Adaptive Clustered EDF in
LITMUSRT

Aaron Block, Austin College. Sherman, Texas
William Kelley, BAE Systems. Ft. Worth, Texas

Austin College p



Adaptable System: Whisper

Whisper is a motion tracking system
» Speakers are placed on users hands and feet
» Microphones are placed in the room

» Speed of sound computations can calculate relative position of
each speaker. @ @

-Location a speaker takes more work if ® @ ®)
» The room is noisy
» The microphone is far from the speaker

‘It needs @
» A real-time system
» A multiprocessor system
» Needs to be able to adapt to changing workload.

) Austin College p



Classical Sporadic Task Model

*Worst case execution time (WCET).
-Actual execution time, the actual execution of a job.

» Upper Bounded by WCET

» May be different for each job of a task
*Period, which defines the

» Relative Deadline of each job (aka, period)

» Minimum Separation between each job (= relative deadline)
*Weight of a task: the WCET divided by the period

» Represents the utilization required by the task to meet all deadlines.
*Actual Weight of a job: Actual execution time divided by the period.

Deadline

' I 1
—~ —
WCET Seperation Austin College }‘




Adaptable Model

-Each task is comprised of several Service Levels. Each of which has:
» A period
» A code segment
- Changing the code changes the execution time.
» A Quality of Service (Qo0S)
- This represents the value to system the task running at this service level
- Higher QoS = Better

-The goal of an adaptable task system is to maximize the total QoS of all tasks
without "over utilizing" the system.

, Austin College p



Running Time/Weight Translation Function

*The running time for each code segment is variable

» For example, in Whisper the same code segment may need to
perform additional computations if the room is noisy
‘We assume that there is a relationship between the running
time of the code segments at different service levels

» For example, in Whisper, even if we change the code segment, the
room is still noisy

We assume that the developer of the task system provides a
Weight Translation Function that given the weight of a task at

one service level, produces an estimate weight at another
level.

i Austin College p



Soft Real Time System

*In our model, we assume that tasks can miss deadlines by a bounded amount.

» This model allows us to fully measure the actual execution time for job upon
competition.

-Other soft real-time models are possible to use
» We can discuss this off-line if y'all want

) Austin College ’



Prior Work: Adaptable GEDF

In our prior work, we produced an adaptive Global Earliest Deadline First
scheduling algorithm. Which consisted of the following components

»A Feedback Predictor

- Uses the previous actual weight of jobs and a Predictor-Integral (Pl) controller to predict
the actual weight of the next job.

> An optimizer

- Uses the estimated weight of all jobs to determine the "Best" service level for each task
>»Reweighting rules

- Enacts the service level changes dictated by the optimizer
>»A GEDF scheduler

- Schedules the system using a Global Multiprocessor Earliest Deadline First Scheduling
algorithm.

] Austin College p



Prior Work: When we adapt

-If the system or a task is over utilizing the resources.

After a user-defined interval of time since the last reweighting event.

‘We do not change service levels under the following conditions
» During the first few seconds
- S0 that the feedback predictors can determine an initial estimated weight.
» During a user-defined duration of time after a reweighting event,
- S0 that the feedback predictors can determine an new estimated weight

Austin College p



Prior Work: How we optimize

-Using the value, QoS-to-Weight ratio, rank all tasks from highest-to-lowest

In order, assign each task its highest possible service level that does NOT
violate the following conditions

» No task has a weight greater than one processor
» The system is not over utilized
» Every task is at least assigned its lowest service level.

; Austin College p



Global EDF Limitations

*Scheduling costs can be very high because all tasks need to be scheduled
At scheduling time, all tasks are synchronized on a single processor.
-So, as the processors counts get higher, Global EDF becomes worse.

o Austin College p



Clustered EDF

-Alternative, don't schedule all tasks from a
SINGLE priority queue

‘Instead group processors in to "clusters" that
share a common cache

*Then schedule each cluster independently using
an Earliest Deadline First Algorithm.

This is Clustered EDF (CEDF).

11 Austin College "‘



CEDF

CEDF Pros

» Each cluster is independent. So, scheduling costs and synchronization issues are
much lower.

CEDF Cons
» In theory, cannot fully utilize the system with bounded deadline misses
» In reality, few situations where we cannot fully utilize.

*Prior work by Bastoni et al. suggests that CEDF may be superior to GEDF if we
have more than six cores.

. Austin College p



Adaptable Clustered

In this work, we made an adaptable clustered EDF scheduling algorithm.
At a high level the changes from GEDF to CEDF are relatively simple.
» Introduce a repartitioner to reassign tasks to clustered when the clustered become

"imbalanced"
A Feedback Predictor A Feedback Predictor
An optimizer An optimizer
Reweighting rules Reweighting rules
A GEDF scheduler A CEDF scheduler
A Repartitioner
Adaptive GEDF

Adaptive CEDF

. Austin College ’



Reality...

*In reality, moving from a globally scheduled system to a clustered introduces a
host of other questions

» How do we determine if two clustered are "imbalanced"?
» How and when do we enact a repartitioning?
» How do we migrate a single task between two clusters”?

) Austin College p



Imbalanced

‘We state a Clustered EDF system is Imbalanced if the total QoS in two different
clusters differs by a user-defined threshold.

» We use QoS instead of weight, because the weight of tasks is constantly changing
whereas the QoS determines how well the system is performing.

When that threshold is passed, the system is repartitioned.

) Austin College ’



Enacting a repartition

When do we enact a repartitioning?
» All at once?
» Gradually move tasks one at a time.

If we enact it all at once then partially executed tasks will either be...
» be abandoned

» restarted,
» or could miss their deadline by an unbounded amount.

If we move tasks to their new processor upon completion of the current job, the
process is slower but that's the only downside.

*Therefore, we move tasks gradually.

. Austin College p



Moving a Task

‘How do we move a task between two processors?

-Each cluster is protected by a spin lock, but migrating
between clustered requires acquiring both
simultaneously.

Migrate task from Cluster A to B

Actually move task from cluster A to B
0: Release Cluster B’s second lock

1: Release Cluster A’s second lock
o . . 2: if Cluster A’s ID is less than Cluster B’s ID then
To prgvent deadlock, wg use the following process: : Acquire Cluster A's second lock
» We introduced a new spin lock (called secondary) for each | 4: Acquire Cluster B’s second lock
cluster. > else
. 6: Acquire Cluster B’s second lock
» Then we created a global order for all secondary spin 7: Acquire Cluster A’s second lock
locks. 8. fi
0:
1

» When a cluster makes a scheduling decision it acquires
both its primary and secondary spin locks (and releases
them when done)

» \When a cluster moves a task from cluster A to cluster B it
runs the following locking code.

- Austin College p



Implementation Detalils



LITMUSRT Framework

*We implementing our Adaptive CEDF scheduling using LITMUSRT

> LITMUSRT, (LInux Testbed for MUItiprocessor Scheduling in Real-Time Systems)is
an open source framework allows for researchers to create their own "plugin”
scheduling algorithms and evaluating them.

- Created by the research group at UNC-Chapel Hill
- Currently maintained (and primary developed) by Bjérn Brandenburg
*More about LITMUSRT can be found here: http://www.litmus-rt.org

. Austin College ’



LITMUSRT plugin

*Generally, implementing scheduling plugin is fairly "simple"

> You create the code that should be executed during scheduling events (releases,
job completions, etc.)

> You let LITMUSRT know about your plugin
> Recompile/reboot
> RUN!

N Austin College p



Adding Service Levels to LITMUSRT

-The adaptive algorithms that we are implementing have more interplay between user
space and kernel space

» Specifically, when we change the service level of a task, the code segment also needs to
change

-To enable this we had to modify the LITMUSRT Framework prior to implementing our
plugin.
» Specifically, LITMUSR', has a per-task data structure, struct control_page, defined in
rt_param. h, that is shared between user space and kernel.

» We extended this data structure to include the current service level number.
» When the scheduling algorithm changes the service level of a task, this number is also changed.

» Each time a job begins a new job it reads this number, which lets the job know which
code segment it should execute.

» While a task may change its code segment with each execution of a job. Jobs DO NOT change
their code segment once they have begun.

5 Austin College ’



Additional LITMUSRT modifications

-Additionally, to enable adaptive behavior a few additional modifications had to
be made to LITMUSRT as well
»In rt_param.h,the struct rt_task, (which contains the information about the

execution time, deadline, and assigned CPU/Cluster of a task) had to be
extended to include

- An array of service levels

- A variable (called target_cpu for historic reasons) that indicates which cluster the task
should migrate to.

- Atarget_service_level that is used to store the service level that the task should
be operating at (and will be changed to shortly).

»In jobs. c, the function setup_release() was modified to allow for tasks
changing their period at every job release.

N Austin College ’



Changes to Clustered EDF

-Our implementation of Adaptive CEDF is a modification of default CEDF plugin

*The primary changes we had to make were were upon a job completion the
following actions occurred

» Use the feedback predictor to estimate the execution time of the tasks's next job.
» Update task's position in a per-cluster list sorted by QoS/Estimated Weight
» Determine if tasks on a cluster should have their service level "optimized.”
» If the tasks should change service levels, then do so now.
» Determine if the clusters are imbalanced
- If so, "repartition” the tasks onto clusters.
» If a task should change clusters, then migrate that task

N Austin College ’



Feedback Predictor Code

*The code for predicting the weight of a task is relatively simple

» alpha and beta are determined by the developer based on the desired characteristics
of the feedback predictor (i.e., stead state error, instantaneous response, etc.)

void cacluate_Estimated_execution_time(struct task xt, double alpha, double beta){
t->cumulative_estimated_actual_difference += t->current_difference
t->current_difference = t->current_actual - t->current_estimated
t->current estimated = alpha x t—->cumulative_estimated_actual_difference +
beta x t->current_difference

N Austin College p



Optimizer

*The optimizer consists of Four distinct phases
1. Go through the cluster's list of tasks sorted by QoS-to-Estimated weight ratio

2. In order, increase the service level of all tasks as high as possible until the cluster is
fully utilized (or set a lower threshold)

3. Mark each task in the cluster as having a new target_service_level.

» For some, the target_service_level will be the same as their
current_service_level.

» For others, their current_service_level will change at their next job competition.

4. The system is now marked as "stable" and cannot be re-optimized for a developer-
specified duration of time.

N Austin College p



Repartitioner

*The repartitioner both determines which tasks should be assigned to which
cluster and optimizes the service level of each task

*As a result, it is similar to the optimizer, and as such consists of the following
phases

» Merge each cluster's list of sorted tasks into a single list

» Go through the master list, assigning tasks to clusters based on which cluster has the
largest capacity available. Use the estimated minimum service level to determine the
amount of capacity available

» For each cluster, optimize the service levels assigned to it

» For each task that changed service level and/or cluster, change the associated target
service level and/or target cluster

» The system is now marked as "stable" and cannot be re-partitioned for a developer-
specified duration of time.

N Austin College p



Running Time

-Aside from the optimizer and the repartitioner, the running time of adaptive CEDF
is incrementally more than the running time of non-adaptive CEDF.
» The running time of the optimizer is O(C) where C is the number of tasks assigned to
the cluster
» The running time of the repartitioner is O(N), where N is the number of tasks in the
system
*Both of these times stem from having to go through all of the tasks in the
cluster/system
*Repartitioning is also costly because clusters involved are "paused" while the
repartitioning is occurring.
It is possible on systems with many clusters, to devise an improved repartitioner
that only attempts to repartition 2 or 3 clusters at a time.
» This would substantially reduce the overhead of repartitioning the system.

N Austin College ’



Future Work

*In the future, we plan to the following
» Produce a full comparison of adaptive CEDF and GEDF

» Deliver the adaptable GEDF and adaptable CEDF plugins and LitmusRT modifications
as an open source project.

» Integrate synchronization protocols into CEDF and GEDF.

N Austin College p



