
Implementing Adaptive Clustered Scheduling in
LITMUSRT

Aaron Block
Department of Mathematics and Computer Science

Austin College
Sherman, TX

Email: ablock@austincollege.edu

William Kelley
BAE Systems

Fort Worth, TX

Abstract—In this paper, we develop an adaptive scheduling
algorithm for changing the processor shares of tasks on real-
time multiprocessor systems where tasks are assigned to clusters
of processors. Additionally, we implement this adaptive algorithm
as a LITMUSRT plugin. Our focus is on adaptive systems that are
deployed in environments in which tasks may frequently require
significant share changes. Prior work on enabling real-time
adaptivity on multiprocessors has focused primarily on systems
where tasks are scheduled from a global priority queue. The
algorithm proposed in this paper use feedback and optimization
techniques to determine at runtime which adaptations are needed.

I. INTRODUCTION

Real-time systems that are adaptive in nature have received
considerable recent attention for both uniprocessor and multi-
processor environments [1], [4]–[6], [10], [11]. In prior work
[5], we designed and implemented an adaptive multiprocessor
scheduling algorithm (A-GEDF), in which all tasks are sched-
uled from a single global priority queue and can freely migrate
between processors. As shown in [9], global systems have the
advantage that they can fully utilize a multiprocessor system
and still guarantee that deadlines will miss their deadlines
by at most a bounded amount. However, Bastoni et al. [2]
demonstrated that for soft-real time systems with many pro-
cessors (i.e., 12 or more cores), global scheduling algorithms
are inferior to algorithms in which tasks can migrate between
a cluster of processors that share a common cache. In this
work, we designed and implemented (as a LITMUSRT plugin)
an alternative adaptive multiprocessor real-time scheduling
algorithm (A-CEDF), which is a modification of A-GEDF that
uses a clustered scheduling algorithm as its basis rather than
a global scheduling algorithm. In this paper, we showed that
adaptive behavior (which can improve the Quality of Service
of a soft real-time systems) can be enabled on a clustered
system without substantially increasing the scheduling cost.

II. TASK MODEL

In this section, we describe our system model and the CEDF
scheduling algorithm, upon which A-CEDF is based.

A. Sporadic Tasks
A sporadic task is defined by a worst-case execution time

and period. The fraction of a processor required by a task is

called the weight of the task, and is defined as the worst-case
execution time divided by the period. The first job of a task
may be invoked or released at any time at or after time zero.
Successive job releases of task must be separated by at least
the period of the task. The deadline of a job is period time
units after the job is released. A job is said to be active if it has
been released, but is not yet completed. In this work, we are
concerned with soft real-time systems where it is acceptable
for a job to miss a deadline as long as the amount of time that
a job can miss a deadline is bounded (such a system is said
to have bounded tardiness).

The actual execution time of job is the amount of time for
which the job is actually scheduled. The actual weight of a
job is the share of a processor that a job actually requires and
is defined by the actual execution time of a job divided by the
period of the task. We assume that actual execution time and
actual weight for a job are unknown prior to the completion
of the job since both values may differ between job releases.

The multiprocessor sporadic task scheduling algorithm that
is the most relevant to this work is clustered earliest deadline
first. (CEDF). Under CEDF, tasks are permanently assigned
to “clusters” of processing cores that share a common cache.
Jobs with work remaining are prioritized for scheduling on
a cluster by their deadline. Jobs can be scheduled on any
processor in their cluster, but cannot be scheduled outside
of their cluster. As shown in [2] for soft real-time systems,
CEDF-based scheduling tends to perform better than non-
clustered approaches when clusters contain at least six cores.

B. Adaptable Sporadic Tasks
The adaptable sporadic task system [7] extends the notion

of a sporadic task system in three major ways. First, worst-
case execution times are not assumed. Second, each task has
a set of service levels, which represent a different Quality of
Service (QoS) levels of a task. Third, tasks have a weight
translation function, which uses the actual weight and current
service level of a task to estimate the actual weight of the task
if it changed service levels.

Each service level of a task has three characteristics: a
QoS value, a period, and a code segment. When a job is
released, it is released at a given service level. That service
level determines the code segment that the job will execute,

33



the deadline of the current job (via the period) and the earliest
possible release time of the next job (again via the period).

The weight translation function of a task is an empirically-
determined function that takes as an input the current active
weight and service level of a task and provides an estimate of
what the weight of task would be if it changed to a new service
level. For example, if service level 2 for a task required twice
as much computation as service level 1 and the current weight
of a task was 0.25, then changing from service level 1 to 2
would change the weight of the task to 0.5. It is unnecessary
for the weight translation function to be perfectly accurate, but
the more accurate it is, the better an adaptive algorithm will
be optimizing system QoS. It is important to note that tasks
with lower QoS values must have lower estimated weights.
Thus, an adaptive algorithm can trade QoS for schedulability.

III. A-CEDF
In this work, we introduce the adaptive clustered earliest

deadline first (A-CEDF) scheduling algorithm. A-CEDF is
a clustered-scheduled variant of the adaptive global earliest
deadline first (A-GEDF) scheduling algorithm, which we
proposed in prior work [7]. A-CEDF is designed to schedule
adaptable sporadic task with the objective of maximizing the
total QoS while maintaining bounded tardiness. A-CEDF con-
sist of five primary components: (1) the predictor, which uses
a proportional-integral (PI) feedback controller to estimate the
weights of future jobs using the actual weights of previously
completed jobs; (2) the optimizer, which given estimated job
weights, attempts to determine an optimal set of functional
service levels; (3) the repartitioner, which given the estimated
job weights attempts to determine the optimal assignment of
tasks to clusters; (4) several reweighting rules, which are used
to change the functional service level of a task to match that
chosen by the optimizer; and (5) the CEDF algorithm. At a
high level, these components function as follows.

• At each instant, tasks are scheduled via CEDF.
• At a job’s completion, the predictor is used to estimate

the weight for the next job release.
• After a developer-specified threshold based on task

weight and time elapsed, the optimization component
uses the estimated weight to determine new service levels
for each task. If the service level of a job changes, then
the reweighing rules will enact it.

• If the clusters are “imbalanced”, then the repartitioner
will correct this behavior by migrating tasks between
clusters. If necessary, the optimization and reweighting
rules may be run as part of this process.

The primary difference between A-CEDF and A-GEDF is that
A-GEDF allow tasks to freely migrate between all processors.
Thus, A-GEDF does not need or have a repartitioner compo-
nent. That being said, A-CEDF and A-GEDF have similar
predictors, optimizers, and reweighting rules.

IV. IMPLEMENTATION

To better understand A-CEDF, we implemented this al-
gorithm in the LITMUSRT version 2014.2 (LInux Testbed

for MUltiprocessor Scheduling in Real-Time systems), which
is an extension of Linux (currently, version 3.10.41) that
allows different multiprocessor scheduling algorithms to be
linked as plug-in components [3], [8]. Our implementation of
A-CEDF consists of both a user-space library and kernel sup-
port added to LITMUSRT. Our implementation of A-CEDF
required 1,227 lines of code. Most of these changes were in
modifying LITMUSRT’s default CEDF implementation. In
prior work [7], we discussed how to modify LITMUSRT

to support adaptable sporadic tasks scheduled via global
scheduling algorithms. In this work, we focus on the additional
challenges that arise when implementing clustered real-time
adaptive scheduling algorithms.

A. Challenge: Defining “Imbalanced”

As we mentioned in Sec. III, A-CEDF repartitions when
the clusters are imbalanced. Informally, the clusters become
imbalanced if one cluster is doing more or less work than
another. However, it is not obvious how we should formally
define “imbalanced.” There are two metrics that we can use
to measure the quality of a partitioning: (1) the total weight
of all tasks assigned to a given cluster and (2) the total QoS
of all tasks assigned to a given cluster. Under either metric, a
system is “imbalanced” if the metric value (i.e., total weight
or QoS) of one cluster is higher than a user-defined threshold
the metric value of another.

In this work, we repartition the system when there is an im-
balance between the QoS of tasks assigned to different clusters.
We chose to use a QoS-based metric because the objective of
A-CEDF is to maximize the QoS without causing unbounded
tardiness. Thus, the weight balance by itself is not useful if
the system could run at a higher QoS after rebalancing. For
example, consider the following scenario. Suppose that an
external event occurs that increases the execution time for all
tasks on a given cluster. The optimizer component of A-CEDF
will reduce the service level (and hence the QoS) for every
task on the cluster. If this reduction in QoS is larger than the
user-defined threshold, then this will trigger the repartitioning
to occur. It is possible that such an event would be unnoticed
by a weight-based metric; particularly, if the total weight of
all tasks was approximately the same before the external event
and after the optimizer ran.

B. Challenge: Enacting a Repartioning

When the system determines that tasks should be reparti-
tioned, the next question is when should that repartitioning be
enacted. There are two primary approaches to this problem: (1)
migrate all tasks to new clusters immediately or (2) gradually
migrate tasks between clusters over time. In our implementa-
tion of A-CEDF, we migrate tasks gradually. Specifically, after
a repartitioning event, we migrate each task when it finishes
its active job. We chose this approach because, based on a
simple extension to our work in [6], it is possible to show that
frequently moving incomplete jobs between clusters can cause
unbounded tardiness.

34



Additionally, it is worth noting that since repartitioning
occurs because of QoS imbalances, the quicker the repartition
is enacted, the better it is for the overal QoS for the system.
Yet, quickly enacting a repartitioning is not crucial for the
functioning of the system. Thus, while gradually migrating
tasks between clusters will reduce the QoS of the system, we
believe this tradeoff is worth the cost to preventing unbounded
tardiness from occurring.

C. Challenge: Migrating a Task
In the typical implementation of CEDF, each cluster has its

own spin lock for protecting the priority queue containing all
active jobs. This prevents a race condition in which multiple
cores on the same cluster attempt to change the priority queue
at the same time. Moreover, under CEDF tasks never migrate
between clusters. This is not the case in A-CEDF.

To enable A-CEDF to migrate a task from Cluster A to
Cluster B, we need two layers of synchronization: (1) one
layer to prevent any core on Cluster B from corrupting Cluster
B’s priority queue and (2) one layer to prevent any core on
Cluster A that is migrating a task to Cluster B from corrupting
Cluster B’s priority queue. Moreover, Cluster A cannot simply
acquire Cluster B’s spin lock or a deadlock could occur (e.g.,
if Cluster B attempted to migrate a task to Cluster A at
approximately the same time that Cluster A is attempting to
migrate a task to Cluster B). To enable task migration, we
need a more sophisticated approach to synchronization. We
do so by employing the following method:

• Each cluster has a unique ID number.
• Each cluster has a prime and second spinlock.
• When entering into any critical section, a core first

acquires its cluster’s prime lock, then its second lock.
• When a task that is flagged for migration from Cluster A

to Cluster B, it executes the pseudo-code given in Fig. 1.
There are three keys to this synchronization technique. First,
the prime lock on each cluster protects the priority queue
from corruption by all cores in the same cluster. Second, the
second lock provides a means to protect a cluster’s priority
queue from external corruption (i.e., Cluster A must acquire
Cluster B’s second before migrating the task). Third, by
releasing and reacquiring second locks in a globally estab-
lished order (i.e., the code in Fig. 1), we prevent the circular
chain of dependencies that is a prerequisite for deadlock.
Notice that this ordering heuristic is similar to the double-lock
used by Linux for its native run queues.

D. Cost of Implementation
To measure the cost of an implemented A-CEDF, we ran

a simulated virtual reality human tracking system (called
Whisper [12]) on a Mac Pro with two 2.66 Ghz 6-core Intel
Xeon processors (12 cores total). Each core has 512KB of
L2 cache and each processor has 12 MB of fully shared L3
cache. Our clustered implementation of A-CEDF had two
clusters, one for each processor. Our simulated human tracking
system had 96 tasks each of which had both gradual and
sudden changes in weight. We found that the introduction of

Migrate task from Cluster A to B
1: Release Cluster A’s second lock
2: if Cluster A’s ID is less than Cluster B’s ID then
3: Acquire Cluster A’s second lock
4: Acquire Cluster B’s second lock
5: else
6: Acquire Cluster B’s second lock
7: Acquire Cluster A’s second lock
8: fi
9: Actually move task from cluster A to B
10: Release Cluster B’s second lock

Fig. 1. Pseudo-code defining task migration

adaptive techniques slightly increased the average scheduling
cost compared to a non-adaptive variant. Specifically, A-CEDF
took on average 5.8µs per scheduling decision while CEDF
took on average 4.3µs per scheduling decision. The increased
running time was primarily becasuse our implementation of
the of the optimizer and repartitioner involves sorting a large
number of tasks. It is possible to reduce the running time of
A-CEDF by using a faster, but less accurate implementation
of these two components. It is worth noting that neither
the feedback predictor nor the double-locking mechanism
appreciably increased the scheduling time.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented A-CEDF as a
LITMUSRT plugin. In the process of implementing A-CEDF,
we came across multiple issues with implementing any type
of adaptive clustered real-time scheduling algorithm. We also
established that adaptive behavior can be enabled in clustered
soft-real time systems with only a small additional scheduling
cost. In future work, we plan to compare the performance of
A-CEDF to A-GEDF at maximizing the QoS for a system.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In RTSS. ’02.

[2] A. Bastoni, B. Brandenburg, and J. Anderson. An Empirical Comparison
of Global, Partitioned, and Clustered Multiprocessor Real-Time Sched-
ulers. RTSS, ’10.

[3] B. Brandenburg Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, UNC, ’11.

[4] A. Block, J. Anderson, and G. Bishop. Fine-grained task reweighting
on multiprocessors. Journal of Embed Comp, ’11.

[5] A. Block, Adaptive Multiprocessor Real-Time Systems. PhD thesis,
UNC, ’08,

[6] A. Block, J. Anderson, and U. Devi. Task reweighting under global
scheduling on multiprocessors. Real-Time Sys., ’08.

[7] A. Block, B. Brandenburg, J. Anderson, and S. Quint. An Adaptive
Framework for Multiprocessor Real-Time Systems. ECRTS, ’08.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In RTSS, ’06.

[9] U. Devi and J. Anderson. Tardiness bounds under global EDF schedul-
ing on a multiprocessor. Real-Time Sys., ’08

[10] N. Khalilzad, F. Kong, X. Liu, M. Behnam, and T. Nolte. A feedback
Scheduling Framework for Component-Based Soft Real-Time Systems.
RTAS., ’15

[11] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Sys., ’02.

[12] N. Vallidis Whisper: A Spread Spectrum Approach to Occlusion in
Acoustic Tracking. PhD thesis, UNC, ’02.

35


