

On the Efficiency of the Information Networks in Social Media

Mahmoudreza Babaei, Przemyslaw A. Grabowicz Isabel Valera, Krishna P. Gummadi, Manuel Gomez-Rodriguez

1. Information Network ——

- Twitter
- Facebook
- Google Scholar
- Google +

2. Motivation

Social media users follow multiple other users to receive relevant information:

- 30% of Twitter users follow 50+ other users
- 50% of Twitter users receive 500+ tweets/day

Problems:

- 1. Difficulties in managing large number of followees/subscriptions
- 2. Overload with redundant information
- Delays in arrival of information

3. Key research question -

- How efficient are users at selecting their information sources?
- How we can improve the efficiency of users?

4. Definitions of efficiency

To compute an efficiency we compare the original **set** of followees with a corresponding optimal set that provides the same pieces of information.

The original set of followees

1. Link-optimal set contains the smallest number of

users.

Minimum set contains 3 users, while original set contains 5 users:

Link efficiency
$$E_u^l = \frac{|U^l|}{|U|} = \frac{3}{5}$$

2. Inflow-optimal set

provides the least amount of tweets per time unit.

Optimal set contains 30 posts, while original set contains 60 posts:

Inflow efficiency $E_u^f = \frac{f(U^f)}{f(U)} = \frac{30}{60}$

3. Delay-optimal set provides the contagions as early

as possible.

Optimal set contains users providing the contagions without delay:

Efficiencies take values from 0 to 1, where 1 corresponds to a perfectly efficient user.

5. Efficiency of users in real world

- Users acquire information sub-optimally (efficiencies<1)
- Users tend to be less efficient at acquiring popular pieces of information

Inflow Efficiency, E_f **Inflow Efficiency**

0.4 Delay Efficiency, E_{δ} **Delay Efficiency**

Improved by 80%!

Improved by 40%!

We introduce a fast heuristic method that cross-optimizes both inflow and delay efficiencies at once, using a greedy algorithm solving weighted set cover problem.

6. Structure of optimized users' networks

optimization

The optimized information networks cannot be discovered via triangle closure (creating links to friends of friends)

7. Future work

- Could we creating a relink recommender system for real information networks that improves various efficiencies of users?
- Does user efficiency change over time? What is its relation with user activity?
- Compare user efficiencies across different existing information networks