Controller Area Network

When is CAN Bus the Weakest Link? A Bound on Failures-In-Time in CAN-Based Real-Time Systems

Arpan Gujarati and Björn B. Brandenburg

Safety-critical real-time systems

- **Automotive systems** surrounded by motors
- **Robots** operating under hard radiation
- **Industrial systems** close to high-power machinery

Host Faults

Hangs, crashes, incorrect outputs

Electromagnetic Interference (EMI)

Transmission Faults

Corrupted messages in networked systems

Retransmissions to tolerate transmission faults

- **Message transmitted**
- **EMI fault on the wire**
- **Error detected**
- **Message queued for retransmission**
- **Error notification**

Active replication of tasks to tolerate host faults

- **Task A (replica 1)** sends a copy
- **Task A (replica 3)** sends a copy
- **Aggregation protocol masks the error**

Higher Replication

- Better resiliency against host faults
- Higher probability of correctness
- But increased bus load

Increased bus load

- Less slack for retransmissions
- Lower probability of timely message deliveries

Problem

How to quantify the inherent **tradeoff** between retransmission and replication?

Probabilistic analysis to derive the Failures-In-Time (FIT) rate

(failures in one billion operating hours, e.g., one million cars driving for one thousand hours each)

FIT rate spans more than 20 orders of magnitude

Optimal replication factor is readily apparent

Analysis is safe and tracks simulation results