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Cyber-physical systems
Situation today:

● Specialized systems are widespread
● Tight time bounds critical

Future:
● Multiple small real-time task-sets on one system preferable
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Cyber-physical systems
Situation today:

● Specialized systems are widespread
● Tight time bounds critical

Future:
● Multiple small real-time task-sets on one system preferable
● Why is off-the-shelf hardware not used for such systems?
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Random data access

Random memory access within a 64kB 
range
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Random data access

Unstable execution times
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Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013
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Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

No unexpected cache misses
1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013

Approach:
● Caches can reduce unpredictability
● Can the OS control which data stays in the cache?
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OS-controlled cache

Random memory access within a 64kB 
range (prefetched/locked)
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OS-controlled cache

But how can the whole system fit in the cache?

Random memory access within a 64kB 
range (prefetched/locked)
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OS-controlled cache

But how can the whole system fit in the cache?
It doesn't have to

Random memory access within a 64kB 
range (prefetched/locked)
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OS-Model: Component

● Small components
● Mostly independent
● No external calls/data accesses (cache misses)
● All necessary data confined
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Stack

UART- 
Driver

Emits 
events
Emits 
events

Reacts 
to events
Reacts 
to events
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OS-Model: Interaction
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How does this design help?
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Component handling
● All data confined to one continuous data block
● Enables complete knowledge over necessary data
● Components can be prefetched in one bulk transfer

– Bulk transfers evaluated → stable execution times
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Component handling
● All data confined to one continuous data block
● Enables complete knowledge over necessary data
● Components can be prefetched in one bulk transfer

– Bulk transfers evaluated → stable execution times
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All components needed for execution are now 
loaded & locked to the cache
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Architecture details
● Current approach needs HW support for

– Cache prefetching
– Cache locking

● Current platform: Dual-core ARM Cortex-A9 (COTS)
● Associative shared level cache

– 16 cache ways (64kB each, 1MB total)

● Cache management features:
– Cache prefetching of data/code
– Cache locking per cache way & core
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Architecture details
● Current approach needs HW support for

– Cache prefetching
– Cache locking

● Current platform: Dual-core ARM Cortex-A9 (COTS)
● Associative shared level cache

– 16 cache ways (64kB each, 1MB total)

● Cache management features:
– Cache prefetching of data/code
– Cache locking per cache way & core

HW allows complete control over the cache content
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Cache Management

Components 
aligned at way-
size
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Ongoing & Future Work
● Optimize event scheduling
● Automatic adapation to HW platform
● Eliminate dead code/data prefetching
● Reduce the dependency on hardware cache management
● Compare against other RTOS
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Summary
● Modern COTS-HW unpredictable (DRAM,buses,…)
● Caches hide DRAM-access latency
● Small structured OS proposed
● Components fit in cache

→ Shift random DRAM-access to bulk transfer

→ Predictable access times
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Summary
● Modern COTS-HW unpredictable (DRAM,buses,…)
● Caches hide DRAM-access latency
● Small structured OS proposed
● Components fit in cache

→ Shift random DRAM-access to bulk transfer

→ Predictable access times

Questions?


