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Abstract—In multiprocessor Network-on-Chip (NoC) architec-
tures it is common that CPU local memory space is limited,
with external memory accessed across the NoC infrastructure.
Clearly it is imperative for real-time performance that local
memory is used effectively, with code and data moved from
external memory when required. One common approach is for
the local memory to be comprised of two levels, ie. cache and
memory. Software mechanisms are used to move code and data
between local memory and external memory, eg. scratchpad
mechanisms. In this paper we explore the issue of using paging to
supplement this approach, ie. a hardware mechanism to automate
movement of code and data between external memory and per-
CPU local memory within the NoC. This has wide-ranging
potential benefits in from efficiency and real-time performance,
through application programmability (ie. potential support of
logical address spaces). However, the limited amounts of local
memory raise the problem of thrashing. Therefore, we examine
the effect of limiting thrashing effects by only loading the parts
of pages that are referenced (rather than the entire page).
The approach is assessed against a real-time video application,
considering different page replacement policies.

I. INTRODUCTION

Both transistor scaling [1] and power density limitations [2]
have motivated the move towards multiprocessor architec-
tures. However, it is often not possible to provide the many
CPUs within a chip large local memories. In multiprocessor
Network-on-Chip (NoC) architectures it is common that CPU
local memory space is limited, with external memory accessed
across the NoC infrastructure - eg. Tilera [3], Intel SCC [4]
and Epiphany [5].

The management of this hierarchical memory architecture
efficiently so that real-time performance can be maintained
is challenging. We note that this is a historic problem –
CPUs speeds have generally increased faster than memory
(and bus) speeds, forming a memory bottleneck as systems
had to wait excessive times for new code and data to be loaded
from slower layers in the memory hierarchy. If management
of the memory hierarchy is not sufficient, then the overall
architecture will spend more time moving code and data
between local and external memory than actually computing
– the phenomenon of “thrashing” [6].

The most efficient way of populating this local, faster,
memory uses the optimal paging algorithm (OPT) – pages
with the longest reuse distance are discarded [7]. OPT is
“clairvoyant” as it relies on knowledge of future events. While
occasionally this knowledge is available to programmers of
embedded devices, a more general solution to the problem
of thrashing was demonstrated by Denning’s “working set”
method, which, relying on the strong tendency of computer
programs to show locality of reference in the short-term,

stipulates that the most effective practical paging policy will
be that which retains in memory those pages referenced in the
past within a pre-defined time, called the working set window
[8]. In fact, Denning’s algorithm has proved to be difficult or
impractical to implement, but most general computing devices
and operating systems use an approximation, typically some
form of “least recently used” (LRU) algorithm.

This paper explores the issue of using paging within NoC
architectures. CPUs within the NoC typically have a cache and
a small bank of SRAM. Large DRAM banks and permanent
storage are available externally, accessed via the NoC mesh
[3], [4]. Memory resources on the chip are limited — but time
to access external memory is much higher than local memory
(partly due to contention over the shared NoC mesh). As a
consequence the problem of thrashing reappears. Therefore
we examine the effect of limiting thrashing effects by only
loading the parts of pages that are referenced (rather than the
entire page). The approach is assessed against a real-time video
application, considering different page replacement policies.

In section 2 we review relevant related work. In section 3
we model the performance of conventional paging systems.
Sections 4 and 5 introduce a new approach where only part of
a page is loaded. Section 6 offers a discussion and conclusions.

II. RELATED WORK

The wide variety of parallel programming frameworks is
perhaps a testimony to the essential difficulty of programming
parallel systems. The problems, such as the limitation imposed
by the need for at least some code to be serial - “Amdahl’s
Law” [9] - as well as the difficulties of maintaining coherence
and efficiency across a large number of centres of execution
are familiar. They are joined by the need to master a novel
technology when considering NoC systems. As the authors
of [10] state, it has been difficult to “make it easy to write
programs that execute efficiently on highly parallel computing
systems.” Perhaps this is one reason why research has tended
to concentrate on the use of NoCs as specialist accelerators
[11]. This is also true of researchers’ discussions of virtual
memory use on NoCs. For instance, in [12] the authors discuss
an efficient caching scheme to accelerate sorting.

Other researchers have examined how memory management
for GPUs, which, while being “single instruction, multiple
data” devices unlike the “multiple instruction, multiple data”
devices we are considering, have much in common with NoCs.
In [13] it is noted that OPT is not, in fact, optimal when
the size of the working set of the data is much greater than
the available local memory capacity. In [14] a method of
improving cache performance by dynamically altering memory
reuse distance is discussed.
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Recent research into paging systems has concentrated on
large memory systems. While, in [15], it was shown that
smaller page sizes could reduce the fault count, more recent re-
search, such as [16], has emphasised that, with large quantities
of physical memory (relatively) cheaply available, minimising
the cost of translation between virtual and physical addresses
larger page sizes are better options to speed up computing in
common use domains.

In [17] alternatives to traditional hardware designs to sup-
port virtual memory are explored and a model proposed that
saves power and adds flexibility to operating system design.

III. MODELLING THE PERFORMANCE OF PAGING
SYSTEMS

Standard paging approaches move whole pages of code and
data en bloc the memory hierarchy. This allows a logical
address space to be presented to the application programmer –
the familiar abstraction of a single and unified address space.
However, this is not common within real-time systems (and
largely unsupported on existing NoCs). The remainder of this
section considers a standard real-time application and assesses
its performance with respect to paging.

The x264 program from the PARSEC benchmark suite [18]
was used. It was configured to run with a maximum of 16
threads (as we proposed to model a system with 16 cores) –
note 18 threads in total were created, though simulations run
no more than 16 at once.

Running the benchmark under a modified version of the
Valgrind Lackey program [19], we could separate the memory
references of each thread of execution and classify every such
reference as one of the following:

• instruction – like a load sees a memory location is
accessed but not modified;

• store – where a memory location is written to;
• modify – a location is first accessed and then written to

in a single interaction.
Whilst every instruction has an initial impact similar to that
of a load (in that the address of the instruction itself must
be accessed), an instruction may also cause consequent loads,
stores or modifies. Additionally, the point at which each new
thread was released was marked.

The modified Lackey program produced an XML stream
recording every memory access by every thread in time order.
This is then used to model different models of on- and off-chip
memory interaction and storage. The XML stream recorded
the order in which memory addresses were accessed by each
thread but contained no specific timing information and thus
did not record any delays for thread synchronisation - so
by its nature any processing of the XML could only be an
approximation of how different paging policies would behave.

The modelled hardware system has 16 cores, each with
32KB of local memory (forming a 512KB pool of on-chip
memory), this was loosely based on the Tilera example [11].
We assumed that all on-chip memory was immediately (i.e.,
in one “tick”) available to all cores (i.e., we ignored both the
issues of on-chip synchronisation and on-chip communication
delays) and assumed that a standard cache line of external

Figure 1. OPT and LRU compared

memory (128 bits, or 16 bytes) was available after a delay
of 100 cycles/ticks. So, for instance, a 4KB page would take
25,600 ticks to load. The experiment does not model caching
behaviour or the costs of writing-back modified pages as these
aspects do affect the broad behaviour of the NoC model when
using paged memory.

Our central finding was that FIFO, LRU (including LRU 2Q
varieties) and even OPT replacement policies all showed the
characteristics of thrashing as the system became memory I/O
bound. Additional CPUs did not speed the system up, rather
slowing each individual CPU as they were constrained by the
small overall pool of memory1.

Figure 1 shows the simulated performance of OPT and LRU
for 4KB pages and also the performance of an LRU algorithm
with 2KB page sizes2. The number of lines processed indicates
progress in completing the benchmark, while the simulated
ticks is an analogue for time. It will be seen that although
using 2KB page sizes increases performance (despite resource
restraints), all the lines, including that for OPT, display a
common characteristic - that the rate of progress becomes
constant. As Figure 2 shows, applying more CPUs to the
task does not speed up its execution: the lines processed
per simulated tick remaining constant even as more threads
are being executed and more processors are being used. The
graph shows that the simulated system is memory I/O bound:
additional CPUs cannot squeeze any more computing power
from the system as they simply fight each other for access to
the limited memory pool.

1The model employed barrier synchronisation and if two threads both
requested the same page both would gain access to it when it loaded on
the earliest request. Threads simply blocked when waiting.

2To compensate for the additional size and cost of page tables that 2KB
pages would require we allocated 30KB per core and increased the access
time to 2 ticks for a present page.
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Figure 2. OPT algorithm: more processors do not speed execution

Figure 3. Logarithmic plot of the frequency of different sizes of contiguous
memory allocations

IV. PARTIAL PAGING APPROACH

Figure 3 shows small (16 bytes or fewer) contiguous
memory allocations were orders of magnitude more likely than
larger allocations. Since pages were being pushed out quickly,
we tested the proposition that a partial paging allocation
policy – pages are populated one cache line (ie.16 bytes) at a
time – could improve performance.

In this case we used 2KB pages and 30KB per core, with
a cost of four ticks to access a present memory block and we
tracked whether a given 16 byte block was present through a
bitmap. The result, seen in Figure 4, was improved perform-
ance: as more threads are executed and additional CPUs used,
the processing rate increases – mitigating thrashing.

Figure 4. Partial paging: additional processors speed execution

A. Testing the Partial Paging Approach
The partial paging approach was tested using the OVPSim

instruction accurate simulator [20] with MicroBlaze soft CPU
[21] which delivers one instruction per cycle, enabling instruc-
tion count to be a good approximate to cycle counting.

1) Unmodified Microblaze: Each thread’s XML output
from the modified Valgrind Lackey was converted into Micro-
Blaze memory load and write instructions and was executed
using simple page tables. In an unmodified MicroBlaze such
code will continue to run (assuming no other problems) so
long as a translation lookaside buffer (TLB) is able to translate
the virtual address being accessed into a physical address.
If address was not translatable by a TLB then an exception
would be raised – ie. when the memory being accessed is not
available “locally” (as though in the on-chip pool) and so must
be copied from a “remote” address.

Three TLB entries were “pinned” (ie. made permanent
and unchangeable), so ensuring the code providing basic VM
services and the generated code, the page tables and the page
frames would always have appropriate translations.

The system was configurable, eg. to have more page frames
of physical memory than TLB entries. However within this
paper we focus on the case where the number of page frames
of physical memory was the same as the number of TLB
entries (up to the maximum supported 64 TLB entries). In
this case every TLB miss corresponds to a “hard fault” – ie. it
requires a new page to be loaded into physical memory and,
in all cases after the system has used all available physical
memory, the eviction of a currently present page3.

The demand paging FIFO page replacement system was
tested to determine the fault count of 4KB and 1KB pages
(the two smallest sizes supported on the MicroBlaze). As can

3The MicroBlaze has no timing device within OVPSim with so eviction
policies followed a “first-in, first-out” (FIFO) policy as opposed to the more
efficient CLOCK-type LRU approach
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Figure 5. Fault count for traditional paging approach for different page sizes

Figure 6. Instructions required to complete task

be seen in Figures 5 and 6, for a fixed amount of local memory,
the 1KB pages delivered a lower fault count and required many
fewer instructions to be executed to complete the task.

On each page fault that led to an eviction, as well as
executing code to manage the page tables, the system was
required to write back an evicted page as well as copy the
incoming page into memory designated as holding a “local”
page frame - no DMA functions were available on this simple
model and so this was all carried out in assembly loops that
copied memory from one address to another. As can be seen
in Figure 6, this made the 1KB page model substantially
more efficient than even the lower fault count along might
suggest: there were fewer faults and each cost less to handle.
At this point we made no allowance for the cost of transferring

TLBs Instructions: traditional paging Instructions: alternative paging
4 157,493,205 n/a
8 20,219,450 18,545,020

12 12,651,719 14,717,082
16 9,930,702 13,457,998
20 8,215,518 12,614,663
24 7,457,021 12,270,902
28 6,844,912 12,079,901
32 6,468,068 11,834,218
36 6,140,900 11,717,928
40 5,329,413 11,558,408
44 4,226,715 10,619,623
48 3,897,005 10,453,064
52 3,651,137 10,315,069
56 3,322,324 10,092,510
60 3,296,123 10,076,433
64 2,991,081 9,910,243

Table I
INSTRUCTION COUNTS FOR “TRADITIONAL” AND “ALTERNATIVE” 1KB

PAGING SYSTEMS

memory from a “remote” to a “local” address, merely counting
the number of instructions required to execute the copy.

2) Microblaze with Partial Paging: The OVPSim Micro-
blaze code was modified to include partial paging – ie. pages
loaded in 16 byte blocks. Now, while a TLB miss exception
would be thrown in the normal way if an address translation
was not available, each reference to an address mapped to
“local” memory would raise an interrupt. The interrupt handler
then would check a bitmap to see if the addressed 16 byte
block has been loaded from remote memory to local memory.
If it has no further action was taken and the interrupt handler
returns, if it has not then a “small fault” is raised and the
appropriate 16 byte line loaded, bitmap updated, and the
interrupt handler returns. This means a substantial code block
was executed on every memory reference, though the code
executed when the fragment being accessed was present was
significantly shorter than when it was missing. Hard faults still
occur and in most cases (after the initial period when empty
physical pages are being written to) require a page write-back
(again, we did this for all pages) as well as a low cost bitmap
reinitialisation. In such cases, only those 16 byte lines marked
as present are written back. On a hard fault only the initially
requested 16 byte block was loaded.

As Table I4,5 shows, comparisons show higher instruction
counts for all but the smallest amounts of available local
memory. However instruction counts do not provide a full
comparison between the two systems. Although partial paging
generally executes more instructions to complete the task,
it also loads smaller amounts of memory. Each fault on a
1KB traditional system requires a minimum of a 1KB page
load - typically costing somewhere between 4800 cycles (if
global memory is 75 cycles “away”) and 8000 cycles (if global
memory is 125 cycles per 16 byte cache line away).In contrast
the alternative system only needs to load those lines it requires.

Partial paging shows superior performance when the timing

4For the traditional system three TLBs are pinned so, for instance 16 TLBs
leaves 13KB for physical pages, for the alternative system four TLBs are
pinned and 16 TLBs leaves 12KB for physical pages

5The bitmaps were pinned in memory, so losing a further TLB entry and
so the alternative system needs a minimum of 5KB or 5 TLBs
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Figure 7. Estimated total cycles required by different paging algorithms: in
each case the top line is for global memory 125 cycles away and the bottom
75 cycles away

TLBs in use (Hard) Faults Instructions
8 88,875 249,531,853

16 71,404 222,944,264
24 63,276 205,776,575
32 56,527 194,463,472
48 47,217 180,191,027
64 40,905 171,472,116

Table II
FAULT AND INSTRUCTION COUNT RESULTS FOR ILLUSTRATIVE LOW

LOCALITY LOAD (TRADITIONAL PAGING)

is normalised. Figure 7 illustrates: the estimated total cycles
required if global memory access cost is 75, 100 and 125
cycles per 16 byte cache line is compared for the two al-
gorithms. Here partial paging requires fewer cycles (for this
memory access pattern) when local memory is around 32KB
or less. The flat performance profile of partial paging suggests
this is dominated by the interrupt handler code rather than the
number of faults (completing the task requires a set number
of memory accesses and so the handler is run a set number
of times regardless of the number of TLB entries in use).
Improving the performance of this part of the process, such
as making the checking of the bitmap a sub-cycle task in
hardware could dramatically increase the advantage of the
alternative approach.

TLBs in use Hard and small faults Instructions
8 113,150 108,389,860

16 112,668 108,556,316
24 112,134 109,586,781
32 111,594 110,708,748
48 110,261 114,716,046
64 108,769 118,125,334

Table III
FAULT AND INSTRUCTION COUNT RESULTS FOR ILLUSTRATIVE LOW

LOCALITY LOAD (PARTIAL PAGING)

It should be further noted that, as we did not differentiate
between page types6, we did not account for the cost of
writing back pages in this comparison, beyond the instructions
required to be executed: such a count would certainly increase
the advantage of partial paging. For instance, with 32 TLB
entries, the average page has 144 bytes loaded on eviction and
so only nine 16 byte blocks would need to be written back.
The use of instruction count for comparison does account for
the relative complexity of the two situations: in the case of the
alternative approach the bitmap must be read to decide which
blocks are to be written back.

We further tested the partial approach with a semi-
randomised7 selection of pages and, unsurprisingly, the partial
paging approached showed a very strongly enhanced perform-
ance, as illustrated in Tables II and III.

V. POTENTIAL ADDITIONAL ADAPTATIONS

We were able to consider some additional adaptions to the
partial paging algorithm.

A. Testing other loading sizes
Partial paging was tested with 32 byte and 64 byte loads.

Such larger loads reduce the number of small faults and Table
IV summarises the results. The marginal efficiency of the
larger loads increases with the amount of TLB entries in use
- for 8 TLB entries there are 2.9 more small faults with a 16
byte load size than for a 64 byte load size, while for 32 TLB
entries the ratio is 3.1:1 and for 64 it is 3.2:1, but the gains are
not dramatic and, given that the number of interrupts raised is
the same regardless of the load size used then it is plain that,
without hardware adaption, there is no benefit to using larger
load sizes.

TLBs Hard Small: Small: Small:
in use faults 16 bytes 32 bytes 64 bytes

8 8357 21122 12612 7375
12 4526 18858 10953 6249
16 3301 17209 9988 5702
20 2543 15822 9105 5203
24 2184 15144 8651 4936
28 1956 14688 8377 4763
32 1741 13893 7876 4472
36 1609 13400 7557 4272
40 1469 12866 7230 4079
44 1027 10623 5983 3367
48 919 10183 5733 3219
64 626 8513 4764 2649

Table IV
FAULT COUNTS FOR DIFFERENT LOAD SIZES COMPARED

B. Moving from FIFO to LRU
The presence of an interrupt on every memory access does

allow experimentation with an LRU page replacement policy
– noting additional costs of management of page lists etc.

6We could have assumed that no instruction pages were to be written back
but for the sake of simplicity we treated all pages in the same way, so write-
back code is executed for all pages

7Pages were selected from the same range of addresses and with approx-
imately the same frequency and with allocation sizes modelled on the results
shown in Figure 3, but with no stronger bound of locality.
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We tested two forms of LRU: a partial policy where the page
order was updated only on a hard or small fault, and a full
LRU where the page list order was updated on every access.
The results are summarised in Table V – both approaches
significantly lower the total fault count compared to FIFO.
For a 32 TLB system (ie. with 28KB of local memory), there
are 9% fewer faults with the partial approach and 25% fewer
with the full LRU policy. These would save 142,500 cycles
and 388,100 cycles respectively in load time from global
memory 100 cycles away. However, the cost of implementing
the LRU policies in additional instructions greatly outweigh
these, as shown in Table VI. The high cost of manipulating the
ordered list decisively counts against the full LRU approach
in particular.

TLBs FIFO Partial LRU Full LRU
16 20510 18847 16492
32 15634 14209 11753
48 11102 10337 8355
64 9139 8762 7455

Table V
FAULT COUNTS- HARD AND SMALL COMBINED - FOR DIFFERENT PAGE

REPLACEMENT ALGORITHMS

VI. CONCLUSIONS

Virtual memory has been part of the standard programming
toolkit for around half a century. In recent years much re-
search focus has been on how to improve the performance of
machines with large amounts of memory, yet, at the same time,
a problem from the dawn of virtual memory - thrashing - has
also reappeared, especially in devices that might be otherwise
expected to run highly parallel real time computing tasks,
such as video processing, at speed. Our simulations suggest
that such systems, if using virtual memory, could improve
performance by both using smaller page sizes (and so travel
in the opposite direction of systems processing “big data”)
and adopt a new sub-paging approach of loading in memory
in cache line size blocks. However, our initial research also
suggests that significant speed improvements will only come
if we can match the bitmaps that record which parts of a page
have already been populated to accessed addresses in hardware
and thus sub-cycle.

We propose that such hardware adaptions would be pos-
sible: hardware memory management units (MMU) have long
supported address translation and lookup on a sub-cycle basis.
We have adopted a bitmap as an efficient method with which
to map internal memory allocations in software, but it may
be that other methods are more hardware efficient. In [22] a
hardware bitmap-based memory allocator is discussed, while
[23] discusses an MMU designed specifically for system-on-
chip hardware.Further work includes investigation to see if a
suitable hardware modification can be made (using an FPGA

TLBs FIFO Partial LRU Full LRU
16 13,457,998 15,448,631 31,501,330
32 11,834,218 14,951,934 43,505,073
48 10,453,064 13,852,267 55,552,516
64 9,910,243 13,728,863 68,390,135

Table VI
INSTRUCTIONS EXECUTED FOR EACH PAGE REPLACEMENT ALGORITHM

based software). This can then be used within an existing NoC
architecture to evaluate the approach fully.
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