
An experience report on the integration of ECU software
using an HSF-enabled real-time kernel

Martijn van den Heuvel – Erik J. Luit – Reinder J. Bril –
Johan J. Lukkien – Richard Verhoeven – Mike Holenderski

System Architecture and Networking (SAN)
Department of Mathematics and Computer Science

Eindhoven University of Technology
The Netherlands

7th July 2015

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 1 / 24

An automotive example

Why this growth of electronic parts?

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 2 / 24

An automotive example: electronic stability program (ESP)

Chip Design Magazine (Jan. 2005)

Increasing number of applications;
Extensive networking between them.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 3 / 24

An automotive example: electronic stability program (ESP)

Increasing number of applications, for example: ABS, TCS, ESP;

Extensive networking between them.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 4 / 24



An automotive example: IVDC advances beyond ESP . . .

Adding suspension control and software-based vehicle state estimation:

B. Bonsen, R. Mansvelders, and E. Vermeer.

Integrated vehicle dynamics control using state dependent riccati equations.

In AVEC, Aug. 2010.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 5 / 24

An automotive example: deployment of IVDC advances

4X Local controllers for steering, braking, suspension;

Front and rear IVDC;

1X Global IVDC state estimation and supervisory control.

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

(Semi-)independent developed components by various partners!

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 6 / 24

Demo: IVDC with active suspension

Experimental setup:

4X Local controllers for active suspension;

1X Global IVDC and supervisory control.

Our contribution:

Virtualization techniques applied to a local control node:

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

Communication between independently developed components.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 7 / 24

Demo: active suspension on

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 8 / 24



Demo: active suspension off

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 9 / 24

Demo: active suspension on

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 10 / 24

Resource sharing across components: a closer look

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAPTasks may request:
1 Access to shared memory:

shared buffers;

2 Operating-system services:

processor scheduling;
device drivers.

3 Network services:

send/receive messages;
abstraction of fieldbus technology:

FlexRay vs. CAN

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 11 / 24

Challenges for resource sharing across components

Component Cs Resource-supply model

Interface selection

Component Interface Ωs

Admission control

Other components’ interfaces

reject
accept

Virtual platform of Cs Other virtual platforms

Resource allocation

Global scheduling and global resource arbitration

Component development

(Timing-) Requirements analysis

1 Independent development of
components:

RAP, Suspension and Supervisor;

2 Integration of components:

Communication abstraction;
Servers as a virtual processor;

3 Scheduling components and
containment of temporal faults.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 12 / 24



Challenges for resource sharing across components

Component Cs Resource-supply model

Interface selection

Component Interface Ωs

Admission control

Other components’ interfaces

reject
accept

Virtual platform of Cs Other virtual platforms

Resource allocation

Global scheduling and global resource arbitration

Component development

(Timing-) Requirements analysis

1 Independent development of
components:

RAP, Suspension and Supervisor;

2 Integration of components:

Communication abstraction;
Servers as a virtual processor;

3 Scheduling components and
containment of temporal faults.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 13 / 24

Independent development: Run-Away Process

Greedy for processor cycles:

On received-message “start”

1: repeat
2: ; {Do nothing}
3: until received-message “stop”

Can be started/stopped via network messages;

Highest priority application;

Purpose: Demonstrate temporal isolation

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 14 / 24

Independent development: Suspension control

Hardware for 1 axle:

Software per wheel (2 tasks for force control):

Current control of valves (400 Hz);

Pressure control of valves (100 Hz).

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 15 / 24

Independent development: Supervisory control

Handle state changes:
Fault model:

message loss;
range check sensor values.

Formal verification:

deadlock avoidance;
completeness of actions.

Code generation:

MISRA C compliant;

Uninitialized

Initialized

Passive

Active

StandBy Error

Full Performance Degraded

reset errors

[i v1 faulty]
[i v2 faulty]

reset errors

[!comm ok]

[!comm ok][controls enabled] [!controls enabled] [dp1 faulty]
[dp2 faulty]

[comm ok] reset system

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 16 / 24



Challenges for resource sharing across components

Component Cs Resource-supply model

Interface selection

Component Interface Ωs

Admission control

Other components’ interfaces

reject
accept

Virtual platform of Cs Other virtual platforms

Resource allocation

Global scheduling and global resource arbitration

Component development

(Timing-) Requirements analysis

1 Independent development of
components:

RAP, Suspension and Supervisor;

2 Integration of components:
Communication abstraction;
Servers as a virtual processor;

3 Scheduling components and
containment of temporal faults.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 17 / 24

Integration of components: overview

Independently developed components, their modules and interfaces:

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

microC/OS-II + HSF 
+ Main

LSC ASD Runtime

4PH active control
Communication 

stub
Run-Away Process

Hardware drivers Depends on

Component 3

Component 1Component 2

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 18 / 24

Integration of components: overview

Dependencies between software modules and components:

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

Virtualization of:

1 the processor (HSF);

2 the network
(communication stub).

microC/OS-II + HSF 
+ Main

LSC ASD Runtime

4PH active control
Communication 

stub
Run-Away Process

Hardware drivers
Resource 

virtualization

Component 3

Component 1Component 2

Application-level 
components

Depends on

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 19 / 24

Integration of components on HSF-enabled kernel

Hierarchy of processor schedulers:

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

Global
Scheduler

local
scheduler

Component 0

local
scheduler

Component 1

local
scheduler

Component n
. . .

R1 R2

component: server, set of tasks and local (task) scheduler

server or virtual processor: a CPU budget allocated each period

Tasks, located in arbitrary components, may communicate

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 20 / 24



Components, servers and tasks

τ1 τ2 τ3 τ1 τ2

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control IVDC

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on central ECU–

τ1 τ2

RAP

System tasks:

1 initialization task;

2 idle task.

Application tasks:

1 Run-Away Process;

2 2x suspension control
(400 Hz and 100 Hz);

3 Supervisor (100 Hz).

4 servers:

In descending priority:
RAP, suspension, supervisor, idle

Global
Scheduler

local
scheduler

Component 0

local
scheduler

Component 1

local
scheduler

Component n
. . .

R1 R2

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 21 / 24

Integration of components: communication abstraction

Time- vs. event-triggered communication:

Suspension control loops assume timed activation;

Supervisory control assumes event triggers.

Network technology:

CAN: event-triggered.

FlexRay (static segment): time triggered.

Communication abstraction:

Make all events timed.

Assumption: application states depend on last event only.

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 22 / 24

Challenges for resource sharing across components

Component Cs Resource-supply model

Interface selection

Component Interface Ωs

Admission control

Other components’ interfaces

reject
accept

Virtual platform of Cs Other virtual platforms

Resource allocation

Global scheduling and global resource arbitration

Component development

(Timing-) Requirements analysis

1 Independent development of
components:

RAP, Suspension and Supervisor;

2 Integration of components:

Communication abstraction;
Servers as a virtual processor;

3 Scheduling components and
containment of temporal faults.

Current and future challenges:

Mixed criticality:
1 deal with uncertain timing specs of tasks;
2 graceful degrade functions by enabling/disabling optional ones.

Industrial standards: timing augmented descriptions of components.
Martijn van den Heuvel (TU/e, SAN) 7th July 2015 23 / 24

Questions?

Let’s pass the remote . . .

Martijn van den Heuvel (TU/e, SAN) 7th July 2015 24 / 24


	Introduction



