ADAPTIVE RESOURCE SHARING
IN MULTICORES

Control mechanisms for the timing correct use of
shared main memory

Kai Lampka (UU), Adam Lackorzynski (TUD),
Jonas Flodin (UU) and Wang Yi (UU)

Kai Lampka
kai.lampka@it.uu.se

Embedded Systems Group
Department of Information Technology, Uppsala University



MAIN BRANCHES IN RESEARCH ON EMBEDDED
REAL-TIME SYSTEMS

@ of Systems
(exhaustive empirically)

@ Design and implement SW mechanisms (access
protocols, memory mappings, ....) or

1
o _E RTH I nT V CERTIFICATION OF REAL TIME APPLICATIONS
DESIGNED FOR MIXED CRITICALITY
1

NIVERSTE

THALES ’i#ﬂ.‘ OURIER ) kALRAY ABTHC

&

Mochschule Dirich -
Swiss Federal Institute of Technslogy Zurich UPPSALA

UNIVERSITET AbSInt




AGENDA

1. Introduction: Microcontrollers and technical
evolution

2. Shared memory in multicores: Cost reduction vs
Predictability

3. Controlling applications at run-time: Memory
access control for hard real-time and best-effort
applications running in parallel

4. Conclusion



PART 1
INTRODUCTION

Microcontrollers and technical
evolution



Iransistor count

MOORE

2,600,000,000 -
1,000,000,000

100,000,000 -

10,000,000

1,000,000 -

100,000 -

10,000

2,300 -

! 16-Core SPARC T3
ISix-Core Care i7

Six-pre Xeon 7400\-\ @10-Core Xeon Westmere-EX

POWER4 OF IBM Ovel-Corp ltanium 20 oL

AMD K10 /8 3—Quad-Core ltanium Tukwila

I =" ;
(64-BIT DUAL CORE)  wounzummmgenis o % sucooponzico

AMD K108 “Core i7 (Quad)

|
ore 2 Duo

w,:f:;nu RY OF COMMERCIAL
Pentium 48% LTICORES B
y EGINS

8086-models \. AL

.y
mj oo costs has increased at a rate of roughly a
e/ factor of two per year.”

6600 ¢ @G89

L Gordon E. Moore,
Wiy 4\ Senaten co-founder of Intel Corporation (1965)
!

|
1971

| 1 | | |
1980 1990 2000 2011 5



PART 2
SHARED MEMORY IN MULTICORE PROCESSORS

Architecture specific characteristics which
challenge the timing correctness of applications



COMMERCIAL-OFF-THE-SHELF (COTS)
ARCHITECTURES Characteristics

<> Core-local (private)

Cache
Shared Cache Memory
R 1T |1 < Shared Cache
Private Private |* Private [T |
& Cache |3 | < Shared main memory

e

a miss at level i yields a
Core = Core | Y ,
- fetch attempt at level j+1

each access comes with
extra timing costs

acceses, e.g., to the main
memory, are difficult to
bound because of ,fancy”
arbitration strategies 7




MAIN MEMORY: ACCESS COORDINATION

,Open Row-hit policy”
<> keep complete row in the
bank-local cache

<> subsequent accesses from the
same core commonly refer to
the same row (locality)

<> Re-ordering of accesses from
all cores (Re-ordering policy of
DRAM-controller)

< ,Worst-case” response timge?




hit rate depends on applications execution time might depend on the

from the other corces (co-runner) || memory accesses released by the co-
runners. DRAM controller has ist own

classic methods produce extermly || arbitration scheme (re-ordering).

pessimistic results.

deadline

A miss '

| 1

hit rate depends on core- A o, i
local application, intensivly Fetch from shared | |
studied in the literature ~cache? ' E

____________________________

3,
®
<
@
Q

“instruction “data fetch”: E Output of
task release | fetch” from . i serve from ! event
time, e.g., | privatecache | private cache? !
periodic =~ - P | 0
s ! iserved : A
T task active | task active task iactive
|
)

I Worst Case Execution Time




INTERFERENCES FROM SHARING THE MAIN MEMORY:
AN EXAMPLE

Platform Szenario

<> Intel Xeon 2.67GHz, 6-core CPU. <> Embedded Microprocessor
<> 1 0S Thread / Core

<> Caches: L1 private, L2 fully shared
<> Shared main memory

Benchmark Consortium
(EEMBC)
Benchmarksuite 1.1

<> 1 core for administration/

[
Private [ Private | collect data
__Cache Cache U < 1 core for hard real-time
.=" applications, the ones we
Memory Controller measure

<> 4 cores running
interfering applications

10



MEMORY

INTERFERENCES FROM SHARING THE MAIN

Hard real-time task | Miss rate | Worst slowdown  Worst co-runner
a2time 1.408 32.3% | aifftr
aifftr 1.767 20.9% | bitmnp
aifirf 1.123 23.1% | canrdr
aiifft 1.405 25.6% | ttsprk
basefp 1.202 30.7% | aifirf
bitmnp 1.454 36.5% | aifirf
cacheb 1.179 17.0% matrix
canrdr 1 25.5% | rspeed
idctrn 1.422 27.2% | cacheb
jirflt 1.488 22.7% | aiifft
matrix 1.981 30.9% | a2time
pntrch 2.306 47.6% | bitmnp
puwmod 1.62 28.6% | idctrn
rspeed 1.387 25.1% idctrn
tblook 1.46 26.7% | idctrn
ttsprk 1.384 35.5% | bitmnp

Tasks of the EEMBC-benchmark suite (1 to 4 cores)

11



INCORRECTLY BOUNDING THE WCRT IS A THREAT TO
A SYSTEMS OPERATION

job release
of task 2

aaaaaaaaaaaaaaaaaaaaaaaa
;;;;;;;;;;;;;;;;;;;;;;;

rrrrrrrrrrrrrrrrrrrrrrrr
aaaaaaaaaaaaaaaaaaaa

Deadline
of job Jok

job release

of task 1

Deadline
of jobj, ,

Any unexpected overshoot
of a job is corrupting the
timing correctness of the
systems which may have

— fatal consequences

Jln

: I
B I
e i
crriss WCET i ] I
i \WNCET 1. &
o hn 7277
s I
I
Execution on core I
7
h d :
ding to EDF '
! I
,__.-’,__.-__.. .r_'.t._.-; o .r__.u__.-“,’ fffff o :__.-__.-;a__.-__.} :__.-__.-;a__.-__.} :__.-__.-;a__.-__.- i '
e G,
e A s
e o : s
S bW Jz K
e el WA, I A
e R o o R
J2,k

comp'leted



WHY DO WE NEED TO GUARANTEE UPPER BOUNDS

?
<> Real-time Scheduling: ON THE WCRT:

Do all task invocations meet their deadlines?
-> unexpected timing violations

<> Performance-Analysis:
end-to-end latency & buffer space

-> unexpected timing & memory violations

=> unexpected service requests at a shared resource,
e.g., main memory, have the potential to inject
additional delays into the WCET/WCRT of a job

False WCET/WCRT introduce (systematic) errors, which
are impossible to be repaired at a later stage of the
development cycle 13



PART 3
CONTROLLING APPLICATIONS AT RUN-TIME

Memory access control with
parallel hard real-time applications

Joint work with Jonas Flodin (PhD student) and Wang Yi (Chair for ES)

14



DYNAMIC BUDGETING (MAIN IDEA)

< Map soft and hard real-time cores exclusively to cores

< memory accesses of soft real-time applications is tracked
with architecture-inherent performance monitors
(increment upon cache miss).

<> Each hart RT task allows the co-runner to access the
memory up to a certain budget. This guarantees the upper

bound on the delays injected into the WCET (not tight
though)

<> upon termination, the hard RT nullifies ist enforced budget

<> if all budgets are nullified, soft RT tasks accesse resource as
needed

< Jonas Flodin, Kai Lampka, Wang Yi: Dynamic budgeting for
settling DRAM contention of co-running hard and soft real-
time tasks. SIES 2014: 151-159

15



EXAMPLE: 1 CORE WITH 2 HARD RT TASKS

A CET;
TS
A slack\: WCET. :
T : 2 1y task id
slack

ul B,;:Budget from Task ¢
i >tUZ-: unused access bandwidth

T WCET : Worst-case
- Execution Time

..........

Slack reclamation:
<> Early completition of task 1 allows one to nullify budget B,
during [f,,e,]

<>Budget B, needs not to be activated before e, no task
execution other than Task 1 assumed in the analysis during
[f,,e4]

< Any delay of Task 2 during [f,,e,] is without effect on the
feasability 16



EMPIRICAL EVALUATION (1)

50
45
40
35
30

25 = Reclaim
20 == No reclaim

15

10
5-_.._.—.—.-—‘.-—.'_".'—_.
0

24% 48% 7.1% 9.5% 11.9% 14.3% 16.7% 19.0% 21.4%

Nomnalized average execution time

Safety margin

Normalised execution time of task “bitmnp”
as “best-effort” application with and without dynamic
budgetings (slack reclaim vs. no slack reclaim)

17



EMPIRICAL EVALUATION

?JJ!eJJJJJ

T 9 T10

8 8

8 8 8 8

o O

Average execution time of different tasks under
(a) dynamic budgeting (blue) and
(b) strictly periodic budgeting (red).

18



ONGOING WORK — BUDGETS FOR MEMORY ACCESS
UNDER TT-EXECUTION ORDERS

Time-Triggered schedule on core 1

\;‘:ﬁﬂ‘lﬁﬂﬂ‘lﬁﬂﬂ‘lﬁﬂ “:}5& e
\ \
A Slot 1,K; &

SR S SR SR
NN NN st NN
3 \M‘M‘Mﬁ o m\x\\x S \x\\xm )




REDUCES NUMBER OF IPCS FOR UPDATING BUDGETS

Corel;

\\'\ R,
NN pef AN L

NN B 5N\

S %xmm&xmx SRR >
| | | |

/

1

I

| >

Bk o 5 '

e | L 5

|

Potentlal switching of decuswe budget at cores with best-effort workload

: | b | T g
I e ¢ e

| B fJ; : BTJ;J; : : B2f1£ : ¢31,29 I iBszg

l " | \\\\

AT >t

B33



ONGOING WORK - INITIAL PROBLEMS

<>Enforce budgets via scheduling contexts in L4

<> Exploit Performance Monitor Counters for
counting last level cache misses

<> Injection of stalling intervals into the
execution of best effort applications showed
significance of prefetching.

<>Disabling the prefetcher via
(IA32_MISC_ENABLE) did not work.

21



ONGOING WORK
— INITIAL RESULTS (NOT IN THE PAPER)

< TI OMAPS platform.
<2 ARM Cortex-A15 cores (800MHz).

<> A15’s performance counter offers a BUS_ACCESS
counter

(A) Greedy memory use (B) Non-Greedy use

Runtime CPUO CPUI QUO CPU1
| 8762ms - 12835ms -
2 15228 ms 15551ms 16734ms 16763 ms
TABLE 1. BENCHMARK RESULTS FOR A MEMORY-INTENSIVE

BENCHMARKS RUNNING ON ONE AND ONE TWO CORES IN PARALLEL.

22



RELATED WORK

(A) strictly periodic budgeting for the
“Best-effort” applications (BEA)

(B) Slack is not reclaimed by the BEA

< H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control
in multiprocessor for real-time systems with mixed criticality. ECRTS 2012.

Only one core with hard RT applications, new budget lifting

< H.Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-

core platforms. RTAS 2013. slack reclamation only among BEA

<> M. Behnam, R. Inam, T. Nolte, and M. Sjodin. Multi-core composability in
the face of memory-bus contention. SIGBED Rev., 10(3):35-42, Oct. 2013.

No slack reclamation



CONCLUSION

1. Embedded goes Multicore

2. Sharing the main memory between hard and soft
real-time applications may impose new challenges
for the timing correctness of systems

3. Controlling applications at run-time: Dynamic
memory access control for hard real-time and best-
effort applications running in parallel



