
©Copyright 2018

Antoine Kaufmann

Efficient, Secure, and Flexible High Speed Packet Processing
for Data Centers

Antoine Kaufmann

A dissertation
sumbitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Reading Committee:

Thomas Anderson, Chair

Arvind Krishnamurthy

Xi Wang

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Efficient, Secure, and Flexible High Speed Packet Processing for Data Centers

Antoine Kaufmann

Chair of the Supervisory Committee:
Thomas Anderson

Computer Science & Engineering

Data center applications by design rely heavily on network communication. Network

bandwidth in data centers is rapidly increasing, but processor performance is only im-

proving at a slower pace. This puts increasing pressure on software packet processing

and causes applications to spend more time in the network stack. Existing approaches

such as kernel bypass and RDMA reduce software processing overhead but trade off pol-

icy compliance or flexibility for performance.

This dissertation demonstrates data center packet processing can be made efficient,

scalable, policy compliant, and flexible. I propose a novel architecture for dividing packet

processing functionality across the network interface card (NIC), the operating system,

and the application. First, with FlexNIC I develop a reconfigurable NIC model that sup-

ports scalable NIC-software processing. Second, I demonstrate FlexTCP, a data center

TCP network stack for FlexNIC, and show that FlexTCP increases per-core throughput

by up to 10.6× compared to Linux and up to 4.1× compared to kernel bypass while still

enforcing policy constraints. Finally, I use FlexNIC speed for three data center applica-

tions, customizing and integrating NIC processing with application logic, demonstrating

a throughput improvement by up to 2.3× for these applications.

Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Reducing Packet Processing Overhead . 3
1.2 Flexible Hardware Packet Processing . 6
1.3 Goals . 7
1.4 Thesis: A Novel Architecture for Packet Processing 8
1.5 Outline . 11

2 Background 12
2.1 Data Center Networks . 14

2.1.1 Applications . 14
2.1.2 Programming Interface . 16
2.1.3 Protocols . 19
2.1.4 Network Interface Cards . 24
2.1.5 Networks . 34

2.2 Commodity OS Network Stack . 37
2.2.1 Network Stack Architecture . 38
2.2.2 TCP Overheads . 39
2.2.3 Discussion . 42

2.3 Proposal: Kernel Bypass . 45
2.3.1 Safe User-Level Access to Network Interface Cards 45
2.3.2 Discussion . 47

i

2.4 Proposal: Protocol Offload . 50
2.4.1 TCP Offload Engines . 50
2.4.2 Discussion . 51

2.5 Proposal: Programmable NICs . 53
2.5.1 Network Processor NICs . 53
2.5.2 FPGA-based NICs . 54
2.5.3 Discussion . 54

2.6 Proposal: Remote Direct Memory Access . 56
2.6.1 Programming Model . 56
2.6.2 Protocols . 58
2.6.3 Implementations . 60
2.6.4 Comparison to TCP/IP . 61
2.6.5 Discussion . 63

2.7 Conclusion . 64

3 FlexNIC Hardware Model 67
3.1 Design Goals . 67
3.2 Reconfigurable Match Tables in Switches . 69
3.3 Applying Reconfigurable Match Tables to NICs 71

3.3.1 Constraints . 74
3.4 Building Blocks . 75
3.5 Discussion . 76

4 TCP Processing 79
4.1 Goals . 79
4.2 Challenges . 81
4.3 FlexTCP Network Stack Design . 82

4.3.1 FlexNIC Functionality . 83
4.3.2 Kernel . 87
4.3.3 User-space TCP Stack . 89

4.4 Flexible FlexTCP Extension . 90
4.5 Implementation . 92
4.6 Limitations . 94
4.7 Discussion . 95

ii

5 Application Integration 97
5.1 Key-Value Store . 97

5.1.1 Motivation . 98
5.1.2 Design Goals . 100
5.1.3 FlexKVS Components . 100
5.1.4 FlexNIC Implementation . 103

5.2 Real-time Analytics . 104
5.2.1 FlexNIC Implementation . 105

5.3 Intrusion Detection . 107
5.3.1 FlexNIC Implementation . 108

5.4 Discussion . 108

6 Evaluation 110
6.1 FlexTCP . 110

6.1.1 Remote Procedure Call (RPC) . 112
6.1.2 Packet Loss . 116
6.1.3 Key-Value Store . 117
6.1.4 Real-time Analytics . 119
6.1.5 PCIe NIC Performance . 122
6.1.6 Congestion Control . 123

6.2 Application Co-Design . 126
6.2.1 Methodology . 126
6.2.2 Key-Value Store . 128
6.2.3 Storm . 130
6.2.4 Snort . 133

6.3 Discussion . 134

7 Related Work 136
7.1 Software Packet Processing . 136

7.1.1 Kernel Stack Improvements . 136
7.1.2 Kernel Bypass . 138

7.2 Hardware Packet Processing . 139
7.2.1 NIC Improvements . 139
7.2.2 Programmable Network Hardware 140

iii

7.2.3 Cluster Message Passing . 141
7.2.4 GPU Packet Processing . 141

7.3 Application Layer Protocols . 142
7.3.1 High-performance Applications . 142
7.3.2 NIC-Application Co-design . 143

8 Conclusion 144
8.1 Future Work . 145

8.1.1 Addressing Limitations . 146
8.1.2 Opportunities with FlexNIC . 149
8.1.3 Thoughts for the Future . 150

Bibliography 153

A FlexTCP Pseudocode 168
A.1 NIC Pseudocode . 168

A.1.1 Packet Reception . 168
A.1.2 Transmission . 173
A.1.3 Queue manager events . 173

A.2 Rate-based DCTCP control loop . 177
A.3 FlexTCP Queue APIs between Components 179
A.4 FlexTCP Low-level Application Interface . 181

iv

List of Figures

2.1 Example of a descriptor receive queue. 26

2.2 Example multi-rooted network topology. 35

2.3 Conventional kernel network processing architecture 38

2.4 Kernel bypass processing architecture. 45

2.5 Protocol offload processing architecture. 50

3.1 RMT switch pipeline. 69

3.2 RMT-enhanced NIC DMA architecture. 70

4.1 FlexTCP design overview. 83

5.1 FlexNIC receive fast-path for FlexKVS. 101

5.2 FlexStorm top-n Twitter users topology. 104

5.3 Storm worker design. 106

5.4 Acknowledging incoming FlexStorm tuples in FlexNIC. 107

6.1 FlexTCP single-threaded RPC echo throughput and latency. 113

6.2 FlexTCP single-threaded pipelined RPC throughput. 115

6.3 FlexTCP packet loss throughput penalty. 117

6.4 FlexKVS throughput scalability with FlexTCP. 118

v

6.5 Throughput for different FlexStorm configurations on FlexTCP. 120

6.6 Single link congestion control sensitivity. 124

6.7 Congestion control flow completion time comparsion. 124

6.8 FlexTCP connection fairness under incast. 125

6.9 FlexKVS throughput scalability with flow-based and key-based steering. . . 128

6.10 Top-n tweeter throughput on various Storm configurations. 131

vi

List of Tables

2.1 Comparison of previous packet processing architectures. 13

3.1 Meta data format for DMA requests. 73

4.1 Breakdown of lwIP TCP tasks by complexity. 81

4.2 FlexTCP per-flow NIC state . 88

6.1 FlexKVS request latency with FlexTCP. 118

6.2 FlexStorm tuple processing time on FlexTCP. 121

6.3 FlexKVS request processing time. 129

6.4 FlexStorm tuple processing time. 132

6.5 Snort throughput and L3 cache behavior. 133

vii

Acknowledgements

I would like to start out by thanking my advisors, Tom Anderson, Simon Peter, and

Arvind Krishnamurthy. From the very start of my PhD, Tom has always been happy to

help with valuable advice on research, career, and life; I credit him fully with getting me

to where I am today. I benefited tremendously from starting out my PhD sitting at a desk

right next to Simon, sparking countless discussions and leading to an ongoing fruitful

collaboration on ideas, prototypes, and experiments alike. Arvind has always provided

interesting technical insights as well as a positive attitude. I would also like to thank

Mothy Roscoe, for helping me get started in my research career.

This dissertation and the papers on which it is based have resulted from a collabo-

ration with my advisors as well as Naveen Sharma and Tim Stamler. Both Naveen and

Tim have helped with implementing prototypes and experiments and have contributed

to many discussions. I would also like to thank Xi Wang, Michael Taylor, and Scott Hauck

for serving on my thesis committee.

My time at the University of Washington would not have been such an enjoyable ex-

perience without the members of the systems lab: Pedro Fonseca, Helga Gudmundsdottir,

Yuchen Jin, Niel Lebeck, Jialin Li, Ellis Michael, Luke Nelson, Naveen Sharma, Haichen

Shen, Helgi Sigurbjarnarson, Adriana Szekeres, Qiao Zhang, Irene Zhang, Kaiyuan Zhang,

and Danyang Zhuo. In particular, I really enjoyed the many lunches, evenings playing

viii

squash, and other outings with Naveen, Adriana, and Jialin. Xi Wang and Dan Ports have

also provided interesting discussions and distraction when needed.

Finally, I thank my family for their support. My parents, Jacqueline and Andreas, have

been a constant source of support and encouragement. Most of all, my wife, Justine, has

been my best friend and companion through most of this process.

ix

Dedication

to my wife, Justine

x

Chapter 1

Introduction

Data centers are the platform of choice for increasing numbers of applications and global

services. By combining millions of processors, network components, and storage devices

into gigantic computers, data centers accommodate even the most resource-intensive ap-

plications. At the same time, the consolidation of computational resources into a central

pool amortizes operation overheads providing a cost-effective and flexible infrastructure

for applications of all sizes. Cloud computing extends these benefits to external cus-

tomers, by allowing computation to be out-sourced to data centers over the internet. In

these multi-tenant data centers, security and isolation mechanisms are needed to protect

users.

Modern data centers are composed of individual servers connected by a network and

managed as one system. They vary in size from a few hundred to hundreds of thousands

of servers. Most applications in data centers run across multiple servers, to take advan-

tage of additional computational capacity, memory, and storage, and for resilience against

failures. The different parts of the application use the data center network to communi-

cate. In addition to providing compute resources, data centers also provide additional

1

CHAPTER 1. INTRODUCTION 2

services, such as reliable storage, data management, monitoring, and logging. These are

also accessed over the network. As a result, many data center applications rely heavily

on network communication, both explicitly and implicitly in the services they use. Net-

work communication is increasing as applications continue to scale up to more machines.

Small and frequent interactions, such as remote procedure calls (RPCs), are a particularly

common communication pattern. This stands in contrast to traditional network usage

patterns centering around streaming of large amounts of data.

Data center networks have been growing at a dramatic pace, both to connect increas-

ing numbers of servers and to provide individual servers with more communication

bandwidth [122]. Today individual servers have bandwidths of 25 – 40 Gbps, and net-

works can deliver small messages across a data center within less than 100µs [90]. The

exponential trend towards higher bandwidth and lower latencies is continuing for the

foreseeable future, with 100 Gbps components available off the shelf and 400 Gbps net-

works being standardized [50]. This dissertation concerns how to design servers to be

able to keep up with high-performance networks on the small message workloads com-

mon in today’s data centers.

The Ethernet networks most commonly used in data centers split the responsibility

for network communication between the network and servers. The network itself imple-

ments a basic mechanism to deliver limited size messages from one server to another. It

is allowed to drop packets at any point if insufficient capacity is available. Servers coop-

eratively implement network protocols on top of this basic network for reliable transfers,

larger messages, and to manage network resources (congestion control). These proto-

cols use mechanisms such as splitting large messages into multiple smaller messages,

re-transmitting lost messages, and estimating available network capacity to limit sending

rates.

CHAPTER 1. INTRODUCTION 3

However, while this split enables cost-effective and highly scalable networks, it also

puts pressure on servers to efficiently perform necessary protocol processing. As net-

works dramatically out-pace gains in processor performance, the need for more efficient

server processing continues to grow. A typical communication-heavy data center appli-

cation can spend the majority of its processor cycles on packet processing. When applica-

tions must dedicate much of their computational resources to network processing, that in-

creases cost. As applications continue to scale to more servers and as network bandwidth

continues to outstrip processor speeds, applications will be increasingly bottlenecked by

packet processing overheads.

1.1 Reducing Packet Processing Overhead

Network packet processing overhead is a longstanding problem. A long line of previous

work addresses these overheads by optimizing individual components of the system.

Network Interface Card Capabilities Each server is connected to the network through

a network interface card (NIC). The NIC transfers packets between the physical network

and software running on the processor. Modern NICs offer a spectrum of capabilities to

address certain software overheads. With large segment offload, the NIC splits up chunks

of TCP data from software into multiple packet-sized segments to reduce software over-

head. NICs transfer packets to and from software through descriptor queues that decou-

ple hardware and software, allowing processing to proceed in parallel, minimizing cache

misses, and making efficient use of the I/O interconnect. To enable efficient processing on

multiple processor cores, NICs use multiple send and receive queues and offer steering

mechanisms to assign incoming packets to receive queues. Most of these NIC capabilities

target overheads of large data transfers. They are of limited benefit for the small frequent

CHAPTER 1. INTRODUCTION 4

interactions typical of most data center communication patterns. And the fixed nature of

many NIC features limits their applicability to specific protocol configurations [67].

Operating System Optimization Commodity operating systems such as Linux, Win-

dows, and the BSD family, process packets inside the operating system kernel. Appli-

cations send and receive data by issuing system calls to the kernel. Kernel processing

enables safe hardware access to the NIC and allows the OS to enforce policies, including

protocol invariants and resource allocation. But having this functionality inside the ker-

nel does imply costly context switches between the kernel and applications for every sys-

tem call and interrupt. Optimizations such as system call batching [126], asynchronous

interfaces [44], and uploading application code to the kernel [61] all aim to reduce this

overhead. Most of these optimizations work best for large streaming transfers but result

in little improvement for small message performance.

Kernel Bypass A more radical approach completely bypasses the operating system (ker-

nel bypass) and allows the application to directly access the NIC [65, 137, 104, 60]. Kernel

bypass avoids system call overheads because processing is implemented as a library and

invoked with function calls instead of system calls. Applications can further improve

performance by tailoring processing to their specific requirements [83]. Recent I/O vir-

tualization features allow operating systems to enforce memory isolation for applications

directly accessing the NIC [55]. However, with existing kernel bypass hardware, appli-

cations can transmit arbitrary packets. This effectively removes operating system control

over what and when applications can transmit. In multi-tenant data centers, this is prob-

lematic because the network fundamentally relies on end-host behavior for correct and

efficient operation.

CHAPTER 1. INTRODUCTION 5

Protocol Offload Protocol offload engines take NIC assistance to the logical extreme and

fully offload protocol processing to the NIC [24, 21]. This frees up the server processor for

executing application logic. Offload also typically improves latency and throughput be-

cause a dedicated hardware circuit can execute the mechanical protocol processing steps

more efficiently than a general purpose processor [15]. The primary drawback of a hard-

ware protocol implementation in the data center context is the loss of flexibility. After

deployment, protocol processing can no longer be modified and new protocols cannot

be supported. NICs based on field programmable gate arrays (FPGAs) [108, 143] enable

reconfigurable processing after deployment but are considerably more expensive than

commodity NICs. 1.

Remote Direct Memory Access An alternative approach is to change the programming

model from message passing to remote memory access, that can be completed in hard-

ware without processor involvement on the receiving side [31, 53, 51, 111]. For appli-

cations that can be (re-)designed in that model, remote direct memory access (RDMA)

can provide efficient network communication. However, a data center scale RDMA im-

plementation must address the same requirements as a TCP implementation with similar

mechanisms, including reliable message delivery and congestion control [41, 141]. RDMA

combines the new programming model with protocol offload and thereby inherits the

same limitations, including the loss of protocol flexibility. The choice of the programming

model is orthogonal to how the model is implemented.

1In July 2018 on Google Shopping, a commodity Intel XL710 40Gbps NIC was available for $410, while
the FPGA-based Mellanox Innova Flex and Solarflare AOE NICs sold for $2050 and $7080 respectively.

CHAPTER 1. INTRODUCTION 6

1.2 Flexible Hardware Packet Processing

The rapid evolution of network protocols and requirements also leads to operational and

deployment challenges for data center networks. Historically, the switches that connect

devices in Ethernet networks were proprietary fixed-function devices, that supported a

pre-defined set of protocols. OpenFlow [85] and the rise of software-defined networking

(SDN) brought flexibility to network control planes, but the actual forwarding function-

ality and the supported protocols remained fixed. Recent innovation in switch design is

leading to a new generation of switches with re-configurable data planes [15, 19, 5]. They

support customizable packet formats as well as flexible stateful processing and can be re-

programmed after deployment. At the same time, they operate at aggregate bandwidths

of up to 6.5 Tbps.

Reconfigurable match tables (RMT) [15] provide a basis for reconfigurable data planes.

In RMT, packets enter the switch through a programmable parser, to identify relevant

packet fields. Packets then pass through a fixed-sized pipeline of match-action stages,

similar to a systolic array [72]. Each pipeline stage can be programmed to perform ta-

ble lookups and execute simple actions in response, such as modifying a header field, or

manipulating stateful memory. The RMT pipeline architecture places limitations on pro-

cessing that can be supported, because of the fixed depth and computational capacity of

each stage. These limitations are necessary given the throughput requirements. However,

these primitives are sufficient for implementing standard Ethernet switch functionality

and open up possibilities to implement a wide range of new protocols and behavior.

RMTs are an attractive architecture for reconfigurable hardware packet processing at

line-rate. But there are significant differences between packet processing in switches and

in servers. Switches only make forwarding and queuing decisions for each packet. Packet

processing in servers must also implement complex resource management policies, e.g.

CHAPTER 1. INTRODUCTION 7

for multi-tenant isolation. NICs must also interact with application and kernel software

components running on the server.

1.3 Goals

Thus, any solution to improve the performance and flexibility of server packet processing

in the data center must achieve the following goals:

• Efficiency: Data center network bandwidth growth continues to outpace processor

performance. To manage, data center systems must deliver increasingly efficient

packet processing, especially for latency-sensitive small packet communication that

is the common case behavior for data center applications and services.

• Connection Scalability: Packet processing must also support increasing numbers

of connections, as applications and services scale up to larger numbers of servers

inside the data center.

• Performance Predictability: Another consequence of this scale is that predictable

performance is becoming as important as high common case performance for many

applications. In large-scale systems, individual user requests can access thousands

of backend servers [58, 98] causing one-in-a-thousand request performance to deter-

mine common case performance in many cases.

• Policy Compliance: At the same time, processing must enforce security and iso-

lation policies across multiple tenants. From a security point of view, applications

from different tenants must be prevented from intercepting of and interfering with

network communication from other tenants. Interference can take many forms, in-

cluding spoofing other applications, overloading resources at the end-host or inside

CHAPTER 1. INTRODUCTION 8

the network, or exploiting implementation vulnerabilities. Processing must be able

to enforce policies such as bandwidth limits, memory isolation, network address

translation, or the use of specific protocols including congestion control.

• Protocol Flexibility: Data centers are a fast moving environment. Network infras-

tructure is evolving and data center network protocols are an active area of research.

New applications are also constantly being rolled out and existing applications are

evolving, leading to changes in application protocols, architecture, and performance

characteristics. Packet processing must be flexible in adapting to new protocols, net-

work infrastructure, and application requirements.

• Cost Efficiency: Finally, any architecture for accelerating packet processing has to

be economical. The total cost of ownership factors in hardware cost, available pro-

cessor capacity for applications, and energy. For hardware cost, I use chip area as

a proxy. Costs for hardware extensions, for example, must be justified by reduced

processor time for software processing or reduced energy consumption.

1.4 Thesis: A Novel Architecture for Packet Processing

Thesis: It is possible for data center network packet processing to be made efficient, scalable,

predictable, policy compliant, flexible, and cost effective through a novel architecture that splits

protocol processing between a programmable NIC and a combination of kernel and application

software.

In this dissertation, I propose and evaluate a novel and unique data center packet

processing architecture that achieves these goals. Applications send and receive packets

directly through the NIC, bypassing the kernel. The NIC is designed with a special con-

figurable engine to allow it to directly perform most common network and application

CHAPTER 1. INTRODUCTION 9

protocol processing steps, yet can run at high line rates and is efficient to implement in

hardware. The kernel is left to handle less frequent protocol events and out-of-band pro-

tocol processing. I show that the architecture is rich enough to implement TCP, the most

common protocol used in data centers today. The architecture improves application per-

core throughput by up to 10.6× compared to Linux, and up to 4.1× compared to kernel

bypass.

This dissertation makes the following contributions:

FlexNIC: Reconfigurable Network Interface Hardware Architecture I propose Flex-

NIC, a new hardware architecture for reconfigurable NIC processing. FlexNIC allows

kernel software to install packet processing, memory transfer, and rate-limit rules into the

NIC. This tailors NIC operation to handle common case packet processing traditionally

done in software, reducing memory and processing overheads. Operating systems can

use FlexNIC to improve packet processing performance for existing and new network

protocols. Applications can upload processing rules to FlexNIC via the operating system

to reduce application-layer processing overheads.

Unlike fixed function hardware, FlexNIC retains the flexibility to adapt to new net-

work protocols and application requirements. Unlike kernel solutions, FlexNIC enables

efficient small message communication. Unlike kernel bypass with commodity NICs,

FlexNIC allows the operating system to enforce policy while applications directly access

the NIC. Unlike RDMA, FlexNIC separates the programming model from the protocol

implementation and can support both message passing and memory access semantics.

FlexTCP: Integrated High-Performance TCP Stack To demonstrate the utility of the

FlexNIC architecture, I design and implement FlexTCP, a new flexible protocol stack that

implements full TCP semantics. TCP functionality is split between the application li-

CHAPTER 1. INTRODUCTION 10

brary, operating system kernel, and FlexNIC. Applications send and receive data directly

through FlexNIC, where processing rules implement reliable TCP data transfers and assist

the kernel in enforcing congestion control. Kernel software handles infrequent operations,

such as opening new connections, and digests congestion feedback out-of-band to adjust

NIC rate limits. FlexTCP enforces resource isolation and provides tighter performance

bounds under load relative to Linux, improving packet handling performance, fairness,

and tail-latency by orders of magnitude, while still providing connection scalability into

the thousands of active flows, policy compliance, and protocol flexibility.

Accelerating Applications with Customized Network Processing Once kernel proto-

col processing is moved to FlexNIC, application packet processing can still be a bottleneck

and can benefit from being moved onto FlexNIC. With FlexNIC, I can offload application-

level protocol processing, steer packets to cores to match application locality, and cus-

tomize the NIC-software interface to streamline the application-specific request process-

ing. Through three application case studies, I show that this approach reduces application

request processing time, improves scalability, and improves cache utilization. When com-

pared to high-performance kernel bypass network stack without FlexNIC, my prototype

implementations achieve 2.3× better throughput for a real-time analytics platform mod-

eled after Apache Storm, 60% better throughput for an intrusion detection system, and

60% better latency for a key-value store. All in the context of a system that unlike other

kernel bypass solutions, provides policy compliance and flexible protocol deployment.

Neither the outlined goals nor the proposed architecture are limited to data centers. This

dissertation focuses on data center networks because the combination of the scale, high

bandwidth, and low latency puts enormous pressure on end-host packet processing, be-

yond that of typical wide-area, enterprise, or mobile networks. Packet processing in these

CHAPTER 1. INTRODUCTION 11

and other regimes is beyond the scope of this dissertation and it remains future work to

evaluate my architecture in this context.

1.5 Outline

The rest of this dissertation is structured as follows:

I begin with an overview of the state-of-the-art in packet processing — covering data

center networks, network stacks, NIC hardware, and RDMA — in chapter 2. Next, I

present my FlexNIC hardware architecture in chapter 3. Chapter 4 presents FlexTCP, my

TCP stack based on co-designed NIC, kernel, and application processing. In chapter 5,

I use three case studies to show how packet processing can be customized for specific

applications. Chapter 6 evaluates the performance of FlexTCP and the three co-designed

applications. I discuss related work in chapter 7. I conclude and discuss future work in

chapter 8.

Chapter 2

Background

Existing software and hardware packet processing architectures fail to fully accomplish

the set of goals for data center communication outlined above. Different architectures

achieve different subsets of goals. In this chapter, I discuss these trade-offs and their

architectural origins. This discussion provides the basis for the FlexNIC architecture in

the following chapters.

I start by describing the context for data center network communication section 2.1, in-

cluding application characteristics, protocols, and the software and hardware architecture

for data center networks. Next I discuss the Linux network stack architecture in section 2.2

as a representative example for the majority of today’s data center systems. With kernel

bypass in section 2.3, protocol offload in section 2.4, programmable NICs in section 2.5,

and RDMA in section 2.6, I present four existing approaches for reducing overheads in

kernel processing systems such as Linux. All four approaches trade off either policy com-

pliance, protocol flexibility, or cost efficiency for better performance, but in section 2.7 I

outline how to combine insights from Linux and these approaches to fully achieve the

outlined goals.

12

CHAPTER 2. BACKGROUND 13

Efficient Scalable Predictable Compliant Flexible Economical

Linux 7 7 7 3 (3) (3)
Kernel Syscall over-

head, complex
code

Shared
queues, cache
pressure, TX
scheduling

Multiple
queues, com-
plex code,
HoL blocking

Complete OS
control

Kernel SW;
no app-level
changes

Commodity
NICs;
CPU overhead

Kernel (3) (3) (3) 7 3 (3)
Bypass No syscalls;

SW pkt. pro-
cessing

No shared
queues;
cache pres-
sure, TX
scheduling

Isolated;
complex code,
HoL blocking

No OS en-
forcement

All SW, can be
app speciifc

Commodity
NICs;
CPU overhead

Offload 3 3 3 (3) 7 3
Efficient HW
processing

Only limited
by NIC RAM

Good, fixed
HW timing

Better;
limited HW
knobs

Inflexible Special pur-
pose process-
ing (when
applicable)

FPGAs 3 3 3 3 3 7
Better than
SW;
worse than
ASIC

Only limited
by NIC RAM

Good, fixed
HW timing

Complete OS
control

Full flexibility,
hard to pro-
gram

Expensive

RDMA 3 3 7 (3) 7 3
Efficient HW
processing

Only limited
by NIC RAM

PFC limits iso-
lation

Better;
limited HW
knobs

Inflexible Special pur-
pose process-
ing (when
applicable)

FlexNIC 3 3 3 3 3 3
Efficient HW
processing

Only limited
by NIC RAM

Good, fixed
HW timing

Complete OS
control

Reconfigurable Reconfigurable
hardware pro-
cessing

Table 2.1: Comparison of previous packet processing architectures with respect to my
previously defined goals.
Iconography legend: 3 means the architecture achieves the goal, 7 means the architecture
does not achieve the goal, and (3) means the architecture has pros and cons.

CHAPTER 2. BACKGROUND 14

2.1 Data Center Networks

External factors significantly constrain the design space for server packet processing in

data centers. Some of these constraints are inherent due to the operating environment,

while others are due to design decisions in individual components. Applications have a

range of different performance characteristics and requirements. The programming inter-

faces provided by existing architectures are widely used by many applications. Similarly,

protocols used for data center networks are standardized, typically fixed because of sup-

port inside the network hardware as well as in external servers. The NIC is responsible

for moving data between the physical network and software and includes mechanisms

to do so efficiently. Finally, the physical networks that connect individual servers rely on

specific server behavior to operate correctly and efficiently.

2.1.1 Applications

Modern data centers run a wide range of applications with different performance char-

acteristics. Some applications such as MapReduce [25] jobs perform large data transfers

that are throughput heavy. Other applications primarily send small messages and are

sensitive to communication latency, such as distributed lock services [16] or replication

protocols [73]. Finally, there are applications such as in memory caching servers [98] that

process large volumes of small messages that are sensitive to both latency and through-

put.

Communication Model: Remote Procedure Calls

Across this wide range of transfer sizes, a dominant communication pattern for many

data center applications is remote procedure calls (RPCs). RPCs consist of a request mes-

sage from the client to a server, computation of a response on the server, and a response

CHAPTER 2. BACKGROUND 15

message from the server back to the client. As such, RPCs are a natural fit for interaction

in client server settings but are also an equally good fit for symmetrical settings such as

coordination among nodes in a distributed application. To support this widespread use, a

wide range of frameworks and libraries provide generic RPC functionality [40, 125, 134].

Other applications implement RPCs manually on top of basic transport protocols such as

TCP or UDP.

Regardless of whether RPCs are implemented in a library or directly by the applica-

tion, most applications require their reliable and ordered delivery. Most RPCs have side

effects or other interactions with concurrent calls. As a result lost or re-ordered request

or response messages would result in loss, corruption, or general inconsistency of ap-

plication data. Modern data center networks typically deliver messages reliably and in

order. However, occasional packet loss and re-ordering does occur and servers need to

implement mitigation when they do occur. Applications can achieve reliable and ordered

transmission either by using a reliable transport protocol offered by the OS such as TCP,

or by implementing loss recovery and ordering over an unreliable transport such as UDP.

In addition the correctness critical requirements of ordering and reliability, RPCs also

present performance challenges for network communication. They are often both latency

and throughput sensitive; the client has to wait for the response before it can proceed

and the server processes many requests often only with little application logic running,

causing communication overheads to dominate. Overheads are further exacerbated by in-

efficiencies involved with handling small messages in existing operating systems. RPCs

involve many small messages because typically the request or response messages are com-

pact, often both.

CHAPTER 2. BACKGROUND 16

Deployment Model

The choice of RPCs for communication affects application performance, but it is not the

only significant factor. For small messages in particular, the chosen deployment model

can introduce additional overheads for sending and receiving data. Applications in data

centers are deployed using one of three deployment models: 1) As regular processes on

physical hosts, 2) as containers, and 3) as virtual machines. Running applications di-

rectly on physical hosts incurs minimal overhead, but the inherently weak isolation lim-

its applicability to machines not shared by multiple tenants. Containers isolate tenants

with operating system mechanisms, including per-packet operations such as scheduling

and address translations, resulting in increased overhead. Finally, with virtual machines

(VMs), applications run in separate OS instances and a virtual machine monitor processes

outgoing packets and passes them to and from the NIC. VMs achieve the highest degree

of isolation but also incur higher overheads because of additional protection boundary

crossings into the monitor. Because VMs include whole OS instances they also take longer

to spin up and down, and consume additional resources. The result is a current trend to-

wards containers as isolation mechanisms continue to mature, to improve performance,

resource requirements, and agility while preserving isolation. The rest of this dissertation

focuses on the host architecture for processes and containers and leaves VM support as

future work.

2.1.2 Programming Interface

The deployment model for applications affects performance and isolation, but regardless

of the model applications need a programming interface for network communication.

Berkeley sockets are the dominant interface and are used on Unix-based systems includ-

ing Linux, BSD, and OS X but also other architectures including Windows. This stan-

CHAPTER 2. BACKGROUND 17

dardized interface simplifies porting applications between systems. However, individual

implementations typically extend sockets with additional calls, often to address funda-

mental performance problems. The following discussion focuses on the Linux version of

the API as an example.

Connection Management Before an application can communicate over the network it

needs to create a socket. Connection-less protocols such as UDP require a listening socket.

Connection-oriented protocols can either initiate or accept connections. An application

can directly initiate connections. To accept incoming connections the application has to

open a listening socket. Next the application can accept incoming connections on the lis-

tening socket. After a connection or listening socket is no longer required the application

can close them. Linux represents listening sockets and connection sockets as file descrip-

tors.

Data Transfers After a connection socket (or listening socket for connection-less pro-

tocols) is established the application can issue send and receive calls. Send and receive

calls take a socket, a pointer to a buffer, a number of bytes, and potentially additional

meta data. The number of bytes passed to these calls specifies an upper bound and both

calls can return with less than a full buffer sent or received. Short receives occur if fewer

bytes are available in the socket receive buffer. Short sends occur if not enough space is

available in the send buffer.

Non-Blocking Operations Both receive and send block if no data is available or the send

buffer is full. Initiating a connection and accepting a connection are also blocking oper-

ations. When initiating a connection, the call will block until the connection is accepted

and fully established. The accept call blocks if there is no pending connection request.

CHAPTER 2. BACKGROUND 18

Blocking calls prevent the application thread from doing other work while waiting for

completion of the blocking operation. Blocking is problematic for threads that handle

multiple connections in parallel. Worse, in most cases the application cannot predict if a

call will block or not.

Applications can configure sockets to operate in non-blocking mode. In non-blocking

mode any operation that would block immediately returns an error code instead. Calls

can be repeated at a later time to check for changes. Initiating a connection is an excep-

tion as the kernel will asynchronously finish establishing the connection. The application

can check the status of a connection using a separate call. Non-blocking mode simplifies

processing multiple connections on the same thread. It also allows language runtimes to

avoid blocking all threads when multiplexing multiple threads on top of operating system

threads.

Multiplexing Sockets When serving multiple sockets on a single thread, applications

need to decide which socket to operate on at what time. Simply cycling through non-

blocking sockets is expensive and does not scale. Berkeley sockets include select, a

multiplexing call to determine which sockets in a set are ready to send and receive data.

However, because of overheads with the select interface, the major implementations all

provide other non-standardized but more efficient multiplexing mechanisms.

Linux provides epoll, an event multiplexing call to allow the application to collect

and wait for events across multiple sockets. Events include new data on a connection,

available transmit buffer space, new connection requests, and closed connections. Appli-

cations can add and remove file descriptors, including sockets, to/from these epoll sets.

Applications can also wait for events on any file descriptors in a set. Each wait call can re-

turn more than one event up to a specified limit. The application calls the corresponding

API functions to process these events. For example a receive event requires a follow-up

CHAPTER 2. BACKGROUND 19

receive call to obtain the data. This abstraction allows the application to efficiently collect

multiple events on a set of sockets from the kernel. It also allows the application to block

and be re-enabled if an event on any connection arrives. For RPCs, the consequence of this

interface is that applications typically need at least interface system calls for each RPC, to

wait for events, receive the request, and send out the response.

2.1.3 Protocols

The network stack implementation translates between application interface calls and net-

work packets according to network protocol specifications. A stack of protocols provides

higher-level abstractions for end-to-end message delivery and by-directional pipes on

top of physical hardware. These protocols also provide mechanisms for sharing the net-

work between multiple tenants while ensuring isolation and efficient use of the network.

Servers need to process packets according to each of those protocols.

Unreliable Datagram Protocol

Individual end-hosts (or virtual machines) typically run multiple applications and ser-

vices that communicate on the network. This dictates the need for a multiplexing layer

that shares the local IP address between multiple applications and allows incoming and

outgoing packets to be identified. The unreliable datagram protocol (UDP) [105] provides

exactly that: a multiplexing layer to offer multiple endpoints on a single host. To this end

UDP adds additional address information to each packet, in the form of numeric ports. A

server application running on a host can listen on a known port number and then receives

all packets with the specified destination port. Each packet contains both the source and

destination port number so receivers know where to respond to. UDP does not provide

services beyond multiplexing. There is no reliable delivery and message size is limited to

CHAPTER 2. BACKGROUND 20

the size supported by the underlying network minus the protocol headers. UDP also does

not require connections, resulting in minimal processing because no connection needs to

be opened and no connection state managed by the end-host. Because UDP does not

implement congestion control, typical multi-tenant data center configurations place rate-

limits on UDP traffic to preserve some level of isolation.

Transmission Control Protocol

While basic multiplexing is a useful primitive, applications communicating over UDP

potentially need to implement a wide range of communication related functionality. In

particular application message handling is substantially simpler if the underlying proto-

col abstracts hardware details, such as maximum packet size, guarantees reliable in-order

arrival, determines a sending rate appropriate for current network conditions (congestion

control), and avoids overwhelming receiver buffers (flow control). The transmission con-

trol protocol (TCP) [106] layers on top of IP to provide applications with these features.

To applications, TCP exposes the abstraction of reliable byte streams for sending and re-

ceiving data over each connection. Applications simply open a connection, append data

to the outgoing stream and remove data from the incoming stream, while the protocol im-

plementation (TCP stack, typically in the operating system) generates outgoing network

messages as needed and processes incoming messages. The majority of data center appli-

cations communicate over TCP, both within the data center, as well out to the internet.

Connections Like UDP, TCP multiplexes multiple connections and endpoints over one

IP address using port numbers. Applications ready to accept incoming connections issue

a listen command to the TCP stack with the port number. To open an outgoing connec-

tion, an application issues a connect command to the TCP stack with the IP address of the

remote host as well as the destination TCP port. At the protocol level, connections are ini-

CHAPTER 2. BACKGROUND 21

tiated with the three-way handshake: 1) The host initiating the connection sends a packet

with the SYN-flag set to the remote host, including both port numbers and IP addresses.

2) The receiving host, assuming it is ready to accept connections on this port, sets up local

connection state and responds with a packet containing the SYN and ACK flags to confirm.

3) The initiating host completes the handshake with a packet containing the ACK flag. The

two SYN packets also negotiate protocol extensions called TCP options supported by both

peers. After the handshake both sides are ready to send and receive data.

In-order Transmission To implement reliable in-order data transmission over an unreli-

able network without ordering guarantees, TCP combines multiple mechanisms. During

the handshake, TCP negotiates a sequence number for the two data streams in oppo-

site directions. This sequence number identifies the position of the first byte of data to

be transmitted in each direction, incremented as the host transmits data. When a sender

sends out a packet with TCP stream payload, referred to as a segment in TCP terminology,

the packet header contains the sequence number of the first payload byte in the packet.

The sequence number in each packet allows the receiver to find the position in the stream

for the payload. This allows receivers to re-order out-of-order packets and detect lost

packets.

Reliable Transmission To signal successful reception of stream data to the sender, the

receiver sends cumulative acknowledgements to the sender. A cumulative acknowledge-

ment specifies the sequence number up to which the receiver has received all data. If a

packet arrives where the sequence number indicates that other data has been lost or re-

ordered, the receiver still responds with a cumulative acknowledgement indicating the

last sequence number that was received in order (i.e. not the sequence number in this

segment). The sender buffers transmitted data until it receives an acknowledgement. The

CHAPTER 2. BACKGROUND 22

sender tracks both the last sequence number that it sent out, as well as the last sequence

number that has been acknowledged. When the sender transmits a segment with payload,

it also arms a timer that will be cancelled when it receives a corresponding acknowledge-

ment. If the network drops the segment (or the acknowledgement), the timer expires and

triggers a retransmission of this segment and re-arms the timeout. Because it is impos-

sible for the sender to determine if the packet has been lost, or simply delayed inside

the network, timeouts are typically chosen so as to be conservative to avoid unnecessary

re-transmissions. As a result, timeouts can significantly delay data transmission. Fast re-

transmit [127] reduces the reliance on timeouts. In the common case, one packet is lost

in the middle of a continuous train of packets for a connection. In this case, the receiver

returns a duplicate (cumulative) acknowledgement for each packet following the lost one.

With fast retransmit a sender counts duplicate acknowledgements, and issues an imme-

diate retransmission (without waiting for a timeout) as soon as a configurable threshold

(often 3) of duplicate acknowledgements has been reached.

Flow and Congestion Control In addition to mechanisms for recovering from packet

loss, TCP also includes mechanisms to minimize packet loss. A receiver might not have

sufficient buffer space to store an arriving packet. This occurs when a sender sends data

faster than the application on the receiver processes it. TCP flow control aims to avoid

this situation, by requiring receivers to signal how much receive buffer space they still

have available, in each packet (or ACK) sent in the opposite direction. A sender is not

allowed to send more data than specified by the receive window. Congestion control,

aims to minimize congestion related drops inside the network by adjusting the sending

rate to match network capacity. Since the available capacity is not known and changes

as other servers in the network start sending or go idle, congestion control algorithms

continuously adapt the sending rate based on signals from the network.

CHAPTER 2. BACKGROUND 23

In heterogeneous networks such as the internet, packet loss is the only widely sup-

ported mechanism for end-hosts to detect network congestion. Packet loss as an implicit

congestion signal is attractive because it requires no additional signalling or mechanisms.

For end-hosts, however, using packet loss as a signal complicates detecting congestion.

Protocols need to rely on mechanisms such as sequence numbers and timeouts to detect

loss, and they need to distinguish between the case of a message being lost or simply de-

layed due to queueing. Packet loss as a signal is inefficient, both within the network and

on end-hosts. The message has to be re-transmitted requiring additional network band-

width and end-host processing time. Latency until the message successfully arrives at the

destination is also affected.

Explicit congestion notification (ECN) [110] instead provides an explicit in-band signal

for the network to notify end-hosts of congestion. With ECN, switches mark packets with

the congestion experienced (CE) flag inside the packet header to signal queue build up.

The receiver forwards this flag to the sender when it acknowledges the packet. ECN

enables early signalling without introducing extra packet loss when capacity is available.

However, once queues are full even ECN-enabled switches have no choice but to drop

packets.

TCP congestion control uses signals from the network to continuously estimate cur-

rent network capacity. At a high level, it increase the sending rate for successful trans-

missions, and reduces the sending rate on losses, explicit congestion marks, or increases

in the round-trip time. Congestion control is still a very active research area for TCP

and many different algorithms exist and are implemented in various TCP implementa-

tions [90, 17, 26, 34, 81, 91, 94, 139, 141]. Different algorithms use different signals and

control laws for adjusting the sending rate. Most traditional algorithms calculate a byte

window for how much data can be in flight at a time, and only send out more data as ac-

CHAPTER 2. BACKGROUND 24

knowledgements arrive. Data center TCP (DCTCP) [3] has been designed for data centers

with ECN support and is widely used in different variants.

2.1.4 Network Interface Cards

For sending and receiving network packets generated by the protocol stack, server soft-

ware interacts with the NIC. NICs provide software network stacks with access to the

physical network. Historically, network interface cards provided simple mechanisms to

transfer packets between the processor and the physical network. Modern network cards,

however, additionally provide a plethora of mechanisms aimed at making packet process-

ing more efficient.

Partial Protocol Offload

Packet processing often consists of long sequences of steps, many of which are mechan-

ical. Some NICs support performing — or “offloading” — some of these steps by the

NIC. Offloading processing from the CPU to the NIC reduces CPU overhead. Common

offloads include checksums, segmentation, and encapsulation/decapsulation.

Checksums Checksum offload validates checksums for received packets and inserts

checksums for transmitted packets. When validating checksums NICs include flags in de-

scriptors to indicate incorrect checksums. For transmit, checksum offload software needs

to include flags in transmit descriptors to enable the right combination of offloads. Eth-

ernet CRC offload has been offered by NICs for a long time. Modern NICs also support

offloading IP, UDP, and TCP checksums. Transmit offloads that modify packets require

NICs to generate correct checksums after modifications.

CHAPTER 2. BACKGROUND 25

Large Segment Segmentation offload delegates the task of splitting up data into indi-

vidual packets according to the maximum transfer unit (MTU) supported by the network.

Software can pass packets larger than the MTU as one packet; the NIC generates smaller

packets as needed. This reduces software overhead. Segmentation offload also reduces

bus traffic because only one descriptor has to be passed in each direction for the whole

packet. TCP large segment offload (TSO) is the most common segmentation offload. For

TSO, software passes a large TCP packet including protocol headers to the NIC. The NIC

generates MTU sized TCP segments by copying the initial header and adjusting the se-

quence numbers and checksums.

Receive-side Coalescing For receiving packets, receive-side coalescing (RSC) is the in-

verse of segmentation offload. The NIC combines multiple smaller packets into a single

large packet before passing the packet to software. RSC again reduces software processing

overheads and bus traffic. NIC RSC typically only coalesces packets if they arrive back-

to-back; otherwise partial packets would need to be held in NIC memory. Assuming no

packets for other connections arrive, the NIC stops coalescing after a maximum size is

reached or after a specified time after the first packet arrives.

Encapsulation and Decapsulation Protocols such as VLAN, VXLAN, GRE, IP-in-IP tun-

nels add additional encapsulation headers to packets. Encapsulation and decapsulation

offload can add and remove those headers when sending and receiving packets. This

again reduces software processing overheads and can also be used to transparently (to

software) encapsulate and decapsulate packets for certain send and receive queues. En-

capsulation protocols also interact with other NIC features such as packet steering or

other offloads. A NIC not supporting an encapsulation protocol can no longer parse in-

ner packet headers. The NIC may see outer headers and use them for steering, or not

CHAPTER 2. BACKGROUND 26

Buffer 3

Buffer 2

Packet 0

Packet 1
Pointer

O:CPULength

Pointer

O:CPULength

Pointer

O:NICLength

Pointer

O:NICLength

Descriptor Queue

Desc. 0

Buffer Memory

Desc. 3 ...

Tail

Head

Figure 2.1: Example of a descriptor receive queue. The first two descriptors point to
received packets and are marked as CPU-owned. The other two descriptors are marked
as NIC-owned and point to unused buffers.

recognize headers at all.

Some NICs support a wide variety of other offloads. Additional examples of offloads

are precision time-stamping, IPSec en-/decryption and authentication, or network ad-

dress translation.

Software Interface

At a high level, most modern NICs have a similar interface consisting of two parts: config-

uration registers and descriptor queues. Software uses configuration registers to initialize

the NIC and control its behavior. Configuration registers reside on the NIC and are ac-

cessed by software through memory mapped I/O over the I/O bus. Descriptor queues

transfer packets and notifications between the NIC and software in both directions. De-

scriptor queues reside in host memory and are accessed by the NIC through direct mem-

ory access (DMA) over the I/O bus. During initialization software allocates memory for

descriptor queues and writes the address and length of each queue to the corresponding

configuration register.

CHAPTER 2. BACKGROUND 27

Descriptor Queues A descriptor queue is a circular queue consisting of descriptors used

for bi-directional communication. One end of the queue is owned by software and the

other end by the NIC. Each descriptor queue has a head pointer and a tail pointer. The

head pointer points to the first descriptor owned by the NIC, and the tail pointer points

to the last descriptor owned by the NIC. The head pointer is owned by the NIC, and the

tail pointer is owned by software. Software adds a descriptor by writing it to the next

entry after the tail pointer and then incrementing the tail pointer. The NIC removes a

descriptor by reading the entry pointed to by the head pointer and then incrementing the

head pointer. Software never moves the head pointer and the NIC never moves the tail

pointer.

Each descriptor corresponds to one request or notification. The specific format and

meaning of a descriptor depends on the context and the direction. Transmit queues carry

packet descriptors from software to the NIC, and completion notifications from the NIC

to software. Receive queues carry buffer descriptors from software to the NIC, and packet

notifications from the NIC to software.

To send a packet, software adds a packet descriptor consisting of the packet length

and a pointer to the packet buffer to the transmit queue. The NIC then asynchronously

removes packets from the transmit queue. After reading the packet from the location

specified in the descriptor, the NIC sends the packet out over the network. After a packet

is sent the NIC enqueues a completion notification on the transmit queue. This completion

notification lets software know that the buffer can be freed. The notification also passes

a descriptor back to software, so that the NIC only owns descriptors for packets that are

waiting to be sent.

For receiving packets, software starts by allocating receive buffers and adding cor-

responding buffer descriptors to the receive queue. When the NIC receives a packet it

CHAPTER 2. BACKGROUND 28

removes the next buffer descriptor from the queue, thereby obtaining a pointer to the

receive buffer. After writing the packet to this receive buffer, the NIC adds a packet no-

tification to the receive queue. The packet notification specifies the packet buffer and the

packet length.

PCIe Performance Constraints A standard architecture is to attach the NIC to the I/O

bus — PCIe in today’s servers. In which case, the NIC communicates with the CPU over

the PCIe bus. PCIe transfers have higher latency and limited bus bandwidth. Devices

issuing many small PCIe transfers effectively have less bandwidth available for data be-

cause of per-operation transfer overheads. Memory access latency is asymmetric; accesses

from the CPU incur lower latencies (especially for cache hits) than accesses from the NIC.

These latency and throughput overheads constrain the design space for communication

between the NIC and CPU.

Descriptor queue implementations combine multiple PCIe mechanisms to achieve

good performance. The NIC maintains the head and tail pointers as configuration reg-

isters. After adding a descriptor to the queue, software has to write to the tail pointer

register to let the NIC know that there is a new descriptor. This tail pointer write to a

configuration register is called a PCIe doorbell because it notifies the NIC. For the CPU,

doorbell writes are writes to un-cachable memory and thus more expensive than regular

memory writes. Doorbell writes however do not necessarily lead to CPU pipeline stalls

because the CPU does not have to wait for a result.

Reads from configuration registers are more expensive. Un-cachable reads do cause

pipeline stalls because execution cannot continue until the result is available. Reading

the head pointer configuration register is thus not an appropriate mechanism for soft-

ware to determine how many new descriptors are available. Instead descriptors contain

an ownership bit indicating if a descriptor is currently owned by the NIC or the CPU.

CHAPTER 2. BACKGROUND 29

When adding a descriptor to a descriptor queue, software will mark it as NIC owned.

The NIC marks descriptors as software owned once processing is complete. Descriptors

between the head and the tail pointer are marked as NIC owned, all other descriptors are

marked as software owned. Software reads descriptors until it finds a descriptor that is

marked as NIC owned or until it reaches the tail position in case of an empty queue. The

NIC may also issue interrupts to asynchronously notify software that an event occurred.

An interrupt does not convey any additional information such as what event occurred or

how many descriptors were added. Interrupts merely signal that software should check

queues for new descriptors. Because of the overhead of taking an interrupt, most high per-

formance NICs make interrupts configurable — limiting them to a configurable rate and

allowing kernel software to dynamically disable interrupts temporarily on high packet

rates.

Because of high DMA read latency, NICs cache a small number of receive descriptors

in internal memory [56]. Receive descriptor caching reduces packet processing latency.

Instead of first issuing a DMA read to determine the next receive buffer address, the NIC

can immediately issue writes for the packet to the buffer and the descriptor. Descrip-

tor caching also reduces packet buffering required to avoid packet drops while receive

descriptor fetches are pending.

Descriptor queues lend themselves well to batching as a performance optimization.

Instead of reading descriptors individually the NICs issue DMA reads for multiple de-

scriptors at a time. Combining smaller DMA reads into a larger one amortizes DMA

latency. Combining reads also improves PCIe bandwidth utilization by amortizing per-

operation bus overheads. Descriptor write-backs can also be combined. For transmit

queues, delayed write-backs work well because freeing transmit buffers is not on the crit-

ical path. For receive queues, combined descriptor write-back can increase receive latency

CHAPTER 2. BACKGROUND 30

because the new packet will be delayed until all packets in the batch are processed. This

is a trade-off between latency and PCIe bandwidth utilization. NICs usually offer config-

uration registers to tune these parameters to the workload characteristics.

Doorbell writes provide another opportunity for batching. When registering multiple

receive buffers together only one doorbell write is required for the whole batch. Doorbell

batching amortizes the cost for the un-cached memory write over multiple operations. For

transmit queues doorbell batching provides a trade-off between latency as well as CPU

overhead and PCIe bandwidth. Applications processing packets at high rates often need

doorbell batching to achieve maximum throughput.

On modern X86 machines, PCIe DMA is cache coherent. Devices will see any modified

data in CPU caches, and the CPU sees data written by devices immediately. Writes to data

that is in a cache cause the cached copy to be invalidated. When software reads descrip-

tors that the NIC wrote back, the CPU incurs a cache miss. However, descriptor queues

lend themselves well to pre-fetching. Software knows ahead of time which memory lo-

cation will be accessed so it can issue a manual pre-fetch. And because descriptors are

linear in memory the CPU will automatically issue additional pre-fetches if multiple de-

scriptors are read. When receiving packets after reading the descriptor software accesses

the corresponding receive buffer. Receive buffers for new packets have also been written

to by the NIC and accesses also cause cache misses. These misses can also be avoided

with manual pre-fetching. This is especially effective when receiving multiple packets at

once. Multiple pre-fetches for packet buffers can be issued in parallel after reading the

corresponding descriptors.

Descriptors are often smaller than a cache line. Descriptor writes from the NIC can

cause cache misses for adjacent descriptors that software has already pre-fetched. For

receive queues these misses disappear if enough packets arrive to keep the NIC ahead

CHAPTER 2. BACKGROUND 31

by a small number (number of descriptors per cache-line) of descriptors. Thus this be-

havior can be self-correcting; as cache misses cause overhead, software processing slows

down and the NIC gets ahead. Transmit queues cause cache misses not avoidable by

pre-fetching if only few packets are in the queue. For transmit queue these misses are

not self-correcting because slowing down software processing causes shorter queues and

more misses. Transmit descriptors do not provide information beyond the fact that the

packet has been sent and can be freed. Because the NIC transmits packets in order, the

only information that software needs is the last packet sent. Intel NICs provide a fea-

ture called TX head index write-back. With head index write-back the NIC no longer writes

transmit descriptors back. Instead the NIC only writes the head index, i.e. the position of

the last packet sent, to a specified memory location. Head-index write-back thus avoids

those pathological misses because the NIC no longer writes to the transmit queue.

Recent Intel server processors support data direct I/O (DDIO). With DDIO PCIe DMA

operations go directly to the shared last level cache. DMA reads are served from cache

without requiring invalidation to memory first. DMA writes directly update the last level

cache, reducing last level cache misses when the CPU accesses the written data. DDIO

reduces CPU access latency as well as memory bus traffic. Even with DDIO, L1 and L2

caches are still invalidated. DMA writes cause L1/L2 cache lines to be marked as invalid.

DMA reads will cause cache lines in modified or exclusive states to transition to shared.

When re-using transmit buffers, transitions of the cache lines from shared to modified

occur. These transitions are similar in overhead to L2 cache misses. They can again be

avoided using manual pre-fetching.

CHAPTER 2. BACKGROUND 32

Multi-Core Performance

When receiving and sending packets on multiple cores shared descriptor queues incur

synchronization and cache coherence overhead. Modern NICs provide multiple transmit

and receive descriptor queues to avoid these overheads. Each core can be assigned a

dedicated transmit and receive queue. Because each queue is only accessed from one core

no synchronization is required. A core sends packets by adding descriptors to its assigned

transmit queue. Similarly each core receives packets through its assigned receive queue.

With multiple receive queues the NIC needs to assign incoming packets to queues.

This assignment of incoming packets to queues is called packet steering. Simply assigning

packets round-robin or randomly does not work well for existing software protocol pro-

cessing. When processing packets from multiple queues in parallel, packets would be no

longer totally ordered. Protocols such as TCP expect packets to arrive in order and out-of-

order arrivals are more costly to process. Many protocols also require per-connection state

in memory for processing. Packets for one connection arriving on different cores cause

cache-coherence overheads by transferring connection state between private caches.

Receive-side Scaling The most widely available mechanism for NIC packet steering is

receive-side scaling (RSS). To assign an incoming packet to a queue the NIC calculates a

hash over packet fields identifying the connection and assigns packets based on this hash.

A simple option is to simply use the hash modulo the number of queues to calculate

the destination queue. Consistently assigning packets based on a connection identifier

hash guarantees that all packets for a single connection arrive in the same queue. This

preserves packet ordering within a connection and eliminates cache-coherence overhead

when accessing connection state. Assigning equal ranges of hashes to queues can lead

to load-imbalance if some connections have higher throughput. To partially address this,

CHAPTER 2. BACKGROUND 33

many NICs use an additional configurable redirection table that maps ranges of hashes

to queues. These tables are relatively small, commonly 128 or 256 entries. This additional

level of indirection allows software to correct load-imbalances.

Flow Steering An application consuming data on a different core than the one pack-

ets arrive on will incur additional communication overhead. To minimize this, packets

should arrive and be processed on the same core where the application consumes the data

and generates responses. While RSS with a redirection table enables load balancing, it is

too coarse-grained to assign individual connections to specific cores. High-performance

NICs support flow steering mechanisms that enable fine-grained assignment of connec-

tions to queues. Examples of flow steering mechanisms include Intel’s FlowDirector and

Solarflare’s Accelerated RFS, that support steering 10,000s of connections. Flow steering

provides a lookup table that maps flow identifiers to queues. The flow identifiers used

as a lookup key are limited to a fixed set of packet fields supported by the NIC, such as

source and destination IP address and TCP port numbers.

Flow steering is usually implemented using a hash table to scale to large numbers

of flows. Often only one type of flow identifier can be supported at once. For example

TCP connections can be steered while listening sockets that need a wild-card match for

the source port cannot be steered. Some NICs provide additional steering mechanisms.

Intel’s 82599 10 GbE NICs provide 128 5-tuple filters, a flow steering mechanism that sup-

ports wild cards in individual entries. Other examples include steering based on MAC

addresses for virtual machines. All of these steering mechanisms are limited to known

protocol fields specified by the NIC vendor. These fields are extracted by a packet parser

on the NIC that cannot be configured by software to extract different fields. A minor ex-

ception for this is the Intel FlowDirector that can filter based on a field at a configurable

offset in the packet. This lack of flexibility limits these mechanisms to only the specific set

CHAPTER 2. BACKGROUND 34

of configurations they are intended for, and cannot be used for steering based on higher

layer protocols.

2.1.5 Networks

The NICs transfer packets between server software and the physical link that connects the

sever to the rest of the network. The network is then responsible for transferring pack-

ets between individual servers. At data center scale, achieving this is not an easy task.

To manage, networks are arranged in complex topologies and are highly tailored to the

protocols used. As a consequence correct and efficient network operation fundamentally

depends on data center servers correctly implementing network protocols. If all compo-

nents operate correctly, data centers networks provide high bandwidths, low latencies,

and predictable performance.

Topology

Data center networks today typically use multi-rooted tree topologies [2, 39, 97, 122] (also

referred to as Clos networks). Servers (leaves in the tree) are arranged in racks and each

rack has a top-of-rack switch (ToR). Each top-of-rack switch connects to multiple aggrega-

tion layer switches, and each aggregation layer switch in turn connects to multiple spine

(or core) layer switches. This multi-rooted tree topology provides multiple redundant

paths between racks to ensure availability in case of failures and to increase bisection

bandwidth.

An implication of the multi-rooted tree topology is that at each layer there are multiple

equivalent paths up the tree from where all destinations can be reached. When routing a

packet to a destination, each switch looks at the destination address and decides whether

it can directly deliver the packet on one of its downward facing ports, or whether the

CHAPTER 2. BACKGROUND 35

Spine Layer

Aggregate Layer

ToR Layer

Servers

Figure 2.2: Example multi-rooted network topology.

packet needs to be forwarded up the tree. For forwarding up the tree multiple equiv-

alent options are available, so the switch needs to decide which route to use for each

packet. The switch should route packets so that the load on all available upward links

is balanced. However, a conflicting goal for data center networks is to avoid re-ordering

packets. While servers do not expect the network to guarantee ordering and higher layer

protocols such as TCP are equipped to handle out-of-order packets, re-ordering will nev-

ertheless increase end-host processing overheads. But end-host protocol processing is

only sensitive to the order of multiple packets within each connection, while tolerating

re-ordering across connections without performance penalties. Thus, ensuring that pack-

ets for a particular connection use a deterministic route avoids overheads while still using

multiple paths efficiently, provided there are many connections. Equal cost multi-path

routing (ECMP) [47] achieves this by calculating a hash over the connection identifying

fields in the packet, and then using this hash to index into the set of available equivalent

routes. ECMP thus guarantees that packets for a particular connection use a deterministic

route without tracking dynamic per-connection state at switches.

As a way to reduce cost, some multi-rooted tree topologies used in data centers contain

CHAPTER 2. BACKGROUND 36

oversubscribed links [122]. There is less aggregate upward bandwidth than the aggregate

downward bandwidth. When there is oversubscription, typically it is a small multiple —

networks most commonly are provisioned to allow most servers to send simultaneously.

Other data centers avoid oversubscription and provide full bisection bandwidth [39]. For

oversubscribed topologies, upward facing links can experience congestion and eventually

packet loss. But even networks with full bisection bandwidth suffer from congestion due

to fan-in, i.e. incoming traffic from multiple ports forwarded to the same output port at

a switch. As a result end-host congestion control is critical for overall performance. We

discuss options for congestion control later in this chapter.

Switches

Ethernet switches connect servers and other switches and forward packets between them.

A switch has multiple ports and each port can be connected to another Ethernet device.

When an incoming packets arrives on a port, the switch looks at its destination address to

determine which output port to use. Modern data center switches are non-blocking and

can move data between any two ports in parallel. However, each port is limited by the

maximum bandwidth of the link. Congestion occurs if a faster port is sending data to a

slower port or, more commonly in a data center network, if multiple servers are using the

same destination port.

Each switch has some buffer memory to queue packets that cannot immediately be

forwarded because of congestion. Switches dynamically assign buffer memory to queues

for each output port, as needed within configurable limits. As long as queue space is

available, incoming packets can be enqueued and will eventually be forwarded. When

no more queue space is available, the switches silently drop packets and end-hosts must

detect and re-transmit the lost data.

CHAPTER 2. BACKGROUND 37

Performance Parameters

Modern data center networks offer aggregate bandwidth measured in petabits per sec-

ond with 10–40 Gbps network links per server. [122]. Even 100 Gbps Ethernet NICs and

switches are available as commodity components off the shelf. An individual switch can

forward a small packet in a few 100 nanoseconds when there is no queueing. Even adding

in queuing delay and data center scale infrastructure, network round trip times are in the

order of magnitude of a few 10 microseconds. Data center switches typically offer around

10 MB of shared buffers [3, 41], enough to queue a few thousand packets. Given the high

bandwidths of data center networks and the low switching latencies, end-to-end latency is

typically dominated by end-host processing and in some cases queueing delay inside the

network. Packet loss rates in well managed networks are typically below 0.1% [122, 142],

with loss primarily due to congestion but transient losses due to outages or packet cor-

ruption also occur less frequently. While packets within a particular connection usually

arrive in the same order they are transmitted, transient reordering can occur in response

to failures or configuration updates.

2.2 Commodity OS Network Stack

Commodity operating systems including Linux, Windows, BSD, and OS X process net-

work packets in the operating system kernel. The operating system implements all net-

work protocols and interacts with the NIC to send and receive packets. Applications use

system calls to manage connections and transfer data. Figure 2.3 shows this interaction

between components graphically. The rest of this section uses Linux as an example im-

plementation.

I start with a discussion of the internal software architecture of the network stack,

CHAPTER 2. BACKGROUND 38

Application

Libraries

U
se

r
S

pa
ce

Operating System Kernel

Socket API

K
er

ne
l S

pa
ce

TCP Processing

NIC Driver

Network Interface Card

Ethernet
H

ar
dw

ar
e

Figure 2.3: Conventional operating systems implement all network processing inside the
kernel.

move on to TCP-specific overheads, and conclude with a discussion of OS kernel process-

ing relative to the outlined goals.

2.2.1 Network Stack Architecture

Because Linux is used for everything from data centers to smart phones, its kernel net-

work stack is engineered for a wide range of use-cases and configurability. At the top

level there is the user space API that is independent of what protocols are enabled or what

NIC hardware is available. The protocol implementations are agnostic to what lower level

protocols or hardware they are running on. The NIC drivers are also independent of the

higher level protocols used or what additional processing is configured.

The combination of layers and modules with defined interfaces is a known technique

for engineering complex systems. Developers can re-combine modules in different ways

without modifying them. The TCP implementation can be used for communicating over

CHAPTER 2. BACKGROUND 39

an Ethernet network, a serial port with SLIP, or a virtual private network wrapped in UDP.

Kernels also insert additional functionality such as firewalls, traffic shaping, or packet

capture for debugging between layers.

At the lowest layer network device drivers interact with NICs for sending and receiv-

ing packets. When receiving an interrupt for new packets, the driver will asynchronously

schedule packet processing and disable additional interrupts for the device until packets

are processed. At high packet rates some drivers completely disable interrupts and rely

on periodic polling. After receiving packets the driver passes them on to higher protocol

layers of processing. For sending packets, the packet scheduler, or queueing discipline

in Linux, calls the driver to add packets to the transmit descriptor queue. The network

device driver interface is the same for all network drivers. This complex control and data

flow through multiple components causes significant overhead.

2.2.2 TCP Overheads

TCP packet processing in particular is complex and notorious for its overhead. Most

implementations have at least two state machines per connection. One manages connec-

tion setup and tear-down handshakes and the other handles common case operation for

established connections, such as flow control, congestion control, packet re-ordering, ac-

knowledgement generation, and loss detection. On multicores, TCP packet processing

overheads include mutual exclusion on shared data structures, cache line invalidations,

and mismatched cache locality. The resulting overheads impact application performance

in the following ways.

Per-Packet Processing Latency Although TCP is a streaming protocol, in data centers

and over the internet it is often used for RPCs. Key-value stores [87, 112], distributed

CHAPTER 2. BACKGROUND 40

lock managers [16] and file systems [45] are just a few examples of applications that em-

ploy RPCs over TCP. In addition to server throughput, the latency from sending a re-

quest to receiving the response is a primary performance factor for these applications [93].

Data center networks can deliver packets within a few microseconds between clients and

servers. Since application-level processing time is often small, the dominant factor is TCP

per-packet handling costs, which can take 10s of microseconds (see Figure 6.1). The dis-

crepancy of several orders of magnitude between processing and network speeds is the

main contributor to remote procedure call overheads for these applications.

Connection Scalability TCP is a stateful protocol and requires access to per-connection

data. This per-connection state is typically large and complex (e.g. in Linux the tcp sock

structure contains more than 100 fields). As the number of connections grows this causes

cache pressure and pollutes application cache contents. This state also contains complex

data structures that require pointer chasing, e.g. for timers or handling out of order pack-

ets. Accessing these data structures incurs significant overhead.

The stateful nature of TCP processing also results in cache coherence and synchroniza-

tion overhead on multi-core systems. For example, per-socket locks in the Linux kernel

serialize access to socket data and thus per-connection processing cannot be parallelized.

Instead, techniques like receive side scaling (RSS) are designed to deliver packets directly

to the appropriate core responsible for each connection. However, this is not a complete

solution. For example, the core used for sending replies may be different from the core

used for receiving, causing cache invalidations and synchronization [103] in the common

case.

Further, application cache locality does not always match TCP connection locality.

For example, a key-value store might receive requests for a hot set of keys on numerous

client connections. When different cores modify the same values, there will be added syn-

CHAPTER 2. BACKGROUND 41

chronization and cache invalidation overheads. When different cores read the same data,

cache lines become duplicated in L1 and L2 caches, reducing overall cache effectiveness.

Queueing and Fairness Most kernel TCP implementations employ multiple shared queues

for both incoming and outgoing traffic. For example, Linux employs at least three queues

for outgoing TCP traffic [135]. The first is a per-socket queue holding the current trans-

mit window. The second is a shared per-core queueing discipline of configurable size used

for traffic shaping. The third is a shared per-core NIC driver queue of fixed size. These

queues add CPU overhead. Since packets can be held up in any of the queues for unpre-

dictable delays, this can also create situations of unstable performance, when queues fill

up and drain in a bursty fashion. This impacts fairness in particular for the increasingly

common case of many concurrent connections: shared kernel queues can run out of space,

dropping packets. Different packet drop strategies are employed for each queue. For ex-

ample, when the Linux NIC driver signals that its outgoing queue is full, the queueing

discipline re-enqueues overflow packets, incurring extra overhead [135]. To reduce la-

tency, Linux employs an adaptive queueing mechanism called TCP small queues [23] that

restricts each connection to at most 2 packets and a pre-defined byte limit for outgoing

queues. This mechanism puts a bound on latency, but it incurs the aforementioned CPU

overheads when packets need to be re-enqueued. Queuing also increases the complexity

of the software TCP implementation. Queues make it more difficult to debug performance

problems.

This complexity is an artifact of the modular architecture and the requirement for con-

figurability in Linux. Only the queues for sending and receiving in the driver are funda-

mentally required. They decouple the NIC from software, and allow the two to operate in

parallel.

CHAPTER 2. BACKGROUND 42

2.2.3 Discussion

I wrap up this section with a discussion of Linux kernel OS processing in the data center,

specifically which of my outlined goals it satisfies.

Efficiency 7 Applications interacting with the kernel network stack need to use system

calls. Each system call results in a transition to kernel mode followed by a transition

back to user mode. These transitions have direct and indirect costs [126]. Direct costs

include CPU overheads for switching protection mode and kernel overheads for saving

and restoring registers. In addition there are indirect costs of reduced cache locality and

pipeline efficiency. Kernel system call handlers implement careful parameter and autho-

rization checks that often require data structure accesses. Executing this code pollutes the

CPU instruction and data caches. The CPU also cannot speculate instructions across sys-

tem calls. Even simple system calls cost 100s of cycles. As a result processing for a UDP

echo server that receives a small UDP message and sends it back out takes 3− 6µs [104].

Relying on a single shared generic kernel stack limits opportunities for optimizations.

Maintainers of shared stacks can only accept optimizations that do not degrade perfor-

mance for any other applications, and standardized interfaces can also cause additional

overheads. For example the Linux kernel struggles to support new NIC offloads because

they require changes to interfaces and multiple layers [130]. The socket interface across

a kernel boundary is also not well suited for high performance applications. Many com-

mon operations require multiple system calls. These could be combined into one single

special-purpose call, at added complexity.

Connection Scalability 7 The complex kernel processing architecture also results in

problems for connection scalability. Shared queues between stack components can intro-

duce pathological behavior if the number of active connections grows beyond the fixed

CHAPTER 2. BACKGROUND 43

queue size. This can results in excessive timeouts and even connection resets. Because

of the modular structure, there is no single central point where packets are scheduled for

transmission. Instead packets are injected from the top layer when ready, and individual

components implement separate back pressure and scheduling mechanisms. The generic

nature of the protocol implementation also results in complex and larger connection state

in memory. As a result, systems handling large numbers of active connections experience

poor cache utilization in the kernel as well as the application.

Performance Predictability 7 Processing packets for all applications in a shared net-

work stack also reduces performance predictability. Applications and connections share

various receive and transmit queues. Packets are de-queued and at least partially pro-

cessed in the order in which they arrive, regardless which application is currently run-

ning. This results in performance crosstalk between applications. Depending on current

internal stack state a packet from a latency sensitive application might either be sent im-

mediately, or deferred almost indefinitely if multiple timeouts and back-off occur because

of full intermediate queues. Latency-sensitive applications are likely to experience head-

of-line blocking if mixed with buffer-filling applications.

Policy Compliance 3 The network links connecting the server to the network are shared

by all applications running on the same server. The kernel implements resource manage-

ment policies to isolate applications from negatively affecting other applications on the

same server. For example a single application should not be allowed to use more than its

fair share of network bandwidth if other applications are trying to send and receive data.

The kernel enforces resource management policies and arbitrates between applications.

Applications can also disrupt applications running on other machines. For example

sending a lot of data to a machine with a slower network link causes other packets to that

CHAPTER 2. BACKGROUND 44

machine to be dropped. TCP congestion control aims to fairly allocate bandwidth for any

bottleneck link in the network, not just at end hosts. The kernel also prevents application

from spoofing source address information in packets to impersonate other applications.

Some protocols and implementations are vulnerable to maliciously crafted packets [118].

The kernel guarantees that the protocol is used correctly.

Protocol Flexibility (3) With kernel processing all protocols are implemented in soft-

ware. Adding support for new protocols or modifying the implementation of a protocol

can be achieved by re-compiling the kernel. Kernel processing also implement all pro-

cessing centrally and all applications running on the machine will automatically use the

modified version without recompilation. Administrators can update applications and the

network stack independently. Even deploying additional functionality such as firewalls

or overlay networks does not require modifying applications.

However, this flexibility only extends to global modifications for all applications. Be-

cause of the centralized and shared nature, application specific modifications are gen-

erally not possible. This applies to code modifications and even some configuration

changes.

Cost Efficiency (3) Finally, in this architecture the NIC is only responsible for sending

and receiving packets. All protocol processing is implemented in software in the OS.

As a result the NIC only needs to implement minimal packet processing available in all

commodity NICs. While the hardware cost is minimal, the software overheads mentioned

above do impact cost efficiency. Many applications spend large fractions of their CPU

cycles on kernel network processing. With lower overheads, applications would need

fewer CPU cores for the same processing.

CHAPTER 2. BACKGROUND 45

Application

Libraries

U
se

r
S

pa
ce

OS Kernel

Socket API

K
er

ne
l

S
pa

ce

TCP Processing

NIC Driver

Network Interface Card

Ethernet
H

ar
dw

ar
e

Figure 2.4: Kernel bypass architectures avoid overheads for kernel crossings by moving
the protocol implementation into the application and providing applications with direct
access to the NIC for sending and receiving packets.

2.3 Proposal: Kernel Bypass

Kernel processing by designed enforces multi-tenant policies, but fundamentally suffers

from high overhead. Kernel bypass instead aims to address the performance and flex-

ibility problems of kernel processing by moving all packet processing completely into

applications, as shown in Figure 2.4. In the resulting architecture applications send and

receive packets by directly interacting with the NIC, avoiding all system calls.

2.3.1 Safe User-Level Access to Network Interface Cards

Allowing multiple applications safe access to a NIC requires a combination of mecha-

nisms. In early work, U-Net [137] proposed a NIC presenting multiple virtual NICs.

These virtual NICs are then assigned to individual applications. Each virtual NIC con-

sists of a send and receive descriptor queue as well as a fixed memory range for trans-

CHAPTER 2. BACKGROUND 46

mit and receive buffers. A virtual NIC only accepts descriptors pointing into the fixed

packet buffer area. This ensures applications cannot circumvent process isolation using

descriptor queues. A key limitation is that U-Net is designed for ATM networks instead

of Ethernet. ATM provides virtual channels for multiplexing connections. U-Net assigns

incoming packets to virtual NICs based on the virtual channel ID in the packet. The

VNICs only allow virtual channel IDs assigned to this virtual interface when transmitting

packets.

I/O memory management units (IOMMUs) provide another mechanism to confine

direct memory access for a device to specific ranges. The primary use-case for IOMMUs

is safely passing individual PCIe devices through to virtual machines. IOMMUs are not

specific to NICs. In contrast to U-Net, IOMMUs do not require support from the de-

vice. IOMMUs are memory management units using the same virtual address translation

mechanisms as CPUs. The hypervisor or kernel sets up a separate virtual address map-

ping for each device. After a mapping is set up, the device uses virtual addresses. The

IOMMU translates those addresses to physical addresses and prevents accesses without

valid translations. Thus the IOMMU guarantees memory isolation even when a VM or

application has direct (virtual) access to a device.

By itself, an IOMMU allows a single application to access a PCIe device while guar-

anteeing memory isolation. PCI single-root I/O virtualization (SR-IOV) generalizes this

to multiple applications: a single PCIe device presents multiple virtual copies as separate

devices. SR-IOV refers to these virtual copies as virtual functions (VFs). To the system vir-

tual functions look and act as separate devices. The IOMMU can assign different virtual

address mappings to each virtual function. The primary use-case for SR-IOV is sharing a

single physical device between multiple virtual machines but it can also be used to shera

a physical device among multiple applications. The device and not SR-IOV specifies se-

CHAPTER 2. BACKGROUND 47

mantics for virtual functions.

SR-IOV NICs provide separate sets of receive and transmit queues to virtual functions.

The kernel or hypervisor assigns separate MAC addresses to each virtual function. The

NIC then assigns incoming packets to virtual functions based on the packet’s destination

MAC address. For outgoing packets the NIC also ensures that each virtual function only

uses its assigned source MAC address. SR-IOV NICs allocate link bandwidth among

VFs according to configurable policies. Today’s NICs support aggregate rate limits and

priority-based schemes. The combination of IOMMUs and SR-IOV NICs allows protected

access to the NIC by virtual machines or applications.

2.3.2 Discussion

Efficiency (3) With kernel bypass, applications do not need to use system calls for send-

ing and receiving individual packets. This avoids the direct cost of executing system calls

as well as the indirect overheads due to cache pollution and pipeline stalls. Avoiding sys-

tem call overheads frees up CPU cycles for application processing and reduces request

processing latency. However, even with kernel bypass and inspite of the broad range of

NIC hardware optimizations, applications still spend a large fraction of their CPU time

executing protocol processing (see chapter 6).

Connection Scalability (3) How kernel bypass scales to larger number of connections

depends on the protocol stack implementations. User space protocol stack implemen-

tations such as mtcp [60] are designed to run fully partitioned between cores, avoiding

shared intermediate queues and cross-core shuffling of packets. As a result they typically

scale better than Linux. However, even with kernel bypass protocol processing still exe-

cutes fully in software. As a result the cache footprint and overheads for accurate transmit

CHAPTER 2. BACKGROUND 48

scheduling still limit scalability, albeit beyond Linux.

Performance Predictability (3) With user space protocol processing performance isola-

tion and predictability tend to improve. No packets for other applications are processed as

an application is executing. But processing still involves relatively complex control flow

leading to non-predictable performance. On the transmit side, the NIC is responsible

for arbitrating packets from different applications. Relatively simple round-robin poli-

cies combined with batching for DMA efficiency are typical. When mixing latency and

throughput bound applications this can still lead to considerable head-of-line blocking.

Policy Compliance 7 Policy compliance is the Achilles heel for kernel bypass systems.

With kernel bypass the NIC needs to execute all correctness-critical processing. Because

applications send and receive packets by communicating with the NIC directly the oper-

ating system cannot interpose and inject additional processing. If the NIC does not sup-

port some required kernel feature, kernel bypass is not feasible. This critical processing

includes demultiplexing packets, egress packet filtering, and resource allocation.

On the send path, the Intel 82599, for example, only supports checking the source

MAC address. It cannot enforce that an application only uses a specific source IP or port

number. The NIC also schedules packet transmissions between multiple applications, and

as such needs to support the required scheduling policy. Today’s NICs typically only offer

per-virtual function rate limits. Thus a policy limiting transmit bandwidth for specific

destinations is not feasible. As a consequence, kernel bypass cannot enforce the same

protocol correctness guarantees as traditional operating systems. Software in a trusted

kernel can guarantee correct protocol behavior such as respecting TCP congestion control,

even with malicious applications. But for kernel bypass only the NIC is in a position to

validate outgoing packets.

CHAPTER 2. BACKGROUND 49

For cases when the application is trusted, such as operator provided services, the lack

of policy enforcement is often not a problem. In these settings, kernel bypass provides

a performance boost on existing hardware. But in any multi-tenant setting running non-

trusted software, kernel bypass can typically not be used.

Protocol Flexibility 3 Even with kernel bypass all protocol processing is implemented

inside the application. This provides protocol flexibility, as the application can implement

arbitrary processing, including application-specific behavior. And each application can

use its own customized processing if required, otherwise standard library stacks can be

used.

One caveat here is that there are some limits due to what mechanisms the NIC sup-

ports. An example is demultiplexing for incoming packets. For each packet the NIC must

decide which virtual NIC should receive the packet. The NIC needs to recognize the pro-

tocols involved and offer packet steering based on the required fields. These mechanisms

are typically limited to standard protocol fields, such as the traditional 5-tuple of protocol,

source and destination IP/port number. This lack of flexibility can still cause significant

overhead, as discussed in chapter 5.

Cost Efficiency (3) Similar to in-kernel processing, kernel bypass too can be imple-

mented on top of commodity NICs, and as a result the hardware cost is low. The still

significant amount of processor time spent on packet processing rather than application

logic, does result in additional cost. However, kernel bypass is significantly more cost

efficient than in-kernel processing.

CHAPTER 2. BACKGROUND 50

Application

Libraries

U
se

r
S

pa
ce

OS Kernel

Socket API

K
er

ne
l

S
pa

ce

Network Interface Card

NIC Driver

TCP Processing

Ethernet
H

ar
dw

ar
e

Figure 2.5: Protocol offload implements protocol processing in hardware on the NIC.

2.4 Proposal: Protocol Offload

Both in-kernel and kernel bypass packet processing execute all protocol processing steps

in software, reducing the CPU time available for applications. Protocol offload instead

completely moves protocol processing into hardware on the NIC. In contrast to the par-

tial NIC offload features that only offload small parts of processing, such as checksums

or segmentation, full protocol offload offloads all processing. With full protocol offload,

NICs expose a higher-level interface instead of individual packets.

2.4.1 TCP Offload Engines

TCP offload engines (TOEs) implement all or most of the required protocol processing for

TCP in hardware. On the receiving path, the NIC passes the TCP payload into a software

defined buffer. On transmit, the NIC takes payload from software and generates TCP

packets. TOEs implement all aspects of TCP processing, including congestion control and

CHAPTER 2. BACKGROUND 51

reliable data transfer.

TOEs are classified into two categories: full TCP offload, and partial (also chimney)

TCP offload. Full TCP offload implements all aspects of TCP on the NIC, including con-

nection establishment and tear-down. Partial TCP offload performs connection setup and

tear-down in software and hands off connections to the NIC for data reception and trans-

mission. Implementing connection setup and tear-down in software simplifies the NIC

and gives software control over what connections can be established. TCP connection

setup and tear-down accounts for a significant amount of TCP’s complexity. At the same

time, for long-lived connections the majority of CPU cycles are spent receiving and trans-

mitting data.

Historically, TOEs were used to reduce the CPU overhead for in kernel processing.

This type of system primarily targets large transfers, as the overheads for small transfers

are often comparable. Integration in this design is also challenging because it completely

bypasses parts of the network stack (all protocol processing), but retains tight integration

with the sockets layer.

Modern TOEs instead target kernel bypass. Vendors typically ship application li-

braries that provide drop-in compatibility with sockets without application modifications.

These libraries contain a user-space NIC driver, and implementations of socket calls that

translate into low-level commands for the driver. In these deployments the kernel is com-

pletely off the critical path for data transfers.

2.4.2 Discussion

TCP offload has failed to gain widespread adoption in data centers to date. While TOEs

improve performance, they come at a cost of a complete loss of protocol flexibility as well

as integration and management challenges [92].

CHAPTER 2. BACKGROUND 52

Efficiency 3 Protocol offload combined with kernel bypass is highly efficient. On the

CPU, only minimal processing is required to initiate and complete data transfers. All pro-

tocol processing is implemented in fixed hardware circuits that outperform more flexible

execution engines, including CPUs and FPGAs, in terms of throughput, latency, power

consumption, and silicon area.

Connection Scalability 3 With protocol offload, connection scalability is only limited

by the available memory for connection state on the NIC. The NIC has a global view of all

connections and can schedule connections centrally and efficiently in hardware.

Performance Predictability 3 Because of the implementation of processing as fixed

hardware circuits, the timing is also completely predictable (modulo protocol-level events

such as timeouts).

Policy Compliance (3) Unlike Ethernet kernel bypass, protocol offload is able to en-

force protocol invariants and other policies. Because applications provide the NIC with

higher level commands and because the NIC understands the protocol, the NIC can me-

diate application actions. However, any enforcement is limited to the available hardware

mechanisms of a particular implementation.

Protocol Flexibility 7 The main drawback of the hardware implementation of protocol

processing is the complete lack of flexibility. The NIC supports a fixed set of protocols,

configurations, and policy enforcement mechanisms that cannot be changed after deploy-

ment. Any incompatible change, such as moving to a new encapsulation protocol or con-

gestion control algorithm cannot be accommodated.

CHAPTER 2. BACKGROUND 53

Cost Efficiency 3 However, the special purpose nature of the silicon implementation

does result in minimal chip area requirements for the supported processing. The resulting

hardware cost is lower than other alternatives.

2.5 Proposal: Programmable NICs

Programmable NICs address the inflexibility of fixed protocol offload by replacing the

fixed processing logic with a programmable engine. They allow all or part of the packet

processing to be specified by software. Network processor NICs and FPGA-based NICs

are the two most common types of programmable NICs.

2.5.1 Network Processor NICs

Network processors (NPUs) consist of regular CPU cores and additional network pro-

cessing specific units. NPUs can be programmed as regular CPUs. They typically offer

familiar tool chains such as C compilers; some run full-fledged operating systems such

as Linux. Thus, existing protocol processing code and even whole applications can be

ported to NPUs. Some NPUs such as Cavium Octeon [18] include up to 48 out-of-order

cores running at high clock frequencies. Other NPUs such as Netronome NFP [96] rely on

larger numbers of smaller specialized cores running at lower clock frequencies.

NPU-based NICs can run a wide variety of processing, from offloads such as encryp-

tion to full applications such as deep packet inspection that perform all processing on

the NIC. Compared to fixed function NICs, similar processing on NPUs incurs additional

latency. The achievable throughput for an application depends on how the required pro-

cessing parallelizes. Since NPUs employ CPU cores for processing, overheads for pro-

cessing on these cores are often similar to the host CPU, limiting the benefit of offload.

Compared to kernel bypass, they share many of the same advantages and disadvantages

CHAPTER 2. BACKGROUND 54

already discussed. The main differences are that NPUs provide policy enforcement by

allowing OS software no the NIC to mediate access but at a significantly higher hardware

cost.

2.5.2 FPGA-based NICs

Field programmable gate arrays (FPGAs) have gained traction for accelerating a wide

range of computationally intensive tasks. NICs with built-in FPGAs allow processing to

be specified as reconfigurable hardware circuits. How FPGAs are integrated into NICs

varies by product. NetFPGA [143] NICs implement most of the NIC on the FPGA and

only implement physical interfaces to the network and the PCIe bus as fixed hardware.

For Solarflare FPGA NICs, the FPGA is integrated as a bump in the wire and can modify

packets as they are received or sent. With bump in the wire processing the host interface

is a fixed-function NIC that dictates the software interface.

FPGA NICs have historically been used primarily as research and prototyping vehi-

cles [143]. At least one cloud operator recently deployed bump in the wire FPGA-based

NICs at data center scale in production [108]. Based on publically available information,

they are currently using the NICs primarily to offload network management functionality,

such as address translation for virtual machines.

2.5.3 Discussion

The following discussion focuses on FPGAs, as NPUs have a lot of commonalities with

software solutions.

Efficiency 3 Relative to a software solution on the host CPU or an NPU, FPGAs provide

performance much closer to a hardware implementation. However, the reconfigurability

CHAPTER 2. BACKGROUND 55

in FPGAs does come at a cost and as a result circuits typically run at lower frequencies

than fixed hardware circuits.

Connection Scalability 3 As with hardware protocol offload, connection scalability is

primarily limited by available NIC memory. In general this will depend on what process-

ing is offloaded to the FPGA, as anything inherently sequential that cannot be pipelined

would cause bottlenecks (also applies to fixed hardware offloads).

Performance Predictability 3 Because processing here is also represented as hardware

circuits, performance is predictable. Again this also depends on what processing is of-

floaded.

Policy Compliance 3 The OS can leverage the FPGA to retain policy enforcement even

if applications bypass the kernel. The flexibility of FPGAs provides the OS with a wide

range of mechanisms that can be implemented, from high-level application interfaces,

various resource limits, to other validity checks on outgoing packets.

Protocol Flexibility 3 FPGAs are programmed with hardware circuits, and as such pro-

vide a high degree of control over processing. As such they expose the fine-grained par-

allelism inherent in hardware circuits. They are programmed in hardware description

languages (HDLs) such as VHDL or Verilog, that complicate porting of existing function-

ality. Fully taking advantage of FPGAs requires significant engineering effort and manual

tuning.

Cost Efficiency 7 The flexibility of FPGAs is achieved by mapping circuits onto recon-

figurable logic arrays. The chip area required after mapping a circuit onto an FPGA is

typically multiple times up to an order of magnitude [15] higher than a fixed hardware

CHAPTER 2. BACKGROUND 56

implementation of the same circuit. And to retain the flexibility to add additional pro-

cessing in the future, FPGA sizes for an application have to be chosen generously. As a

result the hardware cost for FPGA NICs is much higher than commodity NICs or even

sophisticated offload capable NICs.

2.6 Proposal: Remote Direct Memory Access

All four packet processing architectures discussed so far aim to implement the same net-

work level protocols with different performance characteristics. Remote direct memory

access (RDMA) takes a radically different approach by introducing a new programming

model, a new protocol, and a hardware implementation of the protocol. The RDMA pro-

gramming model centers around asynchronous shared memory reads and writes. The

protocol then specifies how to translate these requests into messages and how to trans-

port them over the network. Finally an RDMA NIC implements the protocol in hardware,

to both issue operations to other hosts and to respond to incoming operations, typically

without involving the CPU. With this combination, RDMA provides a case study of a

clean slate and cross-layer design.

This section starts by presenting the RDMA programming model, protocols, and hard-

ware implementations. Next follows a comparison of RDMA to TCP/IP systems at the

different levels, before wrapping up with a discussion of RDMA in the context of the

outlined goals.

2.6.1 Programming Model

The defining characteristic for RDMA is the availability of one-sided operations to directly

access remote memory while bypassing the CPU on the remote host. This is possible for

READ and WRITE. In addition, modern RDMA hardware also offers normal message pass-

CHAPTER 2. BACKGROUND 57

ing operations, SEND and RECV. The major implementations of RDMA [53, 52, 119] have

two additional operations: ATOMIC performs a 64-bit compare-and-swap or fetch-and-

add memory operation that is guaranteed to complete atomically with respect to other

RDMA operations but not with respect to CPU operations. WRITE with immediate

combines a memory write with a notification for the remote host. After performing the

memory write, the remote application receives a notification with a 32-bit payload.

Replicating the range of options with message passing, some RDMA implementations

offer range of service types. Infiniband [53] and RoCE [52] implementations offer reliable

connected (RC), unreliable connected (UC), and unreliable datagram (UD) operation. RC

guarantees reliable in-order delivery over established connections, similar to TCP. UC

provides best-effort semantics (unreliable, unordered) over established connections. UD

offers the same best-effort message semantics as UDP.

Because of the focus on performance, RDMA operates asynchronously allowing ap-

plications to issue multiple operations in parallel and to process completion notifications

as they arrive. Each connection is associated with a dedicated queue pair on each peer,

consisting of a send and receive queue. For each queue pair the application specifies a

completion queue that can be shared between multiple queue pairs. The hardware posts

notifications about completed operations (if requested), as well as incoming SEND and

WRITE with immediate operations, on the completion queue for the application.

Before accepting RDMA READ and WRITE operations, the application has to register

at least one memory region with the hardware. The RDMA NIC driver returns a handle

(rkey) for each memory region. This handle is a capability (applications can forward to

other nodes) to issue one sided operations to the associated memory region. One-sided

operations are only valid if they contain a valid handle for the address. This mechanism

provides fine-grained control over what memory regions can be accessed remotely by

CHAPTER 2. BACKGROUND 58

which peers. Because one-sided operations bypass the kernel only the RDMA hardware

can enforce access control for memory.

There are number of APIs used with RDMA. The verbs [53] interface provides direct

asynchronous access to RDMA primitives, including queues and management of memory

regions. Verbs provide applications with full control but also no abstraction over low-

level details. The message passing interface [88], MPI, provides higher-level primitives

for message passing, synchronization, and one-sided data transfers. MPI is particularly

popular for high performance computing (HPC) applications. rsockets [100] implement

the standard sockets API over RDMA. However, the sockets API is inherently two-sided

and do not allow the application to leverage one-sided operations.

2.6.2 Protocols

Three standardized protocols provide RDMA semantics: Infiniband [53], RDMA over

converged Ethernet (RoCE) [51, 52], and the Internet wide-area RDMA protocol (iWARP) [111].

I limit the discussion to Inifiniband and RoCE as the only protocols with documented data

center scale deployments.

Infiniband Infiniband [53, 54] is an interconnect originally designed for communication

within a system between processors and I/O devices, and then extented to work over

short distances between servers. The specification covers the full stack from the physical

layer up to and including the transport layer. In contrast to Ethernet, Infiniband is de-

signed to provide reliable communication with techniques such as link-level flow control

and retransmission under hardware control. Mechanisms such as congestion control and

recovery from out-of-order packets are not required or can be simplified. As a result, even

when using unreliable RDMA operations (no transport layer acknowledgements and re-

CHAPTER 2. BACKGROUND 59

transmissions) in a busy cluster petabytes of data can be transferred without losses [63].

Commodity systems primarily use PCIe as the internal interconnect but Infiniband is

popular for high-throughput low-latency network communication in clusters using PCIe

to Infiniband adapters. High performance computing (HPC) clusters commonly use In-

finiband [132] but data centers and enterprise networks are heavily dominated by Ether-

net. While smaller Infiniband clusters can achieve single digit micro second latencies, at

data center scales latencies of 90µs in the common case and hundreds of microseconds in

the tail are expected [41]. Of the major cloud providers currently only Microsoft Azure

offers an instance type with Infiniband [66].

RDMA over Converged Ethernet Because Infiniband requires new network infrastruc-

ture and more expensive hardware and does only work over limited distance, it is less

attractive in the data center setting. RDMA over Converged Ethernet (RoCE) [51, 52] in-

stead layers the RDMA protocol layers over Ethernet protocols. The original RoCE [51]

layers the Infiniband network and transport layer protocols directly over Ethernet. This

was not a good fit for the L3 IP routing used pervasively in data centers. RoCEv2 [52],

also known as routable RoCE, instead layers the Infiniband transport layer protocol over

UDP (on IPv4 or IPv6), providing compatibility with IP routing and ECMP and enabling

deployment on top of existing network infrastructure. RoCE is usually implemented in

hardware for performance, but software implementations using regular Ethernet NICs

exist too [79].

To avoid congestion related packet drops, RoCE requires enabling Ethernet priority

flow control (PFC) [49] in the network. In case of congestion, a PFC-enabled switch tem-

porarily tells the upstream switch or NIC to pause and then re-enables the sender when

sufficient buffer space is available. PFC is challenging to configure correctly, requires

additional buffer space on switches, and (depending on the configuration) can lead to

CHAPTER 2. BACKGROUND 60

livelock, deadlock, and head-of-line blocking [41]. Backpressure propagates from conges-

tion points back towards the sender. The granularity for flow control is coarse-grained,

supporting only up to 8 priority classes per switch port (in practice often less because

of limited buffers [41]), each of which can be independently suspended. As a result,

backpressure caused by a single connection generally affects multiple connections caus-

ing collateral damage. Modern RoCEv2 implementations combine PFC with ECN-based

end-host congestion control [141, 90] to back off when congestion is building up before

PFC triggers backpressure. Because of inherent link distance limitations in PFC, current

implementations cannot be deployed at full data center scale but only within individual

network sections [41].

With RoCE, lossless Ethernet is not a strict correctness requirement, as the transport

layer already has to detect and retransmit non-congestion losses. However, RoCE per-

formance degrades significantly (some implementations reach a livelock) with as little as

0.4% packet loss [41], because it uses extremely simple loss recovery. Newer RoCE imple-

mentations avoid livelock and improve performance under loss with more sophisticated

retransmission schemes [41, 86].

2.6.3 Implementations

For both protocols, commodity implementations are available. To achieve true one-sided

operation, RDMA must be implemented in hardware on the NIC. More generally a hard-

ware implementation provides RDMA with similar performance benefits as TCP offload

for operations involving the CPU, by minimizing software processing. But software im-

plementations do exist and can offer compatibility on existing commodity hardware.

Modern hardware implementations for all three protocols are designed around safe

kernel bypass. In these cases applications issue RDMA commands directly through in-

CHAPTER 2. BACKGROUND 61

memory queue pairs to the NIC. The driver in this case is split into a kernel driver for priv-

ileged tasks such as initializing NIC state and setting up memory mappings in the NIC

address translation table for registered memory regions. Because the NIC implements all

protocol processing, significant amounts of on-NIC memory are needed for connection

state, memory mappings, and caching of queue entries.

2.6.4 Comparison to TCP/IP

Different systems use different aspects of RDMA with different motivation. Some sys-

tems benefit from the RDMA programming model, others rely on RDMA because the

(hardware) implementation outperforms TCP stacks in commodity operating systems for

the specific use-case.

Programming Model The primary distinguishing characteristic of RDMA is the ability

to directly access memory on a remote host. This is a fundamentally different program-

ming model compared to the pure data stream abstraction offered by TCP and datagrams

offered by UDP. One-sided operations exhibit lower latency and reduced CPU utilization

compared to implementing the same operations in software using message passing. Ap-

plications that only need basic remote memory reads and writes can leverage RDMA to

significantly improve performance with one-sided operations. However, memory reads

and writes are only a basic communication primitive. Many applications require more

complicated data structures that cannot be accessed with just individual reads and writes,

and are often accessed concurrently. In these cases remote locking and multiple round-

trips are generally required, resulting in reduced benefits for one-sided operations and

potentially even in higher latency and lower throughput compared to an RPC-based im-

plementation over messages [62].

CHAPTER 2. BACKGROUND 62

Protocol At a protocol level, both Infiniband and RoCE feature different divisions of

responsibility between endhosts and the network. Both protocols assume mechanisms

within the network (including hardware flow-control) to avoid packet loss due to con-

gestion. TCP on the other hand, does not assume hardware flow control and employs

end-host congestion control to adapt sending rates and recover from congestion losses.

In the data center context the TCP and RoCE protocols are converging from opposite di-

rections. While TCP starts from minimal network assumptions with no reliable delivery,

no ordering, and no visibility into the network beyond packet drops, RoCE starts assum-

ing reliable delivery and minimal endhost responsibilities. Data center TCP [3] improves

congestion control performance and minimizes congestion loss by leveraging explicit net-

work feedback. RoCE on the other hand leverages end-host congestion control [141] to

improve performance in large networks, and with resilient RoCE [86] relaxes network

requirements and enables operation in lossy networks.

Implementation Even applications that only rely on RDMA messaging primitives lever-

age RDMA to improve performance compared to using commodity operating systems

network stacks [63]. These performance improvements arise from implementation as-

pects: direct kernel bypass NIC access for applications, offload of processing to NIC,

stronger network requirements, and application interface details. Dating back to VIA [31],

RDMA has primarily been implemented in hardware to maximize performance, offering

kernel bypass as well as full data path offload to the NIC. Applications enqueue RDMA

commands for the NIC, and the NIC will generate packets as well as process incoming

packets and notify the application. Instead of the blocking socket calls, RDMA verbs offer

a fully asynchronous queue-based interface.

CHAPTER 2. BACKGROUND 63

2.6.5 Discussion

Efficiency 3 With its richer programming model, RDMA provides a larger design space

for applications. One-sided operations provide low-latency direct access to remote mem-

ory while completely bypassing the remote CPU. For applications that can effectively use

one-sided operations, the RDMA programming model enables more efficient operation

than pure message passing. For all other applications RDMA effectively functions as pro-

tocol offload for message passing. As such, RDMA hardware implementations offer at

least the efficiency of hardware protocol processing, with additional latency and CPU

overhead improvements for applications using one-sided operations.

Connection Scalability 3 As with hardware protocol offload, RDMA also has to store

connection state in hardware, and as such is limited by available NIC memory. RDMA

NICs typically also support spilling connection state to host memory, but paging state in

and out of NIC memory is expensive and only helps with inactive connections. Protection

meta data for one-sided operations takes up additional NIC memory, increasing memory

footprint compared to pure message passing use. Besides the memory limit, RDMA does

not place other limits on connection scalability.

Performance Predictability 7 In terms of end-host processing RDMA achieves the same

predictable hardware processing as hardware protocol offload. However, the use of hard-

ware flow control in RoCE (as the most popular data center RDMA implementation) can

lead to unpredictable performance. Because PFC back-pressure occurs per-link, and can

propagate out into the network, it introduces head of line blocking and cross-talk. The

requirement for PFC has also made full data center scale deployments of RDMA impos-

sible, because the limitations that PFC places on wiring distance prevent communication

across the spine layer [41].

CHAPTER 2. BACKGROUND 64

Policy Compliance (3) While RDMA does use kernel bypass, the combination with a

high-level application interface and a hardware protocol processing enables the OS to

enforce policies. But the policies that the OS can enforce are completely dependent on the

mechanisms offered by the RDMA protocol and the NIC implementation.

Protocol Flexibility 7 The fixed nature of a NIC that implements one particular proto-

col in hardware, by definition results in limited to no protocol flexibility. RDMA vendors

have been extending both the protocol and the NICs with new features, but these exten-

sions require deployment of new hardware. Protocol extensions in deployments that mix

multiple generations of hardware can also only be used among the nodes that support the

extension.

Cost Efficiency 3 As purpose-built hardware implementations, RDMA NICs imple-

ment their processing in minimal silicon resulting in low hardware cost. But again the

lack of protocol flexibility potentially implies costly upgrades as requirements and infras-

tructure evolve.

2.7 Conclusion

Data center networks fundamentally rely on server protocol processing for correct and

efficient operation. Servers implement protocols, such as TCP, for reliable communica-

tion over the unreliable network. Implementing these protocols consumes significant re-

sources on end-hosts. The design space for solutions is constrained because much of it

has to be performed by a trusted layer in multi-tenant systems.

Traditionally this trusted layer has been the operating system kernel. This architecture

is capable of enforcing multi-tenant policy and does not require special-purpose hard-

CHAPTER 2. BACKGROUND 65

ware, but the main drawback is high processor overhead for applications. Bypassing the

kernel by allowing applications to directly access the NIC, reduces kernel-crossing over-

heads but still requires the application to implement all protocol processing. More impor-

tantly, bypass sacrifices policy compliance because applications are able to craft arbitrary

packets and violate congestion control and is as such a no-go for multi-tenant uses. Proto-

col offload implements protocol functionality in hardware on the NIC, freeing up proces-

sor cycles and allowing the NIC to police the application by enforcing configured protocol

operation. However, while the fixed hardware implementation of protocol offload offers

high performance at low cost, it lacks protocol flexibility. Programmable FPGA NICs ad-

dress this by offering flexible protocol offload for a wide range of functionality. However,

the flexibility comes at the cost of vastly increased chip area and a HDL programming

model. Finally, RDMA provides applications with an alternate programming model cen-

tered around shared memory operations instead of message passing. For applications

that can benefit from one-sided memory accesses, the RDMA programming model can

significantly improve efficiency. However, current commercially available RDMA NICs

struggle with protocol limitations for data centers and complete lack of protocol flexibility.

From a performance and efficiency point of view, kernel bypass is necessary but not

sufficient. Protocol offload further boosts efficiency, and is also a necessary requirement

for policy enforcement with kernel bypass. But what packet processing architecture can

provide the necessary protocol flexibility in an economical way?

Existing NICs are on two opposite ends of the spectrum of programmability. Com-

modity NICs (including TCP offload and RDMA) implement fixed processing in hard-

ware and offer no programmability. NPUs and FPGAs are at the other end of the spec-

trum and allow (almost) arbitrary processing to be implemented. In this dissertation, I

argue that the sweet spot lies in the middle of this spectrum. Limited programmability in

CHAPTER 2. BACKGROUND 66

the NIC can be augmented with software processing in operating system and applications

to efficiently implement even complex protocols.

Chapter 3

FlexNIC Hardware Model

I now present FlexNIC, an architecture for efficient, scalable, predictable, policy compli-

ant, flexible, and cost effective NIC packet processing. In the previous chapter, I con-

cluded that while the combination of protocol offload and kernel bypass improves perfor-

mance without compromising policy compliance, existing architectures are either inflexi-

ble and economical or completely flexible but not cost effective. FlexNIC instead explores

the middle ground with limited programmability in a cost effective architecture. The OS

and applications alike can leverage FlexNIC to achieve high and predictable performance

with large numbers of connections while providing security for multi-tenancy. FlexNIC

serves as the basis for both FlexTCP in chapter 4 and integrated application processing in

chapter 5.

3.1 Design Goals

My outlined goals for data center packet processing guide the development of FlexNIC

and each goal has a implications for the NIC design:

67

CHAPTER 3. FLEXNIC HARDWARE MODEL 68

• Efficiency: In addition to minimizing processor overhead for packet processing,

FlexNIC must be able to support processing at the line rates of tomorrow’s data

center network link speeds (at least 100 Gb/s).

• Connection Scalability: FlexNIC should not restrict scalability to large numbers of

connections. However, all stateful protocol offloads are limited by available NIC

memory. I explore memory requirements for stateful offload in chapter 4.

• Performance Predictability: Hardware packet processing with FlexNIC should pre-

serve the same predictable hardware timing as fixed protocol offloads.

• Policy Compliance: FlexNIC needs to support the protection and isolation guaran-

tees provided by the OS, while allowing applications to install their own offloading

primitives in a fast and flexible manner.

• Protocol Flexibility: FlexNIC must be flexible enough to serve the offload require-

ments of data center protocols and applications that change at software develop-

ment timescales. The architecture has to support existing protocols and applica-

tions to enable incremental deployment and interaction with hosts outside of the

data center.

• Cost Efficiency: The required additional hardware has to be economical, such that

it fits the pricing model of commodity NICs.

I start with the reconfigurable match table (RMT) model recently proposed for flexi-

ble switching chips [15] to the NIC DMA interface. The RMT model processes packets

through a systolic sequence of match and action (M+A) stages.

In this dissertation I propose the FlexNIC hardware model, and evaluate it using an

emulation methodology [42].

CHAPTER 3. FLEXNIC HARDWARE MODEL 69

Parser F
B
0

MA1 F
B
1

MAm F
B
m

Deparser

Figure 3.1: RMT switch pipeline.

A hardware implementation of FlexNIC is outside of the scope for this dissertation.

However, I can estimate its hardware cost. A typical commodity switch uses merchant

silicon to support sixteen 40 Gbps links at a cost of about $10K per switch in volume,

including the switching capacity, deep packet buffers, protocol handling, and a match

and action (M+A) table for route control. In fact, it is generally believed that converting

to the more flexible RMT model will reduce costs in the next generation of switches by

reducing the need for specialized protocol processing [15]. Extensions to RMT switches

for advanced stateful processing and programmable scheduling have also been shown

to incur area overheads of less than 2% each compared to a baseline RMT switch [123,

124]. As a result, I believe that adding line-rate FlexNIC support is both feasible and less

expensive than adding full network processor or FPGA support.

3.2 Reconfigurable Match Tables in Switches

I now briefly describe the RMT model [15] used in switches before moving on to discuss

how to adapt it to support flexible packet processing in a NIC. RMT switches can be

programmed with a set of rules that match on various parts of the packet, and then apply

data-driven modifications to it, all operating at line rate for the switched packets. This is

implemented using two packet processing pipelines that are connected by a set of queues

allowing for packets to be replicated and then modified separately.

Such an RMT pipeline is shown in Figure 3.1. A packet enters the pipeline through

CHAPTER 3. FLEXNIC HARDWARE MODEL 70

From
Network

Doorbells
from PCIe

RX Pipeline

DB Pipeline

TX Pipeline

DMA Pipeline
PCIe
DMA

Queue
Manager

To
Network

Figure 3.2: RMT-enhanced NIC DMA architecture.

the fully programmable parser, which identifies all relevant packet fields as described by

the software-defined parse graph. It extracts the specified fields into a field buffer (FB0) to

be used in later processing stages. The relevant fields pass through the pipeline of M+A

stages (MA1..MAm) and further field buffers (FB1..FBm). In a typical design, m = 32.

An M+A stage matches on field buffer contents using a match table (of implementation-

defined size), looking up a corresponding action, which is then applied as it moves on

to the next field buffer. Independent actions can be executed in parallel within one M+A

stage. The deparser combines the modified fields with the original packet data received

from the parser to get the final packet. To be able to operate at high line rates, multi-

ple parser instances can be used. In addition to exact matches, RMT tables can also be

configured to perform prefix, range, and wildcard matches. Finally, a limited amount of

switch-internal SRAM can maintain state across packets and may be used while process-

ing.

CHAPTER 3. FLEXNIC HARDWARE MODEL 71

3.3 Applying Reconfigurable Match Tables to NICs

The model has four identical RMT packet processing pipelines connected by an intercon-

nect (as shown in Figure 3.2). The receive and PCI doorbell pipelines process incoming

packets from the network and notifications from the host CPU, respectively. The trans-

mit and DMA pipelines apply rules to packets received from other pipelines and pass

them on to the network or via a DMA engine to/from host memory. In particular, an

arriving packet can trigger both a DMA of its contents into application memory and an

acknowledgment back to the sender, under RMT control. Finally, the queue manager is

responsible for packet scheduling.

Pipelines As with a switch RMT model, each processing pipeline consists of a pro-

grammable parser, multiple match-and-action (M+A) stages that execute a fixed number

of operations for each packet, and a programmable deparser. Packet fields can be added,

stripped, or modified. Operations can also read and write stateful memory local to each

pipeline for keeping state across packets. Packets have associated metadata that opera-

tions can manipulate. The interconnect reads metadata to determine the destination for a

packet. The DMA interface also uses metadata to determine how many bytes to exchange

with a particular host memory range.

Interconnect The interconnect routes packets between individual pipelines, and between

pipelines and the queue manager. It also buffers packets and arbitrates conflicts if more

than one packet arrives at the same time, e.g. a PCIe doorbell and a packet from the net-

work. For each pipeline the interconnect manages a queue of packets waiting to be pro-

cessed. The interconnect provides back-pressure to components injecting new packets,

i.e. the PCIe bus, the network, and the queue manager, to ensure no packets are dropped

CHAPTER 3. FLEXNIC HARDWARE MODEL 72

after being admitted to the system. To this end the interconnect manages reservations for

packets in queues.

Packet metadata fields control routing of packets between components as well as reser-

vations. One metadata field specifies the packet destination, and a second field specifies

reservations as a bitmap. The reservation bitmap contains a bit for each pipeline and

specifies a super set of pipelines that the packet might be directed to in its remaining life-

time. After initial admission into the system, bits in the reservation bitmap can only be

cleared but never be set. The reservation bitmap is used to hold reservations in queues for

individual pipelines that a packet can still reach. For each source injecting new packets

into the system, i.e. the network, the PCIe bus, and the queue manager, an initial bitmap

is specified by a configuration parameter. The interconnect only admits new packets if

queue slots in each possible destination pipeline are available. Different sources of pack-

ets react differently to back-pressure. The network will simply drop packets, the PCIe bus

propagates back-pressure to the CPU, and the queue manager delays injecting the next

packet.

DMA Engine To maximize flexibility in my approach, I enhance commodity NIC DMA

capabilities by integrating an RMT pipeline with the DMA engine. Interaction with the

host is fully controlled by the DMA pipeline. In contrast to traditional NICs that use de-

scriptor queues in host memory, FlexNIC can interact with host memory in many different

ways. In addition to descriptor queues FlexNIC can implement other data structures such

as linear packet buffers or even RDMA semantics where an incoming packets reads or

writes to memory before generating a response packet.

The DMA pipeline issues requests to the DMA controller for transferring data be-

tween host memory and packet buffer. Requests to the DMA engine are passed from the

DMA pipeline in packet metadata. The relevant metadata fields are an address in host

CHAPTER 3. FLEXNIC HARDWARE MODEL 73

Field Description

offset Byte offset in the packet
length Number of bytes to transfer
direction From/To memory
memBase Start address in memory

Table 3.1: Meta data format for DMA requests.

memory, the offset in the packet, the size of the transfer, and the transfer direction, as

shown in Table 3.1. Each packet can issue a small number of DMA requests in parallel (I

assume 2-4). By combining table-lookups, stateful memory, and arithmetic instructions,

the DMA pipeline can generate DMA requests for a wide range of data structures. This

design is easily extended to include support for CPU cache steering [48, 102] and atomic

operations [101] if supported by the PCIe chipset.

Queue Manager To provide fairness and to enforce resource allocation, FlexNIC needs

to arbitrate access to the DMA and transmit pipelines among arriving packets, doorbells,

and packets from previously queued outbound connections. FlexNIC is also inherently

event driven and generates a single output event for each input event (packet or PCIe

doorbell). Looping back to another pipeline is desirable for more complex operations, but

ties up packet buffers potentially causing uncontrolled packet drops and backpressure to

the PCIe bus. I propose a queue manager (QM), as shown in Figure 3.2, to provide packet

scheduling and to allow incoming events to be decoupled from resulting outgoing events.

The QM provides a number of rate-limited token buckets. Each packet exiting a

pipeline arrives at the QM, with metadata specifying a target bucket and number of to-

kens to fill (e.g., packet size). The QM stores only the total number of tokens in each

bucket, a per-bucket rate limit, and a per-bucket maximum drainage quantum (such as

the maximum transfer unit). The QM drains buckets under rate limits and injects token

CHAPTER 3. FLEXNIC HARDWARE MODEL 74

packets containing the originating bucket ID and number of tokens drained (up to the

quantum). As long as the interconnect is available, buckets without rate limit are drained

immediately in a round-robin fashion. Buckets with rate limits are drained at their rate,

oldest-first. The QM alternates between draining buckets with and without rate limits.

The QM decouples events that fill buckets from the events that drain them, allowing

drained events to be scheduled fairly. For example, FlexTCP assigns a rate-limited QM

bucket to each TCP flow for fair transmit scheduling and congestion control. Given that

the QM keeps only bucket levels, its hardware footprint is modest. Prior work explor-

ing programmable packet scheduling [124] in switches has shown feasibility for 1,000s of

queues with much higher aggregate throughput than is currently required for NICs.

An example use-case of the queue manager are transmit queues that support doorbell

batching. A single doorbell informs the NIC that K entries were added to the transmit

queue. Based on this the doorbell pipeline instructs the QM to add K tokens to the to-

ken bucket corresponding to this queue. The QM now asynchronously starts injecting K

token packets through the interconnect to the DMA pipeline. In the DMA pipeline a ta-

ble lookup translates the token bucket identifier in the packet to a queue id, provides the

memory address of the queue, and a stateful memory location holding the current queue

position. Based on this information, the DMA pipeline can issue a DMA request to read

the packet from memory and then direct it to the transmit pipeline.

3.3.1 Constraints

To make packet processing at high line-rates feasible, the RMT model is explicitly not

freely programmable and several restrictions are imposed upon the user. For example,

processing primitives are limited. Multiplication, division and floating point operations

are typically not feasible. Hashing primitives, however, are available; this exposes the

CHAPTER 3. FLEXNIC HARDWARE MODEL 75

hardware that NICs use today for flow steering. Control flow mechanisms, such as loops

and pointers, are also unavailable, and entries inside M+A tables cannot be updated on

the data path. This precludes complex computations from being used on the data path.

The amount of stateful NIC memory is also constrained.

3.4 Building Blocks

During the use case exploration of FlexNIC, a number of building blocks have crystal-

lized, which I believe are broadly applicable. These building blocks provide easy, config-

urable access to a particular functionality that FlexNIC is useful for. I present them in this

section and will refer back to them in later sections.

Multiplexing Multiplexing has proven valuable to accelerate the performance of appli-

cations. On the receive path, the NIC has to be able to identify incoming packets based on

arbitrary header fields, drop unneeded headers, and place packets into software-defined

queues. On the send path, the NIC has to read packets from various application-defined

packet queues, prepend the correct headers, and send them along a fixed number of con-

nections. This building block is implemented using only ingress/egress M+A rules.

Flow and Congestion Control Today’s high-speed NICs either assume the application

is trusted to implement congestion control, or, as in RDMA, enforce a specific model in

hardware. Many protocols can be directly encoded in an RMT model with simple packet

handling and minimal per-flow state. For example, for flow control, a standard pattern

I use is to configure FlexNIC to automatically generate receiver-side acks using ingress

M+A rules, in tandem with delivering the payload to a receive queue for application pro-

cessing. If the application falls behind, the receive queue will fill, the ack is not generated,

CHAPTER 3. FLEXNIC HARDWARE MODEL 76

and the sender will stall.

For congestion control, enforcement needs to be in the kernel while packet processing

is at user level. Many data centers configure their switches to mark an explicit congestion

notification (ECN) bit in each packet to indicate imminent congestion. I configure FlexNIC

to pull the ECN bits out before the packet stream reaches the application; I forward these

to the host operating system on the sender to allow it to adjust its rate limits without

needing to trust the application.

Hashing Hashing is essential to the scalable operation of NICs today, and hashes can

be just as useful when handling packets inside application software. However, they often

need to be re-computed there, adding overhead. This overhead can be easily eliminated

by relaying the hardware-computed hash to software. In FlexNIC, I allow flexible hash-

ing on arbitrary packet fields and relay the hash in a software-defined packet header via

ingress or DMA rules.

Filtering In addition to multiplexing, filtering can eliminate software overheads that

would otherwise be required to handle error cases, even if very few illegal packets arrive

in practice. In FlexNIC, I can insert ingress M+A rules that drop unwanted packets or

divert them to a separate descriptor queue for software processing.

3.5 Discussion

With FlexNIC I propose one possible hardware model for reconfigurable NICs that can

enable more efficient software packet processing. For the purposes of this dissertation the

goal for FlexNIC is to argue that a restricted programming model, can enable significant

end-to-end performance improvements in software processing. A hardware implementa-

CHAPTER 3. FLEXNIC HARDWARE MODEL 77

tion of FlexNIC is not necessary to validate the abstraction, and thus out of scope for this

dissertation.

The model does cover external architectural constraints arising from how NICs inter-

act with the rest of the server and the external network. The model also defines high-level

constraints for what types of operations can and cannot be implemented in FlexNIC. Spe-

cific low-level hardware limits, such as how many operations of a specific type a pipeline

stage supports, are implementation specific and out of scope. This dissertation also makes

no claim that FlexNIC is the only or even the ideal NIC hardware model for this purpose.

Instead, I demonstrate that a limited reconfigurable NIC model is useful, and provide a

starting point for future design exploration.

Hardware Architecture Design Space There is a large design space to explore for future

reconfigurable packet processing systems, with design choices along many axes. For the

RMT pipeline the two high-level parameters are the number of stages and the number

(and type) of parallel operations within each stage. Existing high-throughput switch de-

signs rely on multiple pipeline instances, raising the throughput but effectively partition-

ing traffic and state into separate units. While RMT fully partitions memory for lookup

tables and state among states, other architectures [19] employ central memory pools, of-

fering flexible allocation to stages but requiring a significantly more complex design. The

main drawback of a pipeline for processing is the abrupt performance cliff for processing

that cannot be performed in one pass through the pipeline. dRMT [22] instead relies on

multiple processors that each execute a stream of match-action operations for a packet,

leading to throughput linear in the number of operations required. Memory capacity in

RMT is also limited because of the need for fast SRAM. I expect that RMT can be ex-

tended with DRAM to provide more memory, for example by adding a mechanism for

fetches data from DRAM in an early pipeline stage to be available in time for processing

CHAPTER 3. FLEXNIC HARDWARE MODEL 78

in a later stage.

Programming Interface Similarly, I omit a precise definition of a programming inter-

face. I implement a version of the FlexNIC emulator that implements processing as shown

in Figure 3.2. But in this emulation environment the four pipelines that execute specific

protocol processing are implemented as general C functions. I manually ensure that the

pipeline configurations do not use any operations not supported by the RMT model. At

a high level, NIC processing could be specified in a domain specific language for packet

processing, such as P4 [14], but I leave this for future work. The more complex stateful

processing in NICs likely requires extensions to P4, for example through abstractions such

as packet transactions [123].

Chapter 4

TCP Processing

This chapter describes the design and implementation of the FlexTCP stack. Given Flex-

NIC, my solution for addressing limitations in existing NICs, the next question is how

accelerate TCP, the most commonly used protocols in data centers. TCP is notorious for

its complex and resource intensive processing. However, FlexNIC provides a restricted

NIC model only that only supports offloading simple protocol processing steps. The rest

of this chapter describes this challenge in more detail before discussing how the FlexTCP

architecture resolves this mismatch and presenting the prototype implementation.

4.1 Goals

FlexTCP has the following specific design goals:

• Efficiency: My primary goal is to reduce the CPU overhead of latency-sensitive

TCP small packet processing, well beyond that of kernel bypass. To do so, I of-

fload common-case CPU packet processing to FlexNIC and improve application-

level cache locality and multi-core scalability.

79

CHAPTER 4. TCP PROCESSING 80

• Connection Scalability: FlexTCP should scale to the tens of thousands of flows

typical of data center scenarios and provide fairness and isolation to each one of

them.

• Performance Predictability: FlexTCP should also provide consistent performance,

isolating each application’s performance from the behavior of other applications,

and minimizing the impact for handling expensive TCP corner cases.

• Policy Compliance: At the same time, FlexTCP needs to enforce complex system

policy, affected by various environmental conditions, including congestion control

protocol, network configuration, firewalls, and resource isolation policy. It has to do

so without cooperation from untrusted user-level software, too much NIC complex-

ity, or the overhead of repeated kernel invocations.

• Protocol Flexibility: FlexTCP needs to be compatible with existing TCP peers, ap-

plications, and networks. But flow and congestion control, as well as user-layer

extensions to TCP, are still an active area of research. I do not intend to stifle this

innovation by fixing a single TCP implementation and programming interface in

hardware. Instead, my goal is to retain maximum flexibility in the choice of flow

and congestion control protocols, programming interfaces, as well as session and

presentation layer extensions, such as multiplexing enhancements or RPC object

steering.

• Cost Efficiency: FlexTCP needs to be economical and reduce the total cost of owner-

ship, by making efficient use of resources and with a cost effective hardware model.

CHAPTER 4. TCP PROCESSING 81

Task LOC % Complexity
State machine 948 26 O(C)
Out of order 507 14 O(N)
Timers 408 11 O(C)
Segmentation 310 9 O(1)
Debug, API 291 8 O(C)
Common TX 226 6 O(1)
Common RX 209 6 O(1)
TCP Options 207 6 O(1)
Flow control 149 4 O(1)
Memory mgmt 117 3 O(M)
Port mgmt 111 3 O(C)
Congestion control 66 2 O(1), mul, div, mod
Checksum 70 2 O(1)

Total 3619 100

Table 4.1: Top lwIP tasks by LOC and primary computational complexity (C = connec-
tions, N = out-of-order packets, M = memory fragmentation). Bold items are feasible to
implement with FlexNIC.

4.2 Challenges

As motivation for my implementation, I study the TCP implementation in lwIP [82] ver-

sion 2.0.2 as an example of a minimal, yet fully featured TCP network stack implementa-

tion, and classify the code into the different tasks necessary to support TCP and the data

and computational primitives required to carry out these tasks. I use the number of lines

of code (LOC) of each task’s implementation as a proxy for its complexity.

Table 4.1 shows the result. The majority of the code is dedicated to managing the con-

nection state machine, including connection handshake and maintaining listening and re-

cently closed connections, handling out-of-order packets, and timer-related functionality,

including retransmission of lost packets, sending keep-alives, delayed acknowledgments,

and timing out of connections. These tasks are data structure intensive. They frequently

walk linked lists of connections and TCP segments, requiring a non-constant number of

CHAPTER 4. TCP PROCESSING 82

operations per processed packet. A smaller, but related non-constant task is the allocation

of open port space. All of these tasks make frequent use of a library of heap memory man-

agement functions to (de-)allocate packet and connection state that is also non-constant.

Together, these tasks constitute 57% of the lwIP TCP implementation. Because they have

non-constant complexity, they are infeasible to offload to FlexNIC.

Common-case receive and transmit code has constant complexity with each processed

packet. The same holds for segmentation, TCP options processing, flow control, and

checksum calculations. None of these tasks requires any additional data structures. They

operate solely on packet headers or submitted payload. Thus, they are potentially offload-

able, subject to computation and per-flow memory constraints. Together, they constitute

33% of the implementation, or 1,170 lines of code. I explain in the next section how to

map these tasks on the available hardware primitives.

Only 2% of code is dedicated to congestion management. However, congestion man-

agement requires multiplication, division, and modulo operations for round-trip time es-

timation that are not available in the FlexNIC model. And while approximations [121]

could enable implementation of individual congestion control algorithms, congestion man-

agement is an area of TCP innovation that is easier to evolve when implemented using a

familiar programming model [95]. Hence, I retain it on the CPU.

The remaining 8% of code are dedicated to debugging and API-related functionality,

such as calling callbacks. I do not offload them to the NIC.

4.3 FlexTCP Network Stack Design

FlexTCP has three components: FlexNIC program, trusted kernel stack, and untrusted

per-application user-space stack. All components are connected via a series of optimized

queues in host memory. Queues between user-space and the kernel reside in shared mem-

CHAPTER 4. TCP PROCESSING 83

RMT NIC

Rate limit
Segmentation
Acknowledge

Per-flow state

TCP
packets

App

Kernel
exception
packets

payload buffers kernel
context
queue

per-context TX/RX q’s
0 1 2 3

Kernel queue

0 1

common
payload

Figure 4.1: FlexTCP design overview. The exception queue is in kernel memory; every-
thing else is in user memory.

ory and are optimized for cache-efficient message passing [7]. Queues between NIC and

software use PCI doorbells, identical to those in commodity NICs [56].

Figure 4.1 shows an overview of how FlexTCP components interact. The NIC is re-

sponsible for handling common case packet exchanges. To do so, it deposits the payload

of incoming packets directly in user-space per-flow receive payload buffers, notifying the

user-space TCP stack of data arrival via a receive context queue. Outgoing payload is writ-

ten by the user-space TCP stack into per-flow transmit payload buffers, notifying the NIC

via a transmit context queue. The NIC fetches and encapsulates payload according to per-

connection rate limits that are dynamically configured by the kernel. User-level TCP stacks

export the standard POSIX API to applications. Applications do not need to be modified.

For connection setup and teardown user-level stacks interact with the kernel using kernel

context queues.

4.3.1 FlexNIC Functionality

FlexNIC handles common-case exchange of packets on established connections. It also

must detect and respond to exceptions, such as out-of-order arrivals and unknown con-

CHAPTER 4. TCP PROCESSING 84

nections, and enforce congestion policy. It processes protocol headers, sends TCP ac-

knowledgments, and performs segmentation.

Common-Case Receive FlexTCP assumes that packets are commonly delivered in order

by the network. This is true for data center networks today due to connection-stable multi-

path routing [39, 122]. With in order packets, the NIC can discard all network headers and

directly insert the payload into a user-level, per-flow, circular payload receive buffer.

Circular payload buffers are more efficient than the DMA descriptor queues used by

commodity NICs. The NIC can directly write received payload to host memory, noti-

fying an appropriate context queue by identifying the connection and number of bytes

received. No prior DMA descriptor reads are necessary. I also do not experience the in-

ternal memory fragmentation of fixed-size DMA buffers, allowing for streaming receives

without scatter-gather IO. Finally, linear buffers prefetch well in CPU caches and require

no more NIC state than DMA descriptors.

Per-flow payload buffers simplify flow control and improve isolation, making a Flex-

NIC implementation feasible. With shared buffers determining an accurate flow control

window requires iteration over all connections sharing the buffer, imposing non-constant

per-packet overhead.

When a payload buffer is full, the NIC simply drops the packet. When a context queue

is full, the NIC will inform the user-level stack upon future packet arrivals if the queue is

available. User-level stacks are free to define and configure contexts. I describe them in

more detail in subsection 4.3.3.

NIC-Generated ACKs After depositing the payload of an in-order packet, the NIC auto-

matically generates an acknowledgement packet and transmits it to the sender to update

its TCP window. Handling TCP acknowledgements on the NIC is important for safety.

CHAPTER 4. TCP PROCESSING 85

If user-space was given control over acknowledgements, as in many kernel bypass solu-

tions, it can use it to defeat TCP congestion control [118]. The acknowledgements also

provide correct ECN feedback, and accurate TCP timestamps for RTT estimation.

Common-Case Send User-level stacks send data on a flow by appending it to a flow’s

circular transmit buffer. Per-flow send buffers are required to alleviate head-of-line block-

ing under rate and flow control. To inform the NIC, the stack issues a TX command on a

context queue and sets a doorbell. The NIC fills a flow-specific QM bucket with the new

amount of data to send. Asynchronously, the QM drains these buckets, depending on the

configured rate-limit and the receiver’s TCP window to enforce congestion and flow con-

trol. When data can be sent, the NIC fetches the appropriate amount from the transmit

buffer, produces TCP segments, prepends packet headers for the connection, and trans-

mits.

ACK Processing Any payload that has been sent remains in the transmit buffer until

acknowledged by the receiver. The NIC parses incoming acknowledgements, updates

per-flow sequence and window state, frees transmit payload buffer space, and informs

user-space of reliably delivered packets by issuing a notification with the number of trans-

mitted bytes for the corresponding flow. This requires constant time. With DMA descrip-

tor queues the NIC would have to scan the descriptors to determine the (parts of) buffers

freed. The NIC also uses TCP timestamps to provide the kernel with an accurate RTT

estimate for congestion control and timeouts.

NIC State To enforce policy, the NIC requires the per-flow state shown in Table 4.2. The

opaque field is specified by and relayed to user-space to help it identify the corresponding

connection. Similarly, the doorbell register helps the NIC identify what per-core receive

CHAPTER 4. TCP PROCESSING 86

and transmit queue to use. RX/TX buffer state is used for management of per-flow buffers

in user-space. The kernel can read and write NIC state as device memory. In all, Flex-

TCP requires 102 bytes of per-flow state. Current commodity NICs supply about 8 MB

of SRAM at reasonable cost (section 4.5). This allows us to keep the state of more than

80,000 active flows in fast memory. Packets for any flows that do not fit are directed to the

kernel queue for traditional kernel processing. Integrating ideas to reduce NIC state (e.g.,

SENIC [109]) is future work.

Exceptions The NIC detects out-of-order arrivals by matching arrivals against expected

sequence numbers in the per-flow seq register. It drops them and generates an acknowl-

edgement specifying the next expected sequence number. When processing incoming

acknowledgements the NIC counts duplicates and triggers fast recovery, without kernel

intervention, after three duplicate acknowledgements by resetting the sender state as if

those segments had not been sent yet. The NIC also increments a per-flow retransmit

counter to inform the kernel to reduce the flow’s rate limit.

As an optimization, the NIC tracks one interval of out-of-order data in the receive

buffer (starting at ooo_start and of length ooo_len). The NIC accepts out-of-order

segments of the same interval if they fit in the receive buffer. In that case, the NIC writes

the payload to the corresponding position in the receive buffer. When an in-order segment

fills the gap between existing stream and interval, the NIC notifies the user-level stack as

if one big segment arrived, and resets its out-of-order state.

Other exceptions, such as unidentified connections, corrupted packets, and packets

with unhandled flags, are filtered and sent to the kernel for processing.

CHAPTER 4. TCP PROCESSING 87

4.3.2 Kernel

The kernel implements all policy decisions and management mechanisms that have non-

constant per packet overhead or are too expensive or stateful to process on the NIC. This

includes congestion control policy, connection management, user-space TCP stack reg-

istry, handling timeouts and other exceptional situations.

Congestion Control FlexTCP enforces congestion control by configuring the NIC to

limit each connection to a specific rate. The kernel updates flow rates periodically out-of-

band, based on congestion feedback collected by the NIC. Based on received ACKs, the

NIC maintains for each flow: bytes acknowledged with and without ECN marks, num-

ber of fast retransmits, and current RTT estimate. The kernel runs a control loop iteration

for each flow every control interval (configurable, by default every 2 RTTs). It retrieves

congestion feedback from the NIC, then runs a congestion control algorithm to calculate

a new flow rate, and finally updates the flow rate on the NIC.

This provides a generic framework to implement different congestion control algo-

rithms. I implement DCTCP [3] and TIMELY [90] (adapted for TCP by adding slow-start).

I adapt DCTCP to operate on rates instead of windows by applying the control law (rate-

decrease proportional to fraction of ECN marked bytes) to flow rates. During slow start I

double the rate every control interval until there is an indication of congestion, and dur-

ing additive increase I add a configurable step size (10 mbps by default) to the current

rate. To prevent rates from growing arbitrarily in absence of congestion, I ensure at the

beginning of the control loop that the rate is no more than 20% higher than the flow’s send

rate. FlexTCP’s rate-based DCTCP implementation is compatible with Linux peers.

Stack Management To associate new user-space TCP stacks with FlexTCP, the kernel

has to be informed via a special system call. If the request is granted, the kernel creates an

CHAPTER 4. TCP PROCESSING 88

Register Bits Description
opaque 64 Application-defined flow identifier
doorbell 16 Associated TX doorbell
bucket 24 Associated QM bucket ID
rx|tx_start 128 RX/TX buffer start
rx|tx_size 64 RX/TX buffer size
rx|tx_head|tail 128 RX/TX buffer head/tail position
tx_sent 32 Sent bytes from tx_head
seq 32 Local TCP sequence number
ack 32 Peer TCP sequence number
window 16 Remote TCP receive window
dupack_cnt 4 Duplicate ACK count
local_port 16 Local port number
peer_ip|port|mac 96 Peer 3-tuple (for segmentation)
ooo_start|len 64 Out-of-order interval
cnt_ackb|ecnb 64 ACK’d and ECN marked bytes
cnt_frexmits 8 Fast re-transmits triggered count
rtt_est 32 RTT estimate

Table 4.2: Required per-flow NIC state (102 bytes total).

initial pair of context queues that the user-space stack uses to create connection buffers,

etc.

Connection Management Connection management is complex. It includes port alloca-

tion, negotiation of TCP options, maintaining ARP tables, and IP routing. I thus handle

it in the kernel. User-level TCP stacks issue a new_flow command on the kernel context

queue to locally request new connections. If granted, the kernel establishes the connec-

tion by executing the TCP handshake in software and, if successful, installs the established

flow’s state in the NIC and allocates a rate-limited QM bucket. Remote requests are de-

tected by the NIC and forwarded to the kernel, which then completes the handshake in

software.

Servers can listen on a port by issuing a listen command to the kernel. The kernel

informs user-space of incoming connections on registered ports by posting a notification

in the kernel context queue. If user-space decides to accept the connection, it may issue

CHAPTER 4. TCP PROCESSING 89

the accept command to the kernel (via the kernel context queue), upon which the kernel

establishes the flow in software. To tear down a connection, user-space issues close,

upon which the kernel executes the appropriate handshake in software and removes the

flow state from the NIC. Similarly, for remote teardowns, the kernel informs user-space

via a close command.

Retransmission Timeouts I handle retransmission timeouts in the kernel. When collect-

ing congestion statistics for a flow from the NIC, the kernel also checks for unacknowl-

edged data.If a flow has unacknowledged data with a constant sequence number for mul-

tiple control intervals (2 by default) the kernel instructs the NIC to start retransmitting by

adding a command to the kernel context queue. In response to this command the NIC

will reset the flow and start transmitting exactly as described above for fast retransmits.

4.3.3 User-space TCP Stack

The user-space TCP stack presents the programming interface to the application. The de-

fault interface is POSIX sockets so applications can remain unmodified, but per-application

modifications and extensions are possible, as the interface is at user-level [104, 83, 8]. The

TCP stack is responsible for managing connections and contexts, as well as sending and

receiving payload. To fulfill the performance goals, common-case overhead of the TCP

stack is minimal.

Context Management User-space stacks are responsible for defining and allocating con-

texts. Contexts are useful in various ways, but typically stacks allocate one context per

application thread for scalability, as it allows cores to poll only a private context queue,

rather than a number of shared payload buffers. This is especially important with many

connections. Contexts do not need to match connections and performance can be gained

CHAPTER 4. TCP PROCESSING 90

when not doing so (section 4.4). Stacks allocate contexts via management commands to

the kernel.

4.4 Flexible FlexTCP Extension

FlexTCP is flexible. This allows us to build higher-level extensions that can improve ap-

plication efficiency and scalability. I have developed one such extension, which I present

in this section.

Server applications can improve performance by steering similar application-level ob-

jects to the same set of cores in order to benefit from increased cache locality and utiliza-

tion [77]. However, TCP connections are difficult to process across multiple cores because

of the complex per-connection state involved [60], prohibiting this approach. If I can per-

form common-case TCP connection processing on the NIC, I can steer incoming objects to

identical worker cores without incurring the management overhead.

Overview I provide an object steering extension to address this problem. I define an

overlay stream of variable-size objects on top of the TCP byte stream. Objects are application-

identified sequences of bytes, such as RPC requests and responses. I continue to support

TCP’s guarantees with relaxed ordering of objects delivered to different cores. Applica-

tions are responsible to specify steering semantics such that object dependencies are not

violated. This is in-line with the primary use-case of object steering, which is to facilitate

parallel processing of multiple incoming remote procedure calls. For example, to sup-

port pipelined random access memory (PRAM) consistency, writes would continue to be

steered by connection, while reads can be steered to any available CPU.

For connections using object steering, the TCP byte streams contain sequences of ob-

jects. Each object consists of a header, a key, and payload. The header frames the object,

CHAPTER 4. TCP PROCESSING 91

specifying its total length, as well as the length of the key. Upon receiving an object, the

NIC uses the key to determine the target core for the object. I currently provide two con-

figurable steering mechanisms for each connection: hash-based and direct. Hash-based

steering calculates a hash over the key and then uses it to choose the target core, akin to

receive side scaling [57]. Direct steering uses the key directly as the target core identifier.

Implementation To implement object steering, I extend the NIC flow state with a flag

to mark the flow as an object steering connection, a flag controlling which steering mech-

anism to use, and two 32 bit registers rx/tx_objrem storing the number of bytes left

in the current object across segments used for receive and transmit operations. Kernel

processing is modified to set up this state and to extend the slow path as described below.

The protocol requires that objects always start on TCP segment boundaries and that the

header and key fields are fully contained in that segment, but an object can span multiple

segments.

Sending Objects The NIC requires send commands on the per-context transmit queue

to identify object boundaries. Upon send, the NIC uses the tx_objrem register to deter-

mine if a new object starts with this segment, or whether there is an object that has been

partially sent. For new objects, the NIC inspects the object header after fetching a segment

to determine the length of the object. The NIC stores the object’s length in tx_objrem

and then truncates the segment if it contains more than this object. If there is an object that

has been partially sent, the NIC fetches the minimum of a full segment and tx_objrem.

Finally, for both cases, the NIC decrements tx_objrem based on the number of bytes

sent.

CHAPTER 4. TCP PROCESSING 92

Receiving Objects Upon receiving a segment, the NIC uses the rx_objrem register to

determine if this segment is the start of a new object, or if the segment is a continuation

of the current partial object. For new objects, the NIC stores the total length of the object

in rx_objrem, uses the key to determine the destination application core, and updates

the doorbell register accordingly. For both cases, the NIC will then subtract the cur-

rent number of payload bytes from rx_objrem. A higher number of payload bytes than

rx_objrem is a protocol error and I direct the packet on the slow path for the kernel pro-

cess. The notification on the per-core receive queue is extended to include the position in

the receive buffer where the object starts. These notifications can cover partial objects, but

the NIC ensures that all notifications for a particular object are received in order by the

same core.

Notifications for objects from different connections might be interleaved. Thus, when

processing object notifications, the TCP stack needs to track the start position of a partial

object for each connection. Due to asynchronous processing, different cores can be pro-

cessing notifications for the same connection, thus this state needs to be local to the core.

The NIC and TCP stack will guarantee that objects are received in their entirety even if

split among TCP segments.

4.5 Implementation

I have implemented FlexTCP from scratch, both as a software NIC extension to a com-

modity Intel NIC [56] using DPDK [27] in 2,931 lines of C code, as well as an RMT pro-

gram for the Netronome Agilio-CX flow processor [96], implemented in the P4 program-

ming language [14]. For both implementations, the host-side components are the same: a

trusted kernel component (3,744 lines of C) and a user-level library providing the POSIX

sockets API that is dynamically linked to unmodified application binaries (3,452 lines of

CHAPTER 4. TCP PROCESSING 93

C).

Kernel I currently implement all kernel-related functionality in a separate user-level

process. This has no performance impact but simplifies development. To bootstrap the

kernel context queues, FlexTCP requires applications to first connect to the kernel via a

named UNIX domain socket. Applications use the socket to set up a shared memory re-

gion for the context queues. The kernel process also uses the socket for automatic cleanup,

to detect when application processes exit by receiving a hangup signal via the correspond-

ing socket.

Software Emulation I developed a software emulator, emulating the NIC model and

implemented FlexTCP on top. The software emulator uses a configurable number of ded-

icated host cores, which can be adjusted based on the NIC line rate, replicating each RMT

pipeline, and a shared memory interface to system software that mimics the hardware

interface. Since the emulator replicates each RMT pipeline over multiple cores, each emu-

lator core exposes a queue pair to the kernel and to each application context to avoid syn-

chronization. The NIC’s RSS mechanism ensures that packets within flows are assigned

to the same pipeline and not reordered. A hardware implementation would expose only

one queue pair to kernel and application contexts, and thus be slightly faster than the

emulation.

RMT Implementation One of my collaborators implemented FlexTCP in the P4 pro-

gramming language and compiled it to the fully programmable Netronome Agilio-CX

40G NIC [96]. Netronome’s P4 compiler currently does not support parsing variable-

length headers (this is not a limitation of the RMT approach). Thus, I padded packet

headers to reasonable sizes where necessary and implemented parsing variable-sized TCP

CHAPTER 4. TCP PROCESSING 94

options in C. The RMT implementation has 320 lines of P4 and 270 lines of C code.

SoftTCP Implementation I adapted the emulation software to build a host-only version

of FlexTCP called SoftTCP, removing artifacts of the NIC hardware model not needed in

this setting, such as the emulation of PCIe doorbells and RMT pipelines. As with the

emulator, SoftTCP runs in a separate privileged user-level process. Unlike kernel bypass

or systems that rely on batching to reduce kernel-user switches, SoftTCP runs on its own

CPU cores (configured to match the application workload), using queues to communicate

with the user-space TCP stack. I find that the optimizations needed to streamline TCP

execution on a NIC—separating out the common case, reducing state, and avoiding non-

constant time operations—are also effective at reducing purely software packet processing

overhead.

4.6 Limitations

Fixed Connection Buffer Sizes FlexTCP requires connection send and receive buffers

to be fixed upon connection creation. I do not currently implement any buffer resizing

depending on load. For workloads with large numbers of inactive connections, buffer

resizing (via additional management commands) is desirable.

Wire-Format for Object Steering Object steering in FlexTCP places restrictions on how

messages are split into individual TCP segments. I believe that avoiding this limitation

requires either an extension to the NIC hardware model or additional serialized CPU

processing. I leave further exploration of these trade-offs as future works.

No IP Fragments The current design does not support fragmented IP packets. I believe

this is sufficient, as IP fragmentation does not normally occur in the data center. The

CHAPTER 4. TCP PROCESSING 95

principal difficulty in handling IP fragment is that not all fragments include TCP headers.

Handling fragments typically involves buffering fragments until the message is complete,

which is beyond the capabilities for FlexNIC offload.

4.7 Discussion

I have presented FlexTCP, a TCP stack based on a unique split of processing between

FlexNIC, the operating system kernel, and the application. My approach improves per-

formance without sacrificing flexibility or multi-tenant policy enforcement. Despite the

well-known complexity of TCP processing, FlexTCP can take advantage of the limited

abstractions provided by FlexNIC.

In FlexTCP, I make a number of design decisions, not all of which are fundamental to

the architecture, but some are based on experiences from previous work on data center

packet processing. One example is my use of rate-based congestion control instead of

traditional window-based congestion control. Window-based congestion control can re-

sult in bursty transmit behavior [17] where burst of packets are followed by periods of no

transmissions, while rate-based packet pacing spreads out packets evenly. In this setting

FlexNIC serves to enable previously prohibitively expensive packet pacing at line-rate.

FlexTCP implements a simplified mechanism for recovering from packet loss and re-

ordering compared to most software TCP implementations. In subsection 6.1.2, I explore

the impact of this simplification and find that for data center loss-rates the cost seems

acceptable. But there are other options that likely perform better for higher loss rates.

One option is to add support for selective acknowledgements, allowing the receiver to

only retransmit lost bytes. On the sender side, selective acknowledgements (SACKs) can

be processed in the NIC, similar to how duplicate ACKs are currently handled. Another

option is to move this processing into software and issue re-transmits from the kernel,

CHAPTER 4. TCP PROCESSING 96

simplifying NIC processing. On the receiver side, SACKs can also be generated in the

NIC. But tracking multiple ranges of out-of-order data, to generate SACKs and to recog-

nize once gaps are filled in, requires additional NIC state. These and other opportunities

for optimizations can be addressed by follow-up work and could extend the applicability

of my approach to a wider range of operating conditions.

In a multi-tenant data center setting running virtual machines, FlexTCP would also

need to be integrated with the hypervisor. While I expect that this is feasible, I leave a

concrete design and implementation of hypervisor integration as future work.

Chapter 5

Application Integration

In this chapter I present three case studies of how applications can leverage my flexible ar-

chitecture to reduce application processing overhead. After accelerating kernel protocol

processing many applications still incur significant overhead for application-level pro-

cessing. Part of this overhead is due to the required protocol processing at the application

level. In addition, many applications incur memory and synchronization overheads due

to the interaction between the application and the (accelerated) network stack. For three

typical data center applications, I discuss this processing overhead and demonstrate how

my architecture, FlexNIC in particular, can help reduce it.

5.1 Key-Value Store

I now describe the design of a key-value store, FlexKVS, that is compatible with Mem-

cached [87], but whose performance is optimized using the functionality provided by

FlexNIC. To achieve performance close to the hardware limit, I needed to streamline the

store’s internal design, as I hit several scalability bottlenecks with Memcached. The au-

thors of MICA [77] had similar problems, but unlike MICA, I assume no changes to the

97

CHAPTER 5. APPLICATION INTEGRATION 98

protocol or client software. I discuss the design principles in optimizing FlexKVS before

outlining its individual components.

5.1.1 Motivation

To motivate offload of application processing to FlexNIC, I start by describing common

performance bottlenecks in memcached, and describe how flexible offload can mitigate

them.

Memory-Efficient Scaling To scale request throughput, today’s NICs offer receive-side

scaling (RSS), an offload feature that distributes incoming packets to descriptor queues

based on the client connection. Individual CPU cores are then assigned to each queue

to scale performance with the number of cores. Additional mechanisms, such as Intel’s

FlowDirector [56], allow OSes to directly steer and migrate individual connections to spe-

cific queues. Linux does so based on the last local send operation of the connection, as-

suming the same core will send on the connection again.

Both approaches suffer from a number of performance drawbacks:

1. Hot items are likely to be accessed by multiple clients, reducing cache effectiveness

by replicating these items in multiple CPU caches.

2. When a hot item is modified, it causes synchronization overhead and global cache

invalidations.

3. Item access is not correlated with client connections, so connection-based steering is

not going to help.

FlexNIC allows us to tailor these approaches to Memcached. Instead of assigning

clients to server cores, I can partition the key space [77] and use a separate key space

CHAPTER 5. APPLICATION INTEGRATION 99

request queue per core. I can install rules that steer client requests to appropriate queues,

based on a hash of the requested key in the packet. The hash can be computed by FlexNIC

using the existing RSS hashing functionality. This approach maximizes cache utilization

and minimizes cache coherence traffic. For skewed or hot items, I can use the NIC to

balance the client load in a manner that suits both the application and the hardware (e.g.,

by dynamically re-partitioning or by routing hot requests to two cores that share the same

cache and hence benefit from low latency sharing).

Streamlined Request Processing Even if most client requests arrive well-formed at the

server and are of a common type—say, GET requests—network stacks and Memcached

have to inspect each packet to determine where the client payload starts, to parse the

client command, and to extract the request ID. This incurs extra memory and processing

overhead as the NIC has to transfer the headers to the host just so that software can check

and then discard them. Measurements using the Arrakis OS [104] showed that, assuming

kernel bypass, network stack and application-level packet processing take half of the total

server processing time for Memcached.

With FlexNIC, I can check and discard Memcached headers directly on the NIC before

any transfer takes place and eliminate the server processing latency. To do so, I install a

rule that identifies GET requests and transfers only the client ID and requested key to a

dedicated fast-path request queue for GET requests. If the packet is not well-formed, the

NIC can detect this and instead transfer it in the traditional way to a slow-path queue

for software processing. Further, to support various client hardware architectures, Mem-

cached has to convert certain packet fields from network to host byte order. I can instruct

the NIC to carry out these simple transformations for us, before transferring the packets

into host memory.

CHAPTER 5. APPLICATION INTEGRATION 100

5.1.2 Design Goals

Minimize Cache Coherence Traffic FlexKVS achieves memory-efficient scaling by par-

titioning the handling of the key-space across multiple cores and using FlexNIC to steer

incoming requests to the appropriate queue serving a given core. Key-based steering

improves cache locality, minimizes synchronization, and improves cache utilization, by

handling individual keys on designated cores without sharing in the common case. To

support dynamic changes to the key assignment for load balancing, FlexKVS’s data struc-

tures are locked; in between re-balancing (the common case), each lock will be cached

exclusive to the core.

Specialized Critical Path I further optimize FlexKVS by offloading request processing

work to FlexNIC and specializing the various components on the critical path. FlexNIC

checks headers, extracts the request payload, and performs network to host byte order

tranformations. With these offloads, the FlexKVS main loop for receiving a request from

the network, processing it and then sending a response consists of fewer than 3,000 x86

instructions including error handling. FlexKVS also makes full use of the zero-copy capa-

bilities of Extaris. Only one copy is performed when storing items upon a SET request.

Figure 5.1 depicts the overall design, including a set of simplified FlexNIC rules to steer

GET requests for a range of keys to a specific core.

5.1.3 FlexKVS Components

I now discuss the major components of FlexKVS: the hash table and the item allocator.

Hash Table FlexKVS uses a block chain hash table [77]. To avoid false sharing, each

table entry has the size of a full cache line, which leaves room for a spin-lock, multiple

CHAPTER 5. APPLICATION INTEGRATION 101

NIC

CPU 1 …

Incoming traffic

Match:
1: IF ip.type == UDP
2: IF udp.port == flexkvs
3: IF flexkvs.req == GET
4: hash = HASH(flexkvs.key)
5: q = queue[hash & k]
6: IF q.head != q.tail

Action:
7: DMA flexkvs.clientid, hash

TO q.descriptor[q.head]
8: q.head = (q.head + 1) % q.size

Client IDs, Hashes

CPU 2 CPU n

queue[1..n]

Segment pool

Log
segments

Hash
table

Figure 5.1: FlexNIC receive fast-path for FlexKVS: A rule matches GET requests for a
particular key range and writes only the key hash together with a client identifier to a
host descriptor queue. The queue tail is updated by FlexKVS via a register write.

CHAPTER 5. APPLICATION INTEGRATION 102

item pointers (five on x86-64), and the corresponding hashes. Including the hashes on

the table entries avoids dereferencing pointers and touching cache lines for non-matching

items. If more items hash to an entry than there are available pointers the additional items

are chained in a new entry via the last pointer. I use a power of two for the number of

buckets in the table. This allows us to use the lowest k bits of the hash to choose a bucket,

which is easy to implement in FlexNIC. k is chosen based on the demultiplexing queue

table size loaded into the NIC (up to 128 entries in the prototype).

Item Allocation The item allocator in FlexKVS uses a log [116] for allocation as opposed

to a slab allocator used in Memcached. This provides constant-time allocation and min-

imal cache access, improving overall request processing time. To minimize synchroniza-

tion, the log is divided into fixed-size segments. Each core has exactly one active segment

that is used for satisfying allocation requests. A centralized segment pool is used to man-

age inactive segments, from which new segments are allocated when the active segment

is full. Synchronization for pool access is required, but is infrequent enough to not cause

noticeable overhead.

Item Deletion To handle item deletions, each log segment includes a counter of the

number of bytes that have been freed in the segment. When an item’s reference count

drops to zero, the item becomes inactive and the corresponding segment header is looked

up and the counter incremented. A background thread periodically scans segment head-

ers for candidate segments to compact.When compacting, active items in the candidate

segment are re-inserted into a new segment and inactive items deleted. After compaction,

the segment is added to the free segment pool.

CHAPTER 5. APPLICATION INTEGRATION 103

5.1.4 FlexNIC Implementation

The FlexNIC implementation consists of key-based steering and a custom DMA interface.

I describe both.

Key-Based Steering To implement key-based steering, I utilize the hashing and demul-

tiplexing building blocks on the key field in the FlexKVS request packet, as shown in

Figure 5.1. When enqueuing the packet to the appropriate receive queue based on the

hash of the key, the NIC writes the hash into a special packet header for software to read.

This hash value is used by FlexKVS for the hash table lookup.

Custom DMA Interface FlexNIC can also perform the item log append on SET requests,

thereby enabling full zero-copy operation for both directions, and removal of packet pars-

ing for SET requests in FlexKVS. To do so, FlexKVS registers a small number (four in the

prototype) of log segments per core via a special message enqueued on a descriptor queue.

These log segments are then filled by the NIC as it processes SET requests. When a seg-

ment fills up, FlexNIC enqueues a message to notify FlexKVS to register more segments.

FlexNIC still enqueues a message for each incoming request to the corresponding core,

so remaining software processing can be done. For GET requests, this entails a hash ta-

ble lookup. For SET requests, the hash table needs to be updated to point to the newly

appended item.

Adapting FlexKVS to the custom DMA interface required adding 200 lines for inter-

facing with FlexNIC, adding 50 lines to the item allocator for managing NIC log segments,

and modifications to request processing reducing the original 500 lines to 150.

CHAPTER 5. APPLICATION INTEGRATION 104

Count

Tweets

Rank

Agg.
Rank

Tuples

Output

Count Rank

… …

Tweets

…

Figure 5.2: FlexStorm top-n Twitter users topology.

5.2 Real-time Analytics

Real-time analytics platforms are useful tools to gain instantaneous, dynamic insight into

vast datasets that change frequently. To be considered “real-time”, the system must be

able to produce answers within a short timespan (typically within a minute) and process

millions of dataset changes per second. To do so, analytics platforms utilize data stream

processing techniques: A set of worker nodes run continuously on a cluster of machines;

data tuples containing updates stream through them according to a dataflow processing

graph, known as a topology. Tuples are emitted and consumed worker-to-worker in the

topology. Each worker can process and aggregate incoming tuples before emitting new

tuples. Workers that emit tuples derived from an original data source are known as spouts.

In the example shown in Figure 5.2, consider processing a live feed of tweets to de-

termine the current set of top-n tweeting users. First, tweets are injected as tuples into a

set of counting workers to extract and then count the user name field within each tuple.

The rest of the tuple is discarded. Counters are implemented with a sliding window. Peri-

odically (every minute in this case), counters emit a tuple for each active user name with

its count. Ranking workers sort incoming tuples by count. They emit the top-n counted

users to a single aggregating ranker, producing the final output rank to the user.

As shown in Figure 5.2, the system scales by replicating the counting and ranking

CHAPTER 5. APPLICATION INTEGRATION 105

workers and spreading incoming tuples over the replicas. This allows workers to process

the data set in parallel. Tuples are flow controlled when sent among workers to minimize

loss. Many implementations utilize the TCP protocol for this purpose.

I have implemented a real-time analytics platform FlexStorm, following the design

of Apache Storm [133]. Storm and its successor Heron [71] are deployed at large-scale

at Twitter. For high performance, I implement Storm’s “at most once” tuple processing

mode. In this mode, tuples are allowed to be dropped under overload, eliminating the

need to track tuples through the topology. For efficiency, Storm and Heron make use of

multicore machines and deploy multiple workers per machine. I replicate this behavior.

FlexStorm uses DCCP [69] for flow control. DCCP supports various congestion control

mechanisms, but, unlike TCP, is a packet-oriented protocol. This simplifies implementa-

tion in FlexNIC. I use TCP’s flow-control mechanism within DCCP, similar to the proposal

in [36], but using TCP’s cumulative acknowledgements instead of acknowledgement vec-

tors and no congestion control of acknowledgements.

As topologies are often densely interconnected, both systems reduce the number of

required network connections from per-worker to per-machine connections. On each ma-

chine, a demultiplexer thread is introduced that receives all incoming tuples and forwards

them to the correct executor for processing. Similarly, outgoing tuples are first relayed to a

multiplexer thread that batches tuples before sending them onto their destination connec-

tions for better performance. Figure 5.3 shows this setup, which I replicate in FlexStorm.

5.2.1 FlexNIC Implementation

As we will see later, software demultiplexing has high overhead and quickly becomes a

bottleneck. We can use FlexNIC to mitigate this overhead by demultiplexing tuples in the

NIC. Demultiplexing works in the same way as for FlexKVS, but does not require hashing.

CHAPTER 5. APPLICATION INTEGRATION 106

Node Count

Count

Rank

Rank

Demux

Tuples
from
other
nodes

Mux

Tuples
to
other
nodes

Figure 5.3: Storm worker design. 2 counters and 2 rankers run concurrently in this
node. (De-)mux threads route incoming/outgoing tuples among network connections
and workers.

We strip incoming packets of their headers and deliver contained tuples to the appropriate

worker’s tuple queue via a lookup table that assigns destination worker identifiers to

queues. However, our task is complicated by the fact that we have to enforce flow control.

To implement flow-control at the receiver in FlexNIC, we acknowledge every incom-

ing tuple immediately and explicitly, by crafting an appropriate acknowledgement using

the incoming tuple as a template. Figure 5.4 shows the required M+A pseudocode. To

craft the acknowledgement, we swap source and destination port numbers, set the packet

type appropriately, copy the incoming sequence number into the acknowledgement field,

and compute the DCCP checksum. Finally, we send the reply IP packet, which does all

the appropriate modifications to form an IP response, such as swapping Ethernet and IP

source and destination addresses and computing the IP checksum.

To make use of FlexNIC we need to adapt FlexStorm to read from our custom queue

format, which we optimize to minimize PCIe round-trips by marking whether a queue po-

sition is taken with a special field in each tuple’s header. To do so, we replace FlexStorm’s

CHAPTER 5. APPLICATION INTEGRATION 107

Match:
IF ip.type == DCCP
IF dccp.dstport == FlexStorm

Action:
SWAP(dccp.srcport, dccp.dstport)
dccp.type = DCCP ACK
dccp.ack = dccp.seq
dccp.checksum = CHECKSUM(dccp)
IP REPLY

Figure 5.4: Acknowledging incoming FlexStorm tuples in FlexNIC.

per-worker tuple queue implementation with one that supports this format, requiring a

change of 100 lines of code to replace 4 functions and their data structures.

5.3 Intrusion Detection

In this section I discuss how I leverage flexible packet steering to improve throughput for

the Snort intrusion detection system [115]. Snort detects malicious activity, such as buffer

overflow attacks, malware, and injection attacks, by scanning for suspicious patterns in

individual packet flows.

Snort only uses a single thread for processing packets, but is commonly scaled up to

multiple cores by running multiple Snort processes that receive packets from separate NIC

hardware queues via RSS [42]. However, since many Snort patterns match only on subsets

of the port space (for example, only on source or only on destination ports), I end up us-

ing these patterns on many cores, as RSS spreads connections by a 4-tuple of IP addresses

and port numbers. Snort’s working data structures generally grow to 10s of megabytes for

production rule sets, leading to high cache pressure. Furthermore, the Toeplitz hash com-

monly used for RSS is not symmetric for the source and destination fields, meaning the

two directions of a single flow can end up in different queues, which can be problematic

for some stateful analyses where incoming and outgoing traffic is examined.

CHAPTER 5. APPLICATION INTEGRATION 108

5.3.1 FlexNIC Implementation

My approach to improve Snort’s performance is similar to FlexKVS. I improve Snort’s

cache utilization by steering packets to cores based on expected pattern access, so as to

avoid replicating the same state across caches. Internally, Snort groups rules into port

groups and each group is then compiled to a deterministic finite automaton that imple-

ments pattern matching for the rules in the group. When processing a packet, Snort first

determines the relevant port groups and then executes all associated automatons.

I instrument Snort to record each distinct set of port groups matched by each packet

(which I call flow groups) and aggregate the number of packets that match this set and

the total time spent processing these packets. In my experience, this approach results in

30-100 flow groups. I use these aggregates to generate a partition of flow groups to Snort

processes, balancing the load of different flow groups using a simple greedy allocation

algorithm that starts assigning the heaviest flow groups first.

This partitioning can then be used in FlexNIC to steer packets to individual Snort

instances by creating a mapping table that maps packets to cores, similar to the approach

in FlexStorm. I also remedy the issue with the Toeplitz hash by instructing FlexNIC to

order 4-tuple fields arithmetically by increasing value before calculating the hash, which

eliminates the asymmetry.

5.4 Discussion

In this chapter I have demonstrated how FlexNIC can streamline application processing

and remove scalability bottlenecks in three case studies. I have explored different levels

of integration with the different case studies, varying from deep integration with applica-

tion data structures in the key-value store, to only modifying NIC packet steering in the

CHAPTER 5. APPLICATION INTEGRATION 109

intrusion detection system.

I have focused the discussion on performance benefits enabled by integrated process-

ing. But practical deployment of application-specific NIC processing will require address-

ing additional aspects that I leave for future work. First, when running application pro-

cessing on the NIC, memory isolation for DMA needs to be enforced by the operating

system. I imagine reserving the last pipeline stage(s) in the FlexNIC DMA pipeline for the

OS to validate DMA accesses. The kernel can use a match-action table to track address re-

gions that individual applications are allowed access to and catch accesses that violate this

policy. Next, applications should only be able to influence the processing of packets that

are destined to/sent from them. As an initial step manual review of FlexNIC programs

can verify this property. But eventually tool chain support for combining configurations

from multiple applications and checking correctness properties would be required. I ex-

pect that techniques developed in network verification efforts can be modified for this

purpose. Finally, a production deployment would also require support for dynamically

starting and terminating applications. This requires operating system support for modi-

fying, compiling, and verifying FlexNIC configurations at run-time.

Chapter 6

Evaluation

This chapter evaluates my approach for integrated processing in FlexTCP and the three

application case studies. Using a combination of software emulation and creative re-use

of existing hardware features I evaluate performance in micro benchmarks as well as full

applications.

6.1 FlexTCP

For FlexTCP, I seek to answer the following questions:

• By how much does FlexTCP improve CPU efficiency, latency, and connection scala-

bility for remote procedure call operation compared to state-of-the-art software so-

lutions? How much is due to streamlining (evaluated via SoftTCP) and how much

is due to FlexNIC offload (evaluated via emulation)?

• Do these improvements result in better end-to-end throughput and latency for data

center applications? How do these workloads scale with the number of CPU cores?

110

CHAPTER 6. EVALUATION 111

• Can object steering provide the same performance improvements for TCP-based

applications as it does for unreliable, connectionless protocols (see section 6.2)?

• Does the simplified fast-path TCP operation negatively affect performance under

packet loss or congestion?

• Is the labor split among host and FlexNIC impacting FlexTCP performance when

FlexNIC sits across the PCIe bus? Is the amount of required per-flow state reason-

able for a FlexNIC?

To answer these questions we first evaluate RPC performance on a number of systems us-

ing microbenchmarks. We then evaluate two data center application workloads: a typical,

read-heavy, key-value store application and a real-time analytics framework. Finally, we

validate our results using our P4 implementation on the Netronome Agilio-CX 40G NIC

and an ns-3 simulation.

Testbed Cluster Our evaluation cluster contains a 24-core Intel Xeon Platinum 8160

(Skylake) system at 2.1 GHz with 196 GB RAM, 33 MB aggregate cache, and an Intel

XL710 40Gb Ethernet adapter. We use this system as the server. There are also six 6-core

Intel Xeon E5-2430 (Sandy Bridge) systems at 2.2 GHz with 18MB aggregate cache, which

we use as clients. These systems have Intel X520 (82599-based) dual-port 10Gb Ethernet

adapters with both ports connected to the switch. We run Ubuntu Linux 16.04 (kernel

version 4.4) with DCTCP congestion control on all machines. We use an Arista 7050S-64

Ethernet switch, set up for DCTCP-style ECN marking at a threshold of 65 packets. The

switch has 10G ports (connected to the clients) and 40G ports (connected to the server).

Baseline We compare FlexTCP/SoftTCP performance to both the Linux in-kernel TCP

stack (using epoll) and to the mTCP user-level TCP stack [60], an efficient, zero-copy,

CHAPTER 6. EVALUATION 112

and scalable network stack. However, mTCP does not provide the same safety guarantees

as FlexTCP/SoftTCP or Linux. mTCP has no trusted entity that can reliably enforce policy.

Peer Compatibility Our benchmarks do not mix peer systems, but we confirm that

FlexTCP and SoftTCP interoperate with existing TCP peers by comparing the aggregate

throughput of 100 flows between two hosts among all combinations of Linux and Flex-

TCP/SoftTCP senders and receivers. Line rate was achieved in all cases.

6.1.1 Remote Procedure Call (RPC)

RPC is a demanding, but necessary mechanism for many server applications. RPCs are

both latency and throughput sensitive. Scaling reliable RPCs to many connections has

been a long-standing challenge due to the high overhead of software TCP packet process-

ing [98, 113, 117]. To demonstrate the per-core efficiency benefits of FlexTCP, we evaluate a

simple single-threaded event-based RPC echo server. SoftTCP requires at least two cores,

an application core and a core for the network stack, so we divide SoftTCP throughput

results by two to achieve a fair comparison.

Connection Scalability

For each benchmark run, we establish an increasing number of client connections to the

server and measure RPC throughput and latency over 1 minute. To do so, we use multi-

threaded clients running on as many client machines as necessary to offer the required

load. Each client thread leaves a single 64-byte RPC per connection in flight and waits for

a response in a closed loop. Clients measure latency by embedding a send timestamp in

the RPC that is evaluated when the echo response is received.

Figure 6.1 shows throughput as we vary the number of client connections. On a sin-

CHAPTER 6. EVALUATION 113

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

L
a

te
n

c
y
 [

u
s
]

T

h
ro

u
g

h
p

u
t

[m
O

p
/s

]

SplitTCP
SoftTCP

mTCP
Linux

10

100

1ms

5ms

2 8 32 128 512 2048

L
a

te
n

c
y
 [

u
s
]

T

h
ro

u
g

h
p

u
t

[m
O

p
/s

]

of Connections [log scale]

Figure 6.1: RPC echo throughput and latency (median and 99th percentile) for a single-
threaded server.

CHAPTER 6. EVALUATION 114

gle connection SoftTCP shows throughput of 2× Linux, but 15% lower than mTCP. The

improvement versus Linux is because SoftTCP streamlines processing and thus gains ef-

ficiency, while mTCP does not provide protection. All stacks except Linux then scale until

saturation of the application thread. SoftTCP’s division of labor into common and uncom-

mon TCP processing experiences less contention on uncommon data structures, resulting

in improved throughput. At this point, SoftTCP shows throughput of 5× Linux and 1.4×

mTCP. By offloading to the (emulated) FlexNIC, FlexTCP achieves even better throughput

of 1.7× mTCP, 4× Linux, and 2× SoftTCP on a single connection. At saturation, FlexTCP

has a throughput of 2.5× mTCP, 9× Linux, and 1.8× SoftTCP.

Figure 6.1 also shows RPC round-trip time (RTT) as we increase the number of client

connections. We can see that FlexTCP and SoftTCP both achieve 42% and 76% better me-

dian latency with a single connection than mTCP and Linux, respectively. As we increase

the number of concurrent connections, latency increases for all configurations, but more

slowly for FlexTCP and SoftTCP. At 1024 concurrent connections, they achieve 68% and

92% better median latency than mTCP and Linux, respectively. Again, this is expected

due to FlexTCP’s streamlining. Linux does not perform well in the tail, while mTCP per-

forms roughly equivalent to the median until 128 connections, after which queues start

to build. The division of labor in FlexTCP and SoftTCP provides lower common-case tail

latency and queues only start to build after 1024 connections.

Pipelined RPC

In cases without dependencies, RPCs can be pipelined on a single connection. These

transfers can still be limited by TCP stack overheads, depending on RPC size. We compare

pipelined RPC throughput for different sizes by running a single-threaded event-based

server processing RPCs on 100 connections, partitioned equally over 4 client machines

CHAPTER 6. EVALUATION 115

1G

10G

40G

R
X

 T
h

ro
u

g
h

p
u

t
250 Cycles/Message 1000 Cycles/Message

.1G

1G

10G

40G

3
2

1
2

8

5
1

2

2
0

4
8

T
X

 T
h

ro
u

g
h

p
u

t

Message Size [bytes]

SplitTCP
SoftTCP

3
2

1
2

8

5
1

2

2
0

4
8

Message Size [bytes]

mTCP
Linux

Figure 6.2: Pipelined RPC throughput, varying per-RPC delay and size, for a single-
threaded server.

using 4 threads each. After each RPC the server waits for an artificial delay of 250 or

1000 cycles to simulate application processing. To break out improvements in receive and

transmission overhead, we run separate benchmarks, one where the server only receives

RPCs and one where it only sends.

Figure 6.2 shows the results. When receiving small (≤ 64B) RPCs, FlexTCP provides

up to 5.5× better throughput than Linux. FlexTCP’s improvement reduces to 4× as RPCs

become larger. FlexTCP reaches 40G line-rate with 2KB RPCs for 250 cycles of processing

while Linux barely reaches 10G. For 1000 cycles of processing, no stack achieves line-rate

and FlexTCP provides a steady throughput improvement around 2.7× regardless of RPC

size. SoftTCP’s efficiency is between Linux and FlexTCP, which is expected given that it

CHAPTER 6. EVALUATION 116

requires an additional host core to run the stack. mTCP locks up in this experiment.

When sending small and moderate (≤ 256B) RPCs at 250 cycles processing time, Flex-

TCP provides up to 13.7× Linux and 1.6× mTCP efficiency. For large (2KB) RPCs, Flex-

TCP’s advantage declines to 6.3× Linux, but improves to 2.7× mTCP. mTCP reaches scal-

ability limitations beyond 512B RPCs, while Linux catches up as memory copying costs

start to dominate. FlexTCP again achieves 40G line-rate at 2KB RPC size, while Linux and

mTCP do not reach beyond 10G. This shows that simplifications in common-case send

processing, such as removing intermediate send queueing, can make a big difference.

This difference again diminishes as application-level processing grows to 1000 cycles.

In this case, FlexTCP provides a steady improvement of up to 5.9× Linux, regardless

of RPC size. Compared to mTCP, FlexTCP provides up to 2× improvement. SoftTCP

performs comparably to mTCP in both transmit cases, but does provide protection.

We conclude that FlexTCP indeed provides better RPC latency and throughput when

compared to both state-of-the-art in-kernel and kernel bypass TCP stack solutions. Fur-

ther, SoftTCP provides throughput on par with and better latency than kernel bypass

stacks while retaining traditional OS safety guarantees. Thus we improve performance

and efficiency of all networked data center applications relying on RPCs over TCP.

6.1.2 Packet Loss

Even in a data center environment, minimal (≤1%) packet loss can occur due to conges-

tion and transmission errors. FlexTCP uses a simplified recovery mechanism and we are

interested how packet loss affects FlexTCP throughput in comparison to Linux. We quan-

tify this effect in an experiment measuring throughput of 100 flows over a single link

between two machines under different rates of induced packet loss between 0.1% and

5%. We compare FlexTCP with receiver out-of-order processing and without it (simple

CHAPTER 6. EVALUATION 117

 0.1

 1

 10

 0.1 0.2 0.5 1 2 5

T
h
ro

u
g
h
p
u
t
p
e
n
a
lt
y
 [
%

]

Packet drop rate [%]

Linux
SplitTCP
SplitTCP simple recovery

Figure 6.3: Throughput penalty with varying packet loss rate.

go-back-N).

Figure 6.3 shows the penalty relative to the throughput achieved without loss. We can

see that FlexTCP throughput is minimally affected (up to 1.5%) for loss rates up to 1%.

For a loss rate of 5%, FlexTCP incurs a throughput penalty of 13%. Overall, FlexTCP’s

penalty is about 2× that of Linux. Linux keeps all received out-of-order segments and

also issues selective acknowledgements, allowing it to recover more quickly. FlexTCP

only keeps one continuous interval of out-of-order data, requiring the sender to resend

more in some cases. Without receiver out-of-order processing, the penalty increases by a

factor of 3. We conclude that limited out-of-order processing has a benefit, but full out-of-

order processing has minimal impact for the loss rates common in data centers.

6.1.3 Key-Value Store

Key-value stores strongly rely on RPCs. Due to the high TCP processing overhead, some

cloud operators use UDP for reads and use TCP only for writing. In this section, we

demonstrate that FlexTCP is fast enough to be used for both reading and writing, simpli-

fying application design. To do so, we evaluate an optimized key-value store modeled

CHAPTER 6. EVALUATION 118

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
[m

O
p
s
]

Cores

SplitTCP

SoftTCP

mTCP

Linux

Figure 6.4: Key-value store throughput scalability. Error bars show min/max over 5 runs.

Latency [µs] Median 90th 99th 99.9th

Linux 124 153 200 275
mTCP 28 33 40 71
FlexTCP / SoftTCP 16 18 21 37

Table 6.1: Key-value store request latency in microseconds.

after memcached [87]. We send it requests at a constant rate using a tool similar to the

popular memslap benchmark. The workload consists of 100,000 key-value pairs of 32

byte keys and 64 byte values, with a skewed access distribution (zipf, s = 0.9). The work-

load contains 90% GET requests and 10% SET requests. Throughput was measured over

2 minutes after 1 minute of warm-up.

Throughput Scalability To conduct throughput benchmarks we run 4 clients, each us-

ing 4 cores and each core establishing 4 concurrent connections, all directed to the server.

We run the benchmark, varying the number of server application cores available. Fig-

ure 6.4 shows the result, counting all host cores in use (except NIC emulation cores). We

can see that FlexTCP outperforms Linux and mTCP in total throughput by up to 10.6×

and 4.1×, respectively. We run out of emulation cores after 8 application cores and thus

CHAPTER 6. EVALUATION 119

do not report FlexTCP scalability beyond this number. SoftTCP and mTCP perform com-

parably at 3× Linux, but SoftTCP provides protection.

Latency We also conduct single-core latency experiments under 15% bandwidth utiliza-

tion, so that queues do not build excessively. Table 6.1 show the result. We can see that

FlexTCP outperforms both Linux and mTCP by a median 7.8× and 1.8×, respectively.

FlexTCP attains even better tail latency versus Linux, but an equivalent difference in tail

latency versus mTCP when compared to the median.

We conclude that FlexTCP can greatly improve the performance of RPC-based client-

server applications, such as key-value stores. It exceeds state-of-the-art network stacks

in both latency and throughput by a comfortable margin, both in median and the tail.

As such, FlexTCP can simplify the design of RPC-based applications by allowing them to

rely on TCP instead of application-level solutions. SoftTCP again provides comparable

throughput and better latency than kernel bypass.

6.1.4 Real-time Analytics

Next, we evaluate the performance of a TCP version of FlexStorm from section 5.2. Fig-

ure 6.5 and Table 6.2 show average achievable throughput and latency at peak load on

this workload. Throughput is measured over a runtime of 20 seconds, shown raw and

per core over the entire deployment. Per-tuple latency is broken down into time spent in

processing, and in input and output queues, as measured at user-level, within FlexStorm.

We deploy FlexStorm on 3 machines of our client cluster. We evenly distribute workers

over the machines to balance the load.

Linux Performance Overhead introduced by the Linux kernel network stack limits Flex-

Storm performance. Even though per-tuple processing time is short, tuples spend several

CHAPTER 6. EVALUATION 120

 0

 1

 2

 3

 4

 5

Raw

T
h

ro
u

g
h

p
u

t
[m

 t
u

p
le

s
 /

 s
]

Linux mTCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Per core

SplitTCP/Sockets .../Steering

Figure 6.5: Average throughput on various FlexStorm configurations. Error bars show
min/max over 20 runs.

milliseconds in queues after reception and before emission. Queueing before emission is

due to batching in the multiplexing thread, which batches up to 10 milliseconds of tuples

before emission. Input queueing is minimal in FlexStorm as it is past the bottleneck of the

Linux kernel and thus packets are queued at a lower rate than they are removed.

mTCP Performance Running all FlexStorm nodes on mTCP yields a 2.1× raw through-

put improvement versus Linux, while utilizing an additional core per node to execute

the mTCP user-level network stack. The per-core throughput improvement is thus lower,

1.8×. We could not run mTCP threads on application cores, as mTCP relies on the NIC’s

symmetric RSS hash to distribute packets to isolated per-thread stacks for scalability. This

does not work for asymmetric applications, like FlexStorm, where the sets of receiving

and sending threads are disjoint. The bottleneck is now the FlexStorm multiplexer thread.

Input queuing delay has increased dramatically, while output queueing delay decreased

only slightly. This is primarily because mTCP collects packets into large batches to min-

imize context switches among threads. Overall, tuple processing latency has decreased

CHAPTER 6. EVALUATION 121

Input Processing Output Total

Linux 6.96 µs 0.37 µs 20 ms 20 ms
mTCP 4 ms 0.33 µs 14 ms 18 ms
FlexTCP 7.47 µs 0.36 µs 8 ms 8 ms
Steering – 0.30 µs – 0.30 µs

Table 6.2: Average FlexStorm tuple processing time.

only 10% versus Linux due to the much higher amount of batching in mTCP.

FlexTCP Performance Running all FlexStorm nodes on FlexTCP yields an 8% raw through-

put improvement versus mTCP, but eliminates the dedicated core for the network stack.

The per-core throughput improvement is thus 26%. The improvement is only small as

the bottleneck remains the multiplexer thread. Overall, tuple processing latency has

decreased 56% versus mTCP. This is because FlexTCP does not require any batching to

achieve its performance.

Object Steering Enhancing FlexStorm on FlexTCP with object steering support yields a

1.6× raw throughput improvement versus the non-steering version. Object steering has

eliminated the multiplexer and demultiplexer threads on each node. Due to the elimi-

nation of their queues, tuple processing latency has decreased by 4 orders of magnitude

versus not steering, while per-core throughput has improved by 2.8×. The busiest work-

ers in the system now operate at 90% CPU utilization. Throughput is 13% lower than the

DCCP-based version of FlexStorm. The difference is due to TCP’s longer protocol header

and congestion control mechanism (DCCP only supports flow control). To support ob-

ject steering, we had to modify the processing loop of FlexStorm’s worker threads to use

FlexTCP’s object API and eliminate the (de-)multiplexing threads. This entailed changing

roughly 20 lines of code (LOC) and removing hundreds of LOC.

CHAPTER 6. EVALUATION 122

Moving application-level packet (de-)multiplexing functionality into the NIC eliminates

the need for multiplexing or network stack threads, which can grow large under high

line-rates. It also yields performance benefits, while reducing the amount of time that

tuples are held in queues. This provides the opportunity for tighter real-time processing

guarantees under higher workloads using the same equipment.

6.1.5 PCIe NIC Performance

To validate that my emulation-based results are not negatively impacted by offloading to

a NIC attached to the PCIe bus, a collaborator evaluated the throughput attained by our

FlexTCP implementation running on an Agilio-CX 40G NIC.

Our testbed in this case is a simple setup of two Xeon E5-2680 v3 servers at 2.5 GHz,

each equipped with an Agilio-CX NIC and connected back-to-back (without a switch).

We run the FlexTCP stack on each NIC to conduct a simple TCP throughput benchmark

between the servers to measure maximum attainable throughput under FlexTCP execu-

tion and compare to the basic NIC without FlexTCP. We send packets from one server to

the other for 15 seconds and measure average packet throughput at the sink. We repeat

the experiment, varying the packet size.

Attainable throughput of our FlexTCP prototype is similar to the emulation-derived

results presented in earlier sections and attains line-rate starting at 512 byte packet size.

FlexTCP throughput penalty versus the basic NIC is minimal, but increases slightly with

smaller packets, until it approaches 8.8% with 256 byte sized packets. The smallest packet

size in our Agilio-CX prototype is 174 bytes due to packet header padding. We also vali-

dated whether 102 bytes of per-flow state would indeed support a large number of active

flows. Using DRAM and an SRAM cache, our NIC is able to support more than 5 million

flows—orders of magnitude more than required.

CHAPTER 6. EVALUATION 123

We conclude that our emulation adequately represents the performance of a real NIC

prototype. We attribute the moderate slow down of our FlexTCP prototype versus the

basic NIC to the early stage of our implementation. The overall slow-down at 256 byte

sized packets is due to the architecture of the NIC. We expect it to vanish with an RMT

hardware implementation.

6.1.6 Congestion Control

We implemented DCTCP congestion control in FlexTCP with the key difference that trans-

mission is rate based, with rates updated periodically for all flows by the kernel at a fixed

pre-defined control interval τ . We investigate the impact of τ on congestion behavior via

ns-3 simulations, comparing to vanilla DCTCP. First, we simulate a single 10Gbps link

with an RTT of 100µs at 75% utilization with Pareto-distributed flow sizes and varying

τ . Next, we simulate a large cluster of 2560 servers and a total of 112 switches that are

configured in a 3-level FatTree topology with an oversubscription ratio of 1:4. All servers

follow and on-off traffic pattern, sending flows to a random server in the data center at

a rate such that the core link utilization is approximately 30%. Finally, we investigate

congestion fairness experimentally with τ = 2 × RTT (as measured for each flow) under

incast.

Single Link Figure 6.6 shows average flow completion time (FCT) and average queue

size with varying τ for the single 10Gbps link. The average FCT for FlexTCP is very

similar to that of DCTCP when τ is greater than the RTT. However, if τ is set too low,

frequent fluctuations in congestion window cause slow convergence and long completion

times. The average queue length is very similar to that of DCTCP and grows, but slowly,

as τ increases beyond the RTT, due to delayed congestion window updates.

CHAPTER 6. EVALUATION 124

 0

 0.5

 1

 1.5

0 200 400 600 800 1ms

A
v
e
ra

g
e
 F

C
T

 [
m

s
]

Control interval (τ) [µs]

TCP
DCTCP

SplitTCP

(a) Avg flow completion time

 10

 100

0 200 400 600 800 1ms

Q
u
e
u
e
 s

iz
e
 [
p
k
ts

]

Control interval (τ) [µs]

TCP
DCTCP

SplitTCP

(b) Average queue length

Figure 6.6: Simulation of a single 10Gbps link.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

SplitTCP

(a) Short flows ≤ 50 pkts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

SplitTCP

(b) Long flows > 50 pkts

Figure 6.7: Flow completion times for large cluster simulation.

Large Cluster Figure 6.7 shows the average flow completion times for short and long

flow sizes in the large cluster simulation with the control interval τ set to 100µs. The

performance of FlexTCP is similar to that of DCTCP in both cases. 100µs is a reasonable

amount of time for the kernel to update congestion windows for thousands of flows. Even

with larger values of τ , queue size is only minimally affected and FCTs stay approximately

identical. We thus conclude that our out-of-band approach works to provide DCTCP-

compatible congestion behavior.

CHAPTER 6. EVALUATION 125

 0.01

 0.1

 1

 50 100 200 500 1000 2000

T
’p

u
t

[m
B

 /
 1

0
0

 m
s
]

of Connections

Linux Median
SplitTCP Median
SplitTCP 99th %

Fair Share

Figure 6.8: Distribution of connection rates under incast.

Tail-Latency Under Incast To evaluate performance under congestion, we measure tail

latency under incast with 4 machines sending to a single receiver (operating at line rate)

with different numbers of connections. We record the number of bytes received on each

connection every 100ms on the receiver over the period of a minute, discarding a warmup

20 seconds. Figure 6.8 shows the median (and 99th percentile) throughput over the mea-

sured intervals and connections on Linux (using DCTCP) and FlexTCP. For FlexTCP, the

tail falls within 1.6× and 2.8× of the median, while the median is close to each connec-

tion’s fair share. Linux median (and tail—not shown) behavior fluctuates widely, showing

significant starvation of flows in some cases.

Linux fairness is hurt in three interacting ways: (1) Linux window based congestion

control creates bursts when windows abruptly widen and contract under congestion. (2)

Window-based congestion control limits the control granularity for low-rtt links. (3) The

Linux TCP stack architecture requires many shared queues that can overflow when flows

are bursty, resulting in dropped packets without regard to fairness. Rate-based packet

scheduling and per-flow queueing in FlexTCP smoothes bursts and eliminates unfair

packet drops at end hosts.

CHAPTER 6. EVALUATION 126

6.2 Application Co-Design

Next I present my measurement and evaluation results for my three application co-design

case studies.

6.2.1 Methodology

To quantify the benefits of integrated processing, I leverage a combination of hardware

and software techniques that I implement within the test cluster. Whenever possible, I re-

use existing hardware functionality to realize FlexNIC functionality. When this is impos-

sible, I emulate the missing functionality in software on a number of dedicated processor

cores. This limits the performance of the emulation to slower link speeds than would be

possible with a hardware implementation of FlexNIC and thus favors the baseline in my

comparison.

Hardware Features Re-used We make use of the X520’s receive-side scaling (RSS) ca-

pabilities to carry out fast, customizable steering and hashing in hardware. RSS in com-

modity NICs operates on a small number of fixed packet header fields, such as IP and

TCP/UDP source and destination addresses/ports, and are thus not customizable. We

attain limited customization capability by configuring RSS to operate on IPv6 addresses,

which yields the largest contiguous packet area to operate upon—32 bytes—and then

moving the relevant data into these fields on the sender. This is sufficient for our exper-

iments, as MAC addresses and port numbers are enough for routing within our simple

network. RSS computes a 32-bit hash on the 32 byte field, which it also writes to the re-

ceive descriptor for software to read. It then uses the hash as an index into a 128-entry

redirection table that determines the destination queue for an incoming packet.

CHAPTER 6. EVALUATION 127

Software Implementation We implement other needed functionality in the software

FlexNIC emulator. For these experiments our emulator implements flexible demultiplex-

ing, congestion control, and a customizable DMA interface to the host. To do this, the

emulator uses dedicated host cores (2 send and 2 receive cores were sufficient to handle

10Gb/s) and a shared memory interface to system software that mimics the hardware in-

terface. For performance, our emulator makes use of batching, pipelining, and lock-free

queueing. Batching and pipelining work as described in [42]. Lock-free queueing is used

to allow scalable access to the emulated host descriptor queue from multiple emulator

threads by atomically reserving queue positions via a compare and swap operation. We

try to ensure that our emulation adequately approximates DMA interface overheads and

NIC M+A parallelism, but our approach may be optimistic in modelling PCI round trips,

as these cannot be emulated easily using CPU cache coherence interactions.

Baseline In order to provide an adequate comparison, we also run all software on top of

the high-performance Extaris user-level network stack [104] and make this our baseline.

Extaris runs minimal code to handle packets and is a zero-copy and scalable network

stack. This eliminates the overheads inherent in a kernel-level network stack and allows

us to focus on the improvements that are due to integrated processing.

Testbed Cluster Our evaluation cluster contains six machines consisting of 6-core Intel

Xeon E5-2430 (Sandy Bridge) systems at 2.2 GHz with 18 MB total cache space. Unless

otherwise mentioned, hyperthreading is enabled, yielding 12 hyperthreads per machine.

All systems have an Intel X520 (82599-based) dual-port 10 Gb Ethernet adapter, and we

have both ports connected to the same 10 Gb Dell PowerConnect 8024F Ethernet switch.

The machines run Ubuntu Linux 14.04.

CHAPTER 6. EVALUATION 128

 0

 2

 4

 6

 8

1 2 3 4 5

T
h

ro
u

g
h

p
u

t
[m

 o
p

 /
 s

]

Number of CPU cores

Memcached
FlexKVS/Linux
FlexKVS/Flow
FlexKVS/Key

Figure 6.9: FlexKVS throughput scalability with flow-based and key-based steering. Re-
sults for Memcached and FlexKVS on Linux are also provided.

6.2.2 Key-Value Store

We evaluate different levels of integration between FlexKVS and the NIC. The baseline

runs on the Extaris network stack using UDP and RSS, similar to the Memcached con-

figuration in Arrakis [104]. A more integrated version uses FlexNIC to perform the hash

calculation and steer requests based on their key, and the third version adds the FlexNIC

custom DMA interface. FlexKVS performance is reduced by hyperthreading and so we

disable it for these experiments, leaving 6 cores per machine.

Key-based Steering We compare FlexKVS throughput with flow-based steering against

key-based steering using FlexNIC. We use three machines for this experiment, one server

for running FlexKVS and two client machines to generate load. One NIC port of each

client machine is used, and the server is connected with both ports using link aggregation,

yielding a 20 Gb/s link. The workload consists of 100,000 key-value pairs of 32 byte keys

and 64 byte values, with a skewed access distribution (zipf, s = 0.9). The workload

contains 90% GET requests and 10% SET requests. Throughput was measured over 2

CHAPTER 6. EVALUATION 129

Steering

Flow Key DMA

Median 1110 690 440
90th Percentile 1400 1070 680

Table 6.3: FlexKVS request processing time rounded to 10 cycles.

minutes after 1 minute of warm-up.

Figure 6.9 shows the average attained throughput for key- and flow-based steering

over an increasing number of server cores. In the case of one core, the performance im-

provement in key-based steering is due to the computation of the hash function on the

NIC. As the number of cores increases, lock contention and cache coherence traffic cause

increasing overhead for flow-based steering. Key-based steering avoids these scalability

bottlenecks and offers 30-45% better throughput. Note that the throughput for 4+ cores

with key-based steering is limited by PCIe bus bandwidth, as the workload is issuing a

large number of small bus transactions. We thus stop the experiment after 5 cores. Mod-

ifying the NIC driver to use batching increases throughput to 13 million operations per

second.

Specialized DMA Interface The second experiment measures the server-side request

processing latency. Three different configurations are compared: flow-based steering,

key-based steering, and key-based steering with the specialized DMA interface described

above. We measure time spent from the point an incoming packet is seen by the network

stack to the point the corresponding response is inserted into the NIC descriptor queue.

Table 6.3 shows the median and 90th percentile of the number of cycles per request

measured over 100 million requests. Key-based steering reduces the number of CPU cy-

cles by 38% over the baseline, matching the throughput results presented above. The

CHAPTER 6. EVALUATION 130

custom DMA interface reduces this number by another 36%, leading to a cumulative re-

duction of 60%. These performance benefits can be attributed to three factors: 1) with

FlexNIC limited protocol processing needs to be performed on packets, 2) receive buffer

management is not required, and 3) log-appends for SET requests are executed by Flex-

NIC.

We conclude that flexible hashing and demultiplexing combined with the FlexNIC

DMA engine improve both latency and throughput considerably for key-value stores.

FlexNIC can efficiently carry out packet processing, buffer management, and log data

structure management without additional work on server CPUs.

6.2.3 Storm

We evaluate the performance of Storm and various FlexStorm configurations on the top-n

user topology. Our input workload is a stream of 476 million Twitter tweets collected be-

tween June–Dec 2009 [75]. Figure 6.10 and Table 6.4 show average achievable throughput

and latency at peak load on this workload. Throughput is measured in tuples processed

per second over a runtime of 20 seconds. Latency is also measured per tuple and is broken

down into time spent in processing, and in input and output queues, as measured at user-

level, within FlexStorm. For comparison, data center network packet delay is typically on

the order of tens to hundreds of microseconds.

We first compare the performance of FlexStorm to that of Apache Storm running on

Linux. We tune Apache Storm for high performance: we use “at most once” processing,

disable all logging and debugging, and configure the optimum amount of worker threads

(equal to the number of hyperthreads minus two multiplexing threads). We deploy both

systems in an identical fashion on 3 machines of our evaluation cluster. In this configu-

ration Apache Storm decides to run 4 replicas each of spouts, counters and intermediate

CHAPTER 6. EVALUATION 131

 0

 1

 2

 3

 4

 5

 6

Balanced Grouped

T
h

ro
u

g
h

p
u

t
[m

 t
u

p
le

s
 /

 s
]

Apache Storm
FlexStorm/Linux

FlexStorm/Extaris
FlexStorm/FlexNIC

Figure 6.10: Average top-n tweeter throughput on various Storm configurations. Error
bars show min/max over 20 runs.

rankers. Storm distributes replicas evenly over the existing hyperthreads and we fol-

low this distribution in FlexStorm (Balanced configuration). By spreading the workload

evenly over all machines, the amount of tuples that need to be processed at each ma-

chine is reduced, relieving the demultiplexing thread somewhat. To show the maximum

attainable benefit with FlexNIC, we also run FlexStorm configurations where all count-

ing workers are executing on the same machine (Grouped configuration). The counting

workers have to sustain the highest amount of tuples and thus exert the highest load on

the system.

Without FlexNIC, the performance of Storm and FlexStorm are roughly equivalent.

There is a slight improvement in FlexStorm due to its simplicity. Both systems are limited

by Linux kernel network stack performance. Even though per-tuple processing time in

FlexStorm is short, tuples spend several milliseconds in queues after reception and be-

fore emission. Queueing before emission is due to batching in the multiplexing thread,

which is configured to batch up to 10 milliseconds of tuples before emission in FlexStorm

(Apache Storm uses up to 500 milliseconds). Input queueing is minimal in FlexStorm as

CHAPTER 6. EVALUATION 132

Input Processing Output Total

Linux 6.68 µs 0.6 µs 12 ms 12 ms
Extaris 4 ms 0.8 µs 6 ms 10 ms
FlexNIC – 0.8 µs 6 ms 6 ms

Table 6.4: Average FlexStorm tuple processing time.

it is past the bottleneck of the Linux kernel and thus packets are queued at a lower rate

than they are removed from the queue. FlexStorm performance is degraded to 34% when

grouping all counting workers, as all tuples now go through a single bottleneck kernel

network stack, as opposed to three.

Running all FlexStorm nodes on the Extaris network stack yields a 2× (Balanced)

throughput improvement. Input queuing delay has increased as tuples are queued at

a higher rate. The increase is offset by a decrease in output queueing delay, as packets

can be sent faster due to the high-performance network stack. Overall, tuple processing

latency has decreased 16% versus Linux. The grouped configuration attains a speedup

of 2.84× versus the equivalent Linux configuration. The bottleneck in both cases is the

demultiplexer thread.

Running all FlexStorm nodes on FlexNIC yields a 2.14× (Balanced) performance im-

provement versus the Extaris version. Using FlexNIC has eliminated the input queue

and latency has decreased by 40% versus Extaris. The grouped configuration attains a

speedup of 2.31×. We are now limited by the line-rate of the Ethernet network card.

I conclude that moving application-level packet demultiplexing functionality into the

NIC yields performance benefits, while reducing the amount of time that tuples are held

in queues. This provides the opportunity for tighter real-time processing guarantees un-

der higher workloads using the same equipment. The additional requirement for receive-

side flow control does not pose an implementation problem to FlexNIC. Finally, demulti-

CHAPTER 6. EVALUATION 133

Hashing FlexNIC

Min Avg Max Min Avg Max

Kpps 103.0 103.7 104.7 166.4 167.3 167.9
Mbps 435.9 439.8 444.6 710.4 715.6 718.6
Accesses 546.0 553.3 559.3 237.0 241.4 251.0
Misses 26.7 26.7 26.7 19.0 19.2 19.2

Table 6.5: Snort throughput and L3 cache behavior over 10 runs.

plexing in the NIC is more efficient. It eliminates the need for additional demultiplexing

threads, which can grow large under high line-rates.

I can use these results to predict what would happen at higher line-rates. The per-

formance difference of roughly 2× between FlexNIC and a fast software implementation

shows that we would require at least 2 fully utilized hyperthreads to perform demul-

tiplexing for FlexStorm at a line-rate of 10 Gb/s. As line-rate increases, this number in-

creases proportionally, taking away threads that could otherwise be used to perform more

analytics.

6.2.4 Snort

I evaluate the FlexNIC-based packet steering by comparing it to basic hash-based steering.

For my experiment, I use a 24 GB pcap trace of the ICTF 2010 competition [131] that is

replayed at 1 Gbps. To obtain the flow group partition I use a prefix of 1/50th of the trace,

and then use the rest to evaluate performance. For this experiment, I run 4 Snort instances

on 4 cores on one socket of a two-socket 12-core Intel Xeon L5640 (Westmere) system at

2.2 GHz with 14 MB total cache space. The other socket is used to replay the trace via the

FlexNIC emulator implementing either configuration.

Table 6.5 shows the throughput and L3 cache behavior for hashing and our improved

FlexNIC steering. Throughput, both in terms of packets and bytes processed, increases

CHAPTER 6. EVALUATION 134

by roughly 60%, meaning more of the packets on the network are received and processed

without being dropped. This improvement is due to the improved cache locality: the

number of cache accesses to the L3 cache per packet is reduced by 56% because they hit in

the L2 or L1 cache, and the number of misses in the L3 cache per packet is also reduced by

roughly 28%. These performance improvements were achieved without modifying Snort.

I conclude that flexible demultiplexing can improve application performance and cache

utilization even without requiring application modification. Application memory access

patterns can be analyzed separately from applications and appropriate rules inserted into

FlexNIC by the system administrator.

6.3 Discussion

My results show significant performance improvements for TCP processing as well as

integrated application processing in the use-cases I have evaluated. For FlexTCP I have

also demonstrated compatibility with other TCP peers, improved fairness, and validated

performance under packet loss and network congestion.

There are some limitations to my evaluation though, most of them because I rely on

software emulation for FlexNIC. There are cases where the emulation limits the available

throughput. As such, my evaluation presents a lower bound for performance benefits

that a hardware FlexNIC implementation would enable. But potentially there are also

performance aspects that the emulation underestimates compared to a full hardware im-

plementation, such as the cost of doorbell writes from the CPU. There are two options for

enabling a more realistic end-to-end evaluation. First, instead of using software emula-

tion for FlexNIC a full system simulator, such as gem5 [10], can be used to more accurately

model overheads and to remove the dependency on the emulator performance. Second,

FlexNIC processing for evaluation could be implemented on a NIC based on a network

CHAPTER 6. EVALUATION 135

processor or FPGA to obtain a full end-to-end performance evaluation (subject to any

performance overhead associated with the particular NIC).

My TCP evaluation could be extended to evaluate additional aspects of FlexTCP. I

currently do not benchmark the slow-path, e.g. by measuring cost for establishing or ter-

minating connections, or flow-completion time for short-lived connections. It is worth

noting though that FlexNIC state updates from the kernel are likely one aspect where

the emulator is not faithfully representing overheads. With a hardware emulation these

updates would likely require multiple un-cached memory writes and potentially reads

through PCIe from the CPU, and thus be more expensive than in my emulator with shared

memory. An accurate evaluation here would likely require a full system simulator or a

hardware implementation. I expect that FlexTCP can scale to larger numbers of connec-

tions than my experiments currently evaluate. In my attempts to evaluate these, I ran into

protocol limitations with TCP congestion control that degraded performance for 10s of

thousands of connections sharing a 10 Gbps link. This is not an FlexTCP limitation, but

a consequence of the higher throughput and lower latency achieved in this setup. Linux

and mtcp behave much worse in this regime and end up terminating connections because

of timeouts.

Chapter 7

Related Work

Related work falls into three categories: 1) modified or new architectures for software pro-

tocol processing, 2) hardware architectures for high-performance and flexible processing,

and 3) acceleration of specific applications or application protocols.

7.1 Software Packet Processing

On the software side, previous work has investigated the performance of both in-kernel

and kernel bypass systems in parallel.

7.1.1 Kernel Stack Improvements

Numerous changes to the system call interface have been made or proposed to reduce

overheads. The select() call does not scale to large numbers of connections because

the kernel and application both need to traverse a data structure linear in the number of

connections. To address this, Linux provides epoll [80] while BSD-based operating sys-

tems implement kqueue [74]. Because I/O related system calls can block unexpectedly

136

CHAPTER 7. RELATED WORK 137

preventing the application from performing work until the call returns, asynchronous in-

terfaces [129, 32] have been added so applications can do other work until they receive

a completion notification. System call batching [126] amortizes context switch overheads

across multiple system calls. Megapipe [44] introduces a new API centered around asyn-

chronous communication channels between the application and the kernel to reduce con-

text switch overheads, avoid file descriptor management, and enable a scalable kernel

network stack implementation. IX [8] is a kernel network stack providing a streamlined

API for efficient run-to-completion processing with minimal changes to Linux. I apply

these ideas in FlexTCP, for both internal and application-facing interfaces. FlexTCP im-

plements a large subset of the sockets interface offered by modern Linux systems to offer

backwards compatibility, including epoll. The low-level FlexTCP application interface

as well as all internal interfaces between components are all asynchronous queues that

support batching, similar to Megapipe. While applications can leverage the low level

FlexTCP interface for efficient run-to-completion processing similar to IX, FlexTCP also

efficiently supports more general communication patterns.

Other work improves performance through internal modifications to the kernel net-

work stack. Scheduling anomalies [29] occur in network stacks that prioritize incoming

network packets over application code handling requests. This can lead to live-lock under

load. Affinity-accept [103] and Fastsocket [78] improve multicore scalability of the Linux

TCP stack by processing each connection on a single core. However, both mechanisms are

limited to using the L4 steering mechanisms offered by current NICs and do not support

steering based on TCP payload. Internally, FlexNIC processes packets and other events

using run-to-completion, and flexible de-multiplexing provides software with full control

over scheduling of processing. I build on the lessons learned from affinity-accept and

Fastsocket by leveraging the reconfigurability in FlexNIC for higher layer steering to fully

CHAPTER 7. RELATED WORK 138

partition processing for a wider range of applications.

Previous research has also investigated different splits of responsibility for process-

ing between the application and the OS kernel. Netmap [114] provides an interface to

efficiently send and receive raw network packets without copies while still guaranteeing

memory safety and not requiring hardware support. Netmap leaves all protocol process-

ing to applications and does not support multi-tenant isolation as applications are able

to craft arbitrary outgoing packets. Instead of moving processing into the application,

AFPA [61] proposes the opposite approach and moves server components directly into

the kernel to avoid context switch overheads. AFPA requires that applications are trusted

to run in kernel mode with full access to the system. I instead investigate how to remove

the OS stack from the critical path, while leaving the OS in full control of policy enforce-

ment.

7.1.2 Kernel Bypass

Another line of research completely avoids kernel stack overheads by bypassing the ker-

nel and providing applications with direct access to NICs. U-Net [137] and Arrakis [104]

leverage hardware I/O virtualization to enable safe direct access to network devices by

multiple applications. They leverage NIC filters to assign incoming packets to appli-

cations based on ATM circuits or IP addresses, and validate these parameters on out-

going packets. Neither system is capable of enforcing policies such congestion control.

mTCP [60] is a user-level TCP stack optimized to handle short-lived connections on mul-

tiple cores, by statically partitioning the TCP stack to application cores. mTCP does not

support higher-layer steering, or applications that require handling of connections on spe-

cific cores. Chronos [65] aims to minimize application latency by delivering packets di-

rectly to the correct application thread based on request data. However, Chronos does

CHAPTER 7. RELATED WORK 139

not propose a specific hardware mechanism for de-multiplexing and emulates hardware

de-multiplexing in software. In this dissertation, I start with kernel bypass and aim to un-

derstand how to provide hardware NIC support so it can also provide the isolation and

security properties of in-kernel processing. I adopt the lessons learned from mTCP and

Chronos and partition processing to cores, but I propose a flexible hardware architecture

to support a wide range of steering mechanisms.

Kernel bypass offers the opportunity to specialize software processing to application

requirements, as each application implements its own processing. Sandstorm [83] demon-

strates that a TCP stack specialized for 1and tightly integrated into individual applications

significantly reduces processing overheads. Sandstorm removes intermediate queuing, al-

lows applications to prepare and cache data in driver send buffers, and uses synchronous

run to completion processing. With FlexNIC application acceleration, I leverage similar

techniques for UDP workloads. The FlexTCP low-level interface also lends itself to tight

application integration, but I leave it as future work to study the attainable benefits for

applications.

7.2 Hardware Packet Processing

Previous work has investigated changes to existing NIC architectures, proposed novel

hardware architectures, and evaluated the suitability of existing processor architectures

for network processing.

7.2.1 NIC Improvements

Research has studied how to how to achieve memory safety and multiplexing for safe

kernel bypass [107, 137, 30]. In particular, these projects have proposed NIC mechanisms

for validating DMA addresses in the NIC, demultiplexing incoming packets based on

CHAPTER 7. RELATED WORK 140

standardized header fields, and validating outgoing packets to prevent spoofing. Flex-

NIC builds on these mechanisms and provides similar mechanisms that are, however,

not tied to fixed protocols. SENIC [109] shows how to scale NIC hardware rate limit-

ing to large numbers of connections with a combination of a hardware scheduler and OS

software packet classification. I adapt SENIC’s hardware scheduler component into Flex-

NIC’s queue manager and leverage the RMT pipeline to flexibly schedule packets fully

in hardware. Other work demonstrates that careful NIC-software interface design can re-

duce latency and improve bus utilization by minimizing the number of PCIe transitions

[35, 11] for sending and receiving small packets. I can implement these and other DMA

optimizations in FlexNIC by leveraging flexible DMA to develop application specific com-

munication strategies.

TCP Offload Engines [24, 21] and remote direct memory access (RDMA) [111] go a

step further, entirely removing protocol processing from the CPU. Scale-out NUMA [99]

extends the RDMA approach by integrating a remote memory access controller that au-

tomatically translates memory accesses into remote memory operations. Portals [6] is

similar to RDMA, but adds a set of offloadable memory and packet send operations trig-

gered upon matching packet arrival. All of these approaches implement a fixed protocol

in hardware. With FlexNIC, I instead show that it is not necessary to implement a fixed

protocol. I can support a range of protocols with message passing, shared memory, or

hybrid semantics all on one flexible hardware model.

7.2.2 Programmable Network Hardware

In the wake of the software-defined networking [85] trend, a rich set of customizable

switch data planes have been proposed. For example, the P4 programming language

proposal [14] allows users rich switching control based on arbitrary packet fields, in-

CHAPTER 7. RELATED WORK 141

dependent of underlying switch hardware. There is a natural trade-off between pro-

grammability, performance, and cost. Reconfigurable match tables (RMT) [15] aim to

provide an abstraction for flexible and protocol-independent packet processing that can

be implemented for growing data center link speeds at an acceptable cost. Data center

switches based on RMTs are commercially available and support aggregate link rates of

up to 6.5 Tbps [19, 5]. In this dissertation, I leverage RMT pipelines as a building block

for a complete NIC architecture that tightly integrates RMT with novel mechanisms for

flexible DMA and packet scheduling.

7.2.3 Cluster Message Passing

High performance computing applications are critically dependent on efficient commu-

nication. The SHRIMP multicomputer virtual NIC [13] offers applications direct access

to hardware message passing through a memory mapped interface. The Stanford FLASH

multiprocessor [46] supports both message passing and cache-coherent distributed shared

memory with minimal hardware and software overhead. FLASH integrates MAGIC, a

custom fully programmable NIC consisting of three CPU cores arranged as a pipeline,

between the CPU and memory, allowing software to snoop and interpose memory ac-

cesses translating them to messages and vice-versa. Cluster interconnects are optimized

for maximum performance with cost as a secondary factor. They typically assume reliable

messaging support in the network. I target the more general case of lossy and potentially

congested Ethernet data center networks.

7.2.4 GPU Packet Processing

In addition to optimizing software and hardware, previous work has examined using gen-

eral purpose graphics processing units (GPGPUs) to accelerate packet processing. GPUs

CHAPTER 7. RELATED WORK 142

are attractive accelerators because of their high degree of parallelism and large memory

bandwidth. Initial work targeted offloading network packet routing to GPUs [43, 128,

140], SSLShader accelerates SSL processing [59]. GASPP enables more complex state-

ful packet processing on GPUs [136]. Rhythm accelerates PHP web applications using

GPUs [1]. GPUnet [68] removes the need for packets to be sent and received through

the CPU by allowing the NIC to directly transfer packets to and from the These GPU

performance improvements are often due to better memory latency hiding, and similar

performance can be achieved on CPUs with careful optimization [64]. My approach does

not leverage GPUs for packet processing. CPUs now have instructions for encryption

so the parallelism offered by GPUs is less necessary. Instead I rely on an RMT-based NIC

and the CPU, thereby leaving the GPU available for more computationally intensive tasks.

While I do not evaluate GPU integration, I expect future work could leverage FlexNIC to

efficiently communicate directly with GPUs for applications, such as machine learning or

encoding, that process data on GPUs.

7.3 Application Layer Protocols

The work presented so far focuses on improving performance for general packet handling

and standard network protocols such as the Ethernet, IP, and TCP stack. There is also a

line of work that aims to improve application protocol processing performance.

7.3.1 High-performance Applications

Several researchers have studied how to improve the performance of specific applica-

tions. A common target are key-value stores. Three examples are HERD [62], Pilaf [89],

and MICA [77], which use NIC hardware features to improve performance. HERD and

Pilaf use RDMA operations to offload protocol processing to hardware and to exert fine-

CHAPTER 7. RELATED WORK 143

grained control over how requests are processed in software. MICA uses regular Ethernet

NICs with kernel bypass and tightly integrates all protocol processing into the applica-

tion, while leveraging NIC packet steering for scalability. All three systems require require

client modifications to be able to make use of these features. FaRM [28] generalizes this

approach to other distributed systems. FlexNIC can implement the same optimizations

without binding to a specific hardware implementation of a protocol (such as RDMA).

But I also show that the flexibility is useful — e.g. to allow server-side optimizations that

are transparent to clients.

7.3.2 NIC-Application Co-design

Some research has examined offloading entire applications to programmable NICs, such

as key-value storage [20, 12] and map-reduce functionality [120]. KV-Direct [76] presents

a key-value store implementation on an FPGA-based NIC and also implements almost

all key-value store functionality on the NIC. KV-Direct does implement small parts of

processing on the CPU, including memory reclamation, and also leverages the CPU to

more efficiently use PCIe bandwidth. In contrast, I only offload critical parts of packet

processing to a reconfigurable NIC without requiring expensive network processors or

FPGAs on the NIC. FlexNIC instead allows for incremental application integration. As

I have shown, FlexTCP supports unmodified applications and FlexNIC can accelerate

existing applications with varying degrees of modification.

Chapter 8

Conclusion

In this dissertation, I have proposed and evaluated a novel architecture for high perfor-

mance data center packet processing. This architecture demonstrates that network com-

munication can be implemented efficiently, scalably, and predictably without compromis-

ing multi-tenant policy enforcement, protocol flexibility, or cost efficiency.

This dissertation makes the following contributions:

Reconfigurable NIC Hardware Model With FlexNIC (chapter 3), I designed a flexi-

ble hardware NIC model for integrated hardware-software packet processing. This NIC

model reduces processor overheads for communication, by allowing protocol processing

steps, for standard network protocols and application protocols alike, to be offloaded to

hardware. The system is flexible enough to support standard protocols and application

protocols alike, scalable to thousands of active connections, and efficient because it can

keep up with line rate with minimal processor load. At the same time, the operating

system can leverage FlexNIC to enforce policies, essential for kernel bypass operation.

144

CHAPTER 8. CONCLUSION 145

High Performance Data Center TCP Stack To demonstrate the power of FlexNIC, I

developed FlexTCP (chapter 4), an efficient high performance TCP implementation for

multi-tenant data centers. FlexTCP splits up TCP protocol processing functionality be-

tween FlexNIC, the application, and the operating system kernel. Applications directly

interact with the NIC to send and receive data, while the operating system manages

connections and implements congestion control. FlexTCP improves per-core application

throughput by up to 10.7× and latency by up to 7.8× compared to Linux in my experi-

ments.

Integrated Application Packet Processing With three case-studies (chapter 5), I demon-

strated that FlexNIC is also useful for accelerating application request processing. I show

how to improve scalability of a key-value store with application-level packet steering, re-

sulting in up to 45% higher throughput. FlexNIC can streamline request processing by

directing DMA to and from application data structures. The result is an additional 60%

reduction in the key-value store request processing time. I show how to accelerate a real-

time analytics system by 2.3× by offloading (de)multiplexing and flow control to FlexNIC.

Finally, I use FlexNIC to speed up an otherwise unmodified intrusion detection system by

60% by adjusting packet steering based on application locality requirements.

8.1 Future Work

I now discuss directions in which my work could be extended in the future. At a high

level, these fall into three categories: 1) addressing limitations that are beyond the scope

of this dissertation, 2) exploring new opportunities enabled by FlexNIC, and 3) looking

forward to a path for adoption and future challenges.

CHAPTER 8. CONCLUSION 146

8.1.1 Addressing Limitations

While I demonstrate that FlexNIC satisfies my outlined goals for data center communi-

cation, a practical deployment requires additional work in multiple directions, including

a hardware design, programming language and OS integration, and remaining protocol

limitations.

Hardware FlexNIC Implementation This dissertation proposed and evaluated abstrac-

tions for a reconfigurable NIC from a software point of view. My evaluation results have

shown these abstractions reduce software overheads and can improve throughput by

more than 10×. For cloud customers, this improvement in performance and efficiency

has the potential to significantly reduce operating costs and to enable new applications,

where communication overheads would otherwise be prohibitive. Achieving these per-

formance improvements in practice an efficient and cost-effective implementation of a

reconfigurable NIC.

I have not shown that an efficient hardware implementation exists. There is reason

to expect it does, based on existing RMT switch designs, and their extension for stateful

processing and programmable scheduling, but there are fundamental differences from a

switch. Quantitative evaluation of chip area, power consumption, and hardware timing

will require a full hardware design.

Programming Language Support I advocate splitting processing across the NIC, the

OS kernel, and the application. This poses implementation challenges; changes involv-

ing more than one component require time-consuming modifications in multiple places

and using multiple interfaces. An additional complication is that FlexNIC exposes a pro-

gramming model completely different from the host processor. Programming language

support may simplify development and improve reliability by enabling program analysis

CHAPTER 8. CONCLUSION 147

across components. For the case of split processing, the compiler would be responsible to

turn a single implementation into code for the NIC, the OS kernel, and the application,

based on programmer annotations and compiler analysis.

OS Support For Application-Specific Processing Introducing application-specific pro-

cessing from untrusted applications into a shared network stack poses a set of challenges

I have not addressed. Previous work [84, 9, 33, 138] has explored options for safely ex-

ecuting code provided by untrusted applications in the kernel, with approaches such as

type-safe languages and simplified instruction sets. These approaches guarantee memory

safety and ensure termination of handlers provided by applications. As discussed in this

dissertation, multi-tenant packet processing requires additional guarantees. Applications

also dynamically start up and terminate, requiring the network stack to adapt at run-time.

Adapting NIC processing dynamically, without disturbing processing for remaining ap-

plications, presents another challenge.

Data Center Scale TCP Data center management, especially for cloud computing, has

grown increasingly finer, from hours to deploy on individual machines, to minutes on vir-

tual machines, through seconds with containers, now down to milliseconds with server-

less computing [70, 4, 37]. This transition has also increased application density in the

data center, in turn, increasing sharing and network load. In this emerging world, indi-

vidual physical machines will need to handle 10s to 100s of thousands of active network

connections. FlexNIC makes it possible to do scalable packet processing and to adapt to

changing conditions, but it does not specify what those protocols should do

Data center congestion control, for example, has to operate across a wider spectrum: a

single link could be shared and fully utilized by only a handful of connections or the same

link could be used by 100s of thousands of connections with bandwidth-delay product

CHAPTER 8. CONCLUSION 148

measured in a few hundreds of packets.. Existing congestion control protocols are not

designed for and do not behave well over this range of operating conditions. I have ob-

served that classical TCP triggers instability [38] under these conditions in my experimen-

tal setup. As new application requirements and advances in data center infrastructure

improve performance further, this and other problems with existing network protocols

will become more pronounced. A promising avenue is to observe that existing network

resource algorithms are constrained by an assumption of computation in the data path

handling code; once I relax that assumption with FlexNIC, a broader range of options be-

comes available. Understanding and addressing these challenges is essential to support

continuing data center evolution and with it the whole cloud ecosystem.

High TCP Connection Churn Network communication in data centers exhibits a range

of workload patterns. FlexTCP targets long running TCP connections, the dominant

workload for optimized data center applications. But applications with other workloads

do exist and also require efficient communication. In some cases applications can be modi-

fied to use persistent connections to improve efficiency. For many other applications, such

as client-facing servers, the workload and protocols are dictated externally. Short-lived

TCP connections with high churn are particularly hard to optimize, but are a common

web server workload.

Efficiently supporting short lived connections in FlexTCP requires architectural changes.

For connections that only exchange a few data segments before teardown, the slow path

does most of the work and the overhead for connection hand-off to the fast path cannot

be amortized. As connection establishment and teardown becomes the common case, it

should be handled by the fast-path. For a software version of the fast-path this appears

feasible. But FlexNIC, as proposed, does not support this split of responsibilities, because

it would require adding entries to match-action tables on the data path. Adding this sup-

CHAPTER 8. CONCLUSION 149

port to FlexNIC is not trivial, because the hash-table insert requires multiple dependent

memory accesses. This is further complicated by hash collisions that would have to be re-

solved, resulting in a variable time operation problematic for a pipeline. One approach to

this is only handing only inserts without collisions on the fast path. Only a careful design

and analysis can determine if such an architecture could satisfy the outlined goals.

8.1.2 Opportunities with FlexNIC

The protocol flexibility and predictable performance open up new possibilities for data

center communication.

Flexible Remote Direct Memory Access The One-sided communication promised by

RDMA is a compelling advantage over message passing systems for many applications.

However, network requirements incompatible with modern data centers combined with

inflexibility limit the applicability of existing commercial implementations. In addition,

while memory accesses augmented with simple atomic operations are sufficient for some

applications, many data center applications feature complex data structures and concur-

rency that are not compatible with this programming model.

FlexNIC has the potential to provide a flexible programming model with application-

specific one-sided operations on top of a resource management model compatible with

modern data centers. While I do not directly demonstrate it in this dissertation, FlexNIC

can support one-sided RDMA operations but can also go a step further. For example,

FlexNIC could be programmed with application-level operations such as an append to a

shared queue that is fully executed in hardware but would require multiple operations

with RDMA. Operations could also be designed to be mostly one-sided but transparently

to the sender handle corner cases in software, such as a hash table insertion with colli-

CHAPTER 8. CONCLUSION 150

sion handling in software. This programming model could then be layered on top of the

resource enforcement techniques developed for FlexTCP. The resulting system would pro-

vide a larger set of data center applications with one-sided communication in a resource

management model compatible with today’s data centers.

Network Layer Service Level Agreements Modern cloud offerings are governed by ser-

vice level agreements that define objectives for service availability and performance, along

with compensation in case the service does not meet the targets. For data center networks,

operators today are not willing to guarantee objectives beyond availability, because of the

unpredictable performance of end hosts and the network alike. Even services fully con-

trolled by operator, such as storage, typically only specify availability objectives and in

some cases worst case response times in multiple orders of magnitude above the average.

The predictable end-host processing offered by FlexNIC and FlexTCP provides an op-

portunity for operators improve end-to-end predictability and offer service level agree-

ments for networks and services with specific and accurate performance objectives. Flex-

NIC is only part of the answer for predictable network performance. Congestion control

protocols, in-network mechanisms, operating system schedulers, and applications all in-

fluence predictability as well as overall performance. Improving predictability in the data

center will require solutions that target multiple layers of the stack.

8.1.3 Thoughts for the Future

Looking out into the future, the viability of the proposed architecture depends on first

gaining adoption and then keeping track with future network speeds.

A Path to Adoption: Streamlined Software TCP Stack In the course of evaluating Flex-

TCP, I discovered that streamlined TCP processing also improves CPU efficiency and

CHAPTER 8. CONCLUSION 151

overall performance for a pure software implementation. Even accounting for the dedi-

cated CPU cores running the FlexNIC emulation, the resulting software system (SoftTCP)

improves both CPU efficiency and overall performance relative to Linux. For most ex-

periments SoftTCP provided performance on par with mtcp (the kernel bypass baseline

stack), but without compromising multi-tenancy.

In contrast to FlexTCP, SoftTCP does not require new hardware and can be rolled out

incrementally. A software implementation based on the same design principles thereby

provides a potential first step on the path towards adoption of FlexTCP. Most of the con-

trol plane and the application libraries can be prototyped and evaluated for SoftTCP and

then later adapted for hardware offload to FlexNIC or another re-configurable NIC.

The current SoftTCP implementation provides a first step towards validating the core

approach of a streamlined software implementation. However, extending it into a full

system for practical deployments requires significant additions. For one, SoftTCP cur-

rently uses a static number of cores for its fast-path. A complete system has to dynam-

ically adapt resource allocation based on workload requirements. SoftTCP also requires

application cores to poll queues for packets, wasting processor cycles during periods of

inactivity. Instead, a complete implementation should support blocking operation for

applications during less communication intensive periods. These and other required ex-

tensions require novel contributions and have the potential to improve efficiency for data

center communication.

Future Limits of FlexNIC As network bandwidth continues to grow at a dramatic pace,

two critical questions are what the fundamental bandwidth limit of FlexNIC is and what

compromises are necessary for supporting higher bandwidths. While precise through-

put limits will depend on the specific hardware design and silicon implementation, prior

work on reconfigurable stateful processing [123] and flexible scheduling [124] has demon-

CHAPTER 8. CONCLUSION 152

strated throughput of a billion packets per second (≈ 500Gbps with 64-byte packets).

Thus I expect that a FlexNIC implementation could support line rate with small packets

for 400 Gbps Ethernet.

Scaling up bandwidth significantly beyond 400 Gbps will require compromises and

architectural changes. Commercial RMT switches today achieve aggregate line rates of

up to 6 Tbps, by partitioning ports to multiple parallel pipelines. This comes at the cost

of partitioning state with no sharing between groups of ports, a poor fit for the inherently

stateful processing proposed in this dissertation. Depending on processing requirements,

the impact could be mitigated with a flexible mechanism for partitioning incoming pack-

ets to pipelines, but a partitioned architecture fundamentally loses global visibility in the

data path.

RMT pipelines only incur per-packet overheads that are independent of the packet

size; larger packets achieve proportionally higher bandwidths, up to 12 Tbps for 1 billion

1500 B Ethernet packets per second. The effective achievable bandwidth depends on the

workload. An open question is what packet rates and bandwidths individual future data

center servers and applications will need.

Bibliography

[1] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and A. R. Lebeck. Rhythm: Har-
nessing data parallel hardware for server workloads. In 19th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS,
2014.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center net-
work architecture. In 2008 ACM SIGCOMM Conference on Data Communication, SIG-
COMM, 2008.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, and M. Sridharan. Data center TCP (DCTCP). In 2010 ACM SIGCOMM
Conference on Data Communication, SIGCOMM, 2010.

[4] Amazon Web Services. AWS Lambda – serverless compute. https://aws.

amazon.com/lambda/.

[5] Barefoot Networks. Barefoot Tofino. https://barefootnetworks.com/

products/product-brief-tofino/.

[6] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K. Wheeler, K. Underwood,
R. Riesen, A. B. Maccabee, and T. Hudson. The Portals 4.0.1 network program-
ming interface. http://www.cs.sandia.gov/Portals/portals401.pdf,
Apr. 2013.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for scal-
able multicore systems. In 22nd ACM Symposium on Operating Systems Principles,
SOSP, 2009.

153

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://barefootnetworks.com/products/product-brief-tofino/
https://barefootnetworks.com/products/product-brief-tofino/
http://www.cs.sandia.gov/Portals/portals401.pdf

BIBLIOGRAPHY 154

[8] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion. IX: A
protected dataplane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2014.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility safety and performance in the SPIN op-
erating system. In 15th ACM Symposium on Operating Systems Principles, SOSP, 1995.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 simulator. SIGARCH Computer Architecture News,
39(2):1–7, Aug. 2011.

[11] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt. Integrated network interfaces for
high-bandwidth TCP/IP. In 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2006.

[12] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bär, and Z. István. Achieving 10Gbps
line-rate key-value stores with FPGAs. In 5th USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud, 2013.

[13] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual
memory mapped network interface for the SHRIMP multicomputer. In 21st Annual
International Symposium on Computer Architecture, ISCA, 1994.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Computer Communication Review,
44(3):87–95, July 2014.

[15] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for SDN. In 2013 ACM SIGCOMM Conference on Data Com-
munication, SIGCOMM, 2013.

[16] M. Burrows. The Chubby lock service for loosely-coupled distributed systems. In
7th USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2006.

BIBLIOGRAPHY 155

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. BBR:
Congestion-based congestion control. ACM Queue, 14(5):50:20–50:53, Oct. 2016.

[18] Cavium Corporation. OCTEON II CN68XX multi-core MIPS64 processors. http:
//www.cavium.com/pdfFiles/CN68XX_PB_Rev1.pdf.

[19] Cavium Corporation. XPliant Ethernet Switch Product Family. http://www.

cavium.com/XPliant-Ethernet-Switch-Product-Family.html.

[20] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan, and M. Mar-
gala. An FPGA Memcached appliance. In 21st ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA, 2013.

[21] Chelsio Communications. TCP offload at 40Gbps. http://www.chelsio.com/
wp-content/uploads/2013/09/TOE-Technical-Brief.pdf, 2013.

[22] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger, G. Mendelson,
M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall. dRMT: Disaggregated
programmable switching. In 2017 ACM SIGCOMM Conference on Data Communica-
tion, SIGCOMM, 2017.

[23] J. Corbet. TCP small queues. https://lwn.net/Articles/507065/, July 2012.

[24] A. Currid. TCP offload to the rescue. ACM Queue, 2(3), June 2004.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
In 6th USENIX Symposium on Operating Systems Design and Implementation, OSDI,
2004.

[26] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting
congestion control for consistent high performance. In 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, 2015.

[27] DPDK Project. Intel data plane development kit. http://www.dpdk.org/.

[28] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2014.

http://www.cavium.com/pdfFiles/CN68XX_PB_Rev1.pdf
http://www.cavium.com/pdfFiles/CN68XX_PB_Rev1.pdf
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf
http://www.chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf
https://lwn.net/Articles/507065/
http://www.dpdk.org/

BIBLIOGRAPHY 156

[29] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network subsystem
architecture for server systems. In 2nd USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 1996.

[30] P. Druschel, L. Peterson, and B. Davie. Experiences with a high-speed network
adaptor: A software perspective. In 1994 ACM SIGCOMM Conference on Data Com-
munication, SIGCOMM, 1994.

[31] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Mer-
ritt, E. Gronke, and C. Dodd. The virtual interface architecture. IEEE Micro, 18(2):66–
76, Mar. 1998.

[32] K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel. Lazy asynchronous i/o
for event-driven servers. In 2004 USENIX Annual Technical Conference, ATC, 2004.

[33] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system
architecture for application-level resource management. In 15th ACM Symposium on
Operating Systems Principles, SOSP, 1995.

[34] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain,
S. Hao, E. Katz-Bassett, and R. Govindan. Reducing web latency: The virtue of
gentle aggression. In 2013 ACM SIGCOMM Conference on Data Communication, SIG-
COMM, 2013.

[35] M. Flajslik and M. Rosenblum. Network interface design for low latency request-
response protocols. In 2013 USENIX Annual Technical Conference, ATC, 2013.

[36] S. Floyd and E. Kohler. Profile for datagram congestion control protocol (DCCP)
congestion control ID 2: TCP-like congestion control, Mar. 2006. RFC 4341.

[37] Google Cloud Platform. Cloud Functions – serverless environment to build and
connect cloud services. https://cloud.google.com/functions/.

[38] S. Gorinsky and H. Vin. Additive increase appears inferior. Technical Report
TR2000-18, Department of Computer Sciences, University of Texas at Austin, May
2000.

https://cloud.google.com/functions/

BIBLIOGRAPHY 157

[39] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2: a scalable and flexible data center network. In 2009
ACM SIGCOMM Conference on Data Communication, SIGCOMM, 2009.

[40] gRPC Authors. grpc. https://grpc.io/.

[41] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. RDMA over
commodity Ethernet at scale. In 2016 ACM SIGCOMM Conference on Data Commu-
nication, SIGCOMM, 2016.

[42] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. SoftNIC: A software
NIC to augment hardware. Technical Report UCB/EECS-2015-155, EECS Depart-
ment, University of California, Berkeley, May 2015.

[43] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-accelerated software
router. In 2010 ACM SIGCOMM Conference on Data Communication, SIGCOMM,
2010.

[44] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy. MegaPipe: A new programming
interface for scalable network I/O. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2012.

[45] T. Haynes and D. Noveck. Network file system (NFS) version 4 protocol, Mar. 2015.
RFC 7530.

[46] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of message pass-
ing and shared memory in the Stanford FLASH multiprocessor. In 6th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS, 1994.

[47] C. Hopps. Analysis of an equal-cost multi-path algorithm, Nov. 2000. RFC 2992.

[48] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for high bandwidth net-
work I/O. In 32nd Annual International Symposium on Computer Architecture, ISCA,
2005.

[49] IEEE 802.1. 802.1Qbb priority-based flow control. https://1.ieee802.org/

dcb/802-1qbb/, June. 2011.

https://grpc.io/
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/

BIBLIOGRAPHY 158

[50] IEEE 802.3bs Task Force. P802.3bs-2017 - IEEE standard for Ethernet amendment
10: Media access control parameters, physical layers and management parameters
for 200 Gb/s and 400 Gb/s operation, Jan. 2017.

[51] Infiniband Trade Association. Annex a 16: RoCE. https://cw.infinibandta.
org/document/dl/7148, Apr. 2010. Release 1.2.1.

[52] Infiniband Trade Association. Annex a 17: RoCEv2. https://cw.

infinibandta.org/document/dl/7781, Sept. 2014. Release 1.2.1.

[53] Infiniband Trade Association. Infiniband architecture specification volume 1.
https://cw.infinibandta.org/document/dl/7859, Mar. 2015. Release 1.3.

[54] Infiniband Trade Association. Infiniband architecture specification volume 2.
https://cw.infinibandta.org/document/dl/8125, Nov. 2016. Release
1.3.1.

[55] Intel Corporation. PCI-SIG SR-IOV primer: An introduction to SR-IOV technology.
Intel application note, Jan. 2011. Revision 2.5.

[56] Intel Corporation. Intel 82599 10 GbE controller datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/datasheets/82599-

10-gbe-controller-datasheet.pdf, Jan. 2014. Revision 2.9.

[57] Intel Corporation. Receive side scaling on Intel network adapters.
http://www.intel.com/content/www/us/en/support/network-and-

i-o/ethernet-products/000006703.html, June 2016.

[58] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. Speeding
up distributed request-response workflows. In 2013 ACM SIGCOMM Conference on
Data Communication, SIGCOMM, 2013.

[59] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader: Cheap SSL acceleration
with commodity processors. In 8th USENIX Symposium on Networked Systems Design
and Implementation, NSDI, 2011.

[60] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. mTCP: A
highly scalable user-level TCP stack for multicore systems. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI, 2014.

https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/8125
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000006703.html
http://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000006703.html

BIBLIOGRAPHY 159

[61] P. Joubert, R. B. King, R. Neves, M. Russinovich, and J. M. Tracey. High-performance
memory-based web servers: Kernel and user-space performance. In 2001 USENIX
Annual Technical Conference, ATC, 2001.

[62] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently for key-value
services. In 2014 ACM SIGCOMM Conference on Data Communication, SIGCOMM,
2014.

[63] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, scalable and simple dis-
tributed transactions with two-sided (RDMA) datagram RPCs. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI, 2016.

[64] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Raising the bar for using
GPUs in software packet processing. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI, 2015.

[65] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat. Reducing datacenter
application latency with endhost NIC support. Technical Report CS2012-0977, CSE
Department, University of California, San Diego, Apr. 2012.

[66] T. Karmarkar. Availability of H-series VMs in Microsoft Azure. https:

//azure.microsoft.com/en-us/blog/availability-of-h-series-

vms-in-microsoft-azure/.

[67] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy. High
performance packet processing with FlexNIC. In 21st International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS, 2016.

[68] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel, and M. Silberstein. GPUnet:
Networking abstractions for GPU programs. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI, 2014.

[69] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control protocol (DCCP),
Mar. 2006. RFC 4340.

[70] R. Koller and D. Williams. Will serverless end the dominance of Linux in the cloud?
In 16th Workshop on Hot Topics in Operating Systems, HOTOS, 2017.

https://azure.microsoft.com/en-us/blog/availability-of-h-series-vms-in-microsoft-azure/
https://azure.microsoft.com/en-us/blog/availability-of-h-series-vms-in-microsoft-azure/
https://azure.microsoft.com/en-us/blog/availability-of-h-series-vms-in-microsoft-azure/

BIBLIOGRAPHY 160

[71] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ra-
masamy, and S. Taneja. Twitter Heron: Stream processing at scale. In 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD, 2015.

[72] H. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In Sparse Matrix Proceedings
1978, pages 256–282, 1979.

[73] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[74] J. Lemon. Kqueue - a generic and scalable event notification facility. In 2001 USENIX
Annual Technical Conference, ATC, 2001.

[75] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[76] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang. KV-
Direct: High-performance in-memory key-value store with programmable NIC. In
26th ACM Symposium on Operating Systems Principles, SOSP, 2017.

[77] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic approach to
fast in-memory key-value storage. In 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, 2014.

[78] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable kernel TCP de-
sign and implementation for short-lived connections. In 21st International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS,
2016.

[79] Linux Kernel Authors. Configure Soft-RoCE (RXE). https://github.com/

linux-rdma/rdma-core/blob/master/Documentation/rxe.md.

[80] Linux man-pages project. epoll - I/O event notification facility. http://man7.

org/linux/man-pages/man7/epoll.7.html.

[81] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A loss and delay-based congestion con-
trol algorithm for high-speed networks. In 1st International Conference on Performance
Evaluation Methodolgies and Tools, VALUETOOLS, 2006.

http://snap.stanford.edu/data
https://github.com/linux-rdma/rdma-core/blob/master/Documentation/rxe.md
https://github.com/linux-rdma/rdma-core/blob/master/Documentation/rxe.md
http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html

BIBLIOGRAPHY 161

[82] lwIP Authors. lwIP – a lightweight TCP/IP stack. https://savannah.nongnu.
org/projects/lwip/.

[83] I. Marinos, R. N. Watson, and M. Handley. Network stack specialization for per-
formance. In 2014 ACM SIGCOMM Conference on Data Communication, SIGCOMM,
2014.

[84] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-
level packet capture. In Proceedings of the USENIX Winter 1993 Conference, USENIX,
1993.

[85] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks.
SIGCOMM Computer Communication Review, 38(2):69–74, Mar. 2008.

[86] Mellanox Technologies. Mellanox simplifies RDMA deployments with enhanced
RoCE software. http://www.mellanox.com/page/press_release_item?

id=1760, July 2016.

[87] Memcached Authors. memcached – distributed memory object caching system.
http://memcached.org/.

[88] Message Passing Interface Forum. MPI: A message-passing interface standard.
https://www.mpi-forum.org/docs/, June 2015. Version 3.1.

[89] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads to build a fast, CPU-
efficient key-value store. In 2013 USENIX Annual Technical Conference, ATC, 2013.

[90] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based congestion control for the
datacenter. In 2015 ACM SIGCOMM Conference on Data Communication, SIGCOMM,
2015.

[91] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively cautious congestion
control. In 11th USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2014.

[92] J. C. Mogul. TCP offload is a dumb idea whose time has come. In 9th Workshop on
Hot Topics in Operating Systems, HOTOS, 2003.

https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
http://www.mellanox.com/page/press_release_item?id=1760
http://www.mellanox.com/page/press_release_item?id=1760
http://memcached.org/
https://www.mpi-forum.org/docs/

BIBLIOGRAPHY 162

[93] B. Montazeri, Y. Li, M. Alizadeh, , and J. Ousterhout. Homa: A receiver-driven
low-latency transport protocol using network priorities. In 2018 ACM SIGCOMM
Conference on Data Communication, SIGCOMM, 2018.

[94] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti. NUMFab-
ric: Fast and flexible bandwidth allocation in datacenters. In 2016 ACM SIGCOMM
Conference on Data Communication, SIGCOMM, 2016.

[95] A. Narayan, F. Cangialosi, P. Goyal, S. Narayana, M. Alizadeh, and H. Balakrishnan.
The case for moving congestion control out of the datapath. In 16th ACM Workshop
on Hot Topics in Networks, HOTNETS, 2017.

[96] Netronome. NFP-6xxx flow processor. https://netronome.com/product/

nfp-6xxx/.

[97] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrish-
nan, V. Subramanya, and A. Vahdat. PortLand: A scalable fault-tolerant layer 2 data
center network fabric. In 2009 ACM SIGCOMM Conference on Data Communication,
SIGCOMM, 2009.

[98] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI, 2013.

[99] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out NUMA. In
19th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2014.

[100] OpenIB.org. rsocket protocol and design guide. https://github.com/linux-
rdma/rdma-core/blob/master/librdmacm/docs/rsocket.

[101] PCI-SIG. Atomic operations. https://www.pcisig.com/specifications/

pciexpress/specifications/ECN_Atomic_Ops_080417.pdf, Jan. 2008.
PCI-SIG Engineering Change Notice.

[102] PCI-SIG. TLP processing hints. https://www.pcisig.com/specifications/
pciexpress/specifications/ECN_TPH_11Sept08.pdf, Sept. 2008. PCI-SIG
Engineering Change Notice.

https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/
https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/docs/rsocket
https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/docs/rsocket
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_TPH_11Sept08.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_TPH_11Sept08.pdf

BIBLIOGRAPHY 163

[103] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving network con-
nection locality on multicore systems. In 7th ACM European Conference on Computer
Systems, EuroSys, 2012.

[104] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. Anderson, and
T. Roscoe. Arrakis: The operating system is the control plane. ACM Transactions on
Computer Systems, 33(4):11:1–11:30, Nov. 2015.

[105] J. Postel. User datagram protocol, Aug. 1980. RFC 768.

[106] J. Postel. Transmission control protocol, Sept. 1981. RFC 793.

[107] I. Pratt and K. Fraser. Arsenic: A user-accessible Gigabit Ethernet interface. In 20th
IEEE International Conference on Computer Communications, INFOCOM, 2001.

[108] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale dat-
acenter services. In 41st Annual International Symposium on Computer Architecture,
ISCA, 2014.

[109] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat.
SENIC: Scalable NIC for end-host rate limiting. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI, 2014.

[110] K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion notifi-
cation (ECN) to IP, Sept. 2001. RFC 3168.

[111] RDMA Consortium. Architectural specifications for RDMA over TCP/IP. http:
//www.rdmaconsortium.org/.

[112] Redis Authors. Redis. http://redis.io/.

[113] R. Reed. Scaling to millions of simultaneous connections. http://www.erlang-
factory.com/upload/presentations/558/efsf2012-whatsapp-

scaling.pdf, Mar. 2012.

http://www.rdmaconsortium.org/
http://www.rdmaconsortium.org/
http://redis.io/
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf

BIBLIOGRAPHY 164

[114] L. Rizzo. netmap: A novel framework for fast packet I/O. In 2012 USENIX Annual
Technical Conference, ATC, 2012.

[115] M. Roesch. Snort - lightweight intrusion detection for networks. In 13th USENIX
Conference on System Administration, LISA, 1999.

[116] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1):26–52, Feb.
1992.

[117] M. Rotaru. Scaling to 12 million concurrent connections: How MigratoryData
did it. https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-

million-concurrent-connections-how-migratorydata-did-it/, Oct.
2013.

[118] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP congestion control
with a misbehaving receiver. SIGCOMM Computer Communication Review, 29(5):71–
78, Oct. 1999.

[119] H. Shah, F.Marti, W. Noureddine, A. Eiriksson, and R. Sharp. Remote direct mem-
ory access (RDMA) protocol extensions, June 2014. RFC 7306.

[120] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang. FPMR: MapReduce frame-
work on FPGA. In 18th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA, 2010.

[121] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson, and S. Peter.
Evaluating the power of flexible packet processing for network resource allocation.
In 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI,
2017.

[122] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,
G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter Rising: A decade of Clos
topologies and centralized control in Google’s datacenter network. In 2015 ACM
SIGCOMM Conference on Data Communication, SIGCOMM, 2015.

https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/
https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/

BIBLIOGRAPHY 165

[123] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet transactions: High-level pro-
gramming for line-rate switches. In 2016 ACM SIGCOMM Conference on Data Com-
munication, SIGCOMM, 2016.

[124] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable packet
scheduling at line rate. In 2016 ACM SIGCOMM Conference on Data Communication,
SIGCOMM, 2016.

[125] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language
services implementation. http://thrift.apache.org/static/files/

thrift-20070401.pdf, Apr. 2007.

[126] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling with exception-
less system calls. In 9th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI, 2010.

[127] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery
algorithms, Jan. 1997. RFC 2001.

[128] W. Sun and R. Ricci. Fast and flexible: Parallel packet processing with GPUs and
Click. In 9th ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems, ANCS, 2013.

[129] The IEEE and The Open Group. aio.h - asynchronous input and output. http://
pubs.opengroup.org/onlinepubs/9699919799/basedefs/aio.h.html.

[130] The Linux Foundation. toe. https://wiki.linuxfoundation.org/

networking/toe.

[131] The UCSB iCTF. The 2010 iCTF data. https://ictf.cs.ucsb.edu/archive/
2010/dumps/.

[132] Top500 Supercomputer Sites. List statistics. https://www.top500.org/

statistics/list/.

http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/aio.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/aio.h.html
https://wiki.linuxfoundation.org/networking/toe
https://wiki.linuxfoundation.org/networking/toe
https://ictf.cs.ucsb.edu/archive/2010/dumps/
https://ictf.cs.ucsb.edu/archive/2010/dumps/
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/

BIBLIOGRAPHY 166

[133] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. Storm@Twitter. In
2014 ACM SIGMOD International Conference on Management of Data, SIGMOD, 2014.

[134] Twitter, Inc. Finagle: A protocol-agnostic RPC system. https://blog.twitter.
com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-

rpc-system.html.

[135] A. Vandecappelle. Linux kernel networking control flow. https://wiki.

linuxfoundation.org/networking/kernel_flow.

[136] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis. GASPP: A gpu-
accelerated stateful packet processing framework. In 2014 USENIX Annual Technical
Conference, ATC, 2014.

[137] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a user-level network inter-
face for parallel and distributed computing. In 15th ACM Symposium on Operating
Systems Principles, SOSP, 1995.

[138] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. Jitk: A trustworthy in-
kernel interpreter infrastructure. In 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2014.

[139] K. Winstein and H. Balakrishnan. TCP ex machina: Computer-generated congestion
control. In 2013 ACM SIGCOMM Conference on Data Communication, SIGCOMM,
2013.

[140] J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu. Exploiting graphics processors for
high-performance IP lookup in software routers. In 30th IEEE International Confer-
ence on Computer Communications, INFOCOM, 2011.

[141] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,
M. H. Yahia, and M. Zhang. Congestion control for large-scale RDMA deployments.
In 2015 ACM SIGCOMM Conference on Data Communication, SIGCOMM, 2015.

[142] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy, and T. Ander-
son. Understanding and mitigating packet corruption in data center networks. In
2017 ACM SIGCOMM Conference on Data Communication, SIGCOMM, 2017.

https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system.html
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system.html
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system.html
https://wiki.linuxfoundation.org/networking/kernel_flow
https://wiki.linuxfoundation.org/networking/kernel_flow

BIBLIOGRAPHY 167

[143] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore. NetFPGA SUME: To-
ward 100 Gbps as research commodity. IEEE Micro, 34(5):32–41, Sept. 2014.

Appendix A

FlexTCP Pseudocode

A.1 NIC Pseudocode

Here we provide commented pseudocode for the FlexNIC-based implementation of Flex-

TCP. The NIC implementation is subdivided into common-case packet IO and handling

of QM events.

A.1.1 Packet Reception

This code handles packet reception. This involves flow identification, receive payload

buffer management, acknowledgement processing and generation, filtering of exception

packets to the kernel, buffering of up to one out-of-order segment, flow control, and com-

putation of RTT estimates for congestion control that are later relayed to the kernel.

Packet_received(packet):

If !lookup_flow(packet.5_tuple, flow):

To_kernel(packet)

Else:

Fast_path(packet, flow)

168

APPENDIX A. FLEXTCP PSEUDOCODE 169

To_kernel(packet):

event = {Type: Packet, Len: packet.len}

event_len = packet.len + sizeof(event)

If buffer_available(k_ctx.rx) < event_len:

/* drop packet */

return

/* write event to kernel rx queue */

addr = k_ctx.rx.base + k_ctx.rx.head

Dma_write(addr + sizeof(event), packet)

Dma_write(addr, krx_event)

k_ctx.rx_head += event_len

Fast_path(packet, flow):

If packet.tcp.flags & (SYN | RST):

return To_kernel(packet)

If packet.tcp.payload > 0:

trigger_ack = 1

old_tx = tx_available(flow)

/* Process a valid ack */

If packet.tcp.flags & ACK and

ack_valid(flow, packet.tcp.ackno, &tx_bump):

APPENDIX A. FLEXTCP PSEUDOCODE 170

/* free space in tx buffer */

If tx_bump <= flow.tx.in_flight:

flow.tx.in_flight -= tx_bump

Else:

/* this happens if we’re in a retransmission

* and the receiver filled in a gap */

flow.tx.seq += tx_bump - flow.tx.in_flight

flow.tx.head += tx_bump - flow.tx.in_flight

flow.tx.in_flight = 0

/* count dup-acks */

If tx_bump != 0:

flow.dupack_cnt = 0

Else If ++flow.dupack_cnt >= 3:

/* fast retransmit */

Flow_retransmit(flow)

flow.stats.fast_rexmit++

/* update congestion control stats */

flow.stats.ack_bytes += tx_bump

If packet.tcp.flags & ECE:

flow.stats.ecn_bytes += tx_bump

/* Handle out of order packets */

packet_trim(packet)

If !seq_valid(flow, packet, &in_buffer):

/* if the packet is out of order and fits in buffer,

* see if we can add it to the out of order interval */

If in_buffer:

APPENDIX A. FLEXTCP PSEUDOCODE 171

If flow.rx.ooo_len == 0:

flow.rx.ooo_start = packet.tcp.seqno

flow.rx.ooo_len = packet.tcp.payload

write_payload = 1

Else If packet.tcp.seqno = flow.rx.(ooo_start + ooo_len):

flow.rx.ooo_len += packet.tcp.payload

write_payload = 1

goto Exit;

/* Update RTT estimate (EWMA) */

If packet.tcp.flags & ACK and

packet.tcp.tsopt_ecr != 0:

rtt = current_time - packet.tcp.tsopt_ecr

flow.rtt_est = ((flow.rtt_est << 8 - flow.rtt_est) +

rtt) >> 8

/* update flow control window if it changed */

flow_control_update(flow, packet.tcp.win)

/* If we have payload, update state */

rx_bump = packet.tcp.payload

If rx_bump > 0:

fs.rx.head += rx_bump

fs.rx.seqno += rx_bump

write_payload = 1

/* trim ooo interval if necessary, and see if we

* caught up */

trim_ooo(flow)

APPENDIX A. FLEXTCP PSEUDOCODE 172

If flow.rx.ooo_len > 0 and

flow.rx.ooo_start == fs.rx.seqno:

rx_bump += flow.rx.ooo_len

fs.rx.head += flow.rx.ooo_len

fs.rx.seqno += flow.rx.ooo_len

flow.rx.ooo_len = 0

Exit:

/* Write payload to position in buffer based on seq */

If write_payload:

pos = rx_position(flow, packet.tcp.seqno)

Dma_write(flow.rx.base + pos, packet.payload)

/* If we received data or freed transmit buffer, notify

* application */

If rx_bump or tx_bump:

ctx = flow.ctx

event = {Type: Update, Flow: flow.opaque, Tx: flow.tx.head,

Rx: flow.rx.head}

Dma_write(ctx.rx.base + ctx.rx.head, event)

ctx.rx.head++

/* Update queue manager if data available for TX changes */

Queue_manager_set_rate(flow.id, flow.tx.rate)

If tx_available(flow) != old_tx:

Queue_manager_add(flow.id, tx_available(flow) - old_tx)

/* Send ack if necessary */

If trigger_ack:

APPENDIX A. FLEXTCP PSEUDOCODE 173

Flow_tx_ACK(flow, packet.ip.flags & ECN)

Flow_retransmit(flow):

flow.tx.seq -= flow.tx.in_flight

flow.tx.head -= flow.tx.in_flight

flow.tx.in_flight = 0

flow.dupack_cnt = 0

A.1.2 Transmission

This code simply reacts to PCIe doorbells initiated by the user-level TCP stack and, if

valid, notifies the queue manager of new data available to send.

Doorbell_received(id, data):

ctx = contexts[id]

ctx.rx.tail = data.rx_tail

/* If new entries in Tx queue: notify queue manager */

If data.tx_tail > ctx.tx.tail:

Queue_manager_add(id, ctx.tx.tail - data.tx_tail)

ctx.tx.tail = data.tx_tail

A.1.3 Queue manager events

This code handles injected queue manager token packets. This involves identifying the

corresponding kernel or user-level context, sending packets from a kernel or user-level

transmit payload buffer under rate limit, triggering retransmission initiated by the kernel,

and transmit payload buffer management.

Queue_manager_event(id):

APPENDIX A. FLEXTCP PSEUDOCODE 174

If id < max_contexts:

If id == 0:

Kernel_tx()

Else:

App_tx(contexts[id])

Else:

Flow_tx(flows[id - max_contexts])

Kernel_tx():

/* read tx queue entry */

addr = k_ctx.tx.base + k_ctx.tx.head

k_cmd = Dma_read(addr, sizeof(k_cmd))

k_ctx.tx.head++

If k_cmd.type == tx_packet:

/* send a packet */

If is_tcp(k_cmd.packet):

add_timestamp(k_cmd.packet)

Net_tx(k_cmd.packet)

Else If k_cmd.type == retransmit:

/* trigger re-transmits on a flow */

flow = flows[k_cmd.flow_id]

old_tx = tx_available(flow)

Flow_retransmit(flow)

Queue_manager_add(flow.id, tx_available(flow) - old_tx)

Queue_manager_set_rate(flow.id, flow.tx.rate)

App_tx(ctx):

APPENDIX A. FLEXTCP PSEUDOCODE 175

/* read tx queue entry */

addr = ctx.tx.base + ctx.tx.head

cmd = Dma_read(addr, sizeof(cmd))

ctx.tx.head++

flow = flows[cmd.flow_id]

/* calculate available data to be sent capped

* by flow control window, and free rx buffer */

old_tx = tx_available(flow)

old_rx = rx_space(flow)

flow.tx.tail = cmd.tx_tail

flow.rx.tail = cmd.rx_tail

/* Update queue manager if we added data to be sent */

If tx_available(flow) - old_tx > 0:

Queue_manager_add(flow.id, tx_available(flow) - old_tx)

Queue_manager_set_rate(flow.id, flow.tx.rate)

/* If rx buffer was completely full before, send out

* flow control window update */

If old_rx == 0 && rx_space(flow) > 0:

Flow_tx_ACK(flow, 0)

Flow_tx(flow):

/* fetch payload */

seg_len = min(tx_available(flow), MSS)

packet = Dma_read(flow.tx.base + flow.tx.head, seg_len)

APPENDIX A. FLEXTCP PSEUDOCODE 176

TCP_header_prepare(packet, flow)

flow.tx.seq += seg_len

flow.tx.head += seg_len

flow.tx.in_flight += seg_len

Net_tx(packet)

Flow_tx_ACK(flow, ecn):

TCP_header_prepare(packet, flow)

If ecn:

packet.tcp.flags |= ECE

Net_tx(packet)

APPENDIX A. FLEXTCP PSEUDOCODE 177

A.2 Rate-based DCTCP control loop

This kernel code implements the DCTCP control loop using rate limits and flow infor-

mation ralyed by the NIC. This consists of computing additive-increase, multiplicative-

decrease congestion avoidance and TCP slow-start.

/* Configuration options defaults:

* dctcp_init_rate = 10Mbps

* dctcp_additive_increase = 10Mbps

* config.dctcp_min_rate = 10Mbps

* dctcp_ecn_weight = 1/16 */

/* Set up state and initialize state */

DCTCP_init(k_flow):

k_flow.rate = config.dctcp_init_rate

k_flow.ecn_frac = k_flow.act_rate = 0

k_flow.slow_start = 1

/* Periodic rate update */

DCTCP_update(k_flow, stats):

/* calculate actually used rate */

act_rate = stats.ack_bytes / (time - k_flow.last_time)

k_flow.act_rate = (7 * k_flow.act_rate + act_rate) / 8

act_rate = max(k_flow.act_rate, act_rate)

/* clamp rate to no more than 1.2 times the actual rate */

k_flow.rate = min(k_flow.rate, 1.2 * act_rate)

/* slow start */

APPENDIX A. FLEXTCP PSEUDOCODE 178

If k_flow.slow_start:

If stats.fast_rexmit == 0 and

stats.ecn_bytes == 0 and

stats.timeouts == 0:

k_flow.rate *= 2

else:

k_flow.slow_start = 1

/* congestion avoidance */

If !k_flow.slow_start:

If stats.fast_rexmit != 0 or

stats.timeouts != 0:

/* if there are drops, cut rate by half */

k_flow.rate /= 2

Else:

/* update ECN fraction */

ecn_frac = stats.ecn_bytes / stats.ack_bytes

k_flow.ecn_frac = ecn_frac * k_flow.ecn_frac +

config.dctcp_ecn_weight * (1 - k_flow.ecn_frac)

If stats.ecn_bytes > 0:

/* reduction according to ecn fraction */

k_flow.rate *= 1 - k_flow.ecn_frac / 2

Else:

/* additive increase */

k_flow.rate += config.dctcp_additive_increase

k_flow.rate = min(k_flow.rate, config.dctcp_min_rate)

APPENDIX A. FLEXTCP PSEUDOCODE 179

A.3 FlexTCP Queue APIs between Components

These are the queue APIs for the queues between all components in our design (NIC,

kernel, application) as shown in Figure 4.1. 4-tuples contain source and destination port

numbers and IP addresses. 2-tuples contain destination IP and port number.

Kernel Context Queue (Application to Kernel)

id, rx/tx_buf = new_flow(2-tuple, opaque): Open new flow to 2-tuple iden-

tified by opaque. Returns internal identifier id, the receive and transmit buffers rx/tx_buf.

listen(port, opaque): Listen on port, associate opaque.

accept(port, opaque): Accept connection on port and associate opaque.

close(id): Close connection identified by id.

Kernel TX Queue

retransmit(id): Start re-transmitting un-acknowledged data for flow id.

transmit_eth(len, data...): Transmit raw Ethernet packet data of len.

Kernel RX Queue

receive_eth(len, data...): Receive raw Ethernet packet data of len.

Kernel Context Queue (Kernel to Application)

new_flow(id, rx/tx_buf, opaque_listen, opaque_accept):

New connection identified by id and opaque_accept, with receive and transmit buffers

rx/tx_buf, accepted on listener identified by opaque_listen.

data(opaque, n): Same as RX queue, without ntx.

APPENDIX A. FLEXTCP PSEUDOCODE 180

Per-Context RX/TX queue

TX: send(id, n, nrx): Send n bytes on connection identified by id. nrx bytes have

been processed.

RX: data(opaque, n, ntx): n bytes arrived on the connection identified by opaque.

ntx bytes have been transmitted.

APPENDIX A. FLEXTCP PSEUDOCODE 181

A.4 FlexTCP Low-level Application Interface

This is the low-level FlexTCP interface presented to user-level TCP stacks by the NIC and

the kernel.

Context Operations:

/* Create new context */

create(context *ctx)

/* Poll for events on context (see events below) */

poll(context *ctx, int num, event *events)

Listener Operations:

/* Open listener on specified port */

open(context *ctx, listener *l, uint port, uint backlog)

/* Accept connection on listener */

accept(context *ctx, listener *l, connection *c)

Listener Events:

/* Listener open done, status indicates success */

open_done(listener *l, int status)

/* New connection arrived on listener (not accepted yet) */

new_conn(listener *l, uint remote_port, ip_t remote_ip)

/* Connection accepted, status indicates success */

accept_done(listener *l, connection *c, int status)

Connection Operations:

/* Open connection to specified destination */

open(context *ctx, connection *c, ip_t ip, uint port)

/* Mark oldest available ‘bytes‘ of receive buffer as processed */

rx_free(context *ctx, connection *c, uint bytes)

APPENDIX A. FLEXTCP PSEUDOCODE 182

/* Allocate ‘bytes‘ of send buffer.

* Because of circular nature of buffer the allocation can be split */

tx_alloc(context *ctx, connection *c, uint bytes,

void **buf_1, uint *len_1, void **buf_2)

/* Mark ‘bytes‘ in send buffer as ready to be sent */

tx_send(context *ctx, connection *c, uint bytes)

/* Move connection to new context */

move(context *ctx, connection *c, context *new_context)

Connection Events:

/* Connection open done, status indicates success */

open_done(connection *c, int status)

/* Received bytes at specified location in receive buffer */

received(connection *c, void *buf, uint len)

/* Space freed up in formerly full send buffer */

sendbuf_avail(connection *c)

/* Connection successfully moved to new context */

move_done(connection *c, int status

	List of Figures
	List of Tables
	Introduction
	Reducing Packet Processing Overhead
	Flexible Hardware Packet Processing
	Goals
	Thesis: A Novel Architecture for Packet Processing
	Outline

	Background
	Data Center Networks
	Applications
	Programming Interface
	Protocols
	Network Interface Cards
	Networks

	Commodity OS Network Stack
	Network Stack Architecture
	TCP Overheads
	Discussion

	Proposal: Kernel Bypass
	Safe User-Level Access to Network Interface Cards
	Discussion

	Proposal: Protocol Offload
	TCP Offload Engines
	Discussion

	Proposal: Programmable NICs
	Network Processor NICs
	FPGA-based NICs
	Discussion

	Proposal: Remote Direct Memory Access
	Programming Model
	Protocols
	Implementations
	Comparison to TCP/IP
	Discussion

	Conclusion

	FlexNIC Hardware Model
	Design Goals
	Reconfigurable Match Tables in Switches
	Applying Reconfigurable Match Tables to NICs
	Constraints

	Building Blocks
	Discussion

	TCP Processing
	Goals
	Challenges
	FlexTCP Network Stack Design
	FlexNIC Functionality
	Kernel
	User-space TCP Stack

	Flexible FlexTCP Extension
	Implementation
	Limitations
	Discussion

	Application Integration
	Key-Value Store
	Motivation
	Design Goals
	FlexKVS Components
	FlexNIC Implementation

	Real-time Analytics
	FlexNIC Implementation

	Intrusion Detection
	FlexNIC Implementation

	Discussion

	Evaluation
	FlexTCP
	Remote Procedure Call (RPC)
	Packet Loss
	Key-Value Store
	Real-time Analytics
	PCIe NIC Performance
	Congestion Control

	Application Co-Design
	Methodology
	Key-Value Store
	Storm
	Snort

	Discussion

	Related Work
	Software Packet Processing
	Kernel Stack Improvements
	Kernel Bypass

	Hardware Packet Processing
	NIC Improvements
	Programmable Network Hardware
	Cluster Message Passing
	GPU Packet Processing

	Application Layer Protocols
	High-performance Applications
	NIC-Application Co-design

	Conclusion
	Future Work
	Addressing Limitations
	Opportunities with FlexNIC
	Thoughts for the Future

	Bibliography
	FlexTCP Pseudocode
	NIC Pseudocode
	Packet Reception
	Transmission
	Queue manager events

	Rate-based DCTCP control loop
	FlexTCP Queue APIs between Components
	FlexTCP Low-level Application Interface

