
Increasing the Predictability of 
Modern COTS Hardware through 

Cache-Aware OS-Design
 

 11th Workshop on Operating Systems Platforms for 
Embedded Real-Time Applications

Hendrik Borghorst
 

hendrik.borghorst@udo.edu
https://ess.cs.tu-dortmund.de/~hb

Embedded System Software Group
Computer Science 12, TU Dortmund

mailto:hendrik.borghorst@udo.edu


07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 2

Cyber-physical systems
Situation today:

● Specialized systems are widespread
● Tight time bounds critical

Future:
● Multiple small real-time task-sets on one system preferable



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 3

Cyber-physical systems
Situation today:

● Specialized systems are widespread
● Tight time bounds critical

Future:
● Multiple small real-time task-sets on one system preferable
● Why is off-the-shelf hardware not used for such systems?



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 4

Random data access

Random memory access within a 64kB 
range



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 5

Random data access

L1 hits

L2 hits

Cache 
misses

Random memory access within a 64kB 
range



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 6

Random data access

Unstable execution times

L1 hits

L2 hits

Cache 
misses

Random memory access within a 64kB 
range



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 7

Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 8

Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013

Approach:



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 9

Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013

Approach:
● Caches can reduce unpredictability



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 10

Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013

Approach:
● Caches can reduce unpredictability
● Can the OS control which data stays in the cache?



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 11

Causes for unpredictability
● DRAM1

– Unstable access latency

● Shared buses between multiple cores

→ Overall system response time unstable

No unexpected cache misses
1 Dasari, D.; Akesson, B.; Nelis, V.; Awan, M.A.; Petters, S.M., "Identifying the sources of unpredictability in COTS-based
 multicore systems," Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on , 
vol., no., pp.39,48, 19-21 June 2013

Approach:
● Caches can reduce unpredictability
● Can the OS control which data stays in the cache?



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 12

OS-controlled cache

Random memory access within a 64kB 
range (prefetched/locked)



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 13

OS-controlled cache

But how can the whole system fit in the cache?

Random memory access within a 64kB 
range (prefetched/locked)



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 14

OS-controlled cache

But how can the whole system fit in the cache?
It doesn't have to

Random memory access within a 64kB 
range (prefetched/locked)



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 15

OS-Model: Component

● Small components
● Mostly independent
● No external calls/data accesses (cache misses)
● All necessary data confined

Code

Data

Stack

UART- 
Driver

Emits 
events
Emits 
events

Reacts 
to events
Reacts 
to events



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 16

OS-Model: Interaction
OS-Init

Task2
Ethernet- 

Driver
Socket

Task1
UART- 
Driver

UART-Buffer

Interrupt- 
Handler

Interrupt Timer- 
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer- 
Interrupt

Ethernet- 
Interrupt

UART- 
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 17

OS-Model: Interaction
OS-Init

Task2
Ethernet- 

Driver
Socket

Task1
UART- 
Driver

UART-Buffer

Interrupt- 
Handler

Interrupt Timer- 
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer- 
Interrupt

Ethernet- 
Interrupt

UART- 
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

Components 
connect via 
events

Components 
connect via 
events



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 18

OS-Model: Interaction
OS-Init

Task2
Ethernet- 

Driver
Socket

Task1
UART- 
Driver

UART-Buffer

Interrupt- 
Handler

Interrupt Timer- 
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer- 
Interrupt

Ethernet- 
Interrupt

UART- 
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

Components 
connect via 
events

Components 
connect via 
events

Shared data 
for multiple 
components

Shared data 
for multiple 
components



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 19

OS-Model: Interaction
OS-Init

Task2
Ethernet- 

Driver
Socket

Task1
UART- 
Driver

UART-Buffer

Interrupt- 
Handler

Interrupt Timer- 
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer- 
Interrupt

Ethernet- 
Interrupt

UART- 
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

Components 
connect via 
events

Components 
connect via 
events

Shared data 
for multiple 
components

Shared data 
for multiple 
components

Not 
predictable
Not 
predictable



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 20

OS-Model: Interaction
OS-Init

Task2
Ethernet- 

Driver
Socket

Task1
UART- 
Driver

UART-Buffer

Interrupt- 
Handler

Interrupt Timer- 
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer- 
Interrupt

Ethernet- 
Interrupt

UART- 
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

How does this design help?

Components 
connect via 
events

Components 
connect via 
events

Shared data 
for multiple 
components

Shared data 
for multiple 
components

Not 
predictable
Not 
predictable



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 21

Component handling
● All data confined to one continuous data block
● Enables complete knowledge over necessary data
● Components can be prefetched in one bulk transfer

– Bulk transfers evaluated → stable execution times

0

5

10

15

20

Prefetch Size

C
yc

le
s/

by
te

Each dot 
is one 
bulk 
transfer

Each dot 
is one 
bulk 
transfer



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 22

Component handling
● All data confined to one continuous data block
● Enables complete knowledge over necessary data
● Components can be prefetched in one bulk transfer

– Bulk transfers evaluated → stable execution times

0

5

10

15

20

Prefetch Size

C
yc

le
s/

by
te

Each dot 
is one 
bulk 
transfer

Each dot 
is one 
bulk 
transfer



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 23

Component handling
● All data confined to one continuous data block
● Enables complete knowledge over necessary data
● Components can be prefetched in one bulk transfer

– Bulk transfers evaluated → stable execution times

0

5

10

15

20

Prefetch Size

C
yc

le
s/

by
te

Each dot 
is one 
bulk 
transfer

Each dot 
is one 
bulk 
transfer

All components needed for execution are now 
loaded & locked to the cache



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 25

OS-Transition

L2-Cache

Core 0 Core 1

Cache- 
Management

Task2
Sche- 
duler

OS- 
Init

Timer- 
Driver

operating system component shared data critical OSC

predictable random access times

unpredictable random access times

Socket
Main 
Memory

Ethernet- 
Driver

UART- 
Driver

Interrupt- 
Handler

UART- 
Buffer

Task1

locked 
permanently

loads & locks 
the cache



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 26

OS-Transition

L2-Cache

Core 0 Core 1

Cache- 
Management

Task2
Sche- 
duler

OS- 
Init

Timer- 
Driver

operating system component shared data critical OSC

predictable random access times

unpredictable random access times

Socket
Main 
Memory

OSC-transition

Ethernet- 
Driver

UART- 
Driver

Interrupt- 
Handler

UART- 
Buffer

Task1

locked 
permanently

loads & locks 
the cache



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 27

OS-Transition

L2-Cache

Core 0 Core 1

Cache- 
Management

Task2
Sche- 
duler

OS- 
Init

Timer- 
Driver

operating system component shared data critical OSC

predictable random access times

unpredictable random access times

Socket
Main 
Memory

OSC-transition

Ethernet- 
Driver

UART- 
Driver

Interrupt- 
Handler

UART- 
Buffer

Task1 Task2Task1

Ethernet- 
Driver

Scheduler

Interrupt- 
Handler

Core 0 Core 1

locked 
permanently

loads & locks 
the cache



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 28

Architecture details
● Current approach needs HW support for

– Cache prefetching
– Cache locking

● Current platform: Dual-core ARM Cortex-A9 (COTS)
● Associative shared level cache

– 16 cache ways (64kB each, 1MB total)

● Cache management features:
– Cache prefetching of data/code
– Cache locking per cache way & core



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 29

Architecture details
● Current approach needs HW support for

– Cache prefetching
– Cache locking

● Current platform: Dual-core ARM Cortex-A9 (COTS)
● Associative shared level cache

– 16 cache ways (64kB each, 1MB total)

● Cache management features:
– Cache prefetching of data/code
– Cache locking per cache way & core

HW allows complete control over the cache content



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 30

Cache Management

Components 
aligned at way-
size

Components 
aligned at way-
size

way0 way1 wayn

Int-Handler 
Cache-Manager

way2

. . .

Permanently locked Temporarily locked

Temporarily unlocked



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 31

Cache Management

Components 
aligned at way-
size

Components 
aligned at way-
size

way0 way1 wayn

Int-Handler 
Cache-Manager

way2

. . .

unlock cache way & 
prefetch OSC

Permanently locked Temporarily locked

Temporarily unlocked



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 32

Cache Management

Components 
aligned at way-
size

Components 
aligned at way-
size

way0 way1 wayn

Int-Handler 
Cache-Manager

way2

. . .

way0 way1 waynway2

Task 1 . . .Int-Handler 
Cache-Manager

unlock cache way & 
prefetch OSC

Permanently locked Temporarily locked

Temporarily unlocked



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 33

Cache Management

Components 
aligned at way-
size

Components 
aligned at way-
size

way0 way1 wayn

Int-Handler 
Cache-Manager

way2

. . .

way0 way1 waynway2

Task 1 . . .Int-Handler 
Cache-Manager

unlock cache way & 
prefetch OSC

lock cache

Permanently locked Temporarily locked

Temporarily unlocked



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 34

Cache Management

Components 
aligned at way-
size

Components 
aligned at way-
size

way0 way1 wayn

Int-Handler 
Cache-Manager

way2

. . .

way0 way1 waynway2

Task 1 . . .

way0 way1 waynway2

Task 1 . . .

Int-Handler 
Cache-Manager

Int-Handler 
Cache-Manager

unlock cache way & 
prefetch OSC

lock cache

Permanently locked Temporarily locked

Temporarily unlocked



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 35

Ongoing & Future Work
● Optimize event scheduling
● Automatic adapation to HW platform
● Eliminate dead code/data prefetching
● Reduce the dependency on hardware cache management
● Compare against other RTOS



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 36

Summary
● Modern COTS-HW unpredictable (DRAM,buses,…)
● Caches hide DRAM-access latency
● Small structured OS proposed
● Components fit in cache

→ Shift random DRAM-access to bulk transfer

→ Predictable access times



07.07.2015 © Hendrik Borghorst - TU Dortmund, Germany 37

Summary
● Modern COTS-HW unpredictable (DRAM,buses,…)
● Caches hide DRAM-access latency
● Small structured OS proposed
● Components fit in cache

→ Shift random DRAM-access to bulk transfer

→ Predictable access times

Questions?


