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Abstract—In recent years the multi-core era started to affect
embedded systems, changing some of the rules: While on a single
processor, Earliest Deadline First has been proven to be the best
algorithm to guarantee the correct execution of priorized tasks,
Dhall et al. have shown that this approach is not feasible for
multi-processor systems anymore. A variety of new scheduling
algorithms has been introduced, competing to be the answer to
the challenges multi-processor real-time scheduling is imposing.
In this paper, we study the solution space of prioritization-
based task scheduling algorithms using genetic programming
and state-of-the-art accelerator technologies. We demonstrate that
this approach is indeed feasible to generate a wide variety of
capable scheduling algorithms with pre-selected characteristics,
the best of which outperform many existing approaches. For a
static predefined set of tasks, overfitting even allows us to produce
optimal algorithms.

I. INTRODUCTION

Following the trends in the personal computing sector,
many embedded systems are nowadays equipped with multiple
processing units. These resources are used for non-critical
tasks like entertainment systems and critical ones, where wrong
timing is considered a failure. In real-time systems, the latter
are traditionally studied using the preemptive task model. A
task T arrives at time A in the system and is supposed to
finish its execution by its deadline AD. Furthermore, with
these critical tasks, it is usually assumed, that the worst
case execution time C is known upfront. Tasks can either
be occurring only once or periodically, where AD is also
considered to be the time interval, after which the task arrives
again. If a given set of tasks includes only periodic tasks, it is
called a periodic task set; otherwise it is called sporadic.

A task scheduling algorithm is used to schedule these tasks
onto p processors so that no task misses its deadline. This is
usually realized by assigning priorities to the tasks. If the task
set is known upfront, static scheduling algorithms can be used,
assigning fixed priorities to the tasks. This is very efficient
since the scheduling algorithm only needs to be executed once.
If the task set is not known upfront and new tasks arrive during
system runtime, dynamic scheduling algorithms need to be
utilized. They reevaluate the priorities of all known tasks and
are usually executed when new tasks arrive or at predefined
time intervals during runtime.

Born at a time when resources for embedded systems
were very restricted, traditional scheduling algorithms are
rather simplistic, usually assigning priorities based on a sin-
gle attribute: the deadline. As discussed in Section II, more

sophisticated algorithms are required in multi-core scenar-
ios. Ideally, an algorithm should be optimal, which means
that it is capable of finding a feasible schedule whenever
there exists one. While it has been proven that an optimal
algorithm for multi-core scenarios cannot exist, a number
of algorithms have been proposed that can schedule certain
classes of task sets. In Section III we describe our approach
to the problem. By applying genetic programming and state-
of-the-art accelerator technologies, we were able to evaluate a
vast variety of prioritization-based scheduling algorithms. As
shown in Section IV our implementation can be used to find
close-to-optimal algorithms tailored to task sets with specific
characteristics.

II. RELATED WORK

For single processor scenarios, optimal algorithms have
been around for a long time [1]: Rate Monotonic Schedul-
ing (RMS) [2] is an optimal static scheduling algorithm for
periodic task sets. RMS prioritizes inverse proportionally to
period lengths. Earliest Deadline First (EDF) [2] is an optimal
dynamic scheduling algorithm for sporadic task sets. Each time
a new task arrives, EDF prioritizes based on the deadlines of all
tasks. Least Laxity First (LLF) [3] is also an optimal dynamic
scheduling algorithm. The priority of each task is based on the
difference of its remaining execution time and the time until its
deadline is violated. Since this difference constantly changes
during runtime, LLF shows strong oscillation effects as shown
in Figure 1 leading to a huge amount of task switches. In
practice, task switching in embedded systems comes with a
performance overhead. Thus, there are variations of LLF such
as Modified Least Laxity First (MLLF) [4] that try to reduce
the oscillation effect.
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Abbildung 2.2.: Anomalie nach Levin: nicht ausführbare (z.B. nach EDF) und ausführbare
Taskanordnung durch passende Aufteilung von T2
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Abbildung 2.3.: Oszillierendes Verhalten bei der Ausführung eines T1 und T2 mittels LLF

analog zum Beispiel von Levin et al. [2] vorgestellt.

Wie Abbildung 2.2 zeigt, besteht die einzige Möglichkeit das Beispieltaskset auszuführen
darin, dass die Tasks mit hoher Auslastung (T1, T2) zum Teil auf einem Prozessorkern aus-
geführt werden. T2 wird bewusst aufgeteilt, um auf p2 ausreichend Ressourcen für T3 zur
Verfügung zu stellen. Auslastungsbeschränkte Schedulingalgorithmen können diese Task-
sets nicht ausführen, da die ‘schweren’ Tasks mit hoher Auslastung aufgrund der hohen
Priorität je einem Prozessor zugewiesen werden, wodurch die notwendige Unterbrechung
nicht möglich ist.

Ausführungsoszillation

Zuletzt sei eine Anomalie genannt, welche vor allem bei vollständig dynamischen Schedu-
lingalgorithmen, z.B. LLF, auftritt. Mindestens zwei Tasks T1, T2 werden derart ausgeführt,
dass die Ausführung von T1 für eine Zeitspanne t0 die Priorität des wartenden Tasks T2

soweit erhöht, dass dieser die Ausführung von T1 unterbricht, um selbst ausgeführt zu wer-
den. Nach ti Zeiteinheiten wird er wiederum von T1 aus dem gleichen Grund unterbrochen.
Für die Ausführungszeiten gilt t0 < ti < t0 + � mit (i > 0, t0 > 0, � > 0) wobei t0 und
� beliebg klein gewählt werden können. Abbildung 2.3 zeigt dieses Verhalten mit diskre-
ten Schedulingzeitpunkten (t0 = 1, ti = 2, i > 0). Die Zahl der Kontextwechsel steigt für
kleinere t0, ti stark an.
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Fig. 1. Scheduling algorithms like Least Laxity First [3] show oscillating
behavior where the priority is altered at each quantum.

In multi-processor scenarios, things get a little bit more
complicated: Besides oscillation effects, task schedulers also
have to cope with Dhall’s effect and pure global task sets.

Dhall’s effect is demonstrated in Figure 2. It describes
the scenario where there are task sets which produce a very
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low overall system utilization, but still miss a deadline when
scheduled with traditional algorithms. A number of ”hot fixes”
to EDF and RMS were introduced that have been proven to
circumvent the problem: e.g. EDF First Fit/Best Fit [5], Earliest
Deadline Until Zero Laxity (EDZL) [6], and UMax algorithms
[7], [8]. Although Dhall’s effect is prevented, these scheduling
algorithms only allow for low system utilizations: e.g. 35.425%
for sporadic and 37.482% for periodic task sets [7], [8]. Since
this is significantly lower than the 50% utilization, that is
considered the actual limit [9], new approaches were evaluated.
Lundberg has proven that by assigning task priorities based
on the slack (AD�C) instead of the deadline, the acceptable
utilization for sporadic task sets can be increased to 38.197%
[10]. Grundlagen
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Abbildung 2.1.: Dhall’s Effekt: nicht ausführbare (z.B. nach EDF) und ausführbare Taskan-
ordnung durch Zuweisung von T3 auf eigenen Kern

2.1.3. Schedulingeffekte im Echtzeitscheduling

Im Rahmen von Echtzeitscheduling treten unterschiedliche Effekte auf, die eine erfolgrei-
che Ausführung verhindern oder im Anwendungsfall beeinträchtigen. Im Folgenden wer-
den zwei Effekte vorgestellt, die eine erfolgreiche Ausführung von Tasksets für bestimmte
Klassen von Schedulern verhindern. Zudem wird eine Laufzeitanomalie vorgestellt, die vor
allem bei vollständig dynamischen Algorithmen auftreten kann.

Dhall’s Effekt

Dhall’s Effekt [19] tritt auf, wenn ausführbare Tasksets mit geringer Auslastung nicht aus-
geführt werden können. Insbesondere Algorithmen ohne Berücksichtigung der Auslastung,
wie RMS oder EDF, sind von diesem Effekt betroffen. Der Effekt tritt auf, wenn mehrere
hochpriorisierte Tasks (T1, T2) mit geringer Auslastung die Ausführung mindestens eines
niedriger priorisierten Tasks (T3) mit hoher Auslastung verhindern, in dem sie alle vor-
handenen Prozessoren nutzen. Durch höhere Priorisierung des Tasks mit hoher Auslastung
kann dieses Problem verhindert werden. Abbildung 2.1 illustriert diesen Effekt. Oben wird
das Taskset mittels EDF ausgeführt, bei dem T3 die Deadline nicht einhalten kann, während
unten T3, beispielsweise nach EDF-US, eine höhere Priorität erhält und T2 auf einen anderen
Prozessor verdrängt.

Anomalie nach Levin

Besonders von Bedeutung für prioritätsgetriebene Schedulingalgorithmen für Multiprozes-
soren sind Tasksets wie von Levin et al. [2] aufgeführt. Dies zeigt die Grenzen einfacher
prioritätsgetriebener Algorithmen, beispielsweise von global ausgeführtem EDF und EDF-
US Scheduling. Im Folgenden wird ein periodisches Taskset für einen Zweikernprozessor
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Fig. 2. This two-processor scenario with three tasks demonstrates Dhall’s
effect [2]. Although it is possible to schedule all tasks according to their
deadline (bottom schedule), Earliest Deadline First (EDF) fails to do so
(schedule on top).

A popular approach to multi-processor real-time scheduling
is to statically allocate tasks to processors so that a task
will never be migrated to another one. The alternative to
this partitioned approach, is the global approach where each
processor can execute each task and tasks will be migrated
accordingly. Migrating tasks results in additional overhead, but
it is the only way to handle pure global task sets as depicted
in Figure 3. Grundlagen
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Fig. 3. This two-processor scenario with three tasks demonstrates Levin’s
pure global task sets [11]. Although it is possible to schedule all tasks
according to their deadline (bottom schedule), it is impossible to do so by
pinning tasks to a single processor (schedule on top).

There are algorithms that avoid Dhall’s effect and are
capable of scheduling pure global task sets while allowing
utilizations of up to almost 100%. Proportionate Fair Schedul-
ing [11], [12] and Dp-fair use a fluid scheduling model with
fair task progress, which requires a reprioritization of all
tasks at predefined time intervals. Largest Local Remaining
Execution First (LLREF) [13] follows a similar model, but
reprioritizes based on the laxity and execution time of the
active tasks, instead of static time intervals. When it comes to
theoretical maximal system utilization, these scheduling algo-
rithms perform exceptionally well. However, depending on the
frequency of the reprioritizations, they show oscillation effects
and introduce significant scheduling overhead. This overhead is

comprised of the execution time of the more complex schedul-
ing algorithm itself, the overhead for switching the active
tasks and the overhead for task migration between processors.
Another restriction is that the aforementioned reprioritizing
algorithms are only suitable for periodic task sets. Hong et al.
[14] formulated the hypothesis that there is no optimal priority-
driven algorithm for sporadic task sets. This hypothesis has
been proven by Fisher [15].

A. Research Gap

In this work, we contribute to the field of real-time multi-
processor scheduling by presenting an approach to:

• Identify novel algorithms by exploring the solution
space for real-time scheduling algorithms.

• Create algorithms complying with desired character-
istics such as the number of task migrations and
maximal system utilization.

As a means to implement these goals, we use genetic
programming to evolve real-time scheduling algorithms with
pre-selected characteristics. Using genetic programming for the
creation of our algorithms allows us to cover a wide variety
of scheduling alternatives, thereby helping us to identify the
attributes and functions that are most successful to reduce
overheads while allowing for a solid system utilization. While
being able to create optimal algorithms for many of the task
sets we used in our evaluation, we were unable to identify
an algorithm that is optimal for the general case. However,
these findings harmonize with the proof of Fisher [15], which
states that no optimal algorithm can exist for the general case.
Running such a compute-intense simulation to identify suitable
algorithms was only possible due to the performance of
modern processor and state-of-the-art accelerator technologies.

We are not the first to apply genetic algorithms to the
research area of scheduling algorithms for multi-processor
systems. Hou et al. [16] and Greenwood et al. [17] used genetic
algorithms and evolutionary strategies to generate heuristics for
predefined task graphs. While demonstrating the feasibility of
the approach, both studies focussed exclusively on task sets
that are known upfront and created heuristics that, while useful
in for multi-processor systems in general, did not consider real-
time requirements.

Furthermore, there are existing studies that simulate
scheduling algorithms to evaluate their qualitative and quanti-
tative characteristics [18]–[20]. These approaches are sophis-
ticated to gain insight into capabilities of a single selected
scheduling algorithm, while our approach allows sift through a
vast amount of scheduling algorithms to identify the interesting
candidates for further examination.

To the best knowledge of the authors, we are the first to
apply genetic programming for an exploration of the real-time
scheduling algorithm solution space for arbitrary task sets.

III. APPROACH

Mathematical modeling of the task scheduling domain and
proving the qualities of particular scheduling algorithms be-
comes increasingly complicated the more complex the schedul-
ing algorithms are. Thus, the next best thing would be a simu-
lation of all possible scheduling algorithms starting with a very
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limited set of terms and functions and iteratively considering
more, when the current complexity is exhaustively studied.
Such an approach has to handle humungous state explosions
with every additional variable and function. Evolutionary pro-
cesses and genetic algorithms have proven to be ideal for
these kinds of scenarios, since they confine unpromising states
while iteratively exploring the more promising ones. [21]–[23]
This section discusses the application of genetic algorithms to
identify promising scheduling algorithms.

A. Architecture

The general architecture of our approach is depicted in
Figure 4. We start by loading the three kinds of task sets, that
we use as the workload for our simulation. The task sets are
described in detail in Section III-B. Furthermore, we generate a
number of initial prioritization schemes. Prioritization schemes
form the core of our scheduling algorithms. They encapsulate
everything that is needed to assign priorities to task sets.
The generic task scheduler shown in Figure 5 will use these
schemes to prioritize the tasks and then simply schedule them
based on their priorities.

Task sets

Read 
representative 

task sets

Generate 
stochastic 
task sets

Generate 
complete 
task sets

Generate 
prioritization schemes

Prioritization schemes

Evalute prioritzation schemes with task sets

Rate prioritzation schemes based on scheduling success

Evolve 
prioritization schemes

Fig. 4. Architecture: the evolutionary process iteratively refines the scheduling
strategies using a variety of task sets.

1 for(runtime = 0;

2 runtime < simulationEnd && !missedDeadline(tasks);

3 ++runtime)

4 {

5 activeTasks = filterActive(tasks);

6

7 // this is exchanged with each prioritization scheme

8 prioritizationScheme->prioritizeTasks(activeTasks);

9

10 orderDescendantByPriority(activeTasks);

11 tasksToSchedule = selectFirst(activeTasks, processors);

12

13 simulateDiscreteStep(tasksToSchedule);

14 }

Fig. 5. The generic scheduler is the core of our implementation. In our
implementation schedulers only differ in the way they assign priorities to
tasks at any given point in time throughout the execution. This scheduling
strategy is determined by the prioritization scheme.

The evolutionary process is conducted iteratively with the
following consecutive steps: evaluation, rating, evolving. In the
evaluation step, each prioritization scheme is used to schedule
each of the task sets. It is monitored how many tasks switches
and task migrations were required and how many of the
task sets failed to be scheduled successfully, e.g. a deadline
was missed. In the rating step, this information is used to

assign a fitness value to each of the prioritization schemes.
Based on the fitness value the well-known mechanisms of
selection, mutation and crossover are applied to create the next
generation of prioritization schemes. This process is repeated
until candidates with fitness values that are sufficient to comply
with our requirements have been found, e.g. prioritization
schemes capable of scheduling all task sets successfully, or
a predefined maximal runtime is exceeded.

By adapting the fitness rating accordingly, this architecture
allows us to easily ensure that the scheduling algorithms
comply with our requirements when balancing task migrations
and maximal supported utilization.

B. Task Sets

The quality of the resulting prioritization schemes depends
primarily on the task sets that are used for the fitness rating
of the evolutionary process. We distinguish between three
categories of task sets: representative task sets, stochastic task
sets and complete task sets.

Representative task sets are a selection of tasks sets from
the literature that is used to evaluate the capability of a
prioritization scheme to handle the ’hard’ cases. For single
processor scenarios, we have task sets that can barely be
scheduled by Rate Monotonic Scheduling (RMS), cases that
RMS fails to schedule, but Earliest Deadline First (EDF) can
schedule. In the multi-processor scenarios, we we extend these
conventional task sets so that the workload increases according
to the number of processors. Furthermore, we add task sets
that show different effects discussed in Section II. Our set
of representative task sets includes both periodic and sporadic
task sets. Most of these task sets could be scheduled with a par-
titioning strategy, e.g. without task migration. Consequently,
we added pure global task sets as described by Levin et al. [11]
to complete our mix of representative task sets. An overview of
aforementioned task sets and the ability of selected scheduling
algorithms to find a feasible schedule is presented in Table I.

While representative task sets are well suited to remove
prioritization schemes that fail to handle the problematic cases,
stochastic task sets allow us to assess the overall scheduling
performance by mitigating undesireable overfitting effects. To
accomplish this, we generate a number of task sets with a
pseudo-random generator based on a stochastic distribution.

Complete task sets are created by generating every pos-
sible combination of task distributions for a given number
of processors and number of scheduling time slices (quanta).
Since both representative task sets and stochastic task sets are
included in complete task sets, they deliver the best quality
for the evaluation. The drawback is, though, that the amount
of task sets that have to be generated grows exponentially and
renders computation unfeasible for all but very small amounts
of processors and quanta. In our experiments, we studied
complete tasks sets for up to 8 processors and quanta of up to
6 intervals, resulting in about 108 task sets.

C. Evolution

We represent each prioritization scheme as an abstract
syntax tree (AST) that can be executed for a task to produce a
priority. Figure 6 shows an example. The evolutionary process
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TABLE I. CHARACTERISTICS OF OUR SET OF REPRESENTATIVE TASK SETS. THE RIGHT PART OF THE TABLE SHOWS WHICH PROCESSOR
CONFIGURATIONS CANNOT BE SCHEDULED BY EXISTING SCHEDULING ALGORITHMS. 1, 2, 4, 8, 16 ARE THE NUMBERS OF PROCESSORS USED.

CONFIGURATIONS MARKED WITH A * CAN ONLY PARTLY BE SCHEDULED. PLEASE NOTE THAT LEVIN’S PURE GLOBAL TASK SETS [11] CAN NEITHER BE
SCHEDULED BY APPROACHES THAT APPLY A SIMPLE PARTITIONING, NOR BY APPROACHES THAT ARE SENSITIVE TO UTILIZATION.

periodic partitionable Laxity-based global EDF EDF-US EDZL
RMS3 X X 2*
RMS4 X X 2* 4 8 16 4* 8* 16*
WikiEDF X X
Partitioned X X 2* 4* 8* 16* 4* 8* 16* 2* 4* 8* 16* 4* 8* 16*
Dhall X 2 4 8 16 1*
SlackDhall X 4* 8* 16* 1* 2* 4* 8* 16* 4* 8* 16*
Detail X 2
Split X
Interwoven X 2 4 8 16 2 4 8 16 1 2 4 8 16 2 4 8 16
Levin [11] X 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

of selection, mutation and crossover was realized according
to the literature. [21]–[23] The initial population is generated
purely randomly, with a restricted AST depth of up to 5.

Fig. 6. Prioritization schemes are represented as abstract syntax trees.
Mutations and crossovers are realized by varying and exchanging nodes. In
this example (LD �AD) + C mutates to become log(LD,AD) + C.

TABLE II. ATOMIC AND SIMPLE DERIVED TERMINALS, BASED ON THE
CURRENT TASK AND THE SYSTEM.

x random floating point values from -10.0 to 10.0
0, 1 constant values 0 and 1

m number of processors
A arrival time

RD relative deadline (relative to arrival time)
C capacity = worst case execution time

PT amount of C that has already been executed
P current task priority (starting with 0)
T current point in time

AD absolute deadline = A + RD
ST slack = RD - C

L remaining surplus time = (AD - T) - (C - PT)
U utilization created by task = C / RD

LD remaining execution time = C - PT
RU remaining utilization = LD / (AD - T)

The nodes in the AST are the terminals listed in Table
II. We distinguish between three types of basic terminals:
numbers, system terminals, task specific terminals. System
terminals comprise of the processor count and the time. Task
specific terminals are deadline, worst case execution time and
so forth. In addition to these, we provide a selection of derived
terminals. These are not essential, since they would be gener-
ated by the evolutionary process anyway, but since they are the
core of many of the popular scheduling algorithms like EDF
[2] and LLF [3] we provided them, as well. Furthermore, the
introduction of derived terminals improved the performance
of the evolutionary process significantly. Please note that the
resulting prioritization schemes do not consider the other tasks
in the system, thereby guaranteeing a linear execution time of
the represented scheduling algorithm.

The set of functions supported by our AST are: addition,
subtraction, multiplication, protected division, protected loga-
rithm, exponentiation, check for equality, check for inequality,
selecting the minimum, and selecting the maximum. Checking
for equality and inequality will produce either 1 for success
or 0, allowing a combination with the other functions: AD *
(L == 0).

The fitness of a prioritization scheme is rated according to
multiple objectives [23]. A prioritization scheme is considered
better than a similar one, if it can either schedule more task
sets successfully or needs significantly less migrations for
the scheduling. The impact of the objectives on the fitness
functions can be configured by weights. For the selection
process, we experimented with different population sizes. We
observed that a tournament based selection process with 8
participants and a population size of 100 produced the best
results.

In our experiments, we experienced overfitting effects [22],
where the identified candidates were capable of scheduling
all the task sets we trained them with. This is useful, if
you want to use the approach, to find the perfect schedule
for a specific task set. In the study of the solution space
for scheduling algorithms, it is a hindrance, though, because
overfitted prioritization schemes perform worse in the general
case. To control overfitting, we created two distinct sets of task
sets – the first to evolve the schemes and the second for the
final evaluation. Furthermore, we applied randomizations and
weighted function length negatively, since long functions tend
to overfit more, than shorter ones.

D. Implementation and Performance Tuning

For the practical evaluation, we implemented the concep-
tual architecture presented in Figure 4. Fortunately, the repeti-
tive steps of generation, evaluation and selection are suited for
a parallel implementation. Our initial measurements indicated
that the evaluation step is the predominant workload causing
99.99% of the overall execution time. As a consequence, all
optimization efforts were directed at improving the efficiency
of the evaluation step.

The time required for the evaluation process was greatly
reduced using several optimization techniques: Using a stack-
based representation of terms resulted in a decreased number
of memory allocation operations compared to a tree-based
data structure. At the same time, the stack-based structure
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managed to increase the degree of data locality. Targeting the
goal of data locality as well, an additional blocking method
was applied to increased the amount of cache hits. Finally, we
evaluated several strategies to vectorize our implementation.
However, in contrast to the other optimizations, none of the
vectorization strategies resulted in any significant performance
improvements.

In addition to an x86 64 CPU-based implementation, we
also created prototypes targeting Intel’s Many Integrated Core
(MIC) architecture exclusively as well as a hybrid version. The
hybrid implementation applies an asymmetric load distribution
scheme between the CPU and the MIC in order to maximize
the execution speed.

The Xeon Phi accelerators based on the MIC architecture
consist of 57-61 cores that are based on a modified P54C
design. Unlike GPU compute devices, all cores of a MIC
accelerator can act independently of each other. This property
makes the MIC architecture a promising target for the parallel
evaluation of diverse prioritization functions. Since the MIC
architecture supports x86 64 instructions, the optimization we
conducted improved the performance for both architectures.

IV. EVALUATION

A. Qualitative evaluation

As described in Section III-C, we designed our implemen-
tation to assign fitness ratings based on weighted objectives.
Figure 7 shows the impact of weighting migrations with 10%.
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Fig. 7. Fitness ratings that are based on the number of executable task sets
exclusively show a faster evolutionary progress, but introduce a considerable
amount of task migrations.

A selection of the resulting prioritization functions is listed
in Table III. In this example, L/RU was capable of scheduling
all task sets, but required a substantial amount of task migra-
tions. As another interesting candidate, AD reduced the number
of migrations by a factor of 35.9, but failed with over 25% of
the task sets. These examples show that even simple functions
can handle the training task sets very successfully. Our second
set of task sets proved to be greater challenge. We conducted
elaborate simulation runs each with up to 200 generations.
The most successful ones were capable of scheduling 83%
of the task sets successfully. Some of them, such as 1 / L,
were capable of executing pure global task sets, but failed
with others.

TABLE III. THE QUALITY OF EXEMPLARY PRIORITIZATION
FUNCTIONS BASED ON CAPABILITY OF SCHEDULING TASK SETS AND THE

NUMBER OF REQUIRED TASK MIGRATIONS.

function # executable task sets migrations / task set
L/RU 75 100 % 862
L 71 94.67 % 819
AD 56 74.67 % 24
AD � 1.0 56 74.67 % 24

Figure 8 and Figure 9 show which terminals and functions
are most dominant. The terminals that are used by the state-
of-the-art scheduling algorithms such as laxity L, remaining
execution time LD, deadline AD are successful at surviving the
selection process. Surprisingly, the processor count, that could
be a mechanism to distinguish single-processor from multi-
processor systems is only scarcely used for prioritization. The
most prominent functions are basic arithmetic functions such
as addition and multiplication as well as selecting the minimum
and maximum. Functions allowing terminals to have strong
influence on the results such as exponentiation and logarithm
are only used rarely.
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Fig. 8. Terminals with dynamic properties such as Laxity L, remaining
execution time LD and remaining utilization RU were especially successful in
the evolutionary process.
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Fig. 9. In our evolutionary process arithmetic operations as well as minimum
and maximum operations were predominant.

In the majority of our experiments, we found a vast amount
of candidate prioritization schemes with interesting properties.
However, a generic optimal solution was not found, concurring
with the literature [11], [14], [15].
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B. Performance evaluation

Our optimized implementation was able to retrieve valid
prioritization functions for multiprocessor systems ranging
from 1 up to 400 processors in a feasible amount of time.
Benchmarks were performed in a test environment equipped
with two Xeon E5620 processors, each containing 4 cores
clocked at 2.40 GHz, and 24 GB of main memory. Further-
more, a Xeon Phi 5110P accelerator was employed, providing
8 GB of dedicated memory and 60 cores clocked at 1.053
GHz.
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Fig. 10. Across all problem sizes for m, the MIC always outperforms
the CPU. However, the hybrid approach HYP always provides an additional
performance improvement on top of the MIC performance.

The measurements illustrated in Figure 10 demonstrate that
even though evolutionary approaches require huge amounts of
compute resources, modern CPUs empower us to accomplish
the task in acceptable time. The first generation of MIC-based
hardware accelerators allowed us to push the limit a little
further by achieved speedup factors of 2 for m = ⇠ 102.

V. CONCLUSION

In this work we have studied the feasibility of genetic
programming and the evolutionary process to explore the
solution space of priority-based scheduling algorithms. We
found that this approach is indeed helpful to identify the
terminals and functions that are most dominant in promising
prioritization schemes. Furthermore, we demonstrated that it is
possible to weight desired characteristics like task migration
and find optimal schedulers for static task sets by exploiting
overfitting.

None of the scheduling algorithms that we generated, not
even the most promising ones were capable to schedule all our
task sets successfully. These findings harmonize with Fisher’s
proof [15] that no optimal priority-driven scheduling algorithm
exists for arbitrary task sets.
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