FQq .

Proof By Lemma 4, at most c requests are incomplete at any point in time in each cluster. Since there are m
c

clusters, no more than m
c · c = m jobs are enqueued in any FQq . ut

Lemma 6 A job Ji that requests a resource `q incurs acquisition delay for the duration of at most m − 1
requests.

Proof By Lemma 5, at most m− 1 other jobs precede Ji in FQq . By Lemma 2, the job at the head of FQq is
scheduled. Therefore, Ji becomes the head of FQq after the combined length of at most m− 1 requests. ut

This property suffices to prove asymptotic optimality.

Theorem 1 The clustered OMLP for serially-reusable resources causes a job Ji to incur at most bi = m ·
Lmax +

∑nr

q=1Ni,q · (m− 1) · Lmax = O(m) s-oblivious pi-blocking.

Proof By Lemma 3, the duration of s-oblivious pi-blocking caused by priority donation is bounded by the
maximum request span. Recall from Section 2.3 that the request span includes both the request length and any
acquisition delay. By Lemma 6, maximum acquisition delay per request is bounded by (m− 1) · Lmax . The
maximum request span is thus bounded by m · Lmax . Recall from Section 3.2 that

∑nr

q=1Ni,q and Lmax are
presumed constant. The bound follows. ut

The protocol for serially-reusable resources is thus asymptotically optimal with regard to maximum s-
oblivious pi-blocking. A practical, non-asymptotic bound on maximum pi-blocking that takes individual request
lengths and frequencies into account is derived in Appendix A.
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4.3 The Clustered OMLP for RW Exclusion

In throughput-oriented computing, RW locks are attractive because they increase average concurrency (compared
to mutex locks) if read requests are more frequent than write requests. In a real-time context, RW locks should
also lower pi-blocking for readers, that is, the higher degree of concurrency must be reflected in a priori
worst-case analysis and not just in observed average-case delays.

Unfortunately, many RW lock types commonly in use in throughput-oriented systems provide only little
analytical benefits because they either allow starvation or serialize readers [18]. As an example for the former,
consider reader preference RW locks, under which write requests are only satisfied if there are no unsatisfied
read requests. Such locks have the advantage that a read request incurs only O(1) acquisition delay, but they
also expose write requests to potentially unbounded acquisition delays. In contrast, task-fair RW locks, in which
requests (either read or write) are satisfied strictly in FIFO order, are an example for the latter case: in the worst
case, read requests and write requests are interleaved such that read requests incur Ω(m) acquisition delay
(assuming priority donation), just as they would under a mutex lock.

In recent work on spin-based RW locking protocols [18], we introduced phase-fair RW locks as an alternative
better suited to reducing worst-case delays. Phase-fairness is defined by the following key properties.

– Reader phases and writer phases alternate (unless there are only requests of one kind).
– At the beginning of a reader phase, all incomplete read requests are satisfied.
– One write request is satisfied at the beginning of a writer phase.
– Read requests are allowed to join a reader phase that is already in progress only if there are no incomplete

write requests.

This results in O(1) acquisition delay for read requests without starving write requests [14, 18]. Note that this
does not contradict the lower bound on s-oblivious pi-blocking (Lemma 1) because the lower bound depends
on mutual exclusion. It thus only applies to write requests (which must be exclusive), but not to read requests
(which may be satisfied concurrently with other read requests).

The following rules realize a suspension-based phase-fair RW lock.

Structure For each RW resource `q , there are three queues: a FIFO queue for writers, denoted WQq , and two
reader queues RQ1

q and RQ2
q . Initially, RQ1

q is the collecting and RQ2
q is the draining reader queue. The roles,

denoted as CQq and DQq , switch as reader and writer phases alternate; that is, the designations “collecting” and
“draining” are not static.

Reader rules Let Ji denote a job that issues a read requestRR
i,q,v for `q . The distinction between CQq and DQq

serves to separate reader phases. Readers always enqueue in the (at the time of request) collecting queue. If
queue roles change, then a writer phase starts when the last reader releases `q .

R1 Ji is enqueued in CQq when it issues RR
i,q,v . If WQq is non-empty (i.e., if there are one or more writers

present), then Ji suspends.
R2 RR

i,q,v is satisfied either immediately if WQq is empty when RR
i,q,v is issued, or when Ji is subsequently

resumed (by an exiting writer, see Rule W3 below).
R3 Let RQy

q denote the reader queue in which Ji was enqueued due to Rule R1. Ji is dequeued from RQy
q when

RR
i,q,v is complete. If RQy

q is DQq and Ji is the last job to be dequeued from RQy
q , then the current reader

phase ends and the head of WQq is resumed (WQq is non-empty in this case because queue roles changed).

Writer rules Let Jw denote a job that issues a write request RW
w,q,v for `q . Conflicting writers wait in FIFO

order. The writer at the head of WQq is further responsible for starting and ending reader phases by switching
the reader queues.

W1 Jw is enqueued in WQq when it issues RW
w,q,v . Jw suspends until RW

w,q,v is satisfied, unless RW
w,q,v is

satisfied immediately. If WQq is empty and CQq is not, then the roles of CQq and DQq are switched to end
the current reader phase.
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Fig. 6 Six tasks sharing one RW resource across two two-processor clusters under C-EDF scheduling (priority donation does not
occur in this example schedule)

W2 RW
w,q,v is satisfied either immediately if WQq and CQq are both empty whenRW

w,q,v is issued,6 or when Jw
is subsequently resumed.

W3 Jw is dequeued from WQq whenRW
w,q,v is complete. If CQq is empty, then the new head of WQq (if any) is

resumed. Otherwise, each job in CQq is resumed and, if WQq remains non-empty (i.e., if there are waiting
writers), the roles of CQq and DQq are switched.

Rules R1–R3 and W1–W3 correspond to times t2–t4 in Figure 4 (respectively), and are illustrated in Figure 6.

Example 5 Figure 6 depicts six tasks in two clusters sharing one resource. The resource `1 is first read by J5,
which is enqueued in RQ1

q , the initial collecting queue, at time 1 (Rule R1). When J2 issues a read request at
time 1, it is also enqueued and its request is satisfied immediately since WQ1 is still empty (Rule R2). J1 issues
a write request at time 4. Since CQ1 is non-empty, the roles of CQ1 and DQ1 are switched, that is, RQ1

q becomes
the draining reader queue, and J1 suspends (Rule W1). J4 issues a read request soon thereafter and is enqueued
in RQ2

q (Rule R1), which is the collecting queue after the role switch. J4 suspends since WQ1 is not empty
(Rule R2), even though J2 is still executing a read request. This is required to ensure that write requests are not
starved. The reader phase ends when J2 releases `1 at time 6, and the next writer, J1, is resumed (Rules R3
and W2). J1 releases `1 and resumes all readers that have accumulated in RQ2

q (J3 and J4). Since WQ1 is
non-empty (J6 was enqueued at time 6), RQ2

q becomes the draining reader queue (Rule W3). Under task-fair
RW locks, J3 would have remained suspended since it requested `1 after J6. In contrast, J6 must wait until the
next writer phase at time 13 and all waiting readers are resumed at the beginning of the next reader phase at
time 10 (Rule W3).

Together with priority donation, the reader and writer rules above realize a phase-fair RW lock. Due to the
intertwined nature of reader and writer phases, we first consider the head of WQq (a writer phase), then CQq (a
reader phase), and finally the rest of WQq .

Lemma 7 Let Jw denote the head of WQq . Jw incurs acquisition delay for the duration of at most one read
request length before its request is satisfied.

6 If WQq and CQq are both empty, then DQq is necessarily empty, too, as any readers in the draining queue would have had to
enqueue when it was still the collecting queue (Rule R1) and the roles of CQq and DQq are only switched when a writer is waiting
(Rules W1 and W3).
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Proof Jw became head of WQq in one of two ways: by Rule W1 (if WQq was empty prior to Jw’s request) or
by Rule W3 (if Jw had a predecessor in WQq). In either case, there was a reader queue role switch when Jw
became head of WQq (unless there were no unsatisfied read requests, in which case the claim is trivially true).
By Rule R3, if a reader phase delayed Jw, then Jw is resumed as soon as the last reader in DQq releases `q . By
Rule R1, no new readers enter DQq . Due to priority donation, there are at most m− 1 jobs in DQq (Lemma 4),
and each job holding `q is scheduled (Lemma 2). The claim follows. ut

Lemma 8 Let Ji denote a job that issues a read request for `q . Ji incurs acquisition delay for the combined
duration of at most one read and one write request.

Proof If WQq is empty, then Ji’s request is satisfied immediately (Rule R2). Otherwise, it suspends and is
enqueued in CQq (Rule R1). This prevents consecutive writer phases (Rule W3). Ji’s request is thus satisfied as
soon as the current head of WQq releases `q (Rule W3). By Lemma 7, the head of WQq incurs acquisition delay
for no more than the length of one read request (which transitively impacts Ji). Due to priority donation, the
head of WQq is scheduled when its request is satisfied (Lemma 2). Therefore, Ji waits for the duration of at
most one read and one write request. ut

Lemma 8 shows that readers incurO(1) acquisition delay. Next, we show that writers incurO(m) acquisition
delay.

Lemma 9 Let Jw denote a job that issues a write request for `q . Jw incurs acquisition delay for the duration of
at most m− 1 write and m read requests before its request is satisfied.

Proof It follows from Lemma 4 that at most m− 1 other jobs precede Jw in WQq (analogously to Lemma 5).
By Lemma 2, Jw’s predecessors together hold `q for the duration of at most m− 1 write requests. By Lemma 7,
each predecessor incurs acquisition delay for the duration of at most one read request once it has become the
head of WQq . Thus, Jw incurs transitive acquisition delay for the duration of at most m− 1 read requests before
it becomes head of WQq , for a total of at most m− 1 + 1 = m read requests. ut

These properties suffice to prove asymptotic optimality with regard to maximum s-oblivious pi-blocking.

Theorem 2 The clustered OMLP for RW resources causes a job Ji to incur at most

bi = 2 ·m · Lmax +

(
nr∑
q=1

NR
i,q · 2 · L

max

)
+

(
nr∑
q=1

NW
i,q · (2 ·m− 1) · Lmax

)
= O(m)

s-oblivious pi-blocking.

Proof By Lemma 3, the duration of s-oblivious pi-blocking caused by priority donation is bounded by the
maximum request span. By Lemma 9, maximum acquisition delay per write request is bounded by (2m −
1) · Lmax ; by Lemma 8, maximum acquisition delay per read request is bounded by 2 · Lmax . The maximum
request span is thus bounded by 2 ·m · Lmax . Recall from Section 3.2 that Lmax and

∑nr

q=1Ni,q , and hence
also

∑nr

q=1N
W
i,q and

∑nr

q=1N
R
i,q , are constants. The bound follows. ut

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths and
frequencies into account is given in Appendix A. While the presented analysis assumes phase-fairness, other
RW request orders such as task-fairness or preference locks could similarly be implemented on top of priority
donation; see [14, 18] for appropriate analysis of task-fair and preference RW locks.
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4.4 The Clustered OMLP for k-Exclusion

For some resource types, one option to reduce contention is to replicate them. For example, if potential overload
of a DSP co-processor is found to pose a risk in the design phase, the system designer could introduce additional
instances to improve response times.

As with multiprocessors, there are two fundamental ways to allocate replicated resources: either each
task may only request a specific replica, or every task may request any replica. The former approach, which
corresponds to partitioned scheduling, has the advantage that a mutex protocol suffices, but it also implies
that some resource replicas may idle while jobs wait to acquire their designated replica. The latter approach,
equivalent to global scheduling, avoids such bottlenecks, but needs a k-exclusion protocol to do so. Priority
donation yields such a protocol for clustered scheduling.

Recall that kq denotes the number of replicas of resource `q . In the following, we assume 1 ≤ kq ≤ m. The
case of kq > m is discussed in Section 4.6 below.

Structure Jobs waiting for a replicated resource `q are kept in a FIFO queue denoted as KQq . The replica set
RSq contains all idle instances of `q . If RSq 6= ∅, then KQq is empty.

Rules Let Ji denote a job that issues a request Ri,q,v for `q .

K1 If RSq 6= ∅, then Ji acquires an idle replica from RSq . Otherwise, Ji is enqueued in KQq and suspends.
K2 Ri,q,v is satisfied either immediately (if RSq 6= ∅ at the time of request) or when Ji is removed from KQq .
K3 If KQq is non-empty when Ri,q,v completes, the head of KQq is dequeued, resumed, and acquires Ji’s

replica. Otherwise, Ji’s replica is released into RSq .

As it was the case with the definition of the previous protocols, Rules K1–K3 correspond to times t2–t4 in
Figure 4.

Example 6 Figure 7 depicts an example schedule for one resource (`1) with k1 = 2. J5 obtains a replica from
RS1 at time 2 (Rule K1). The second replica of `1 is acquired by J2 at time 4. As RS1 is now empty, J1 is
enqueued in KQ1 and suspends when it requests `1 at time 5. However, it is soon resumed when J5 releases
its replica at time 6 (Rule K3). This illustrates one advantage of using k-exclusion locks: if instead one replica
would have been statically assigned to each cluster (which reduces the resource-sharing problem to a mutex
constraint), then J1 would have continued to wait while τ2’s replica would have idled. This happens again at
time 12: since no job of tasks in τ1 requires `1 at the time, both instances are used by jobs of tasks in τ2.

As with the previous protocols, priority donation is essential to ensure progress and to limit contention.

Lemma 10 At most m− kq jobs are enqueued in KQq .

Proof Lemma 4 implies that there are at most m incomplete requests. Since only jobs waiting for `q are
enqueued in KQq , at most m− kq jobs are enqueued in KQq . ut

Lemma 11 Let Ji denote a job that issues a request Ri,q,v for `q . Ji incurs acquisition delay for the duration
of at most d(m− kq)/kq)e maximum request lengths.

Proof By Lemma 10, at most m− kq requests must complete before Ji’s request is satisfied (m− kq − 1 for
Ji to become the head of KQq , and one more for Ji to be dequeued). Rules K1 and K3 ensure that all replicas
are in use whenever jobs wait in KQq . Since resource holders are always scheduled due to priority donation
(Lemma 2), requests are satisfied at a rate of at least kq requests per maximum request length until Ri,q,v is
satisfied. The stated bound follows. ut

Lemma 11 shows that Ji incurs at most O(mkq
) pi-blocking per request (and none if kq = m). This suffices

to show asymptotic optimality.
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Fig. 7 Six tasks sharing two instances of one resource across two two-processor clusters under C-EDF scheduling (priority donation
does not occur in this particular example)

Definition 4 Let kmin , min1≤q≤r{kq} denote the minimum degree of replication.

Theorem 3 The clustered OMLP for replicated resources causes a job Ji to incur at most

bi =

(
1 +

⌈
m− kmin

kmin

⌉)
· Lmax +

nr∑
q=1

(
Ni,q ·

⌈
m− kq
kq

⌉)
· Lmax

≤
(
1 +

⌈
m− kmin

kmin

⌉)
· Lmax +

nr∑
q=1

(
Ni,q ·

⌈
m− kmin

kmin

⌉)
· Lmax

= O(m/kmin)

s-oblivious pi-blocking.

Proof By Lemma 11, maximum acquisition delay per request for `q is bounded by d(m− kq)/kq)e ·Lmax . The
maximum request span is thus bounded by (d(m− kmin)/kmin)e+ 1) · Lmax . Lemma 3 limits the duration
of s-oblivious pi-blocking due to priority donation to the maximum request span. The bound follows since∑nr

q=1Ni,q and Lmax are constants (Section 3.2). ut

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths and
frequencies into account is provided in Appendix A. Theorem 3 implies asymptotic optimality for any kmin ≤ m.
While Lemma 1 applies only to mutual exclusion (i.e., kmin = 1), it is trivial to extend the argument to
1 ≤ kmin ≤ m.

Lemma 12 There exists an arrival sequence for τ seq(n) such that, under s-oblivious analysis, max1≤i≤n{bi} =
Ω(m/kmin) under any k-exclusion locking protocol and JLFP scheduler, where 1 ≤ kmin < m.

Proof Analogously to Lemma 1. Recall from Definition 3 that τ seq(n) consists of n tasks, and that each job of
each task requires a shared resource `1 for the entirety of its computation (i.e., ei = Li,1 = Lmax = 1). If there
are k1 = kmin replicas of `1, then at most kmin jobs are scheduled at any time. As in the proof of Lemma 1,
consider the arrival sequence shown in Figure 2: if m jobs request `1 simultaneously, then any k-exclusion



The OMLP Family of Optimal Multiprocessor Real-Time Locking Protocols 21

τ2

τ1

20151050 time

T1

T2

T3

release completiondeadline

job scheduled
lock attempt

critical section

job suspended

locked

unlocked

Processor
1 2

Fig. 8 Pi-blocking of independent jobs under the clustered OMLP and P-EDF scheduling on m = 2 processors with c = 1

protocol must impart an order among the requests such that only kmin requests are satisfied concurrently. To
complete each of the m concurrent requests, the kmin replicas must be used for m · Lmax time units in total.
This implies that the last request to be satisfied completes no earlier than m · Lmax/kmin time units after it was
issued. Therefore, it incurred at least

m · Lmax

kmin
− Lmax =

(
m

kmin
− 1
)
· Lmax

acquisition delay. Further, as each request is sequential and since all requests are of uniform length Lmax = 1,
requests are only satisfied at times that are integer multiples of Lmax (i.e., requests are satisfied only x · Lmax

time units after they are issued, where 0 ≤ x ≤ dm/kmine− 1). Therefore, the last of the m concurrent requests
to complete was not satisfied until ⌈

m

kmin
− 1
⌉
· Lmax = Ω

(
m

kmin

)
time units after the requests were issued. Since at most m jobs are pending at any time in the periodic arrival
sequence shown in Figure 2, this implies that Ω(m/kmin) s-oblivious pi-blocking is unavoidable in the general
case. ut

The clustered OMLP for replicated resources is hence asymptotically optimal with regard to maximum
s-oblivious pi-blocking.

4.5 An Independence-Preserving Mutex Protocol

As demonstrated in the preceding sections, the primary advantage of priority donation is that it enables simple,
asymptotically optimal locking protocols. An undesirable property of priority donation is that every task is
subject to potential pi-blocking—even those that are independent—because any job may be required to serve as
a priority donor upon release. While undesirable, this is fundamental to lock-based real-time synchronization if
c < m, that is, if priority inversions must be bounded, there is more than one cluster, and tasks may not migrate
across cluster boundaries. This is illustrated in Figure 8.

Example 7 Even though job J1 is independent, it incurs pi-blocking when it serves as J2’s priority donor
during [3, 4). This example demonstrates that, if jobs may not migrate across cluster boundaries, it is in general
unavoidable for independent jobs to be subject to pi-blocking: if J1 were allowed to preempt J2 (to avoid being
pi-blocked), then J3 would incur pi-blocking for the entire duration of J1’s execution (i.e., J3 would incur a
potentially unbounded priority inversion).

Luckily, in the special case of global scheduling (i.e., if c = m), it is possible to design locking protocols
based on priority inheritance under which independent jobs never incur s-oblivious pi-blocking. That is, in the
following, we seek to design an “independence-preserving” locking protocol under which jobs incur pi-blocking
only due to resources on which they depend.
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Fig. 9 G-EDF schedules of n = 4 tasks sharing one resource `1 on m = 2 processors

Definition 5 Let bi,q denote an upper bound on maximum pi-blocking incurred by Ji due to requests by any job
of any task for resource `q . A locking protocol is independence-preserving if and only if Ni,q = 0⇒ bi,q = 0.

Importantly, a task that does not require any shared resources does not incur any pi-blocking under an
independence-preserving locking protocol. In this section, we present such a protocol, namely the global
OMLP for mutex constraints.

4.5.1 Wait Queue Choices

The OMLP variant for clustered scheduling relies on simple FIFO queues to serialize conflicting resource
requests. Unfortunately, when FIFO queues are combined with priority inheritance (which, unlike priority
donation, does not limit the maximum number of incomplete requests), jobs can incur Ω(n) s-oblivious pi-
blocking. As demonstrated in Figure 9(a), the job with the highest priority (J1) may incur Ω(n) pi-blocking if
its request is issued just after all other requests.

As priority inheritance is used together with priority queues in the uniprocessor case, (e.g., in the PIP
and PCP), it is perhaps not surprising that FIFO ordering by itself is ill-suited to ensuring O(m) maximum
pi-blocking. However, ordering requests by job priority, as for instance done in the PPCP [29], does not improve
the bound: since a low-priority job can be starved by later-issued higher-priority requests, it is easy to construct
an arrival sequence in which a job incurs Ω(n) s-oblivious pi-blocking. This is illustrated in Figure 9 (b),
which shows that a job’s request may be deferred repeatedly even though it is among the m highest-priority
jobs. Thus, ordering all requests by job priority is, at least asymptotically speaking, not preferable to the
simpler FIFO queuing, and can in fact give rise to Ω(mn) pi-blocking if tasks with short periods create intense
contention [14, 17].

4.5.2 The Global OMLP for Mutual Exclusion

Fortunately, it is possible to use priority inheritance to realize O(m) maximum s-oblivious pi-blocking by
combining FIFO and priority ordering. In the global OMLP, each resource is protected by two locks: a priority-
based m-exclusion lock that limits access to a regular FIFO mutex lock, which in turn serializes access to the
resource. This idea is formalized by the following rules.
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Fig. 10 OMLP mutex protocol for global scheduling under G-EDF for six tasks sharing one resource on m = 2 processors

Structure For each resource `q , there are two job queues: FQq , a FIFO queue of length at most m, and PQq , a
priority queue (ordered by job priority) that is only used if more than m jobs are contending for `q . The job at
the head of FQq (if any) holds `q .

Rules Let queuedq(t) denote the number of jobs queued in both FQq and PQq at time t. Requests are ordered
according to the following rules.

G1 A job Ji that issues a request Ri,q,v for `q at time t is appended to FQq if queuedq(t) < m; otherwise, if
queuedq(t) ≥ m, it is added to PQq . Ri,q,v is satisfied when Ji becomes the head of FQq .

G2 All queued jobs are suspended, with the exception of the job at the head of FQq , which is ready and inherits
the priority of the highest-priority job in FQq and PQq .

G3 When Ji releases `q , it is dequeued from FQq and the new head of FQq (if any) is resumed. Also, if PQq is
non-empty, then the highest-priority job in PQq is moved to FQq .

The key insight is the use of an m-exclusion lock to safely defer requests of lower-priority jobs without allowing
a pi-blocked job to starve. This can be observed in the example shown in Figure 10.

Example 8 Figure 10 depicts a G-EDF schedule of six jobs sharing one resource `1 on m = 2 processors
under the OMLP’s global mutex protocol. At time 1, J6 requests `1 and enters FQ1 immediately (Rule G1). At
time 2, `1 is requested by J5, which is also enqueued in FQ1 and suspended since it was non-empty. At time 4,
m = 2 jobs hold the m-exclusion lock (i.e., have entered FQ1) and thus J4 must enter PQ1 instead (Rule G1).
Hence it is safely deferred when `1 is later requested by higher-priority jobs (J3, J2, J1). At the same time,
J5, which incurs pi-blocking until J3’s arrival at time 5, precedes the later-issued requests since it already held
the m-exclusion lock—this avoids starvation in scenarios such as the one depicted in Figure 9(b). Note that J5
incurs pi-blocking until time 5 (and not only until time 4) because the release of J4 at time 4 does not displace
J5 from the set of the c = m = 2 highest-priority pending jobs (J6 is also pending at time 4, but has a later
deadline than J5).

Next, we bound maximum s-oblivious pi-blocking under the OMLP’s global mutex protcol. In the following
analysis, let t0 denote the time at which Ji issues Ri,q,v , t1 denote the time at which Ji enters FQq , and t2
denote the time at which Ri,q,v is satisfied (this is illustrated in Figure 10 for J4)
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Further, let entered(t), t0 ≤ t < t1, denote the number of jobs that have been moved from PQq to FQq

during [t0, t] due to Rule G3. That is, entered(t) counts the jobs that preceded Ji in entering FQq . For example,
for J4 in Figure 10, entered(5) = 0, entered(10) = 1, and entered(11) = 2.

Lemma 13 For each point in time t ∈ [t0, t1), if Ji incurs s-oblivious pi-blocking, then entered(t) < m.

Proof By Rule G3, because Ji has not yet entered FQq at time t, there must be m pending jobs queued in FQq .
Due to FIFO ordering, if entered(t) ≥ m, then each job queued in FQq at time t must have been enqueued
in FQq during [t0, t]. By Rule G3, this implies that each job in FQq must have a priority that exceeds Ji’s
priority. By the definition of s-oblivious pi-blocking (Definition 1), the presence of m higher-priority pending
jobs implies that Ji is not pi-blocked. ut

Lemma 14 During [t0, t2), Ji incurs s-oblivious pi-blocking for the combined duration of at most 2 ·m− 1
requests.

Proof Due to the bounded length of FQq , at most m − 1 requests complete in [t1, t2) before Ji’s request is
satisfied. By Lemma 13 and Rule G3, at most m requests complete before J1 is no longer pi-blocked in [t0, t1).
ut

Combining Lemma 14 with the maximum request length for each `q yields the following bound.

Lemma 15 Ji is pi-blocked for at most

bi ,
nr∑
k=1

Ni,q · (2 ·m− 1) · Lmax = O(m).

Proof By Lemma 14, Ji is pi-blocked for the duration of at most 2 ·m − 1 requests each time it requests a
resource `q . Due to priority inheritance, the resource-holding job has an effective priority among the m highest
priorities whenever Ji is pi-blocked; requests are thus guaranteed to progress towards completion when Ji is
pi-blocked. As Ji requests `q at mostNi,q times, it suffices to consider the longest requestNi,k ·(2 ·m−1) times.
The sum of the per-resource bounds yields bi. By assumption (Section 3.2), Lmax = O(1) and

∑
q Ni,1 = O(1),

and hence bi = O(m). ut

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths and
frequencies into account is presented in Appendix A. Note that bi = 0 if Ni,q = 0 for each `q , that is, the global
OMLP is indeed independence-preserving.

4.6 Optimality, Combinations, and Limitations

In this section, we conclude our discussion of the OMLP family by examining various optimality properties and
limitations in more detail and discuss how each of the protocol variants can be integrated with each other and
OMLP-unrelated self-suspensions (such as suspensions due to I/O with dedicated devices).

4.6.1 Non-Asymptotic Optimality

Besides being asymptotically optimal, the four protocols of the OMLP family also have constant factors,
summarized in Table 1, that are small enough for the protocols to be practical. Let Ni =

∑
q Ni,q denote the

maximum number of requests issued by any Ji. In the following, we assume Ni > 0, that is, the following
discussion does not apply to independent tasks. From the example shown in Figure 2, it is apparent that a lower
bound per request is m− 1 blocking requests. Therefore, a lower bound on the maximum number of blocking
requests (under s-oblivious analysis) is Ni · (m− 1). This allows us to characterize how far the OMLP’s bounds
are from being optimal. Since Lmax is presumed constant, we focus on the number of blocking requests in the
following discussion.
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Scheduling Constraint Progress Mechanism Bound Analysis

global mutex priority inheritance Ni · (2m− 1) Section 4.5
clustered mutex priority donation m+Ni · (m− 1) Section 4.2
clustered k-exclusion priority donation m+Ni ·

⌈
m−min{kq}

min{kq}

⌉
Section 4.4

clustered RW—writers priority donation 2m+Ni · (2m− 1) Section 4.3
clustered RW—readers priority donation 2m+Ni · 2 Section 4.3

Table 1 S-oblivious pi-blocking bounds of the OMLP given in terms of the maximum number of blocking requests

We begin with the global OMLP (for mutex constraints), which ensures that a job is pi-blocked by at most
Ni · (2m − 1) requests (see Table 1 for a summary of the OMLP’s blocking bounds). As discussed in the
preceding section, the principal advantage of the global OMLP over the clustered OMLP is that independent
jobs do not incur pi-blocking (i.e., if Ni = 0, then bi = 0). The guaranteed upper bound is hence optimal within
at most7 a factor of

Ni · (2m− 1)

Ni · (m− 1)
=
Ni · (2(m− 1) + 1)

Ni · (m− 1)
= 2 +

1

m− 1
.

That is, for large m, the global OMLP’s bound on maximum s-oblivious pi-blocking is (almost) within a factor
of two of the lower bound.

As summarized in Table 1, the clustered OMLP for mutex constraints ensures that a job Ji is pi-blocked by
at most m+Ni · (m− 1) conflicting requests. The mutex protocol is hence optimal within at most a factor of

m+Ni · (m− 1)

Ni · (m− 1)
= 1 +

m

Ni · (m− 1)
≤ 1 +

m

(m− 1)
= 2 +

1

m− 1
.

The ratio is maximized for Ni = 1, in which case it approaches two for large m, just as the global OMLP.
If Ni > 1, then the clustered OMLP ensures a smaller bound than the global OMLP, albeit at the cost of
potentially delaying otherwise independent jobs.

In the case of the OMLP’s k-exclusion protocol, if kmin < m, then Theorem 3 and Lemma 12 imply that
the upper bound on s-oblivious pi-blocking is within at most a factor of(

1 +
⌈
m−kmin

kmin

⌉)
+
(
Ni ·

⌈
m−kmin

kmin

⌉)
Ni ·

⌈
m

kmin − 1
⌉ =

(
1 +

⌈
m

kmin − 1
⌉)

+
(
Ni ·

⌈
m

kmin − 1
⌉)

Ni ·
⌈

m
kmin − 1

⌉
=

1

Ni ·
⌈

m
kmin − 1

⌉ + 1

Ni
+ 1

≤ 2 +
1⌈

m
kmin − 1

⌉
of the lower bound that is unavoidable in the general case (for tasks that share resources). In the worst case,
kmin = 1, the ratio reduces to 2 + 1

m−1 . The k-exclusion protocol is thus no worse (in terms of the maximum
number of blocking requests) than the clustered OMLP’s mutex protocol.

In the degenerate case of kmin = m, maximum blocking under the clustered OMLP reduces to 1 (akin
to a non-preemptive section), but the above ratio is undefined since the lower bound reduces to 0 in this case.
This is because Lemma 12 does not take preemptions from higher-priority, later-arriving jobs into account.
However, it is trivial to construct an example in which m lower-priority jobs request all kmin replicas such that
a later-arriving, higher-priority job incurs s-oblivious pi-blocking for the duration of one critical section. The
clustered OMLP is hence optimal in this case.

7 It is unknown whether Ni · (m− 1) is a tight lower bound in absolute terms (i.e., non-asymptotically).
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In the case of the OMLP’s phase-fair RW lock, writers are delayed by additional requests because a reader
phase may separate any two writer phases. This has the effect of essentially doubling the factor. That is, if job Ji
issues Ni write requests (and no read requests), then the ensured bound is within at most

2m+Ni · (2m− 1)

Ni · (m− 1)
=
2m+Ni · (2(m− 1) + 1)

Ni · (m− 1)

= 2 ·
(
1 +

m

Ni · (m− 1)

)
+

1

m− 1

≤ 2 ·
(
2 +

1

(m− 1)

)
+

1

m− 1

= 4 +
3

m− 1

of the optimal bound for mutex constraints. That is, for large m, the bound on maximum pi-blocking for (pure)
writers approaches four and is hence approximately twice as large as the bounds of the mutex protocols. This
suggests that RW locks should only be employed if the write ratio is small.

4.6.2 Optimality of Relaxed-Exclusion Protocols

Under phase-fair RW locks, read requests incur at most O(1) acquisition delay. Similarly, requests for `q incur
only O(mkq

) acquisition delay under the k-exclusion protocol. Yet, we only prove O(m) and O( m
kmin ) maximum

s-oblivious pi-blocking bounds, respectively—as discussed in Section 4.5, any job may become a priority donor
and thus suspend (at most once) for the duration of the maximum request span. Since both relaxed-exclusion
constraints generalize mutual exclusion, a priority donor might incur Ω(m) pi-blocking since some jobs might
incur Ω(m) pi-blocking if kmin = 1 or if some resource is shared among m writers.

This seems undesirable for tasks that do not partake in mutual exclusion. For example, why should “pure
readers” (i.e., tasks that never issue write requests) not have an O(1) bound on pi-blocking? It is currently
unknown if this is even possible in general, as lower bounds for specific task types (e.g., “pure readers,” “DSP
tasks”) are an to-date unexplored topic that warrants further attention.

Since priority inheritance is sufficient for the global OMLP mutex protocol, one might wonder if it is
possible to apply the same design using priority inheritance instead of priority donation to obtain an RW protocol
under global scheduling with O(m) maximum pi-blocking for writers and O(1) maximum pi-blocking for
readers. Unfortunately, this is not the case.

The reason is that the analytical benefits of priority inheritance under s-oblivious analysis do not extend to
RW exclusion. When using priority inheritance with mutual exclusion, there is always a one-to-one relationship:
a priority is inherited by at most one ready job at any time. In contrast, a single high-priority writer may have to
“push” multiple low-priority readers. In this case, the high priority is “duplicated” and used by multiple jobs on
different processors at the same time. This significantly complicates the analysis. In fact, simply instantiating
Rules R1–R3 and W1–W3 from Section 4.3 with priority inheritance may cause Ω(nc ) s-oblivious pi-blocking
since it is possible to construct schedules that are conceptually similar to the one shown in Figure 3. A naive
application of priority inheritance to the k-exclusion problem would lead to the same result.

This demonstrates the power of priority donation, and also highlights the value of the clustered OMLP
even for the special cases c = m and c = 1: the clustered OMLP RW and k-exclusion protocols are the first
multiprocessor real-time locking protocols of their kind for the special cases of global and partitioned scheduling
as well. In fact, to the best of our knowledge, no suspension-based RW protocol withO(1) maximum pi-blocking
for pure readers has been proposed to date.

In recent work [30], Elliot and Anderson presented a k-exclusion protocol for global JLFP schedulers that
guarantees asymptotically optimal maximum s-oblivious pi-blocking while ensuring that independent jobs do
not incur pi-blocking. Similar to the global OMLP, Elliot and Anderson’s protocol uses priority inheritance in
combination with a hybrid FIFO/priority queue. Due to the challenges of k-exclusion, their hybrid queue is of a
more complicated structure than the one used in the global OMLP. Interestingly, Elliot and Anderson’s protocol
uses a technique akin to priority donation to ensure progress within each hybrid queue.
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4.6.3 Highly Replicated Resources

Our k-exclusion protocol assumes 1 ≤ kq ≤ m since additional replicas would remain unused as priority
donation allows at most m incomplete requests. (The same assumption is made in Elliot and Anderson’s
k-exclusion protocol for global scheduling.) This has little impact on resources that require jobs to be scheduled
(e.g., shared data structures), but it may be a severe limitation for resources that do not require a processor (e.g.,
there could be more than m DSP co-processors).

However, would a priority donation replacement that allows more than c jobs in a cluster to hold a replica
be a solution? Surprisingly, the answer is no. This is because s-oblivious schedulability analysis (implicitly)
assumes the number of processors as the maximum degree of parallelism (since all pending jobs are assumed to
cause processor demand under s-oblivious analysis). In other words, s-aware schedulability analysis is required
to derive analytical benefits from highly replicated resources. However, s-aware schedulability analysis poses
additional challenges and, to the best of our knowledge, no k-exclusion protocol for s-aware analysis, optimal or
otherwise, has been proposed to date.

4.6.4 Unrelated Self-Suspensions

An issue that arises in practice with real-time locking protocols is how blocking bounds are affected by
suspensions that are unrelated to resource sharing. For example, a job may self-suspend when it performs I/O
using a private device (i.e., one that is not under control of a locking protocol). In uniprocessor locking protocols
such as the SRP or the PCP, a job resuming from a self-suspension may incur additional pi-blocking just as if
it were newly released. That is, a job Ji that self-suspends ηi times can incur pi-blocking for the duration of up
to 1 + ηi outermost critical sections under the SRP or PCP.

This effect also applies to multiprocessor real-time locking protocols. For instance, under the MPCP and
DPCP, a self-suspending job allows lower-priority jobs to issue requests for global resources and thus may
incur additional pi-blocking after it resumes when lower-priority jobs are subsequently priority boosted.

Remarkably, the OMLP’s blocking bounds are not affected by self-suspensions. In the case of the global
OMLP, a job incurs pi-blocking only when it issues a request itself, which is not affected by locking-unrelated
self-suspensions. Further, while it may appear on first sight that priority donation is affected by self-suspensions,
this is not the case: a resuming job is never required to serve as a priority donor. This is because priority donation
is defined in terms of pending jobs, and not in terms of ready jobs. A job that self-suspends or resumes does not
alter the set of pending jobs. Further, any job serving as a priority donor upon release may self-suspend (since a
priority donor’s purpose is to suspend anyway). A priority donor that resumes from a self-suspension while the
priority recipient executes is effectively not resumed until its donor services are no longer required.

The OMLP is hence not affected by self-suspensions and the presented analysis can be used in environments
where jobs self-suspend. However, if jobs may self-suspend while holding a resource, then the maximum
self-suspension time must be reflected in each Li,q .

4.6.5 Protocol Combinations

The clustered mutex protocol (Section 4.2) generalizes the partitioned OMLP proposed in [17] in terms of
blocking behavior; from an analytical point of view, there is thus little reason to use both in the same system or
to prefer the partitioned OMLP over the more general clustered OMLP. However, in practice, it is somewhat
easier to implement the partitioned OMLP since it relies on priority boosting instead of priority donation as a
progress mechanism.

The clustered protocol variants can be freely combined since they all rely on priority donation and because
their protocol rules do not conflict. However, care must be taken to correctly identify the maximum request span,
which determines the maximum pi-blocking caused by priority donation.

The global OMLP cannot be used with any of the clustered OMLP variants since priority inheritance is
incompatible with priority donation (from an analytical point of view). As discussed above, both the clustered
and global mutex protocols have an O(m) s-oblivious pi-blocking bound, but differ in constant factors and
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with regard to which jobs incur pi-blocking. Specifically, since the global OMLP is independence-preserving,
only jobs that request resources risk s-oblivious pi-blocking under the global OMLP, while even otherwise
independent jobs may incur s-oblivious pi-blocking if they serve as a priority donor. The global OMLP may
hence be preferable for c = m if only few tasks share resources. We explore this tradeoff empirically in the
following section.

5 Empirical Evaluation

The OMLP’s defining feature is its asymptotic optimality under s-oblivious schedulablity analysis. However,
asymptotic optimality does not necessarily translate into better schedulability in practice since it does not reflect
constant factors. Further, one might reasonably suspect the s-oblivious analysis approach to be inherently too
pessimistic to be of practical use. In other words, is the OMLP not just of theoretic interest, but also a good
candidate for implementation in real-time operating systems?

To explore the OMLP’s practical viability, we conducted large-scale schedulability experiments to empiri-
cally compare the OMLP with real-time locking protocols from prior work, and to contrast each of the OMLP’s
variants with each other. Specifically, we sought to answer the following questions.

– Is the OMLP competitive with previously-proposed s-oblivious locking protocols?
– Is the OMLP competitive with prior s-aware locking protocols?
– How do the two mutex protocols of the OMLP compare? Are both required?
– When does using the clustered OMLP’s RW protocol offer an advantage (if any) over the clustered OMLP’s

mutex protocol, that is, is there an analytical advantage in allowing parallel reads compared to simply
serializing both read and write requests?

– Does replicating shared resources significantly improve schedulability? That is, can resource replication be
used to achieve a reduction in contention, and is this reduction reflected in the worst-case blocking analysis?

– Does k-exclusion offer an advantage over resource partitioning? In other words, when is the clustered
OMLP’s k-exclusion protocol preferable to statically assigning each task to one of the replicas?

In the following, we first describe the design of the experiments and then report upon our results and provide
answers to the above questions in Sections 5.2–5.5.

5.1 Experimental Setup and Evaluation

A schedulablity experiment quantifies the performance of a real-time algorithm (such as a locking protocol) by
determining the ratio of task sets that can be shown to be schedulable under it. The collection of task sets to be
tested is typically generated randomly according to various parameter distributions. We followed this standard
approach and generated task sets according to the following procedure, which is based on those previously used
in [4, 11, 14, 18, 22].

5.1.1 Task Set Generation

Each task Ti was generated by drawing its period pi uniformly from {10ms, 11ms, . . . , 100ms}, by drawing
its utilization ui from a given utilization distribution, and by setting ei = ui · pi (rounded to the next-largest
microsecond). We considered three uniform, three exponential, and three bimodal utilization distributions.

– The ranges for the uniform distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium), and [0.5, 0.9] (heavy).
– The mean of exponential distributions were 0.1 (light), 0.25 (medium), and 0.5 (heavy). The exponential

distributions were further limited to the range (0, 1] by redrawing samples that did not fall within the range
of feasible utilizations.

– In the three bimodal distributions, utilizations were distributed uniformly over either [0.001, 0.5) or [0.5,
0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy).
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Given the number of processors m, a target utilization cap U ∈ [1,m], and one of the nine utilization
distributions, a random task set was generated by repeatedly creating tasks as described above until the task
set’s total utilization exceeded U , and by then reducing the last-added task’s execution cost en such that U was
reached exactly (i.e., we ensured that

∑n
i=1 ui = U ). To avoid generating trivial task sets, we further ensured

that each generated task set contained at least m+ 1 tasks adding additional tasks if necessary (after reducing
the execution cost of each task to ensure

∑n
i=1 ui = U ).

Each task’s parameters LR
i,q , LW

i,q , NR
i,q , and NW

i,q were randomly chosen based on the following parameters:
the number of resources nr, the access probability pacc , the write ratio pwrite , and a critical section length
distribution. A given task Ti accessed resource `q with probability pacc (i.e., P [Ni,q > 0] = pacc). If Ti
accessed `q , then it was determined to be a writer with probability pwrite , and a reader otherwise. The number of
accesses Ni,q was chosen uniformly from {1, . . . , 5}. The maximum request length Li,q was chosen uniformly
from one of three critical section length distributions. When using short critical sections, each Li,q was
chosen randomly from [1µs, 15µs]; with intermediate critical sections, each Li,q was randomly chosen from
[1µs, 100µs]; and finally, when assuming long critical sections, each critical section length was randomly chosen
from [5µs, 1280µs]. To avoid generating implausible task sets, we ensured that the sum of all critical sections
does not exceed a task’s execution cost (i.e.,

∑nr

q=1Ni,q · Li,q ≤ ei) by reducing critical section lengths if
necessary.

It is a widely acknowledged design principle that critical sections should be short: from a throughput point of
view, long critical sections impede scalability, and from a real-time point of view, long critical sections result in
pessimistic upper bounds on pi-blocking and thus limit schedulability. We therefore believe most critical sections
to be short in practice. Nonetheless, in the schedulability study reported on in this paper, we also included
intermediate critical section lengths to allow for pessimism when determining Li,q parameters in practice, and
further considered long critical sections to allow for devices with inherently long critical sections (e.g., GPUs).
We chose the definition of long critical sections following Lakshmanan et al., who assumed the stated range of
critical section lengths in their evaluation of the MPCP and the MPCP-VS [36].

In the last step, if c < m, each generated task set was partitioned onto the m
c clusters using the worst-fit

decreasing heuristic. The worst-fit decreasing heuristic tends to spread the workload evenly across all clusters,
thereby leaving a roughly equal amount of spare capacity in each cluster to compensate for utilization loss due
to pi-blocking. In the case of global scheduling (i.e., if m = c), partitioning is not required.

5.1.2 Tested Parameter Ranges

We conducted five separate schedulability studies using the described task set generation method to investigate
the OMLP’s performance in different scenarios. To avoid repetition, we summarize the parameter ranges
common to all experiments in this section, and then describe each study’s individual goal, setup, and results in
the following sections in detail.

Unless noted otherwise, we considered each combination of the following parameter choices in each of the
experiments. We considered three processor counts m ∈ {4, 8, 16} and, for each processor count, three or four
cluster sizes c ∈ {1, m4 ,

m
2 ,m}. The number of resources nr was varied across nr ∈ {m4 ,

m
2 ,m, 2m}. We let

nr depend on m based on the intuition that larger platforms are more likely to host complex workloads with a
large number of shared resources.

In experiments focused on mutex or RW protocols, we let the access probability range across pacc ∈
{0.1, 0.25, 0.4}. In experiments involving the clustered OMLP’s k-exclusion protocol, we increased the access
probability to pacc ∈ {0.4, 0.55, 0.7} following the intuition that resource replication is most appropriate if
contention is inherently high.

In experiments involving the clustered OMLP’s RW protocol, we considered pwrite ∈ {0.05, 0.1, 0.2,
0.3, 0.5, 0.7}; all other studies pertaining to only mutex and k-exclusion protocols used pwrite = 1.

As described in the discussion of the task set generation procedure, we considered short, medium, and
long critical section lengths, and nine different utilization distributions. In total, this results in 3,564 parameter
combinations (or scenarios) for mutex and k-exclusion experiments, and in 21,384 parameter combinations in
experiments involving RW constraints (3,564 combinations for each choice of pwrite ). In each scenario, we
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varied U ∈ [m4 ,m] in steps of 0.25 and generated and tested 1,000 task sets for each target utilization. In total,
we generated more than 1,000,000,000 task sets over the course of the experiments reported in this paper.

5.1.3 Evaluation Criteria

Given the large number of considered scenarios, our schedulability data resulted in more than 40,000 graphs
when visualized as standard schedulablity plots (i.e., as a function of U , like those shown below in Figures 11–
15). Our discussion of the results necessarily focuses on select example graphs since an exhaustive presentation
of such a large data set is clearly infeasible. Nonetheless, we seek to report an objective aggregate view of the
“big picture.” We therefore chose to partially automate the evaluation by identifying each scenario in which a
given protocol performs better than another protocol, where “performs better” is defined based on schedulability
results with non-overlapping confidence intervals.

Let S(A, U) denote the fraction of task sets that could be claimed schedulable under the locking protocol
(or algorithm) A for a given utilization cap U . For each tested A and each U , we determined the 95% bootstrap
percentile confidence interval of S(A, U).8 When comparing two locking protocols A1 and A2, we say that A1

provides significantly higher schedulability than A2 for a given U if and only if S(A1, U) > S(A2, U) and the
respective confidence intervals are disjoint.

Based on this definition of “better performing,” and with respect to each pair of tested locking protocols A1

and A2, we classified each tested scenario into one of four groups.

1. Scenarios in which A1 is clearly preferable: A1 exhibits significantly higher schedulability for all or some
of the tested utilization caps U and A2 does not perform significantly better than A1 for any U .

2. Analogously, scenarios in which A2 is clearly preferable.
3. Scenarios with mixed results: A1 and A2 both achieve significantly higher schedulability than the other for

some (but not all) values of U .
4. Scenarios without significant trends: neither A1 nor A2 achieve significantly higher schedulability than the

other for any value of U .

Having established precise evaluation criteria, we are now ready to present the key findings from our
schedulability study. In addition to discussing select schedulability graphs (shown in Figures 11–15), we
report the number of scenarios in each of the above categories in Tables 3–10 to provide some context for the
highlighted examples. In particular, these categories allow us to objectively quantify whether the compared
locking protocols perform well in “most” or only “few” of the tested scenarios. To the best of our knowledge,
this is the first paper to report aggregate schedulability experiment results using an objective metric based on
statistical significance.

5.2 Comparison of Mutex Protocols for Partitioned Scheduling

In the first schedulability experiment, we compared the OMLP to two previously-published real-time locking
protocols to assess the practical viability of the OMLP and the s-oblivious approach.

For the case 1 < c < m and for RW or k-exclusion synchronization, there are no prior suspension-based
real-time locking protocols to test against. However, the case c = 1 < m (a partitioned multiprocessor
system) has been the focus of much prior work on mutex protocols, and for this case, the combination of the
MPCP [36, 42, 43] and P-FP scheduling is considered to be the de facto standard. For the MPCP, accurate

8 Bootstrapping is a standard technique for estimating sampling statistics for unknown population distributions (e.g., see [27]).
Given a sample vector X = (x1, x2, . . . , xs) consisting of s observations, N bootstrap sample vectors Y i = (yi1, y

i
2, . . . , y

i
s),

where i ∈ {1, . . . , N}, are constructed by uniformly choosing each yik ∈ {x1, x2, . . . , xs} (i.e., each Y i is drawn from X with
replacement). The distribution of a statistic f(X) can then be estimated by applying f to each Y i; an estimate of the 95%-confidence
interval of f(X) can be obtained from the 2.5th and 97.5th percentiles of the histogram of f(Y i). In our experiments, each xk ,
where 1 ≤ k ≤ s = 1, 000, is a schedulability test result (i.e., xk ∈ {0, 1}) and the computed statistic is the sample mean (i.e., the
fraction of schedulable task sets). Bootstrapping is well-suited to schedulability experiments since it does not make any assumptions
about the underlying population distribution. We used N = 10, 000 bootstrap samples.
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s-aware schedulability analysis exists [36]. In fact, the existing analysis of self-suspensions under uniprocessor
FP scheduling (and hence also under P-FP scheduling) is arguably among the most accurate s-aware analysis
published to date for any real-time scheduling policy. We therefore chose the MPCP to compare the OMLP’s
s-oblivious approach with the current state-of-the-art of s-aware schedulability analysis.

Besides presenting improved analysis of the original MPCP, Lakshmanan et al. also proposed a newer
variant of the MPCP based on “virtual spinning” [36], where “spinning” jobs do in fact suspend, but other local
jobs may not issue requests until the “spinning” job’s request is complete. Notably, the analysis of this newer
variant, which we denote as MPCP-VS, is s-oblivious. However, unlike the OMLP, the MPCP-VS does not
ensure asymptotically optimal maximum pi-blocking since it uses priority queues to order conflicting requests.
By comparing the OMLP with the MPCP-VS we can thus assess whether the OMLP’s optimality leads to
noticeable improvements in schedulability in practice.

Based on these considerations, we evaluated the following four combinations of locking protocol, scheduler,
and type of schedulability analysis:

– the clustered OMLP’s mutex protocol (Section 4.2) under P-EDF scheduling using the s-oblivious analysis
presented in Appendix A.4;

– the clustered OMLP’s mutex protocol under P-FP scheduling (using the same analysis);
– the MPCP [36, 42, 43] under P-FP scheduling using Lakshmanan et al.’s s-aware analysis [36]; and
– the MPCP-VS [36] under P-FP scheduling using Lakshmanan et al.’s s-oblivious analysis [36].

We generated task sets as described in Section 5.1.1 using the parameter combinations described in
Section 5.1.2. However, we only considered clusters of size c = 1 since the published analysis of MPCP and
MPCP-VS applies only to partitioned scheduling. Under P-EDF, we established the schedulability of each
partition with Liu and Layland’s classic s-oblivious utilization bound [37] after inflating each ei by bi (see
Appendix A.7); under P-FP scheduling, we assigned rate-monotonic priorities [37] and applied uniprocessor
response-time analysis [2, 35].

Note that there exists a cyclic dependency between the OMLP’s blocking analysis and response-time
analysis: to compute safe response times, a bound on worst-case pi-blocking is required, but a response-time
bound is required to apply the blocking analysis presented in Appendix A. Under P-FP scheduling, we resolved
this dependency using an iterative approach. Starting with the (clearly optimistic) assumption ri = ei, we
alternatingly computed bounds on pi-blocking and then applied response-time analysis until reaching a fix-point
for each task’s response time (i.e., all pi-blocking bounds were re-computed while the response-time of any
task in any partition increased). Under P-EDF scheduling, we simply substituted each task’s period pi for its
maximum response-time ri (which is a safe, but likely pessimistic, bound since ri ≤ pi if the task set is deemed
schedulable).

The described setup resulted in 972 schedulability graphs. Three representative examples are shown in
Figure 11. We observed the following major trends.

OMLP vs. MPCP-VS Figure 11(a) shows schedulability under each of the four configurations for bimodal
light utilizations, short critical sections, m = 16, nr = 32, and pacc = 0.25. The error bars in this (and
all subsequent figures) indicate 95% confidence intervals obtained using the bootstrap percentile method, as
described in Section 5.1.3. It is immediately apparent that the OMLP under both P-FP and P-EDF provides
significantly higher schedulability than either MPCP variant. We consider the s-oblivious MPCP-VS first.

The OMLP under P-FP scheduling clearly outperforms the MPCP-VS until U ≈ 12. Since both configura-
tions use the same schedulability test (i.e., FP response-time analysis [2, 35]), rely on s-oblivious analysis, and
have been applied to the same generated task sets, this provides strong evidence that the OMLP’s asymptotic
optimality translates into significantly improved pi-blocking bounds in practice. In fact, the OMLP outperformed
the MPCP-VS in the vast majority of the tested scenarios, whereas the MPCP-VS did not provide significantly
higher schedulability than the OMLP in any of the tested scenarios. This is apparent from Table 2, which reports
scenario counts based on the classification defined in Section 5.1.3 and thus provides an objective summary of
the entire data set.

For example, the first row in Table 2 reveals that the OMLP was clearly preferable in 279 of the 324
scenarios with short critical sections length, one of which is shown in Figure 11(a). In contrast, the MPCP-VS
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(a) Significantly higher schedulability under the OMLP
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(b) Scenario in which neither the MPCP nor the OMLP under P-FP scheduling outerperform each other for all U
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(c) Low-contention scenario in which the choice of locking protocol is irrelevant

Fig. 11 Comparison of mutex protocols: the clustered OMLP under P-EDF scheduling, the clustered OMLP under P-FP scheduling,
the MPCP under P-FP scheduling and s-aware analysis, and the MPCP-VS under P-FP scheduling and s-oblivious analysis

was never preferable to the OMLP, and the experiment also did not yield any mixed results (i.e., scenarios
without clear trends). In 45 of the scenarios involving short critical sections, we did not observe any significant
differences between the two protocols, which typically happens if there is only little contention for resources, in
which case the choice of locking protocol becomes irrelevant. One such example is shown in Figure 11(c), which
we revisit below. The counts of scenarios involving medium and long critical sections reveal that the OMLP
outperforms the MPCP-VS in most of these cases as well. Overall, our results strongly suggest that the OMLP
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critical sections OMLP preferable MPCP-VS preferable mixed results no trends

short 279 0 0 45
medium 307 0 0 17
long 250 0 0 74

Table 2 Summary of schedulability results: the clustered OMLP mutex protocol under P-FP scheduling with s-oblivious analysis
vs. the MPCP-VS under P-FP scheduling with s-oblivious analysis (see Section 5.1.3 for definitions)

critical sections OMLP preferable MPCP preferable mixed results no trends

short 273 0 4 47
medium 300 0 4 20
long 238 0 12 74

Table 3 Summary of schedulability results: the clustered OMLP mutex protocol under P-FP scheduling with s-oblivious analysis
vs. the MPCP under P-FP scheduling with s-aware analysis (see Section 5.1.3 for definitions)

provides superior schedulability in a wide range of scenarios, and also validate the intuition underlying maximum
pi-blocking, namely that it is a useful complexity metric that reflects meaningful performance characteristics.

OMLP vs. MPCP While the MPCP performs somewhat better than the MPCP-VS in the scenario depicted
in Figure 11(a), it still provides significantly lower schedulability than the OMLP. In this particular example,
the MPCP reaches zero schedulability already at U ≈ 10, whereas the OMLP does so only at U ≈ 12 under
P-FP scheduling, and only at U ≈ 13.5 under P-EDF scheduling. While the exact margin in schedulability
differs from scenario to scenario, this example is representative of a larger trend, as evidenced by the scenario
counts provided in Table 3. Similarly to the MPCP-VS, the MPCP was not preferable to the OMLP in any
of the tested scenarios. In contrast, the OMLP provided equal or superior schedulability in the vast majority
of the tested scenarios: across all critical section lengths, the OMLP was clearly preferable in 811 out of the
972 tested scenarios. Notably, a few scenarios revealed mixed results, in the sense that both the MPCP and
the OMLP under P-FP scheduling were significantly better for some, but not all, U . One such example is
shown in Figure 11(b), which depicts schedulability for uniform medium utilizations, long critical sections,
m = 8, nr = 2, and pacc = 0.10. While there are only few requests per job in this scenario (there are only few
resources with low access probability), schedulability under each of the tested locking protocols is affected by
the long critical sections. The OMLP under P-FP scheduling provides significantly higher schedulability than
the MPCP in the range U ∈ [2, 5.5]. However, with increasing U , schedulability decreases under the OMLP
somewhat faster than under the MPCP, with the result that the MPCP provides (slightly) higher schedulability
in the range [6.25, 6.75]. Since neither the OMLP nor the MPCP achieve equal or higher schedulability for all
values of U , this scenario is counted as having mixed results.

Nonetheless, the aggregate results reported in Table 3 document that there exist many scenarios in which the
OMLP provides better schedulability than the de-facto standard protocol for partitioned P-FP scheduling. This
shows that the OMLP in particular, and the s-oblivious analysis approach in general, have practical merit and
can in fact provide superior schedulability results. This also suggests that future evaluations of real-time locking
protocols should consider both s-oblivious and s-aware alternatives—s-oblivious protocols are not necessarily
more pessimistic than s-aware locking protocols.

One might wonder whether this is primarily due to the OMLP’s design, or whether this mostly reflects
limitations in existing s-aware analysis. We believe the OMLP’s competitiveness to be a result of both; however,
given that the employed analysis of suspensions under uniprocessor FP scheduling [2, 36] is already rather
accurate, we do not expect this observation to be invalidated in the foreseeable future.

MPCP vs. MPCP-VS Although our main goal was to compare the OMLP to both MPCP variants, our data set
also allows for a comparison of the s-aware MPCP with the s-oblivous MPCP-VS. In fact, our results paint a
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critical sections MPCP preferable MPCP-VS preferable mixed results no trends

short 210 0 0 114
medium 246 0 0 78
long 192 0 0 132

Table 4 Summary of schedulability results: the MPCP under P-FP scheduling with s-aware analysis vs. the MPCP-VS under
P-FP scheduling with s-oblivious analysis (see Section 5.1.3 for definitions)

critical sections P-EDF preferable P-FP preferable mixed results no trends

short 323 0 0 1
medium 317 0 0 7
long 265 0 0 59

Table 5 Summary of schedulability results: P-EDF scheduling with the clustered OMLP vs. P-FP scheduling with the clustered
OMLP (see Section 5.1.3 for definitions)

very clean picture: the MPCP-VS performs significantly worse than the MPCP in about two thirds of the tested
scenarios, with the remainder of the scenarios not showing a significant trend (see Table 4). This is illustrated
by the scenarios shown in insets (a) and (b) of Figure 11, where the MPCP-VS performs significantly worse
than the other tested protocols in the entire range where meaningful differences exist (i.e., before schedulability
reaches zero under all protocols).

The observation that the MPCP-VS performs significantly worse than the MPCP in most cases confirms
earlier results reported by Lakshmanan et al. [36], who came to a similar conclusion using a different exper-
imental setup and a different performance metric. In future work, there is thus little reason to consider the
MPCP-VS instead of better-performing alternatives such as the OMLP in case of s-oblivious analysis, or the
classic MPCP [42, 43] and the FMLP+ [14] in case of s-aware analysis.

P-FP vs. P-EDF One of the advantages of the OMLP family is that it is compatible with any JLFP scheduler.
The analysis presented in Appendix A therefore applies to both P-EDF and P-FP scheduling. As one might
expect, we found that the OMLP under P-EDF scheduling almost always achieves significantly higher schedula-
bility than the OMLP under P-FP scheduling, despite using identical analysis. The difference in schedulability
is entirely due to the optimality of EDF on uniprocessors.

An example of this effect is shown in Figure 11(c), which shows schedulability for the same scenario as
shown in inset (b) with short instead of long critical sections. Since contention is low, pi-blocking is equally low
under each of the tested locking protocols. As a result, there are no significant differences among the locking
protocols under P-FP scheduling (as indicated by overlapping confidence intervals), whereas the OMLP under
P-EDF scheduling provides significantly higher schedulability despite nearly identical bounds on pi-blocking.
The OMLP under P-EDF is similarly the best-performing configuration in the scenarios depicted in insets (a)
and (b) of the same figure. Overall, the OMLP under P-EDF is clearly the best-performing configuration in
905 of the 972 tested scenarios (see Table 5), and frequently by a large margin. The few scenarios in which no
significant differences could be observed are due to parameter combinations that result in excessive contention
(especially if long critical sections are involved), which causes equally low schedulability under all considered
locking protocols and schedulers.

While it is hardly surprising that schedulability is generally higher under P-EDF than under P-FP, there
is an important point to be made: the OMLP under P-FP scheduling is mainly interesting in the context of
“apples-to-apples” comparisons with other locking protocols for P-FP scheduling. If the goal is instead to
maximize schedulability, then the OMLP under P-EDF is clearly the better choice.

In summary, our schedulability study comparing mutex protocols found that, in a large majority of the
scenarios, the OMLP under P-FP scheduling performed better than either the MPCP or the MPCP-VS. Further,
the OMLP under P-EDF scheduling performed better than any of the locking protocols under P-FP scheduling;
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there is thus little reason to favor P-FP scheduling over P-EDF scheduling from a locking point of view. The
MPCP-VS never outperformed any of the other locking protocols in any of the tested scenarios. It is worth
emphasizing that the point of these experiments is not to claim that the OMLP and s-oblivious analysis are
always superior. Rather, our results show that there exist (many) scenarios in which the OMLP and s-oblivious
analysis are a practical alternative that is often competitive with, and at times even superior to, established
s-aware locking protocols.

This concludes our comparison of the OMLP with previously-proposed alternatives. In the experiments
discussed in the remainder of this section, we compared the OMLP family’s four protocols with each other to
determine when each variant is most appropriate.

5.3 Comparison of the OMLP’s Mutex Protocols for Global and Clustered Scheduling

In the second schedulability study, we compared the two mutex protocols of the OMLP family for global and
clustered scheduling. Since global scheduling is a special case of clustered scheduling, it is not obvious that both
protocols are needed. In fact, there are two ways in which each protocol could conceivably be sufficient by itself:

– if the clustered OMLP always yields pi-blocking bounds comparable to those of the global OMLP, then
there is little reason to support the global OMLP as well; and, conversely,

– if it is possible to partition task sets such that each resource is shared only within each cluster, and not across
cluster boundaries, then a global locking protocol (applied to each cluster) may suffice.

To test whether either possibility is in fact the case, we conducted a schedulability experiment using the task set
generation method described in Section 5.1.1. We compared the clustered OMLP, which permits inter-cluster
locking (i.e., the sharing of resources across cluster boundaries), against the global OMLP instantiated within
each cluster, which only permits intra-cluster locking (i.e., resources may only be shared among tasks assigned
to the same cluster). Both protocols were applied on top of C-EDF scheduling; we did not consider P-FP
scheduling in this experiment.

Under the clustered OMLP, if c < m, each generated task set was partitioned on a task-by-task basis using
the worst-fit decreasing heuristic as described in Section 5.1.1. After computing bounds on pi-blocking using
the analysis presented in Section A.4 assuming ri = pi, we inflated each ei with bi in accordance with the
s-oblivious analysis approach (Section A.7). A task set was deemed schedulable if each cluster passed at least
one of three standard s-oblivious G-EDF schedulability tests [7, 12, 33] (if c > 1) or if none of the clusters was
over-utilized (if c = 1).

Under the global OMLP, an additional partitioning constraint must be enforced if c < m since only intra-
cluster locking is permitted. That is, instead of assigning individual tasks to clusters, groups of tasks sharing
resources must be assigned as a whole. Consider the resource-sharing graph G obtained by creating a vertex for
each task, and by creating an edge between any two tasks sharing some resource. To satisfy the intra-cluster
locking constraint, the partitioning phase must assign each connected component of G to one of the clusters
(without over-utilizing any of the clusters).

If a valid assignment of connected components to clusters could be found (or if c = m), bounds on pi-
blocking were obtained by applying the analysis presented in Section A.3 to the subset of tasks in each cluster
(assuming ri = pi). The schedulability of each cluster was established using the same s-oblivious schedulability
tests as in the case of the clustered OMLP. If no valid assignment of connected components to clusters could be
found using the worst-fit decreasing heuristic, then the task set was deemed unschedulable.

Intra- vs. inter-cluster locking We evaluated both approaches using all 3,564 parameter combinations from
Section 5.1.2, including each combination of c and m. Our results clearly show that neither locking protocol
is always better than the other; rather, for each variant, there exist scenarios in which it provides a significant
advantage over the alternative.

The graph shown in Figure 12(a) corresponds to a scenario in which the clustered OMLP is clearly preferable
to the global OMLP (within each cluster). In the depicted example with exponential light utilizations, short
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(a) Applying a global locking protocol within each cluster fails if clusters are small

(b) Under global scheduling (m = c), the global mutex protocl is not limited by partitioning constraints

Fig. 12 Comparison of the OMLP’s mutex protocols for global and clustered scheduling under C-EDF scheduling

critical sections, m = 16, c = 4, nr = 16, and pacc = 0.10, schedulability under the global OMLP is close
to zero even for small utilization caps, whereas the clustered OMLP achieves schedulability close to one
until U ≈ 8 and reaches zero schedulability only at U ≈ 12. The reason for this disparity is the difficulty of
partitioning large connected components. In the depicted scenario, each cluster of size c = 4 is relatively small
compared to the total number of processors m = 16. Further, since the light utilization distribution results in low
average per-task utilizations, the task set size n grows rapidly with increasing utilization caps U . Consequently,
the average connected component size also grows as U increases, and it hence becomes increasingly difficult, or
even impossible, to partition task sets such that resources are not shared across cluster boundaries. Schedulability
under the G-EDF is correspondingly low.

However, there also exist scenarios in which the global OMLP performs better than the clustered OMLP.
One such case is shown in Figure 12(b), which depicts schedulability under global scheduling (m = c) with
exponential light distributions, medium critical sections, nr = 4, and pacc = 0.1. Since partitioning is not
required under global scheduling, the performance of the global OMLP is not impacted by the intra-cluster
locking constraint. While the gap in observed schedulability is not as large as in inset (a), the global OMLP
does provide significantly higher schedulability for a wide range of utilization caps.

The two discussed examples illustrate that neither the clustered nor the global OMLP are superfluous. In
fact, the aggregate summary of the entire data set, reported in Table 6, reveals that it is not even possible to
clearly state which protocol is preferable “most” of the time. In addition to the fact that we observed mixed
results (i.e., significant differences, but no clear winner) in more than 900 scenarios, each protocol is favored by
different critical section lengths. In the case of short critical sections, the clustered OMLP is clearly preferable in
690 scenarios, whereas the global OMLP is only preferable in 40 scenarios. In contrast, the clustered OMLP is
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critical sections inter-cluster locking intra-cluster locking mixed results no trends

short 690 40 341 117
medium 598 109 376 105
long 308 381 253 246

Table 6 Summary of schedulability results: the OMLP’s mutex protocol for clustered scheduling (applied across clusters using
priority donation) vs. the OMLP’s mutex protocol for global scheduling (applied within each cluster using priority inheritance)

less often preferable than the global OMLP in the case of long critical sections (308 scenarios vs. 381 scenarios,
respectively). What is the cause for this shift in relative performance?

Recall from Section 4 that the two locking protocols use different progress mechanisms and hence have
different pi-blocking characteristics (summarized in Table 1). On the one hand, jobs incur pi-blocking for the
duration of at most m − 1 critical sections per request under the clustered OMLP, whereas jobs may incur
pi-blocking for up to 2m − 1 critical sections per request under the global OMLP. On the other hand, the
clustered OMLP uses priority donation, which has the disadvantage that a job may incur pi-blocking upon
release while it serves as a priority donor. In contrast, the global OMLP is based on priority inheritance and is
hence independence-preserving—jobs incur pi-blocking only due to contention for resources that they request.

Due to the lower per-request bound, tasks that issue more than one request are likely to have lower pi-
blocking bounds under the clustered OMLP. However, the clustered OMLP may not be a feasible choice if there
exists at least one task that cannot tolerate pi-blocking due to priority donation (for example, if the task has only
little slack or a very short period). In fact, the results summarized in Table 6 show that the clustered OMLP
becomes less competitive (relative to the global OMLP) as critical section lengths increase, which suggests that
priority donation may indeed be the limiting factor in these scenarios. To test this hypothesis, we conducted a
third schedulability experiment with a modified task set generation procedure.

Heterogeneous task sets To simulate task sets with a wide variety of temporal constraints, we modified the task
set generation procedure to produce less uniform task sets. Instead of generating all tasks based on the same
distributions, we created two classes of tasks, namely urgent tasks and obstructing tasks.

Obstructing tasks were created in large parts as described in Section 5.1.1; however, the critical section
lengths of obstructing tasks was drawn exclusively from the long critical section distribution. In contrast,
urgent tasks were configured to have only short critical sections. Further, the period of urgent tasks was chosen
uniformly from {3ms, 4ms, . . . , 33ms}. Finally, we ensured that each resource was shared among either only
obstructing or only urgent tasks, but not across task classes. By design, urgent tasks are thus sensitive to
pi-blocking (due to their short periods), but are not directly exposed to long critical sections.

To control the generation of urgent and obstructing tasks, we introduced an additional urgent fraction
parameter, denoted fu. Based on fu, the utilization cap U was divided such that the total utilization of urgent
tasks equaled U · fu, with the remaining capacity consumed by obstructing tasks. We considered fu ∈ {14 ,

1
2 ,

3
4}

in our experiment.

Priority donation vs. priority inheritance We repeated the comparison of the clustered OMLP and the global
OMLP (instantiated within each cluster) as described above using the heterogeneous task set generation
procedure. As expected, the heterogeneous task sets proved to be much more difficult to schedule, and especially
so under the clustered OMLP.

Figure 13(a) depicts schedulability under each mutex protocol in the case of global scheduling with uniform
light utilizations, m = 8, nr = 2, and pacc = 0.1. Because priority donation exposes urgent tasks to delays due
to the long critical sections of obstructing tasks, schedulability is severely limited under the clustered OMLP.
In contrast, the global OMLP achieves high schedulability because no partitioning is required (since c = m)
and because jobs are not pi-blocked by unrelated requests under it. This demonstrates the value of using an
independence-preserving locking protocol if some tasks are sensitive to delays and others have (excessively)
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(a) Schedulability is low under the clustered OMLP because urgent tasks are not isolated from long critical sections
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(b) Schedulability is low under the global OMLP because the intra-cluster locking constraint cannot be satisfied for large n

Fig. 13 Comparison of the OMLP’s mutex protocols for global and clustered scheduling under C-EDF scheduling in the case of
heterogeneous task sets

long critical sections. In other words, priority inheritance is the only viable progress mechanism in this case as
both priority donation and priority boosting create pi-blocking dependencies among all tasks.

However, instantiating the global OMLP within each cluster still requires partitioning on the granularity
of connected components. In the case of small clusters, satisfying the intra-cluster locking constraint is often
more limiting than the negative effects of priority donation. This is apparent in Figure 13(b), which shows much
reduced schedulability under the global OMLP in the case of bimodal heavy utilizations with m = 16, c = 4,
nr = 4, and pacc = 0.4. Due to the high access probability and the low number of resources, the resource
sharing graph G is likely to degenerate into a single connected component—in this case, applying the global
OMLP is infeasible for task sets that require more than c = 4 processors. Thus, while schedulability under the
clustered OMLP may not be particularly good in this difficult scenario, it is still significantly higher than under
the global OMLP. The clustered OMLP is hence clearly preferable in this example.

When considering the entire data set as a whole (see Table 7), it becomes apparent that the relative cluster
size is the performance-determining factor in the case of heterogeneous task sets. If 1 ≤ c < m

2 , each cluster is
small compared to the total number of processors; partitioning connected components is therefore difficult in
this case and schedulability under the global OMLP is severely limited. Otherwise, if m

2 ≤ c ≤ m, partitioning
is either not required (under global scheduling) or comparably easy (there are only two large clusters if c = m

2 ),
which provides a major advantage to the global OMLP. This is obvious from the scenario counts reported in
Table 7: in scenarios with relatively small clusters, the clustered OMLP (based on priority donation) is more than
twice as often preferable than global OMLP, but in scenarios with two large clusters or under global scheduling,
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relative cluster size priority donation priority inheritance mixed results no trends

1 ≤ c < m
2 807 309 404 100

m
2 ≤ c ≤ m 2 1685 179 78

Table 7 Summary of schedulability results: the OMLP’s mutex protocol for clustered scheduling (applied across clusters using
priority donation) vs. the OMLP’s mutex protocol for global scheduling (applied within each cluster using priority inheritance)

the global OMLP (and hence priority inheritance) is clearly preferable in the vast majority of the tested scenarios
(in more than 1,600 scenarios out of roughly 1950 scenarios in this category).

Overall, our experiments show that neither the global nor the clustered OMLP are ideal if some degree of
independence among (subsets of) tasks must be maintained under clustered scheduling with c < m. However,
this is not a limitation specific to the OMLP—rather, it shows that there is a need for an asymptotically optimal,
independence-preserving locking protocol with support for inter-cluster resource sharing. We plan to study this
issue in greater detail in future work.

5.4 Comparison of the Clustered OMLP’s Mutex and RW Protocols

In the fourth schedulablity experiment, we explored under which conditions the clustered OMLP’s RW protocol
is preferable to its mutex counterpart. We used the (homogeneous) task set generation method described in
Section 5.1.1 to compare both protocols under C-EDF scheduling. Analogous to the experiments discussed
in the previous section, we accounted for pi-blocking under the mutex and RW protocols using the analysis
presented in Section A.4 and Section A.5, respectively, and then checked the temporal correctness of each
cluster using s-oblivious schedulability tests. We evaluated both protocols in all 21,384 scenarios resulting from
the parameter combinations specified in Section 5.1.2, including pwrite ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.7}.

Obviously, an RW lock should yield improved schedulability if most requests are read requests. However,
if this is not the case—if writes are frequent—then schedulability can in fact be worse under phase-fair RW
locks than under regular mutex locks. While the clustered OMLP’s RW protocol ensures asymptotically optimal
maximum pi-blocking for writers, its bounds are subject to constant factors that are about twice as large as those
of the mutex protocol bounds (recall Section 4.6 and Table 1). That is, in the worst case, a writer may incur
twice as much pi-blocking under phase-fair RW locks since it can be delayed by both m− 1 previously-issued
writes and m interleaved reader phases. In contrast, under the clustered OMLP’s mutex protocol, a writer is
delayed by at most m− 1 previously-issued requests of any kind.

Fundamentally, phase-fairness is a tradeoff between greatly reduced pi-blocking for readers and (possibly)
doubled pi-blocking for writers, which is only beneficial if writes are much less frequent than reads. It is
therefore expected that the write ratio pwrite strongly impacts the relative performance of the two locking
protocols. Our results confirm that this is indeed the case.

An example scenario in which the write ratio is suitably low (pwrite = 0.2) is shown in Figure 14(a), which
shows schedulability under each of the two protocols for exponential medium utilizations, short critical sections,
m = 16, partitioned scheduling, nr = 16, and pacc = 0.4. In this case, delaying writers in favor of (frequent)
reads is a valid tradeoff. As a result, schedulability is significantly higher under the RW protocol than under its
mutex counterpart over a wide range of utilization caps. The RW protocol is clearly preferable in this case.

In contrast, inset (b) depicts an example in which the assumption underlying the RW protocol is violated
since, on average, more than two thirds of the requests are writes. Aside pwrite , all parameters in the scenario
depicted in inset (b) are the same as in the scenario depicted in inset (a). While the mutex protocol is not affected
by pwrite (all requests are serialized anyway), schedulability under the RW protocol is markedly lower, to the
point that the mutex protocol is clearly preferable in this case—the relative performance of the mutex protocol
has improved (without changing in absolute terms) because schedulability under the RW protocol has decreased.

This effect is in fact representative of the entire data set. Table 8 reports the scenario counts for each tested
write ratio. If pwrite ≤ 0.10, the mutex protocol is never preferable since it unnecessarily serializes reads.
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(a) The clustered OMLP’s RW protocol is preferable if writes are infrequent
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(b) The clustered OMLP’s mutex protocol is preferable if writes are common

Fig. 14 Comparison of the clustered OMLP’s mutex and RW protocols under C-EDF scheduling

pwrite RW preferable mutex preferable mixed results no trends

0.05 2876 0 0 688
0.10 2758 0 0 806
0.20 2493 19 14 1038
0.30 2128 91 23 1322
0.50 539 314 1 2710
0.70 0 1343 0 2221

Table 8 Summary of schedulability results: the clustered OMLP’s RW protocol vs. the clustered OMLP’s mutex protocol

However, as the write ratio increases, the mutex protocol becomes more competitive. While the mutex protocol
is preferable only in a few extreme scenarios if pwrite = 0.20 or pwrite = 0.30, it already provides higher
schedulability in more than 300 scenarios if pwrite = 0.50, although the RW protocol remains preferable in
more than 500 of the tested scenarios. Finally, in the most extreme of the tested write ratios (pwrite = 0.70), we
did not find the RW protocol to be preferable in any of the tested scenarios, while the mutex protocol provided
significantly higher schedulability in over 1,300 scenarios. However, it is not the case that the RW protocol is
necessarily worse than the mutex protocol if the write ratio is high. In many cases where there is little to be
gained from RW locks, the RW protocol simply reduces to mutex-like performance, as evidenced by the large
number of scenarios in the “no trends” column.
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Overall, the schedulability experiment confirmed the intuition underlying RW locks: the use of the clustered
OMLP’s RW protocol likely results in improved schedulability if the write ratio is low, and has no effect, or even
a negative effect, if this requirement is not met. This matches our earlier experience with spin-based phase-fair
RW locks [18].

5.5 Comparison of the Clustered OMLP’s Mutex and k-Exclusion Protocols

In the fifth and final schedulability experiment, we compared the clustered OMLP’s mutex and k-exclusion proto-
cols under C-EDF scheduling. We sought to explore two questions: does adding replicas improve schedulability
significantly? And how should replicas be managed?

With regard to the latter question, there are two fundamental ways that a set of tasks may share kq replicas of
a resource, as previously discussed in Section 4.4. Recall that either each task may access any of the replicas, in
which case a k-exclusion protocol is required, or that each task is statically assigned one of the replicas, which
are then managed individually using a mutex protocol. The former approach corresponds to global processor
scheduling, whereas the latter approach, which we refer to as the p-mutex approach, is akin to partitioned
scheduling. When using the p-mutex approach, a heuristic is required to assign tasks to resources. Since the
goal is to minimize contention, requests should be spread out evenly among the replicas. We therefore simply
assigned tasks to replicas in a round-robin manner, which ensured that each replica was used by roughly the
same number of tasks. In future work, it may be interesting to explore more-sophisticated replica assignment
heuristics.

With regard to partitioning and schedulability testing, we used an experimental setup analogous to the one
described in the previous section. We compared seven different combinations of locking protocol and degree of
replication kq:

– the clustered OMLP’s mutex protocol (without resource replication) as a baseline;
– three configurations of the clustered OMLP’s k-exclusion protocol, one for each kq ∈ {2, 3, 4}; and
– three configurations of the p-mutex approach using the clustered OMLP’s mutex protocol to serialize

accesses to each replica, similarly with kq ∈ {2, 3, 4}.

Note that all resources were assumed to have a uniform replication factor (e.g., in the configuration of the
k-exclusion protocol assuming kq = 3, each resource was assumed to be replicated three times). While this is
unlikely to be the case in practice, this approach allows us to isolate the effects of resource replication.

We evaluated each configuration under each of the parameter combinations from Section 5.1.2. Since
plotting seven curves per graph would result in too much clutter, we plotted four graphs corresponding to each
scenario: one graph showing the mutex protocol in comparison with each of the three configurations of the
k-exclusion protocol, and one graph for each tested kq comparing the k-exclusion protocol to its corresponding
p-mutex configuration.

Replication benefits A graph of the former kind for the case of exponential medium utilizations, short critical
sections, m = 16, c = 1, nr = 8, and pacc = 0.7 is shown in Figure 15(a). In the depicted scenario,
contention is high due to the high access probability. As expected, schedulability increases significantly with
each added replica. This example shows that k-replication of resources can be a very effective measure to
improve schedulability, an observation that is representative of most of the considered scenarios. Table 9 provides
a summary of the effect of replicating each resource kq times compared to using the clustered OMLP’s mutex
protocol without resource replication. Reassuringly, the data shows that the OMLP’s k-exclusion protocol is
able to exploit resource replication to achieve lower bounds pi-blocking in most scenarios, and that the OMLP’s
k-exclusion protocol is never worse than using the mutex protocol (without replication) instead. As might
be expected, the data further shows that the number of scenarios in which the k-exclusion protocol is clearly
preferable increases with the number of replicas. We conclude that adding replicas is not only effective at
reducing average contention at runtime, but also a potent measure for reducing worst-case contention, and thus
effective at improving schedulability.
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(a) Adding replicas improves schedulability
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(b) The OMLP’s k-exclusion protocol is preferable if contention is high and the ratio m/kq is small

��

����

����

����

����

��

�� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ���

��
��
�
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

��������������������

��������������������������������������������������������������������������������������������������������
�
���������

���
�����

�����������������
�������������

(c) The p-mutex approach is preferable if contention is low and m is large

Fig. 15 Comparison of the clustered OMLP’s mutex and k-exclusion protocols under C-EDF scheduling

P-mutex vs. k-exclusion Insets (b) and (c) of Figure 15 show graphs comparing the clustered OMLP’s k-
exclusion protocol with the p-mutex approach for kq = 4. Surprisingly, the two graphs show conflicting trends.
Figure 15(b) depicts a high-contention scenario with uniform light utilizations and short critical sections under
global scheduling for m = 8, nr = 16, and pacc = 0.70. Since task sets are relatively large (due to the very low
per-task utilizations), and since each task accesses many resources (due to the high access probability and the
large number of shared resources), each resource is shared by more than m · kq tasks for large U . Consequently,
under the p-mutex approach, each replica is assigned at least m tasks, which implies that the analytical advantage
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kq k-replication preferable mutex preferable mixed results no trends

2 2053 0 0 1511
3 2498 0 0 1066
4 2866 0 0 698

Table 9 Summary of schedulability results: the clustered OMLP’s k-exclusion protocol vs. the clustered OMLP’s mutex protocol
(without replication)

utilizations m k-exclusion preferable p-mutex preferable mixed results no trends

light 4 280 0 0 44
8 222 121 1 88

16 127 161 7 137

medium 4 213 0 0 111
8 86 219 7 120

16 9 366 3 54

heavy 4 106 0 0 218
8 5 277 2 148

16 0 372 0 60

Table 10 Summary of schedulability results: the clustered OMLP’s k-exclusion protocol (for kq = 4) vs. the clustered OMLP’s
mutex protocol (each task is statically assigned to one of the kq = 4 replicas)

of replication is lost since the clustered OMLP’s mutex per-request bound of m− 1 blocking requests becomes
the limiting factor. In contrast, the analysis of the OMLP’s k-exclusion protocol is capable of providing an
analytical advantage despite the high contention because its analysis considers all replicas as a whole and can
thus reflect the increased completion rate (recall Lemma 11). The OMLP’s k-exclusion protocol is hence clearly
preferable to the p-mutex approach in this scenario.

However, as is apparent in Figure 15(c), this is not always the case. The depicted scenario shows that the
p-mutex approach provides significantly higher schedulability in the case of heavy exponential utilizations,
medium critical sections, m = 16, c = 1, nr = 8, and pacc = 0.40. In this scenario, contention is much lower
than in the scenario depicted in inset (b) since the heavy utilization distribution results in smaller task set sizes,
and also because the access probability is lower. In this case, statically assigning tasks to replicas results in, on
average, fewer than m tasks sharing each replica. Consequently, the bounds on pi-blocking under the p-mutex
approach are lower than under the k-exclusion protocol. This suggests that it may be worthwhile to study in
future work whether the bounds on pi-blocking under the OMLP’s k-exclusion protocol can be tightened, or
whether a different queue structure would yield a k-exclusion protocol that is always preferable to the p-mutex
approach.

With the existing analysis, a mixed picture emerges when considering the entire data set. Table 10 reports
the scenario counts for the comparison of the p-mutex approach with the clustered OMLP’s k-exclusion protocol
for the case of kq = 4. The table is structured based on the number of processors m and the “weight” of the
employed per-task utilization distributions (i.e., the uniform light, exponential light, and bimodal light utilization
distributions are reported together as “light utilizations”, etc.). The data reveals two major trends. First, the
k-exclusion protocol performs best for small m, or rather, if the ratio m/kq is small. This is apparent both
from the fact that the p-mutex approach is never clearly preferable to the k-exclusion protocol if m = 4, and
also from the fact that, with respect to each utilization distribution weight, the number of scenarios in which
the k-exclusion protocol is clearly preferable decreases with increasing m. The second major trend is that the
k-exclusion protocol performs best for light utilization distributions (where there are many tasks and contention
is high), whereas the p-mutex approach is much more competitive for heavy utilization distributions. This
provides strong quantitative support for the above explanation of the trends seen in insets (b) and (c) of Figure 15.
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Overall, our results show that in many scenarios there is clear value in supporting a dedicated k-exclusion
protocol, but that one should not assume that the k-exclusion protocol is always less pessimistic than a static
task-to-replica assignment. Perhaps not coincidentally, this matches the situation in real-time multiprocessor
scheduling, where neither partitioned nor global scheduling is always preferable, either.

5.6 Limitations and future directions

We have presented a large-scale, thorough empirical evaluation of the OMLP family of locking protocols. Our
results show that the OMLP compares well with both the s-aware MPCP and the s-oblivious MPCP-VS, and
also that none of the protocols in the OMLP family is redundant, in the sense that each protocol excels at certain
parameter combinations and task set compositions. However, as with any experimental study, and although
we made an effort to consider a large range of diverse scenarios and configurations, there are some interesting
aspects that had to remain beyond the scope of our study (which is already quite large and time-consuming, and
in fact required several weeks of processor time on a large compute cluster). We briefly mention two issues that
would be interesting to consider in more detail in future work.

For one, no attempt was made to take resource-sharing considerations into account when partitioning task
sets. That is, tasks were assigned using a worst-fit decreasing heuristic based on each task’s utilization. Better
results could likely be achieved by employing resource-sharing-aware partitioning heuristics. However, such
heuristics are still an area of active research [34, 36, 41] and beyond the scope of this paper. It would be
interesting to reevaluate the relative performance of the considered locking protocols once it has become clear
which partitioning heuristics are best suited to partitioning task sets with shared resources.

We also did not account for implementation overheads in the comparison of the locking protocols. In an
actual implementation, semaphore-based locking protocols incur potentially high overheads because kernel
support is typically required to implement priority inheritance, priority boosting, and priority donation. Further,
suspensions are generally costly because jobs lose cache affinity while suspended. As a result, spinlocks are
often more efficient for short critical sections [14].

We recognize the importance of considering implementation overheads and acknowledge that it would be
interesting to incorporate real-world overheads into our schedulability experiments. Nonetheless, we chose to
omit such overheads from the study presented in this paper for the following reasons. First, each of the compared
locking protocols in this paper is a suspension-based locking protocol, which means that each protocol is likely
impacted equally by implementation overheads. That is, while the absolute performance of each tested locking
protocol would be affected by overheads, the performance of the locking protocols relative to each other would
likely not change even if overheads were included. And, second, to account for real-world overheads, actual
overheads must be collected and analyzed in a real system, which constrains the combinations of c and m
that can be tested to those available in present lab machines. Since we are primarily interested in algorithmic
differences in this paper, we instead chose to vary c and m freely to explore a larger range of possible platforms.
However, we note that we have implemented the MPCP, the MPCP-VS, and a prototype of priority donation in
LITMUSRT. Experiments similar to those presented in this paper for the case m = 24 under consideration of
overheads can be found in [14].

6 Conclusion

We have provided a general, precise definition of pi-blocking in suspension-based locking protocols and proposed
maximum pi-blocking as a natural measure of a locking protocol’s blocking behavior. We identified two classes
of commonly-used schedulability analysis, namely s-oblivious and s-aware analysis, and showed a lower bound
on maximum s-oblivious pi-blocking of Ω(m).

We have shown this bound to be asymptotically tight by designing the first suspension-based multiprocessor
real-time locking protocols with O(m) maximum pi-blocking under s-oblivious pi-blocking. We showed that in
the special case of mutex constraints under global scheduling, optimal pi-blocking can be achieved with priority
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inheritance. To achieve optimality in the other cases (i.e., RW and k-exclusion, or if 1 < c < m), we designed a
new form of restricted priority boosting, named priority donation, which is a novel mechanism for ensuring
resource-holder progress that works for 1 ≤ c ≤ m.

We have designed, analyzed, and empirically evaluated the OMLP family of protocols for mutual, RW, and
k-exclusion. The OMLP family is asymptotically optimal under s-oblivious analysis under any JLFP scheduler
with arbitrary cluster sizes. The two relaxed-exclusion protocols have the desirable property that the reduction in
contention is reflected analytically in improved worst-case acquisition delays (O(1) for readers and O(mkq

) in
the k-exclusion case, compared to O(m) for all jobs under mutex locks). The clustered OMLP’s mutex protocol
is the first of its kind for clustered scheduling with 1 < c < m; the RW and k-exclusion protocols are further the
first of their kind for the special cases of partitioned and global scheduling as well.

We conducted a large-scale schedulability study involving more than one billion task sets to assess the
OMLP’s practical viability. To objectively report the results from the more than 40,000 generated graphs, we
developed a classification system based on statistical significance that allows us to summarize trends from a large
number of evaluated parameter configurations without requiring manual intervention (and without introducing
human bias). Using this new methodology, we made three key observations: the s-oblivious analysis approach is
practical and not necessarily more pressimistic than existing s-aware analysis; the OMLP is competitive with,
and often superior to, the s-aware MPCP and the s-oblivious MPCP-VS; and there is no single best choice
for all scenarios. Rather, each of the protocols in the OMLP family has specific advantages that make it the
best-performing protocol in certain scenarios. Taken together, the OMLP family provides high schedulability in
a wide range of scenarios.

Besides the empirical work remarked upon in Section 5.6, a number of intriguing algorithmic challenges
remain to be addressed in future work, including support for fine-grained locking and nested critical sections,
optimal locking protocols for clustered scheduling under s-aware analysis, tight lower bounds on s-aware and
s-oblivious maximum pi-blocking under RW and k-exclusion protocols, and the design of optimal RW and
k-exclusion protocols for both types of analysis.
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A Schedulability Analysis

In this appendix, we first introduce a generic framework for expressing bounds on pi-blocking and then apply it to bound pi-blocking
under each of the locking protocols presented in this paper. The blocking analysis presented in the following is essential for deriving
safe blocking bounds suitable for schedulability analysis. However, such bounds tend to be somewhat technical in nature and are
primarily required only for implementing schedulability tests (as used in the schedulability experiments presented in Section 5); the
casual reader may safely skip this appendix and consult the overview presented in Section 4 instead.

The framework presented in the following is generic in the sense that it is not tied to any particular locking protocol. It serves
two purposes. For one, it avoids redundancy in the subsequent analysis of the locking protocols, which have structurally similar
blocking bounds. Second, the presented analysis takes a holistic analysis approach to reduce the pessimism inherent in analyzing
requests individually. That is, it is intended to be applied to each job as a whole and bounds blocking across all requests that a job
issues, instead of bounding delays on a request-by-request basis.

The presented holistic analysis approach was first used to analyze the FMLP under P-FP scheduling [16], and subsequently
further developed to analyze RW spinlocks [18]. The version presented herein has been somewhat simplified compared to the
previous variants. We next explain the intuition underlying the approach, which we then formalize in Section A.2 below.
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A.1 Holistic Blocking Analysis

In the following, let Ji denote an arbitrary job of the task Ti for which a bound on maximum blocking is being derived. The main idea
of the holistic approach is to avoid accounting for any individual possibly-blocking request more than once, and to avoid accounting
for requests that cannot possibly interfere with Ji’s requests. In particular, when a job request the same resource more than once, the
holistic approach can avoid substantial pessimism compared to analyzing each resource request in isolation, and especially so if
long requests occur much less frequently than short requests (i.e., if there are large differences among the tasks’ Li,q , Ni,q , and pi
parameters).

Example 9 To illustrate possible pessimism when analyzing requests individually, consider the following scenario (in this and the
following examples, the use of the clustered OMLP’s mutex variant is assumed). Suppose a task Ti shares a serially-reusable resource
`q with another task Tx. Further, suppose Ji requests `q up to Ni,q = 20 times and that jobs of Tx hold `q for at most Lx,q = 10
time units. Finally, suppose jobs of Tx require `q at most once while any Ji is pending. When analyzing each of Ji’s many requests
individually (i.e., when bounding the maximum pi-blocking incurred by a single request), Tx’s sole interfering request is effectively
considered to block each of Ji’s requests since Tx’s request might delay any of the requests (but not all at once). Consequently, Ji’s
overall bound on pi-blocking due to requests for `q would be Ni,q · Lx,q = 200 time units, whereas the actual maximum possible
delay is only Lx,q = 10 time units since, when considering Ji’s entire execution, Jx obviously delays Ji with at most only one
blocking request for `q , and not with up to 20.

This example demonstrates that maximum contention should be analyzed as a whole across all of Ji’s requests for a particular
resource. (Since we assume that requests for resources are not nested, blocking bounds for individual resources are independent from
each other and can be derived individually.) The extent to which Ji is blocked due to requests for a resource `q in the worst case is
limited by the following constraints:

1. Maximum number of requests issued by other jobs. As discussed above in Example 9, if jobs of Tx issue at most k requests
while any Ji is pending, then Ji will be blocked by at most k requests of jobs of Tx, regardless of the number of requests issued
by Ji.

2. Maximum number of interfering requests per request issued by Ji. Suppose Ji requests a serially-reusable resource `q only
once, that m = 4, and that `q is requested by other jobs up to k = 100 times while Ji is pending. In this case, Ji is delayed by
at most m− 1 = 3 competing requests, irrespective of the total number of requests k for `q since priority donation limits the
maximum queue length to m jobs.

3. Maximum number of interfering requests per task. For example, suppose `q is shared among three tasks Ti, Tx, and Ty . If Ji
issues only one request, then it is blocked by at most one request from Tx and one request from Ty , irrespective of the total
number of requests issued by these tasks, and irrespective of the number of processors. Due to the FIFO ordering in the wait
queue FQq , each task can precede Ji at most once per request.

4. Task locality. For example, suppose Ti shares a resource with tasks Tx and Ty under partitioned scheduling (c = 1), and that Ti
and Tx are assigned to processor 1, whereas Ty is assigned to processor 2. Jobs of Ty can cause Ji to incur acquisition delay
because they can issue conflicting requests while Ji is scheduled. In contrast, jobs of Tx cannot cause Ji to incur acquisition
delay because jobs of Tx are not scheduled while Ji is executing; however, a job Jx can cause Ji to incur pi-blocking if Ji
must serve as Jx’s priority donor upon release.

We formalize these four constraints next.

A.2 Interference Sets

We begin with Constraint 1 by bounding the maximum resource requirements of competing tasks. In the task model assumed in this
paper, a task Ti’s resource requirements are characterized by the parameters Ni,q and Li,q . The main advantages of this model are
that it is general enough to reflect many possible job behaviors (e.g., no particular request order or minimum separation of requests is
assumed) and that the required information can be obtained as part of worst-case execution time analysis (or empirically bounded if
such analysis is not available). However, it is possible that more detailed knowledge is available for specific applications.

For example, it could be the case that jobs of a task Ti access a resource `q twice, and that the second access is always much
shorter than the first access. In this case, using a single upper bound Li,q for both requests is needlessly pessimistic. A similar
concern arises with resources that are not accessed by every job of Ti. For, example to reduce overheads, an application Ta could be
programmed to record status information in a shared log `l only once every five jobs. Assuming that each Ja requests access to `l
would needlessly overestimate contention for `l. However, explicitly incorporating all such considerations yields a task model that is
overly complicated for our goal (which is to study the underlying algorithmic properties of the protocols).

We instead use an abstraction called task interference bound to achieve a separation of concerns between the modeling of
resource requirements and the actual analysis of locking protocols, which is structurally independent from model considerations. A
task’s interference bound (for non-processor resources) is similar to a demand bound function (for processor time) in that it “upper
bounds” a task’s worst-case resource requirement during some interval. The actual blocking analysis is expressed in terms of task
interference, which can be defined to take advantage of detailed application-specific resource usage information. The primary benefit
of this approach is that derived blocking terms can be reused to derive less pessimistic bounds when additional information in form
of a more-detailed task model is available.
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In the following, to achieve the desired separation of concerns, we formalize a task’s “interference bound” as a set of requests
that safely approximates a task’s “actual contention” for a resource. Recall from Section 2.2 thatRi,q,v denotes the vth request for
resource `q issued by any Ji, and that Li,q,v denotes the request length ofRi,q,v . This allows us to formalize the concept of a task’s
“contention for a resource.”

Definition 6 Suppose jobs of a task Ti execute k resource requests for a resource `q during an interval [t0, t1). In a concrete, fixed
schedule, the contention due to Ti during [t0, t1) is the set of requests

Ci,q(t0, t1) ,
{
Ri,q,v ,Ri,q,(v+1), . . . ,Rx,q,(v+k−1)

}
such thatRi,q,v is the first request andRi,q,(v+k−1) is last request issued by any Ji during [t0, t1).

In general, v and k are unknown prior to the execution of Ti, as is the length of each request in Ci,q(t0, t1). To enable a priori
analysis, a generic notion of worst-case contention is required. The purpose of Ti’s request interference bound, given next, is to
define a set of generic requests (i.e., virtual requests defined for analysis purposes) that upper-bound the worst-case contention during
any interval of length t1 − t0. That is, the interference bound for an interval of length t1 − t0 contains at least as many requests as
Ti issues in any interval of length t1 − t0 in any actual schedule, and each generic request is at least as long as a corresponding
actual one. This can be formalized as follows.

Definition 7 The task interference bound for an interval of length t, denoted tif (Ti, `q , t), is a set of generic requests that satisfies
the following two properties.

1. For any Ci,q(t0, t1) with regard to some actual schedule, one can choose a set of corresponding generic requests C′i,q ⊆
tif (Ti, `q , t1 − t0) that satisfies∣∣C′i,q∣∣ = |Ci,q(t0, t1)| and

∑
Ri,q,v∈Ci,q(t0,t1)

Li,q,v ≤
∑

Ri,q,w∈C′
i,q

Li,q,w.

2. Interference bounds are inclusive:
t ≤ t′ ⇒ tif (Ti, `q , t) ⊆ tif (Ti, `q , t

′).

Property 1 ensures that the task interference bound does not underestimate the number and length of requests in any actual execution
of Ti, and Property 2 ensures that a derived bound remains valid when analyzing a larger-than-necessary interval (i.e., when
over-estimating a job’s response time). In the case of RW constraints, we analogously define task Ti’s read interference bound,
denoted as rif (Ti, `q , t), with respect to read requests for `q , and Ti’s write interference bound, denoted as wif (Ti, `q , t) with
respect to write requests for `q .

These definitions serve as an interface that allows the analysis of specific lock types presented in the following sections to be
seamlessly integrated with more-refined task and resource models. Next, we provide a suitable definition of tif (Ti, `q , t) for the
model assumed in this paper. To this end, we require the following well-known bound on the maximum number of jobs that can
execute requests in a given interval. Recall from Section 2 that pi denotes Ti’s period and ri denotes Ti’s maximum response time.

Lemma 16 At most
⌈
t+ ri

pi

⌉
distinct jobs of a task Ti can execute in any interval of length t (without proof, see e.g. [14, 18]).

It follows from Lemma 16 and the definition of Ni,q that jobs of Ti issue at most d(t+ ri)/pie ·Ni,q requests for `q over any
interval of length t. In the worst case, each request for `q is of length Li,q . This yields the following interference bound for the task
model assumed herein.

Definition 8 The request interference bound for task Ti with respect to resource `q over any interval of length t is the set of requests

tif (Ti, `q , t) ,

{
Ri,q,v | 1 ≤ v ≤ Ni,q ·

⌈
t+ ri

pi

⌉}
,

where Li,q,v = Li,q for eachRi,q,v . If Ti does not access a given resource `q , then tif (Ti, `q , t) = ∅ for all t. We analogously
define task Ti’s read and write interference bounds as rif (Ti, `q , t) and wif (Ti, `q , t), respectively.

Based on per-task interference bounds, we next introduce a generic, parametrized “aggregate interference bound” for use in the
subsequent analysis of specific locking protocols. We first define three convenience functions over sets of requests, which serve to
simplify the expression of “aggregate interference” and protocol-specific bounds on blocking.

Definition 9 Given a set of requests S, we let Sk denote the kth longest request in S, where 1 ≤ k ≤ |S| (with ties broken
arbitrarily but consistently). Formally, if 1 ≤ k ≤ l ≤ |S| and Sk = Ra,b,c and Sl = Rx,y,z , then La,b,c ≥ Lx,y,z .

Definition 10 Given a set of requestsS, we denote the set of the l longest requests inS as top(l, S) , {Sk | 1 ≤ k ≤ min(l, |S|)}
and their total duration as total(l, S) ,

∑
Ri,q,v∈ top(l,S) Li,q,v . If l = 0 or S = ∅, then total(l, S) = 0.
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A task interference bound limits the maximum contention from jobs of a single task. Using the above definitions, we can
formalize the notion of contention from a set of tasks. Recall Constraint 3 from Section A.1 above, namely that the number of
requests per task that can possibly cause Ji to incur acquisition delay is limited if jobs wait in FIFO order. If a task Tx can delay Ji
with at most l requests, then it is sufficient to consider only the l longest requests in Tx’s interference bound. We therefore define the
aggregate interference bound with a per-task “interference limit” parameter.

Definition 11 The aggregate interference bound of a set of tasks τ with respect to a resource `q over any interval of length t and
subject to an interference limit l is given by

tifs(τ, `q , t, l) ,
⋃
Tx∈τ

top (l, tif (Tx, `q , t)) .

A task set’s aggregate read interference and aggregate write interference, denoted as rifs(τ, `q , t, l) and wifs(τ, `q , t, l), respectively,
are defined analogously with respect to read and write interference.

Given an interference limit l, tifs(τ, `q , t, l) contains the l longest requests in each task’s interference bound for `q and t. In the
task model assumed in this paper, each request in tif (Tx, `q , t) is in fact of the same length Lx,q,v = Lx,q (see Definition 8). We
define tifs(τ, `q , t, l) with additional generality to accomodate more-expressive task models for which tif (Tx, `q , t) may contain
non-uniform request lengths.

The holistic blocking analysis framework incorporates Constraints 1 and 3 from Section A.1 in a generic fashion. The remaining
Constraints 2 and 4 are easier to incorporate on a protocol-by-protocol basis, which we do next to derive concrete, non-asymptotic
bounds for the locking protocols presented in this paper.

A.3 The Global OMLP for Mutual Exclusion

We begin with the global OMLP for mutex constraints under s-oblivious schedulability analysis. Since the global OMLP uses a
hybrid queue that consists of a FIFO queue FQq (which holds at most m jobs) and of a priority queue PQq (which is only used if at
least m+ 1 jobs are queued), maximum s-oblivious pi-blocking under the global OMLP depends on how many tasks share a given
resource.

Definition 12 In the following, let Aq , |{Ti | Ti ∈ τ ∧Ni,q > 0}| denote the number of tasks that access resource `q .

If Aq ≤ m+ 1, then at most m jobs are waiting to acquire `q at any time, which implies that at most one job is queued in PQq .
In this case, the global OMLP reduces to a simple FIFO protocol.

Lemma 17 Under the global OMLP, if Aq ≤ m+ 1, then a job Ji incurs at most

bi,q = total((Aq − 1) ·Ni,q , tifs(τ \ {Ti}, `q , ri, Ni,q))

s-oblivious pi-blocking due to requests for resource `q .

Proof Ji’s response time ri upper-bounds the duration of the interval during which other jobs can issue conflicting requests; that
is, the aggregate task interference bound tifs(τ \ {Ti}, ri, Ni,q) for any interval of length ri is a sufficient approximation of the
resource demands of competing tasks. If Ji is never enqueued in PQq , then the lemma follows trivially.

Otherwise, if Ji is enqueued in PQq , then m jobs are already enqueued in FQq at the time of Ji’s request. Since Aq ≤ m+ 1,
this implies that no other job is enqueued in PQq . As soon as the head of FQq releases `q , Ji is moved to FQq . Hence there is at
most one job in PQq at any time, and the ordering of PQq is irrelevant.

The FIFO ordering of FQq implies that each of Ji’s requests is preceded by at most one request from each other task that
accesses `q . The per-task interference limit is hence Ni,q . Since `q is shared among only Aq ≤ m+ 1 tasks, one of which is Ti,
no more than (Aq − 1) ·Ni,q requests pi-block Ji in total. Priority inheritance ensures that the resource-holding job is scheduled
whenever Ji incurs s-oblivious pi-blocking; the cumulative duration of the (Aq − 1) ·Ni,q longest requests for `q by tasks other
than Ji thus bounds maximum s-oblivious pi-blocking. ut

In the case of Aq > m+ 1, higher-priority jobs of some other task Tx may “skip ahead” of Ji repeatedly while Ji waits in
PQq . However, the per-task interference limit is still limited to 2 ·Ni,q , that is, the per-task interference limit is only doubled even if
jobs of Tx “skip ahead” an arbitrary number of times.

Lemma 18 Let Tx denote some task other than Ti that accesses `q (i.e., Ti 6= Tx and Nx,q > 1). Under the global OMLP, jobs
of Tx cause Ji to incur s-oblivious pi-blocking for at most the duration of two requests each time that Ji requests `q .
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Proof In order to pi-block Ji, a request issued by some Jx must precede Ji’s request in FQq (i.e., Jx enters FQq before Ji does). If
Aq ≤ m+ 1, the bound follows analogously to Lemma 17 since FQq is FIFO-ordered.

Hence assume Aq > m+ 1. In this case, jobs of Tx may enter FQq repeatedly while Ji waits in PQq . Let ta denote the first
time that a job of Tx, denoted Jx,a, enters FQq , and let tb denote the second time that a job of Tx, denoted Jx,b, enters FQq while
Ji is continuously waiting in PQq . Since tasks are sequential, Jx,b necessarily issued its request after Ji issued its request (this is not
necessarily the case with Jx,a).

Further, let t1 denote the time that Ji enters FQq (as indicated in Figure 10). If t1 does not exist (i.e., if Ji never enters FQq),
then either FQq is continuously populated with higher-priority jobs and Ji does not incur s-oblivious pi-blocking, or some requests
fails to complete (which is not possible since each Li,q is presumed finite). Therefore assume t1 exists.

Ji does not incur s-oblivious pi-blocking during [tb, t1). Since Ji is waiting in PQq at time ta, Jx,a is necessarily preceded by
m− 1 other jobs in FQq , which must complete before Jx,a’s request is satisfied. Since tasks are sequential, Jx,a has completed
its request before Jx,b enters FQq at time tb. Therefore, at least m higher-priority jobs must have entered FQq during [ta, tb);
otherwise, Ji would no longer be waiting in PQq at time tb. The presence of m higher-priority pending jobs rules out s-oblivious
pi-blocking after tb (until Ji enters FQq at time t1).

Therefore, at most one of the requests issued by jobs of Tx after Ji issued its request pi-blocks Ji. Since sporadic tasks are
sequential, at most one request of Tx that was issued prior to Ji’s request is incomplete when Ji issues its request. Hence, at most
two requests of Tx cause Ji to incur pi-blocking. ut

As a result, the per-task interference limit in the case of Aq > m+ 1 is 2 ·Ni,q . This yields the following bound.

Lemma 19 Under the global OMLP, if Aq > m+ 1, then a job Ji incurs at most

bi,q = total((2 ·m− 1) ·Ni,q , tifs(τ \ {Ti}, `q , ri, 2 ·Ni,q))

s-oblivious pi-blocking due to requests for resource `q .

Proof By Lemma 14, Ji incurs s-oblivious pi-blocking for the combined duration of at most 2 ·m− 1 requests each time that it
requests `q , which implies that Ji is delayed by at most (2 ·m − 1) · Ni,q requests in total. Lemma 18 implies an interference
limit of 2 ·Ni,q . Priority inheritance ensures that the resource-holding job is scheduled whenever Ji incurs pi-blocking. The bound
follows. ut

This yields the following overall bound on maximum s-oblivious pi-blocking.

Theorem 4 Under the global OMLP, a job Ji incurs s-oblivious pi-blocking for at most

bi =

nr∑
q=1

total((xq − 1) ·Ni,q , tifs(τ \ {Ti}, `q , ri, lq ·Ni,q))

time units, where xq , Aq and lq , 1 if Aq ≤ m+ 1, and xq , 2 ·m and lq , 2 if Aq > m+ 1.

Proof Follows from Lemmas 17 and 19, since resource requests are not nested, and since Ji does not incur s-oblivious pi-blocking
under the global OMLP while not requesting resources. ut

This concludes the analysis of the global OMLP. Next, we consider the clustered OMLP from Sections 4.2–4.4, which uses
priority donation instead of priority inheritance.

A.4 The Clustered OMLP for Mutual Exclusion

A job Ji is subject to two sources of s-oblivious pi-blocking under the clustered OMLP. Ji can be delayed each time it issues
requests for shared resources, and additionally once upon release if it serves as a priority donor. We begin with the mutex variant
of the clustered OMLP, which is the simplest of the three protocols based on priority donation. Recall from Section 4.2 that each
resource `q is protected by a simple FIFO queue FQq .

Lemma 20 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi,q,j =

{
total(Ni,q · c, tifs(τj , `q , ri, Ni,q)) if j 6= Pi
total(Ni,q · (c− 1), tifs(τj \ {Ti}, `q , ri, Ni,q)) if j = Pi

pi-blocking due to requests for resource `q issued by jobs of tasks assigned to the jth cluster.



52 Björn B. Brandenburg, James H. Anderson

Proof By Lemma 4, priority donation ensures that at most c requests are incomplete at any time in each cluster; therefore, at most
c requests from each cluster Cj precede Ji in FQq each time that it issues a request. The strict FIFO ordering in FQq ensures a
per-task interference limit of Ni,q . Due to priority donation, resource-holding jobs are always scheduled (Lemma 2). In the case of
Ji’s local cluster (i.e., if j = Pi), only c− 1 requests can interfere since Ji’s own request counts towards the limit of c concurrent
requests imposed by priority donation. Since jobs and tasks are sequential, Ji is not delayed by requests of (other) jobs of Ti. ut

When bounding the maximum pi-blocking due to priority donation, we only need to consider the set of tasks that could have
released a lower-priority job prior to Ji’s arrival since priorities are only donated to jobs with lower base priority. This set of tasks
necessarily depends on the specific scheduling policy.

Definition 13 We let lower(Ti) denote the set of local tasks that could potentially require one of Ti’s jobs to serve as a priority
donor upon release. Under EDF-based schedulers, lower(Ti) includes only tasks with longer relative deadlines. Under FP-based
schedulers, lower(Ti) includes tasks with lower priorities.

Lemma 21 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most bDi s-oblivious pi-blocking upon release while
serving as a priority donor, where

bDi = max
1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0

Lx,q +m/c∑
j=1

b′x,q,j

 , and

b′x,q,j =

{
total(c, tifs(τj , `q , rx, 1)) if j 6= Px,
total(c− 1, tifs(τj \ {Ti, Tx}, `q , rx, 1)) if j = Px.

Proof By Lemma 3, maximum s-oblivious pi-blocking due to priority donation is limited to one request span. Analogously to
Lemma 20, bDi bounds the maximum request span of any local, potentially lower-priority job Jx by considering the c longest
requests in each remote cluster that could cause Jx to incur acquisition delay, and the c− 1 longest requests in Jx’s local cluster. ut

Theorem 5 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bDi +

nr∑
q=1

m/c∑
j=1

bi,q,j

s-oblivious pi-blocking due to requests for shared resources, where bi,q,j and bDi are defined as in Lemmas 20 and 21, respectively.

Proof Follows from Lemmas 20 and 21, and the assumptions that resource requests are not nested and that tasks do not migrate
across cluster boundaries. ut

A.5 The Clustered OMLP for RW Exclusion

The bounds on maximum pi-blocking under the OMLP’s RW protocol are structurally similar to the bounds on maximum spin-
blocking and pi-blocking under non-preemptive phase-fair RW spinlocks that we previously presented in [18]. This is because the
OMLP implements phase-fairness, and because priority donation allows at most c concurrent requests in each cluster, which has an
effect that is equivalent to non-preemptive execution.

We begin by considering the set of potentially blocking write requests. Since write requests are satisfied in FIFO order with
respect to other write requests, maximum acquisition delay incurred by a writer due to earlier-issued write requests is the same under
the OMLP’s mutex and RW variants. However, since reader and writer phases alternate, the maximum acquisition delay incurred by
a reader due to earlier-issued write requests is limited to one critical section. That is, at most NW

i,q · c+NR
i,q write requests issued

by jobs of a remote cluster can block Ji under the clustered OMLP’s RW variant. In the case of Ji’s local cluster, if c > 1, then the
same reasoning applies and no more than NW

i,q · (c− 1) +NR
i,q write requests block Ji. In the special case of c = 1, local jobs

cannot cause Ji to incur acquisition delay since they are not scheduled while Ji waits. These considerations lead to the following
definition of the set of possibly-interfering write requests.

Definition 14 In the following, let xrem = NW
i,q · c +NR

i,q and xloc = NW
i,q · (c − 1) +NR

i,q , and define the sets of possibly-
interfering write requests from jobs in the jth cluster, denoted as W (Ti, j, `q), as follows.

W (Ti, j, `q) =


top(xrem , wifs(τj , `q , ri, (N

W
i,q +NR

i,q))) if j 6= Pi

top(xloc , wifs(τj \ {Ti}, `q , ri, (NW
i,q +NR

i,q))) if j = Pi and c > 1

∅ if j = Pi and c = 1
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Further, let Wi,q denote the union of all possibly-interfering write requests across all clusters, and let wi,q denote the maximum
number of blocking write requests.

Wi,q =

m/c⋃
j=1

W (Ti, j, `q) wi,q = |Wi,q |

Next, we consider the set of potentially blocking read requests. The defining property of an RW lock is that readers do not
directly block other readers. That is, in the absence of any writers, a reader is not delayed in RW locks regardless of the number of
concurrent read requests. Intuitively, a reader phase can only transitively block another read request if said phase is “assisted” by an
also-blocking, interspersed write request. This intuition can be formalized to characterize acquisition delay due to interfering read
requests in terms of the number of interfering write requests.

Lemma 22 (from [14, 18]) Let Ji denote a job that issues at most NW
i,q write requests for a resource `q , let w denote the number

of write requests that cause Ji’s write requests for `q to incur acquisition delay, and let r denote the number of reader phases that
cause Ji’s write requests for `q to incur acquisition delay. If `q is protected by a phase-fair RW lock, then r ≤ w +NW

i,q .

Similarly, a writer that is not delayed by other writers incurs acquisition delay for the duration of at most one read request
regardless of the number of blocking readers. For example, if m− 1 readers hold a resource `q when Ji issues a write request for `q ,
then allm−1 readers proceed in parallel and Ji incurs acquisition delay only for the duration of the longest earlier-issued read request.
Therefore, Ji incurs acquisition delay due to interfering read requests for the combined duration of at most NR

i,q + (m− 1) ·NW
i,q

read requests (recall Lemmas 8 and 9). Taken together, this leads to the following definition.

Definition 15 Let ri,q = min(wi,q +NW
i,q , N

R
i,q + (m − 1) ·NW

i,q), and define the sets of possibly-interfering read requests
from jobs in the jth cluster, denoted as R(Ti, j, `q), as follows.

R(Ti, j, `q) =


top(ri,q , rifs(τj , `q , ri, ri,q)) if j 6= Pi
top(ri,q , rifs(τj \ {Ti}, `q , ri, ri,q)) if j = Pi and c > 1

∅ if j = Pi and c = 1

Analogously to Wi,q , let Ri,q denote the set of all possibly interfering read requests across all clusters.

Ri,q =

m/c⋃
j=1

R(Ti, j, `q)

With these definitions in place, we can state the following bound on pi-blocking due to requests for a given resource.

Lemma 23 Under the clustered OMLP’s RW protocol, a job Ji incurs pi-blocking due to its read and write requests for resource `q
for at most bi,q = total(wi,q , Wi,q) + total(ri,q , Ri,q) time units.

Proof Analogously to Lemma 20. Each time that Ji issues a write request, it can be preceded by up to c other write requests in
each cluster since the writer queue WQq is FIFO ordered, and because priority donation allows at most c concurrent requests per
cluster. Also due to the FIFO order, each other task can block each of Ji’s write requests with at most one request. Each time that Ji
issues a read request, it is blocked by at most one write request since the OMLP implements phase-fairness. Therefore, the per-task
interference with regard to write requests is NW

i,q +NR
i,q , and in total Ji’s NR

i,q read requests and NW
i,q write requests are blocked

by at most NR
i,q +NW

i,q · c write requests in the case of a remote cluster, and by at most NR
i,q +NW

i,q · (c− 1) requests in the case
of Ji’s local cluster. The definitions of W (Ti, j, `i,q) and Wi,q follow.

By Lemma 22, the upper bound on the total number of blocking writes wi,q implies an upper bound of wi,q +NW
i,q on the

number of blocking reader phases. The total number of blocking reader phases is also limited to NR
i,q + (m− 1) ·NW

i,q : due to
priority donation and because reader and writer phases alternate in a phase-fair RW lock, each of Ji’s read requests is transitively
blocked by at most one reader phase, and each of Ji’s write requests is blocked by at most m− 1 interspersed reader phases (since
at most m− 1 write requests block each of Ji’s write requests). The lesser of the two bounds limits the total number of blocking
reader phases ri,q . The definitions of R(Ti, j, `q) and Ri,q follow.

Since Ji is blocked by at most wi,q writer phases and ri,q reader phases, total s-oblivious pi-blocking is bounded by the wi,q
longest requests in Wi,q and the ri,q longest request in Ri,q . ut

Since the clustered OMLP uses priority donation, a job may also incur s-oblivious pi-blocking when serving as a priority donor.
The duration of priority donation depends on the request span of the priority recipient’s request, which may be either a write or a
read. The maximum acquisition delay of a single write request for resource `q issued by job Ji can be bounded by instantiating
Definitions 14 and 15 assuming NR

i,q = 0 and NW
i,q = 1. Similarly, the maximum acquisition delay of a single read request for

`q can be bounded by instantiating said definitions assuming NR
i,q = 1 and NW

i,q = 0. To avoid needless repetition, we use the
following definitions to denote these two special cases.
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Definition 16 Let W ′i,q and w′i,q denote the values of Wi,q and wi,q , respectively, that result when assuming NR
i,q = 0 and

NW
i,q = 1 in Definition 14 above. Similarly, let W ′′i,q and w′′i,q denote the values of Wi,q and wi,q , respectively, that result when

assuming NR
i,q = 1 and NW

i,q = 0 in Definition 14 above.

Definition 17 LetR′i,q and r′i,q denote the values ofRi,q and ri,q , respectively, that result when assumingNR
i,q = 0 andNW

i,q = 1

in Definition 15 above. Similarly, let R′′i,q and R′′i,q denote the values of Ri,q and Ri,q , respectively, that result when assuming
NR
i,q = 1 and NW

i,q = 0 in Definition 15 above.

With these special cases in place, we can express the maximum request span. Recall from Definition 13 that we let lower(Ti)
denote the set of tasks local to Ti that could potentially cause Ji to incur pi-blocking upon release.

Lemma 24 Under the clustered OMLP’s RW protocol, a job Ji incurs at most bDi = max(b′i, b
′′
i ) s-oblivious pi-blocking upon

release while serving as a priority donor, where

b′i = max
1≤q≤nr

max
Tx∈lower(Ti)

NW
x,q>0

{
LWx,q + b′x,q

}
, and

b′x,q = total(w′x,q , W
′
x,q) + total(r′x,q , R

′
x,q),

bounds the case of a writing priority recipient, and where

b′′i = max
1≤q≤nr

max
Tx∈lower(Ti)

NR
x,q>0

{
LRx,q + b′′x,q

}
, and

b′′x,q = total(w′′x,q , W
′′
x,q) + total(r′′x,q , R

′′
x,q).

bounds the case of a reading priority recipient.

Proof Follows analogously to Lemma 21 since Ji serves as a priority donor at most once and at most for the duration of one request
span. The maximum request span of a lower-priority write request is bounded by b′i; the maximum request span of a lower-priority
read request is bounded by b′′i . The maximum of either scenario bounds maximum s-oblivious pi-blocking due to priority donation
under the clustered OMLP for RW exclusion. ut

This yields the following bound on s-oblivious pi-blocking.

Theorem 6 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bDi +

nr∑
q=1

bi,q

s-oblivious pi-blocking due to read and write requests for shared resources, where bi,q and bDi are defined as in Lemmas 23 and 24,
respectively.

Proof Follows from Lemmas 23 and 24, and the assumptions that resource requests are not nested and that tasks do not migrate
across cluster boundaries. ut

A.6 The Clustered OMLP for k-Exclusion

In this section, we establish a bound on s-oblivious pi-blocking under the clustered OMLP for k-exclusion, which is presented in
Section 4.4. The presented analysis is reasonably tight if blocking requests are relatively uniform in duration. However, if request
lengths are heavily skewed (i.e., if there are some infrequent, long-running requests, but most requests are short), then a more accurate
bound could be obtained by applying multiprocessor response-time analysis for non-preemptive global FIFO scheduling to each
resource. In the following simpler analysis, which suffices for our purposes, some pessimism arises because Lemma 11, which
implicitly lower-bounds the request completion rate, does not take non-uniform request lengths into account.

Lemma 25 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most bi,q s-oblivious pi-blocking due to requests
for resource `q , where

bi,q = total

Ni,q · ⌈m− kq
kq

⌉
,

m/c⋃
j=1

bi,q,j

 , and

bi,q,j =

{
top(Ni,q · c, tifs(τj , `q , ri, Ni,q)) if j 6= Pi
top(Ni,q · (c− 1), tifs(τj \ {Ti}, `q , ri, Ni,q)) if j = Pi.
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Proof By Lemma 4, priority donation ensures that at most c requests are incomplete at any time in each cluster; therefore, at most c
requests in each cluster precede Ji in KQq or hold a replica of `q at the time that Ji issues a request. The FIFO ordering of jobs in
KQq ensures a per-task interference limit of Ni,q . Therefore, the set of the Ni,q · c longest requests issued by jobs in the jth cluster,
denoted bi,q,j , bounds the worst-case interference from jobs in that cluster. In the case of Ji’s local cluster, only c− 1 requests can
interfere since Ji’s own request counts towards the limit of c concurrent requests imposed by priority donation.

Lemma 11 implies that Ji holds a replica of `q after at most d(m− kq)/kqe prior requests for `q complete. Therefore, across
all Ni,q requests, Ji is pi-blocked at most for the cumulative duration of the Ni,q · d(m− kq)/kqe longest requests issued by jobs
in any cluster. ut

To bound maximum s-oblivious pi-blocking due to priority donation, we again require a bound for a single request. Such a
bound can be obtained by applying Lemma 25 above to a single request.

Definition 18 Let b′i,q denote the value of bi,q computed assuming Ni,q = 1 in Lemma 25 above.

Recall from Definition 13 that we let lower(Ti) denote the set of tasks local to Ti that could potentially cause Ji to incur
pi-blocking upon release.

Lemma 26 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bDi = max
1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0

{Lx,q + b′x,q}

s-oblivious pi-blocking upon release while serving as a priority donor.

Proof Follows analogously to Lemma 21 and Lemma 24. ut

Theorem 7 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bi = bDi +

nr∑
q=1

bi,q

s-oblivious pi-blocking due to requests for shared resources, where bi,q and bDi are defined as in Lemmas 25 and 26, respectively.

Proof Follows from Lemmas 25 and 26, and since resource requests are not nested. ut

A.7 Schedulability Test

Having derived bounds on maximum s-oblivious pi-blocking, any sustainable [6, 8] locking-unaware schedulability test can be used
to establish schedulability under the OMLP. In short, we require a sustainable schedulability test because each task’s parameter bi is
only an uppper bound (i.e., it is not exact); therefore the employed schedulability test must be resilient to execution cost decreases at
runtime.

Recall that bi was derived assuming that suspended higher-priority jobs are accounted for as demand. Thus, each per-job
execution time must be inflated by bi before applying existing schedulability tests that assume tasks to be independent.

Theorem 8 Let T denote a sustainable schedulability test for independent tasks for the employed JLFP scheduling policy. A task
set τ is schedulable under the OMLP if τ ′ ,

{
T ′i (ei + bi, pi) | Ti ∈ τ

}
is deemed schedulable by T .

Note that the derivation of bi itself does not depend on the actual scheduling policy or T ; the OMLP can thus be applied to any
JLFP scheduling policy and any corresponding sustainable schedulability test.
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