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1. Introduction: Microcontrollers and technical
evolution

2. Shared memory in multicores: Cost reduction vs
Predictability

3. Controlling applications at run-time: Memory
access control for hard real-time and best-effort
applications running in parallel

4. Conclusion



PART 1
INTRODUCTION

Microcontrollers and technical
evolution
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PART 2
SHARED MEMORY IN MULTICORE PROCESSORS

Architecture specific characteristics which
challenge the timing correctness of applications



COMMERCIAL-OFF-THE-SHELF (COTS)
ARCHITECTURES Characteristics

<> Core-local (private)

Cache
Shared Cache Memory
R 1T |1 < Shared Cache
Private Private |* Private [T |
& Cache |3 | < Shared main memory

e

a miss at level i yields a
Core = Core | Y ,
- fetch attempt at level j+1

each access comes with
extra timing costs

acceses, e.g., to the main
memory, are difficult to
bound because of ,fancy”
arbitration strategies 7




MAIN MEMORY: ACCESS COORDINATION

,Open Row-hit policy”
<> keep complete row in the
bank-local cache

<> subsequent accesses from the
same core commonly refer to
the same row (locality)

<> Re-ordering of accesses from
all cores (Re-ordering policy of
DRAM-controller)

< ,Worst-case” response timge?




hit rate depends on applications execution time might depend on the

from the other corces (co-runner) || memory accesses released by the co-
runners. DRAM controller has ist own

classic methods produce extermly || arbitration scheme (re-ordering).

pessimistic results.
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INTERFERENCES FROM SHARING THE MAIN MEMORY:
AN EXAMPLE

Platform Szenario

<> Intel Xeon 2.67GHz, 6-core CPU. <> Embedded Microprocessor
<> 1 0S Thread / Core

<> Caches: L1 private, L2 fully shared
<> Shared main memory

Benchmark Consortium
(EEMBC)
Benchmarksuite 1.1

<> 1 core for administration/

[
Private [ Private | collect data
__Cache Cache U < 1 core for hard real-time
.=" applications, the ones we
Memory Controller measure

<> 4 cores running
interfering applications
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MEMORY

INTERFERENCES FROM SHARING THE MAIN

Hard real-time task | Miss rate | Worst slowdown  Worst co-runner
a2time 1.408 32.3% | aifftr
aifftr 1.767 20.9% | bitmnp
aifirf 1.123 23.1% | canrdr
aiifft 1.405 25.6% | ttsprk
basefp 1.202 30.7% | aifirf
bitmnp 1.454 36.5% | aifirf
cacheb 1.179 17.0% matrix
canrdr 1 25.5% | rspeed
idctrn 1.422 27.2% | cacheb
jirflt 1.488 22.7% | aiifft
matrix 1.981 30.9% | a2time
pntrch 2.306 47.6% | bitmnp
puwmod 1.62 28.6% | idctrn
rspeed 1.387 25.1% idctrn
tblook 1.46 26.7% | idctrn
ttsprk 1.384 35.5% | bitmnp

Tasks of the EEMBC-benchmark suite (1 to 4 cores)
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INCORRECTLY BOUNDING THE WCRT IS A THREAT TO
A SYSTEMS OPERATION

job release
of task 2
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WHY DO WE NEED TO GUARANTEE UPPER BOUNDS

?
<> Real-time Scheduling: ON THE WCRT:

Do all task invocations meet their deadlines?
-> unexpected timing violations

<> Performance-Analysis:
end-to-end latency & buffer space

-> unexpected timing & memory violations

=> unexpected service requests at a shared resource,
e.g., main memory, have the potential to inject
additional delays into the WCET/WCRT of a job

False WCET/WCRT introduce (systematic) errors, which
are impossible to be repaired at a later stage of the
development cycle 13



PART 3
CONTROLLING APPLICATIONS AT RUN-TIME

Memory access control with
parallel hard real-time applications

Joint work with Jonas Flodin (PhD student) and Wang Yi (Chair for ES)
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DYNAMIC BUDGETING (MAIN IDEA)

< Map soft and hard real-time cores exclusively to cores

< memory accesses of soft real-time applications is tracked
with architecture-inherent performance monitors
(increment upon cache miss).

<> Each hart RT task allows the co-runner to access the
memory up to a certain budget. This guarantees the upper

bound on the delays injected into the WCET (not tight
though)

<> upon termination, the hard RT nullifies ist enforced budget

<> if all budgets are nullified, soft RT tasks accesse resource as
needed

< Jonas Flodin, Kai Lampka, Wang Yi: Dynamic budgeting for
settling DRAM contention of co-running hard and soft real-
time tasks. SIES 2014: 151-159
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EXAMPLE: 1 CORE WITH 2 HARD RT TASKS

A CET;
TS
A slack\: WCET. :
T : 2 1y task id
slack

ul B,;:Budget from Task ¢
i >tUZ-: unused access bandwidth

T WCET : Worst-case
- Execution Time

..........

Slack reclamation:
<> Early completition of task 1 allows one to nullify budget B,
during [f,,e,]

<>Budget B, needs not to be activated before e, no task
execution other than Task 1 assumed in the analysis during
[f,,e4]

< Any delay of Task 2 during [f,,e,] is without effect on the
feasability 16



EMPIRICAL EVALUATION (1)
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Nomnalized average execution time

Safety margin

Normalised execution time of task “bitmnp”
as “best-effort” application with and without dynamic
budgetings (slack reclaim vs. no slack reclaim)

17



EMPIRICAL EVALUATION
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Average execution time of different tasks under
(a) dynamic budgeting (blue) and
(b) strictly periodic budgeting (red).
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ONGOING WORK — BUDGETS FOR MEMORY ACCESS
UNDER TT-EXECUTION ORDERS

Time-Triggered schedule on core 1

\;‘:ﬁﬂ‘lﬁﬂﬂ‘lﬁﬂﬂ‘lﬁﬂ “:}5& e
\ \
A Slot 1,K; &

SR S SR SR
NN NN st NN
3 \M‘M‘Mﬁ o m\x\\x S \x\\xm )




REDUCES NUMBER OF IPCS FOR UPDATING BUDGETS
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ONGOING WORK - INITIAL PROBLEMS

<>Enforce budgets via scheduling contexts in L4

<> Exploit Performance Monitor Counters for
counting last level cache misses

<> Injection of stalling intervals into the
execution of best effort applications showed
significance of prefetching.

<>Disabling the prefetcher via
(IA32_MISC_ENABLE) did not work.
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ONGOING WORK
— INITIAL RESULTS (NOT IN THE PAPER)

< TI OMAPS platform.
<2 ARM Cortex-A15 cores (800MHz).

<> A15’s performance counter offers a BUS_ACCESS
counter

(A) Greedy memory use (B) Non-Greedy use

Runtime CPUO CPUI QUO CPU1
| 8762ms - 12835ms -
2 15228 ms 15551ms 16734ms 16763 ms
TABLE 1. BENCHMARK RESULTS FOR A MEMORY-INTENSIVE

BENCHMARKS RUNNING ON ONE AND ONE TWO CORES IN PARALLEL.
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RELATED WORK

(A) strictly periodic budgeting for the
“Best-effort” applications (BEA)

(B) Slack is not reclaimed by the BEA

< H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control
in multiprocessor for real-time systems with mixed criticality. ECRTS 2012.

Only one core with hard RT applications, new budget lifting

< H.Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-

core platforms. RTAS 2013. slack reclamation only among BEA

<> M. Behnam, R. Inam, T. Nolte, and M. Sjodin. Multi-core composability in
the face of memory-bus contention. SIGBED Rev., 10(3):35-42, Oct. 2013.

No slack reclamation



CONCLUSION

1. Embedded goes Multicore

2. Sharing the main memory between hard and soft
real-time applications may impose new challenges
for the timing correctness of systems

3. Controlling applications at run-time: Dynamic
memory access control for hard real-time and best-
effort applications running in parallel



