
Master’s Thesis Nr. 125

Systems Group, Department of Computer Science, ETH Zurich

Efficiently executing the Dragonet network stack

by

Antoine Kaufmann

Supervised by

Prof. Timothy Roscoe
Dr. Kornilios Kourtis

March 2014 – September 2014

1

Abstract

Today’s network cards are getting more and more complex. One reason for
this is that networks are still getting faster, while cores are not. Two common
approaches for allowing network stacks to keep up, are distributing packets to
multiple cores directly in the network card, and moving protocol processing
fully or partially to the network card. However current network stacks were
not designed to accommodate the varied sets of hardware features supported by
different network cards, resulting in sub-optimal performance.

This thesis discusses our approach of building a network stack based on
modeling both the required network processing and the network card as dataflow
graphs and then combining these graphs to arrive at a configuration for the
network card and a description of what processing needs to be implemented in
software. It extends on our earlier publications introducing the modelling based
network stack approach, and discusses Dragonet, our implementation of a full
network stack and its performance characteristics. Performance of the resulting
implementation is evaluated and compared to Linux using multiple throughput
and latency benchmarks.

Our results showed that Dragonet is capable of providing applications with
competitive and often superior throughput and latency, compared to the widely
used Linux network stack.

Acknowledgements

I would like to thank Prof. Timothy Roscoe for his support, advice, and for
getting me started working on research. This thesis would also not have been
possible without the mentoring and collaboration of Dr. Kornilios Kourtis and
Pravin Shinde, and I would like to thank both of them for our many interesting
discussions.

Both Kornilios and Pravin were closely involved in developing Dragonet. In
particular Kornilios developed the LLVM-based execution engine for protocol
graphs discussed below. Pravin ported memcached to Dragonet, ran the through-
put benchmarks, and worked on the implementation of various other parts of
Dragonet.

Next I would like to thank Dr. Adrian Schüpbach, who advised me during
my bachelor thesis, and helped getting me interested in research. I am also
grateful to the Barrelfish team and the Systems Group at ETH in general for
providing an interesting environment to work in.

My special thanks go to my family for supporting me, and also for providing
welcome distractions when needed, making even the most stressful times bearable.
In addition I would also like to thank my roommates and friends Reto Wyss
and Dominic Schweizer for putting up with me even when I was consumed by
work. Finally I would also like to thank my friend Tobias Feller for our many
interesting discussions, and for always being up for a chat.

Contents

1 Introduction 3
1.1 Dragonet – The Vision . 3
1.2 Project Context . 4

1.2.1 Related Publications . 4
1.3 Related Work . 4

1.3.1 Graph-based Processing 5
1.3.2 Network Stack Specialization 5

1.4 Outline . 6

2 Dragonet 7
2.1 Architecture . 8
2.2 The Model . 8

2.2.1 Pure Dataflow . 8
2.2.2 Issues with Pure Dataflow Model 10
2.2.3 Task-Based . 12
2.2.4 Future Extensions . 13
2.2.5 Unicorn . 14

2.3 Instantiating a Configuration . 17
2.3.1 Embedding . 17
2.3.2 Simplification . 18

2.4 Optimization . 20
2.4.1 Cost Function . 20
2.4.2 Oracle . 21

3 Data Plane 22
3.1 Haskell Prototype . 22
3.2 Execution Engine . 22

3.2.1 C-Implementation of Nodes 23
3.2.2 Dynamic . 25
3.2.3 LLVM-based . 29

3.3 Multiple Cores . 30
3.3.1 Naive Approach . 30
3.3.2 Partitioning . 31
3.3.3 Communication . 33

1

3.4 Buffer Management . 34
3.4.1 Requirements . 35
3.4.2 Implementation . 35
3.4.3 Limitations . 35

3.5 Incremental Changes . 36
3.5.1 Implementation . 36
3.5.2 Limitations . 37

3.6 Application Interface . 38
3.6.1 Interface . 38
3.6.2 Implementation . 40

4 Evaluation 42
4.1 Setup . 42

4.1.1 Hardware . 42
4.1.2 Dragonet Configuration 43

4.2 Latency Micro Benchmark . 43
4.2.1 Results . 44
4.2.2 Improving Latency . 46

4.3 Throughput . 46
4.3.1 Micro Benchmark . 47
4.3.2 memcached Benchmark 49
4.3.3 Improving Throughput . 50

4.4 Graph Modification Performance 51
4.4.1 Results . 51
4.4.2 Improving . 51

5 Conclusion 53
5.1 Future Work . 54

5.1.1 Extending the Control Plane 54
5.1.2 Modelling Additional Protocols and NICs 54
5.1.3 Instrumentation of Execution Engine 54
5.1.4 Application Interface Changes 55
5.1.5 DSL for Node Implementations 56
5.1.6 Extending to more Complex Systems 56

A Application Interface 62

2

Chapter 1

Introduction

Given the still ongoing trend towards increasingly distributed applications,
network stack performance is an important factor influencing overall application
performance. The fact that NICs are still getting faster while CPU cores are not
also implies that the time spent in the software part of the network stack will be
more significant relative to the overall time spent on the network. One response
to this has been the development of various offload features, that allow part of
the network processing to be moved directly to the NIC, freeing up CPU cycles
and possibly allowing for faster implementations in hardware. Examples of this
are checksumming offloads at various layers and TCP protocol offloads[7].

In practice there are however some limitations, some inherent to the offload
feature and others specific to particular implementations [29]. The wide range
of different offload features and small differences between implementations of
specific features also make implementation in a network stack harder. This has
lead to limited support for these features in network stacks such as in Linux [38].

Where such features are supported, they are often implemented in an ad-
hoc manner inside a NIC driver. One problem with this approach is that the
missing integration with the rest of the network stack often means that not
enough information will be available to allow an efficient implementation [30]. In
addition these ad-hoc solutions also make configuration more complicated since
there is no central instance governing the policy of when to use what features,
meaning that some options need to be configured when loading the drivers,
others are run-time configuration parameters for the network stack, and others
still can be configured on a per-socket basis using ioctl().

1.1 Dragonet – The Vision
For our Dragonet project we argue that the fact that a specific offload feature
might not be appropriate for all scenarios, does not imply that the feature should
simply be discarded, but the network stack should be able to use it in cases
where the limitations are not an issue [34]. One of the main goals is to provide a

3

network stack that makes it easy to fully integrate a wide variety of hardware
offloads, while making related policy decisions, such as when to use a particular
offload, in a centralized manner.

To this end, our approach is based on structuring the whole network stack
as a dataflow graph. The concrete graph used for a particular instance of the
stack is derived by combining a graph-based description of the NIC, known
as the physical resource graph or PRG, with a graph-based description of the
network state and protocol processing that needs to be performed, called the
logical protocol graph or LPG. Both of these graphs are expressed using the same
semantics and will be combined to arrive at a graph describing what protocol
processing will be implemented in hardware and what has to be done in software
[33].

1.2 Project Context
This master thesis was realized as part of the Dragonet project in close col-
laboration with Pravin Shinde, Kornilios Kourtis, and Timothy Roscoe. The
main goal for the implementation part has been to show that an implementation
of a network stack based on our graph model can provide performance that is
comparable to or better than the performance delivered by existing network
stacks. This involved tasks such as porting/implementing drivers, implementing
high-level reasoning parts in Haskell, as well as developing and benchmarking
an efficient implementation for the data path in Dragonet. While I was involved
in most of these tasks, because of time constraints this thesis focusses on the
design and implementation of the data path, i.e. the question of how to execute
a given protocol graph efficiently.

1.2.1 Related Publications
The following two papers about the Dragonet project have been published at
the time of writing, and form the foundation for this master thesis:

• Pravin Shinde, Antoine Kaufmann, Kornilios Kourtis, and Timothy Roscoe.
Modeling NICs with Unicorn. In 7th Workshop on Programming Languages
and Operating Systems, 2013.

• Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle. We
need to talk about NICs. In 14th Workshop on Hot Topics in Operating
Systems, 2013.

1.3 Related Work
This section will discuss related work on graph-based network processing and
network stack specialization. Other related work will be referenced throughout
the thesis.

4

1.3.1 Graph-based Processing
x-Kernel [24] is based on the idea of using a more structured approach for
implementing a network stack and generally providing a framework for proto-
col implementation. They also show that their structured approach provides
performance comparable to contemporary less structured network stacks. An
x-Kernel configuration is described as a graph of protocols where edges denote
dependencies, and protocol processing is implemented as messages being pro-
cessed by a series of protocols. Note that the configuration is fixed at compile
time, which is one of the main differences to Dragonet. In addition, x-Kernel
uses much more coarse grained nodes, i.e. protocols, while nodes in Dragonet
are usually fine grained operations such as calculating a checksum or checking a
protocol field for a specific value. The graph in x-Kernel is also used only for
initialization purposes, in contrast to Dragonet where the graphs are used as a
basis for reasoning at runtime and for guiding execution.

Click [26] applies the idea of using a graph to do processing on network
packets to implement routers and other packet processing applications such as
firewalls. A graph in Click is composed of elements that communicate with other
elements by receiving packets on their input ports, and send packets to other
nodes on their output ports. This graph will be instantiated at runtime as a data
structure of element objects, which is used for execution. Hot swapping even
allows Click configurations to be replaced online without losing state, but not
fast enough to allow changes for appearing and disappearing flows. The main
difference to Dragonet is that Click is used for packet processing engines, and
not intended as a network stack interfacing with applications. In addition the
graphs are not used for reasoning but for execution, and the graphs in Click are
developed with execution in mind, while Dragonet graphs are designed to allow
a wide range of offload features to be exploited. There are also some differences
in the execution model, e.g. Dragonet nodes do not have input ports, and all
output ports are push ports, and in general Dragonet semantics are more limited
by design, to allow for easier reasoning.

1.3.2 Network Stack Specialization
Marinos, Watson, and Handley [27] recently explored the idea of using special-
ized network stacks in a server setting with the goal of improving networking
performance. Their approach is based on using a user space network stack which
is implemented as a set of libraries, and communicates with the network using
the netmap[32]. In addition to moving they implement a number of other opti-
mizations such as zero copy I/O, avoiding the POSIX API, batching of packets
when sending to amortize overhead, and the use of a synchronous interface to
the stack driven by received packets. In the two applications developed to inter-
face with the specialized network stack, a web and a DNS server, performance
improvements of 2-10x were shown, when compared to running corresponding
servers on Linux and FreeBSD.

In the context of embedded systems, and especially wireless networking

5

devices, work is being done towards specializing network stacks to particular
applications or even specific conditions at runtime [12, 21]. For embedded systems
performance is often secondary to other metrics such as memory footprint or
power consumption, thus leading to different optimization goals and motivations
than for conventional network stacks. In the context of wireless networking
devices such as cellphones, there is often a large number of different protocols
being used over time during runtime. Running unneeded protocols leads to
wasted resources, which motivates the desire for network stacks that can be
specialized at runtime.

1.4 Outline
Chapter 2 will start off with a description of the model used, the processes
involved in getting to a graph to be executed, and the control plane in general.
After that, chapter 3 will discuss the main focus of this thesis: the data plane.
The performance of the resulting implementation is discussed in chapter 4, which
is followed by the conclusion and some suggestions for future work in chapter 5.

6

Chapter 2

Dragonet

As discussed in the introduction, the main idea behind Dragonet is to represent
the required packet processing, including network stack state, as well as the
capabilities of the NIC as a dataflow graph, termed the logical protocol graph or
LPG for the former and physical resource graph or PRG for the latter, both using
the same graph semantics (see 2.2). Both of these graphs are then combined
(see 2.3) to decide what parts of packet processing can be done in hardware,
and what parts need to be done in software. Note that most hardware features
provided by NICs, such as checksumming or demultiplexing, can be configured to
be enabled or disabled, which means that there will generally be more than one
way to combine the graphs. Depending on the policy goals to be implemented,
some combined graphs will be more desirable than others, which we decide based
on a cost function (see 2.4.1) that is provided as an input and will assign a cost
to the resulting combined graph. Now we are basically left with an optimization
problem (see 2.4) of finding the graph that results in the minimal cost, which we
implement based on a hardware specific oracle (see 2.4.2), that provides a subset
of hardware configurations to evaluate. This optimization process will result in
the optimal (or close) combined graph and the hardware configuration it is based
on. As a next step, this graph will be used to instantiate the software processing
part of the network stack, that we termed the data plane (see 3). Dragonet also
has an application interface, that is both, a part of the data plane for sending
and receiving packets, but also part of the control plane for control operations
such as opening and closing sockets. Control operations from the application
(see 3.6), such as opening a new listening socket, will result in changes to the
network stack state, and thereby the LPG, which in turn implies changes in the
resulting graph when going through the optimization process, thus requiring the
optimization process to be applied to the new graphs.

Figure 2.1 shows an overview of this whole process.

7

Figure 2.1: Dragonet: A conceptual overview

2.1 Architecture
Architecturally Dragonet can be split up into two parts: The control plane
decides how the network stack should be instantiated by choosing a graph to be
implemented, and modifies it in reaction to external events. Packet processing,
i.e. the critical path for sending and receiving data at runtime, is implemented
in the data plane. The control plane is described in the following sections, while
more details about the data plane are provided in chapter 3.

2.2 The Model
At the center of Dragonet there is our dataflow graph based model for describing
protocol processing and hardware capabilities alike as so-called protocol graphs.
The current model is an extension of our initial model presented in our PLOS’2013
paper by extending it with a task-based execution model, where the original
model was purely dataflow-based. Both, the original model and our extensions
for the current version will be described below, along with the rationale for the
extensions. There is also a description of our domain specific language Unicorn
used for writing protocol graphs.

2.2.1 Pure Dataflow
In our original model a protocol graph consists of nodes that are connected by
directed dataflow edges, as shown in figure 2.2. No cycles are allowed in protocol
graphs, which significantly simplifies reasoning. A node has a single input port
and can have multiple output ports, of which at most one will be enabled during
execution. An arbitrary number of edges can originate at an output port and
thereby connect to an arbitrary number of successor nodes.

In the forward direction edges specify the order used during execution, where
they can be enabled for a particular packet when the source node is done

8

L4Proto

udp

tcp

drop

UDPXsum
true

false

UDPValidLength
true

false

AND:UDPValid
true

false

Figure 2.2: Simplified example of a protocol graph

FNode

a

b

c

OR:ONode
true

false
CNode

Q1

Q2

Q3

Figure 2.3: The graphical representation of the three different node types

executing and enables the corresponding output port, thereby enabling the
destination node of the edge. But edges can also be interpreted backwards, in
which case they can be thought of as dependencies, i.e. if node A should be
executed some/all of these nodes need to have been executed.

Node Types

There are three different types of nodes as shown in figure 2.3:

• F-Nodes: Implement basic protocol processing operations, such as calculat-
ing a checksum, or writing a header field. Can have at most one incoming
edge. The actual functionality of the node is implemented separately in an
implementation function (see 3.2.1). An F-node will enable exactly one
output port if it is enabled.

• O-Nodes: Are logical operators used to implement control flow. Basic
n-ary logical operators: AND, OR, NAND, and NOR. Note that NOT is missing
on purpose, since it can be implemented using a NAND node, and because
it cannot be generalized to multiple incoming edges and would therefore
introduce an unnecessary special case. O-nodes have exactly the two
output ports false and true. All edges ending at O-nodes must originate
from a port labeled true or false, which will be used as the operand for
implementing the logical operation. During execution short-circuiting can
occur, e.g. once an OR node is enabled through a port labeled true for the
first time, its true port will be enabled, regardless of whether all predecessor
nodes have been enabled. Regardless of whether short-circuiting occurs
the successor nodes will only be enabled once.

• C-Nodes: These nodes are not involved in execution, but represent con-
figuration parameters. They can have an arbitrary number of incoming
edges and output ports.
When applying a configuration for a C-node it will be replaced by a
subgraph without C-nodes. The subgraph used to replace a C-node can only

9

be connected to the rest of the graph through the incoming and outgoing
edges of the original C-node. Meaning that for each edge connecting the
subgraph to the rest of the graph, there has to be an edge between the
C-node and the respective source or destination node of the original graph.
This limitation is intended to keep changes by the C-node local to the node,
and makes it possible to get at least a conservative estimate of how the
configuration will modify the graph without knowing how the C-node is
implemented. The function implementing a C-node, i.e. mapping a specific
configuration value to the respective subgraph, is currently implemented
separately in Haskell.
A protocol graph containing C-nodes is called not fully configured and
cannot be executed.

Execution

A protocol graph is executed on a per-packet basis. Execution is governed by a
loop over all entry nodes in the graph, i.e. nodes without incoming edges, where
each node will be enabled one after another with an empty buffer each. These
source nodes usually poll some kind of queue and usually have a port without
outgoing edges that will be enabled if polling was unsuccessful, and one port to
continue processing. The graph is executed by keeping a set of nodes that have
been enabled but have not been executed yet. Execution proceeds by removing
a node from the set and executing it on the current buffer, which can potentially
modify the buffer, and subsequently adding the successor nodes connected to
the output port enabled by the execution into the set. Once the set is empty
execution is done and the buffer will be zeroed out.

Note that while execution is based on executing nodes on a buffer, nodes can
replace the actual buffer by modifying the buffer structure they are being passed.
This happens e.g. if a buffer is passed to an application, since this will result
in a temporary loss of the buffer’s ownership. The only requirement is that the
buffer be replaced so that the buffer structure is valid after executing a node.

2.2.2 Issues with Pure Dataflow Model
While the purely dataflow-based execution model was sufficient to implement a
first prototype of a network stack based on this model and get some performance
numbers, there were a number of issues that were difficult to address using the
model.

Starting Multiple Executions from a Node

The first issue was caused by the limitation that a node can only enable a single
port and pass the current buffer, although the buffer could be replaced this still
only allowed for one buffer to be passed. A number of situations requires a
variable number of of executions to be started from a certain node. This already
became apparent when implementing ARP: When sending an IP packet to a

10

destination for which the MAC address is not known, an ARP request has to be
sent, and the IP packet can only be sent once the corresponding ARP response
is received. Now for a single waiting packet this is not a problem, since we can
simply replace the buffer of the ARP response with the one from the IP packet
and continue sending this one. The problem occurs if there is more than one IP
packet that is waiting for the same ARP response, here the execution for each of
the waiting IP packets needs to be resumed. This issue occurs in multiple other
situations as well, such as for example when segmenting TCP data to be sent,
or when fragmenting IP packets.

One workaround for this that does not require any changes to the execution
model would be to add a queue that will be polled by an entry node, where
these IP packets would be enqueued when receiving the ARP response, and
then continuing execution one at a time when polling the queue. Note that if
this workaround is used, there will be no information in the graph about this
coupling between the nodes, and knowledge about the node implementations is
required to understand how these nodes interact.

Replacing Buffers

Another more general problem with replacing the buffer of an execution is that it
makes reasoning more difficult, since replacing the current buffer will invalidate
any knowledge that could be collected by just looking at the nodes in path
leading through such a node. And especially when not substituting a fresh buffer,
such as in the case when resuming an IP packet to be sent, knowledge about the
buffer might enable significant optimizations.

Valid Buffer Requirement

We also ran into issues with the requirement of always having a valid current
buffer during an execution. This turned out to be problematic when packets
are being enqueued, be it on a send queue of a NIC or to be passed on to
an application. In these cases the current buffer becomes unavailable for the
execution, and since the execution model always requires a valid buffer to operate
on, a new buffer needs to be allocated by the node. Now in most of these cases
graph execution stops there, since all the processing will need to have been
performed before adding it to the queue, if this would not be the case not all
dependencies had been specified in the graph, so the allocation is basically only
required since the next execution will reuse the current buffer. If the allocation
of a replacement buffer fails, the current buffer can then not be enqueued since
this would violate the valid buffer requirement, even though the buffer is not
actually required. Also most entry nodes, especially the performance critical
ones, tend to pick up packets from a queue, be it hardware or software, and will
therefore already have a buffer which they then exchange with the current buffer
and then free the unused one.

11

IPSend out

ARPLookup
hit

miss

ARPRequest out

SendPacket out

ARPResponse out

Figure 2.4: Basic example of a protocol graph using the task-based model.

2.2.3 Task-Based
The problems discussed above lead us to revise and extend our model, resulting
in a task-based execution model.

Spawn Edges

As a major change, an additional edge type is introduced: the so-called spawn
edge. In contrast to a regular dataflow edge, a spawn edge does not originate
at a port. A spawn edges basically indicates that a node can spawn a new task
starting execution at the destination node of the edge. Multiple spawn edges
can originate from a single node. During execution each spawn edge can be used
to spawn an arbitrary number of tasks, including none at all.

Another major difference to dataflow edges is that spawn edges can be used
to introduce cycles. This also includes the special case of a spawn edge with
the same source and destination node, which is used for nodes that do polling
allowing them to re-spawn themselves for the next polling iteration.

Spawning Tasks

In order to have a handle to refer to a specific outgoing spawn edge when
spawning a task in the implementation, a label uniquely identifying the spawn
edge on the source node is used. A new task can then be spawned in the node
implementation by providing the label identifying the edge and thereby the start
node for the task, optionally a buffer to start execution with, as well as a priority
that basically controls what end of the task queue the new task is added to.
Currently only two priorities, LOW and HIGH, are used. The former is used for
tasks starting at nodes that do polling, and the latter for all other tasks.

Execution

Instead of looping over entry nodes, execution is based on a task queue. A task
in the queue consists of a node to start execution at, and optionally a buffer
to start execution with. The graph is then executed by taking a task off the
task queue, and executing it to completion, as a result of which additional tasks
might be enqueued on the task queue, and then continuing with the next task.
Tasks in our model will always run to completion, and there is no preemption
involved. If a spawn edge is used to spawn a new task, the new task will be
added to the task queue and the current task continues executing.

12

In order to bootstrap execution of a graph, a number of nodes will be tagged
as initialization nodes. For each initialization node, a task will be added to the
task queue without a buffer as a parameter when preparing to execute the graph.
Execution then progresses from there spawning additional tasks. Currently the
task queue will never become empty during regular execution, since an empty
task queue basically stops execution since tasks can only be spawned by other
tasks.

Buffer Handling

The other major change from the pure dataflow model is about how to deal
with buffers when starting and terminating tasks. Instead of always starting
off execution with a valid buffer, the buffer provided in the task queue entry
is used, which removes the requirement to the runtime to allocate a buffer to
start execution whether a buffer is needed or not. When a task terminates and
current buffer pointer still points to a valid buffer after the last node is executed,
the buffer will be freed by the runtime.

In addition we are introducing the constraint that a single task should not
access more than one buffer. For tasks started with a valid buffer this means
that the buffer must not be replaced with another buffer, but it can be removed
i.e. set to NULL. The latter is used if the buffer should not be freed e.g. if it has
been enqueued and passed on to an application. In general this leads to cleaner
semantics for graph execution, where a single execution of the graph can now
be thought of as a buffer path, basically describing operations performed on a
specific buffer.

2.2.4 Future Extensions
We discussed a number of extensions to the task-based model described above,
that were not implemented due to time constraints. The following paragraphs
provide a short description of these extensions.

Blocking Tasks

In a number of cases it would be desirable to have the ability to block tasks until
a notification from another tasks arrives. One example is sending an IP packet
where an ARP cache miss occurs, in which case sending the packet has to be
delayed until the corresponding ARP reply arrives. Currently this is achieved
by storing the buffer containing the IP packet in a global data structure of
packets waiting for ARP responses, then spawning a new task to send an ARP
request, and then just terminating execution of the IP send task. When the
ARP response arrives, it will scan the data structure for packets awaiting ARP
information for the IP address specified in the response, and then spawn a new
task for each of the pending buffers.

While this solution works in practice, it is not very satisfying. The main
problem is that there is no link in the model between the two tasks processing

13

the same IP packet.
Our suggested extension to work around this problem is to allow tasks to

explicitly block on certain conditions and then allow other tasks to notify blocked
tasks. This would remove the requirement to split up the send task, and remove
the need to work around the execution model. Notifications would also be
captured in our model by adding a third edge type, the notification edge, and
allowing notifications to be sent only along these edges.

Deferred Spawns

In addition to waiting for notifications, some use-cases require the ability to only
start execution of a task after a certain delay, or in response to external events.
The implementation of timeouts in a number of protocols, such as when waiting
for ARP responses, is an example of this. Another example would be a task
picking up packets from a queue that is not polled, in which case the external
event could be data that is ready to be read on a file descriptor.

The interface for these deferred spawns consists of the same parameters
required for a regular task spawn operation, plus a number of parameters specific
to the type of deferred spawn, such as a delay or a file descriptor. Until now we
identified applications for the following types of deferred spawn operations:

• Basic timeout: the task will start execution after a fixed time delay or at
a fixed time.

• File descriptor : execution starts when data on the specified file descriptor
is available to be read or written, depending on parameters.

• Allocate buffer : execution starts when a buffer is available to be allocated.

2.2.5 Unicorn
With our PLOS’2013 paper we presented a domain specific language, Unicorn,
to describe protocol graphs. It provides a convenient way to manage and develop
persistent protocol graphs, such as the unconfigured logical protocol graph and
physical resource graphs for the various NICs.

Listing 2.1 contains the Unicorn representation for the graph shown in
figure 2.4. More details about Unicorn are discussed in our PLOS’2013 paper
[33]. Three extensions where made to the Unicorn language since then:

• Expressing spawn edges as already shown in listing 2.1.

• A type description for describing the configuration space for each C-node.
This feature is introduced below.

• Specifying node semantics (described below in 2.3.2 in the context of graph
simplification).

14

1 graph taskBased {
2 node IPSend {
3 port out [ARPLookup] }
4 node ARPLookup {
5 spawn miss ARPRequest
6 port h i t [SendPacket]
7 port miss [] }
8
9 node ARPRequest {

10 port out [SendPacket] }
11
12 node ARPResponse {
13 spawn resume ARPLookup
14 port out [] }
15
16 node SendPacket {
17 port out [] }
18 }

Listing 2.1: Unicorn representation for example graph shown in figure 2.4.

Configuration Space Types

These types describe a superset of acceptable configuration values for each
C-node. More importantly they provide some general information about the
structure of the configuration space for the node. Listing 2.2 an example of a
configuration node with type information attached. The syntax for expressing
types is described in table 2.1.

Not Captured by Unicorn

The following aspects are currently not captured by Unicorn:

• Implementation functions for F-nodes. Currently implemented in C.

• Configuration functions for C-nodes. Currently implemented in Haskell.

Note that the reason for these aspects to be missing in Unicorn is not that we
established that they do not belong there, but rather due to time constraints
and since we were looking to gain some experience with the model first to get
more insight about what language semantics would be required and appropriate
for expressing these in Unicorn. Adding the former could possibly even result in
more efficient execution (see the discussion about future work 5.1), while adding
the latter should make it easier to implement configuration functions.

15

1 config C5TupleFi l ter {
2 type { (s i p : <UInt 32>,
3 dip : <UInt 32>,
4 proto : <Enum (TCP,UDP,SCP,OTHER)>,
5 spor t : <UInt 16>,
6 dport : <UInt 16>,
7 pr i o : Int 1 7 ,
8 queue : UInt 2) } <,128>
9 f unc t i on c on f i g 5 tup l e

10 port queues [Q0Valid Q1Valid Q2Valid Q3Valid]
11 port de f au l t [CFDirFi l ter] }

Listing 2.2: Unicorn representation including type information of a node from
our Intel 82599 PRG.

Syntax Description

Bool A basic boolean value, i.e. true or false.
Int min-value max-value An integer in the specified interval.
UInt bits Unsigned integer with the specified number

of bits, i.e. a value between 0 and 2bits − 1.
SInt bits Signed 2’s complement integer with the

specified number of bits.
Enum (ENUM1,ENUM2,...) Enumeration type, constraining the allowed

values to the specified set of labels.
<T> A value of type T or no value, i.e. basically

null.
[T]<min-len,max-len> An ordered list of values of type T. Refer

to table 2.2 for the syntax for the length
constraints.

{T}<min-len,max-len> Unordered list of values of type T, same
length constraints as for ordered lists.

(lbl1: T1, lbl2: T2,...) Product type, i.e. a tuple with the specified
fields of the specified types. The labels are
only used for informational purposes.

|<lbl1: T1, lbl2: T2,...> Sum type, a value of either of the specified
types. The labels are again purely informa-
tional.

Table 2.1: Syntax for expressing types of the configuration values for C-nodes.

16

Syntax Description
<l,u> l ≤ length ≤ u
<l,> l ≤ length
<,u> length ≤ u
<x> length = x

No length constraints.

Table 2.2: Syntax for expressing length constraints on list types.

2.3 Instantiating a Configuration
The process of generating the graph to be executed given the logical protocol
graph, the unconfigured physical resource graph, and a configuration to be
applied to the PRG and the hardware alike, consists of a number of steps that
are discussed in this section. The first step will be taking the unconfigured PRG
and applying the configuration to it, which will result in the configuration nodes
being replaced by the subgraphs corresponding to the configuration specified
and thereby a fully configured PRG, which describes the behavior of the NIC
under the specified configuration. Afterwards the logical protocol graph will be
embedded into the configured PRG, resulting in a graph containing information
about what parts of the network processing specified in the LPG can be performed
in hardware. The next step will be a simplification pass which will eliminate
unreachable nodes and edges. A number of other small modification passes will
be applied to the graph, after which the graph will be partitioned based on
where each node will be executed, such as inside Dragonet on a particular core,
or inside a particular application process. The resulting graph can then either
be used to evaluate it when comparing different configurations, or to execute it
as discussed in the next chapter.

2.3.1 Embedding
We proposed an initial embedding algorithm for handling the receive side in
our PLOS’2013 paper. Extending this to the send side turned out to be more
complicated than expected. Because of this the implementation is currently
based on a dummy embedding that is not able to push nodes into hardware, but
will however be able to use multiple send and receive queues. Figure 2.5 shows a
minimal example of the dummy embedding. The dummy embedding algorithm
basically works by connecting each send and receive queue pair to a separate copy
of the LPG. Note that the simplification pass will be able to figure out which
flows will be handled by which hardware queue based on semantics annotations
in the graph, since this does not depend on the embedding algorithm.

17

LPG

RxQ out Processing out TxQ out

PRG

In
q1

q2

RxQ1 out

RxQ2 out

TxQ1 out

TxQ2 out

Out out

Embedded

In
q1

q2

RxQ1 out

RxQ2 out

Processing out TxQ1 out

Out out

Processing out TxQ2 out

Figure 2.5: Simplified embedding example.

2.3.2 Simplification
The graph simplification pass tries to remove parts of the graph that cannot
be reached. Note that there usually are edges leading from reachable parts to
unreachable parts, so the main goal is to find edges that will never be enabled,
and then successively remove parts of the graph. Commonly this occurs in
conjunction with hardware demultiplexing, where the hardware will only deliver
certain types of packets to a specific hardware queue, and then demultiplexing
tests for other types of packets can be removed if Dragonet can establish this
fact. From there the simplification can continue by removing now unneeded
parts of protocol processing, like e.g. removing TCP processing if only UDP
packets will arrive on a specific hardware queue.

Procedure

The concrete implementation of this is based on tagging output ports on relevant
F-nodes with logical expressions which provide some semantic information about
the buffers for which the port will be enabled. These logical expressions are then
aggregated by pushing them through the graph and combining them at O-nodes
using the corresponding logical operator, and adding in additional semantic
expressions along the paths by combining them with the incoming expression
with a logical and. For entry nodes without incoming edge true is used as an
input expression, which means no information. By aggregating the expressions
along the graph edges, an expression for each output port will be generated.
This aggregation pass is combined with checks for satisfiability for each port
using an SMT solver, currently Z3 [18]. If an unsatisfiable expression is found
for a port, false will be propagated along edges starting from the respective

18

1 node Clas s i f yL3 {
2 port ipv4 [. L3IPv4ValidHeaderLength]
3 port ipv6 []
4 port arp [. L3ARPValidHeaderLength]
5 port drop []
6 semantics ipv4 { (= L3P . IP4 (L3 . Proto pkt)) }
7 semantics ipv6 { (= L3P . IP6 (L3 . Proto pkt)) }
8 semantics arp { (= L3P .ARP (L3 . Proto pkt)) } }

Listing 2.3: Unicorn definition of a node with some semantic annotations.

port, and the edges will be removed in a second step.
Note that a response unknown from the solver will never cause any correct-

ness issues, so the solver need not be complete. In general the whole graph
simplification pass is purely an optimization, and if skipped should not lead to
different behavior other than possibly performance.

An unsatisfiable expression could arise if the PRG contains semantic infor-
mation that would lead to an aggregated expression like

L4 .protocol(pkt) = UDP ∧UDP.port(pkt) = 7

at the receive queue node, and if this expression is then combined with an
expression from another node in the LPG leading to

L4 .protocol(pkt) = UDP ∧UDP.port(pkt) = 7 ∧UDP.port(pkt) = 8

which is obviously not satisfiable.

Semantics Syntax

As a syntax we decided to use the expressions from the SMT-LIB language
[8] directly, which is a syntax understood by most SMT solvers. SMT-LIB in
a parsed form seemed to be a good choice as an internal representation, as it
avoids the need to target one specific SMT solver. We decided to use it directly
to specify the constraints in the Unicorn files since it is definitely expressive
enough to capture the required semantics, and avoided the need for developing
a specialized language for this. The downside of the SMT-LIB syntax, which is
based on S-expressions, is that it is neither particularly easy to read nor write,
and using a less expressive alternative might make it easier to use more efficient
specialized solvers.

In listing 2.3 an example of a node with semantic annotations is shown.
Some semantic expressions in the LPG and PRG are very close to the node
implementations, where functions are applied to the abstract pkt to basically
check the values of protocol fields. Currently mostly uninterpreted functions are
used, since these are usually sufficient for reasoning about basic packet properties
as shown in the example above. For a lot of these functions more information
could be provided in the definition, by basically specifying them as interpreted

19

functions that only use functions to access particular offsets in the abstract pkt.
This would possibly even allow some reasoning such as the distribution of packets
where a known hashing scheme is used by the NIC to assign packets to queues.

2.4 Optimization
At the center of our network stack is the idea of using our model for reasoning
targeted at finding a (close to) optimal configuration for the network stack in a
specific scenario. We decided to implement this based on optimization guided
by a cost function rating the stack generated for a particular configuration. The
optimization is guided by an oracle that provides a subset of the configuration
space that should be feasible to explore. Ideally the cost function would be the
only entity that needs to be changed to implement a different policy.

2.4.1 Cost Function
As already mentioned above, there are often trade-offs and resource management
decisions involved when using hardware features, meaning that there is in general
no universally correct configuration for each feature, but rather the decision
depends on what goals should be achieved, e.g. optimizing for latency instead
of throughput. An example of a resource management decision often arises
with hardware demultiplexing, since usually only a fixed number of filters for
demultiplexing is supported by the NIC, and if there are more flows than filters
some subset needs to be picked for demultiplexing in hardware. This implies
that Dragonet needs some knowledge about the policy to be implemented, which
should be configurable since the policy to be implemented is influenced by the
concrete scenario, including requirements dictated by the application such as QoS
parameters for prioritizing its flows, but others dictated by the administrator
such as QoS parameters for managing multiple competing applications or power
management concerns.

We are encoding this policy as a cost function which maps the resulting
graph, which directly represents the processing to be implemented in software
for the configuration to be evaluated, to a cost which then allows graphs to
be graded. The cost function is actually evaluated on the partitioned graph,
introduced in section 3.3.2, as this graph is as close as we can get to what will
actually be executed.

A basic example of a cost function could evaluate the average path length
to get packets from the NIC queue to a number of sockets and vice versa.
Given additional information such as packet rates for different flows, and certain
annotations on graph nodes about demultiplexing decisions, which are used
anyway for the simplification pass discussed below, a cost function could be
implemented to evaluate how well flows are balanced between queues. Using a
number of additional node annotations, such as e.g. an estimated number of
cycles per node, more accurate execution cost predictions for single flows or a
distribution of flows should be possible.

20

Currently we are only using a dummy cost function, since the oracle discussed
below will only emit a single configuration to evaluate (more on that below).

2.4.2 Oracle
The oracle can be thought of a function calculating a set of configurations
to be evaluated based on the logical protocol graph. At the moment the
oracle is implemented for each NIC or physical resource graph, since it requires
detailed knowledge about the semantics of the configuration options. The
optimization process will calculate and evaluate the resulting stack for each of
the configurations suggested by the oracle, and then pick the best one. For
future versions a more interactive role for the oracle could be beneficial, where
the oracle calculates a configuration or a small set of configurations, and then
waits for an evaluation of these, and chooses further configurations based on the
response.

Note that the full configuration space for NICs such as the Intel 82599 [16]
has a very high dimensionality, on one hand just since there is a lot of different
options to be enabled or disabled, but more importantly the configurations for
different filters tend to have very high dimensionality by themselves. The 5-tuple
filter on the Intel 82599 is an example of this: up to 128 filters can be configured
to filter based on a 5-tuple of protocol, source and destination IP address and
port, where a wildcard can be specified for each field. Even without considering
the wildcards, and additional per-filter parameters this leaves roughly 100 bits
of information per filter, which results in 2100 possibilities to consider. Clearly
just enumerating all configurations is not feasible.

Adding additional hints about filter fields, that would allow the optimization
to reduce the set of configurations to evaluate, such as providing hints about
how the fields of the 5-tuple can be taken from a flow specification in the LPG
will reduce the search space considerably. But even with this optimization the
search space will still become intractable quickly as the number of flows grows,
since the subset of flows to be configured as filters, together with the wildcards,
will still need to be chosen, and other filter types such as the Intel 82599’s flow
director filters will also need to be configured.

Our ideal goal is to externalize all policy decisions in the cost function, so
that a change in policy can be accomplished by only changing the cost function.
But currently a lot of policy is also contained in the oracle, as further research
is required about how to implement a policy independent oracle. The current
oracle functions in Dragonet each only provide a single configuration, thereby
rendering the cost function useless for now. Again this is due to time constraints
and not due to a design decision.

21

Chapter 3

Data Plane

3.1 Haskell Prototype
We implemented our first prototype capable of processing packets by augmenting
the nodes in our existing graph data structure in Haskell with an implementation
function and in addition implementing a function that traverses the graph
for a packet. The prototype was capable of performing basic network stack
functionality such as handling ARP, ICMP echo packets (ping), and implementing
a basic UDP echo server. In order to interact with the prototype, we implemented
connectors for the Linux TAP device [28], Intel DPDK [17], and Openonload [35].
While this implementation gave us some confidence that our model was suitable
to implement a basic network stack, it was not developed with performance as a
goal, and thus was abandoned in favor of a more efficient implementation where
the data path is not implemented in Haskell.

3.2 Execution Engine
An execution engine in Dragonet is responsible for executing a protocol graph
or, to be precise, execute tasks on the graph and thereby processing packets.
It operates on a protocol graph that is given as input, and operates on it by
maintaining a task queue and executing a single task at a time to completion.

We have implemented two different execution engines with different perfor-
mance characteristics: First, an execution engine based on a dynamic in-memory
representation of the graph, that is traversed when executing a task, which allows
for cheap incremental modification of the graph at runtime but also incurs some
execution overhead for traversing the graph. The second execution engine is
based on generating LLVM code to execute the graph for a task, which reduces
the runtime overhead for the execution since optimized code tailored to the
graph is generated, but also makes modifications to graph more expensive since
the LLVM code needs to be generated, optimized and compiled again. Both
implementations are discussed in sections 3.2.2 and 3.2.3.

22

3.2.1 C-Implementation of Nodes
F-nodes are currently implemented as C functions, which allow for efficient
execution of protocol processing. O-nodes are implemented directly by the
execution engine.

These implementation functions are independent of the execution engine
used. They take three parameters and return the corresponding identifier for
the port that is being enabled. The following three parameters are passed:

• Node context: A node specific structure that currently only contains
the generic node context. The generic node context is used to perform
runtime operations that require information about the current node, such
as spawning a new task or allocating a buffer. This structure is node-
specific because it is intended to be used to pass parameters from Dragonet
to some nodes when instantiating them (e.g. a queue identifier for nodes
polling a hardware queue), once Dragonet supports this.

• Global state pointer : Pointer to the global state structure (state shared by
all nodes in the system).

• Buffer handle: Pointer to the buffer handle that is used for execution. The
buffer handle can be modified in cases where a node is enabled without a
buffer, or to free a buffer. But note that our convention dictates that one
execution of the graph, i.e. a buffer path, is only allowed to operate on
one buffer.

Referring to Ports and Spawn Edges

Implementation functions need some way to refer to the port that is being
enabled when the function returns, so we chose to assign numbers to ports based
on the order they are listed in the Unicorn file (starting at 0 for each node). One
exception to this rule are nodes that have false and true as ports, in which
case the ports will be reordered in such a way that they are always assigned the
values 0 and 1 respectively while preserving the ordering of the other ports. This
exception was introduced because these ports are very common and to simplify
the use of generic helpers, such as a helper converting a boolean value to a port
identifier, even in nodes with additional ports.

The same approach is used to identify outgoing spawn edges when spawning
new tasks (without the exception for true and false). To make the code easier
to understand and maintain, symbolic constants are generated for these values
by the helper utility discussed below.

Generating Skeleton

To simplify the implementation of F-nodes we implemented a tool that takes
Unicorn files as parameters and generates a number C definitions to be used
in the implementation. In addition to function prototypes for the C functions
implementing the node behaviour a number of symbolic constants for referring

23

1 node Lookup_ {
2 spawn r eque s t SendRequest
3 port f a l s e t rue [. L2EtherPrepare]
4 port miss []
5 }

Listing 3.1: Unicorn definition of example node

1 enum out_ports {
2 P_TxL3ARPLookup__false = 0 ,
3 P_TxL3ARPLookup__true = 1 ,
4 P_TxL3ARPLookup__miss = 2 ,
5 } ;
6 enum out_spawns {
7 S_TxL3ARPLookup__request = 0 ,
8 } ;
9 struct ctx_TxL3ARPLookup_ {

10 struct ctx_gener ic g en e r i c ;
11 } ;
12 node_out_t do_pg__TxL3ARPLookup_(
13 struct ctx_TxL3ARPLookup_ ∗ context ,
14 struct s t a t e ∗ s ta te ,
15 struct input ∗∗ in) ;

Listing 3.2: C definitions for example node

to ports and spawn edges by name, as well as C structures for node contexts are
generated.

Listing 3.1 shows the Unicorn definition of an example node, and listing 3.2
shows the generated C definitions.

Interface to the Runtime

A number of functions for interaction with the runtime are available for node
implementation functions. An overview of the most important functions is shown
in listing 3.3.

Spawning a new task can be accomplished by a call to spawn, providing the
current node context, the identifier for the spawn edge to use, a priority, and
optionally a buffer to use. The priority can currently only be high or low, and
controls to what end of the task queue the new task will be added. A high
priority task will be added to the front of the queue, where it will be found
when looking for the next task to execute, while a low-priority task is added to
the back. Low-priority tasks are especially useful for nodes that do polling and
therefore re-spawn themselves.

Allocating and freeing a buffer requires the node context, to provide a
reference to the buffer pool to use.

24

1 // Spawn a new ta s k
2 bool spawn (
3 struct ctx_gener ic ∗ ctx ,
4 struct input ∗ in ,
5 enum out_spawns s ,
6 enum spawn_prior ity p) ;
7
8 // A l l o ca t e b u f f e r
9 struct input ∗ i nput_a l loc (

10 struct ctx_gener ic ∗ ctx) ;
11
12 // Free b u f f e r
13 void input_free (
14 struct ctx_gener ic ∗ ctx ,
15 struct input ∗ in) ;

Listing 3.3: Runtime functions available to implementation functions

3.2.2 Dynamic
Given our graph model and the implementation functions for the F-nodes, an
obvious approach to execute the graph is to use the same approach as for the
Haskell prototype discussed above. But in order to achieve better performance,
we decided to build a similar execution engine in C. This also implies that
dynamic execution engine will have to operate on a separate data structure
that can now be tailored to allow faster execution. Using a pointer-based data
structure also means that applying changes incrementally can be done efficiently
with good locality. In addition to the C code for manipulating and executing
the graph, there is also a Haskell module that is responsible for building and
modifying the dynamic graph.

Data Structure

A slightly simplified version of the dynamic graph data structure currently used
for execution is shown in listing 3.4. Basically the graph is built from a number of
dynamic_node structures that are connected by dynamic_edge structures, and
for each entry point to the graph, where a task can be spawned, a dynamic_spawn
structure is allocated and points to the respective start node.

Edges are stored in a linked list on both sides, in a per-port list on the source
node, ports, and in the list of predecessors, preds, on the destination node.
This means that both adding an edge when modifying the graph, and finding
the successors nodes to enable during execution, can be done efficiently. To
simplify the execution of O-nodes edges are also tagged with the originating
port identifier, which makes it easier to find out which nodes can contribute true
inputs and which nodes can contribute false inputs.

Instead of just storing a pointer to the node in the task handles, we added

25

another layer of indirection in form of the dynamic_spawn structure. This avoids
the need to scan through the task queue when removing or recreating an entry
node, since only the spawn structure has to be updated to point to the new node
or NULL. Outgoing spawn edges are therefore stored as an array of pointers to
dynamic_spawn structures.

Depending on the type of a node, different parameters are stored in the tdata
union. For regular F-nodes a function pointer along with the node context are
stored, and the generic node context will contain a pointer to the dynamic_node
structure used by some of the runtime functions in the node implementation.
O-nodes only need to be tagged with the logical operator they implement. In
addition to these node types from the model, there are some special cases
for nodes that are generated by Dragonet and generally need some runtime
parameters, such as a pointer to a queue or socket handle. These nodes are
executed directly by the execution engine, and do not have a pointer to an
implementation function.

Execution

An execution iteration of the graph begins by taking a task off the task queue,
which will result in a pointer to a dynamic_spawn structure and possibly a buffer.
If the node pointer in the spawn structure is NULL, the task will be dropped, the
circumstances leading to this are discussed in more detail in 3.5.2. Otherwise
execution will start as a depth-first search from this node based on the port
enabled in each node. Edges that are not enabled are ignored for the search.
The concrete implementation is based on a stack where the enabled successor
nodes are pushed to and nodes to be executed are popped from.

O-Nodes Note that this simple DFS-based approach can result in O-nodes
being enabled repeatedly since they can have multiple incoming edges. The
successor nodes of an O-node must only be enabled once, which can only happen
once the result from the logical operation based on the inputs is defined. O-nodes
can also be short-circuited, in which case the node might already have been
executed when it has already been enabled previously in the same task. This
is where the out_value and out_version members of the node structures are
used to implement the correct behavior. The value member is used to store
the output port that was enabled once a node executed successfully, and the
version member is used to recognize values from earlier task executions, based
on a version value that is incremented with each iteration and is saved together
with the value member. Tagging the values with the version of the current
iteration avoids the need for resetting the values in all node structures after the
execution. The value member is also used when executing O-nodes to determine
which input edges were enabled by the predecessor nodes.

Special F-Nodes In addition to regular F-nodes and O-nodes there are some
nodes that are treated as special cases by the execution engine. These special
nodes are nodes that are generated by Dragonet and usually require certain

26

1 struct dynamic_node {
2 struct dynamic_graph ∗graph ;
3 const char ∗name ;
4 enum dynamic_node_type type ;
5 /∗∗ Set to enab led por t during execu t i on ∗/
6 node_out_t out_value ;
7 int out_vers ion ;
8 /∗∗ Incoming edges ∗/
9 struct dynamic_edge ∗preds ;

10 /∗∗ Outgoing edges arranged in t o por t s ∗/
11 s i z e_t num_ports ;
12 struct dynamic_edge ∗∗ por t s ;
13 /∗∗ Outgoing spawn edges ∗/
14 s i z e_t num_spawns ;
15 struct dynamic_spawn ∗∗ spawns ;
16 /∗∗ Node type s p e c i f i c data ∗/
17 union { struct { nodefun_t nodefun ;
18 struct ctx_gener ic ∗ ctx ;
19 } fnode ;
20 struct { enum dynamic_node_op op ;
21 } onode ;
22 struct { int32_t muxid ;
23 } mux ;
24 struct { queue_handle_t queue ;
25 } queue ;
26 struct { void ∗ sdata ;
27 uint64_t s i d ;
28 } socket ;
29 } tdata ;
30 } ;
31 struct dynamic_edge {
32 /∗∗ Source and d e s t i n a t i on node o f edge ∗/
33 struct dynamic_node ∗ source ;
34 struct dynamic_node ∗ s ink ;
35 /∗∗ Links f o r l i s t o f edges at both ends ∗/
36 struct dynamic_edge ∗ so_next ;
37 struct dynamic_edge ∗ s i_next ;
38 /∗∗ Orig ina t ing por t ∗/
39 node_out_t port ;
40 } ;
41 struct dynamic_spawn {
42 struct dynamic_node ∗node ;
43 uint32_t r e f count ;
44 }

Listing 3.4: Graph data structure used in dynamic execution engine (simplified).

27

parameters, such as queue handles in the case of the ToQueueX nodes introduced
in 3.3.2. In the future it would be desirable to implement a general mechanism
to pass node parameters through the context structures to nodes, and implement
them like regular F-nodes in implementation functions.

Termination A task is executed completely once the stack of nodes is empty,
or a node tagged as a terminal node is executed which will terminate execution
even if there are other nodes left to execute. Currently the only nodes tagged as
terminal nodes, are some the special case node types mentioned above.

Control Interface

The graph inside a dynamic execution engine can be initialized and modified
using a number of control functions, that implement changes to the internal data
structures. Currently the following control functions are offered:

• Creating a node. These are actually a number of functions to create
different types of nodes, but all of them will return a pointer to the node.

• Adding ports to a node.

• Adding an edge originating from a port pointing to another node, returning
a pointer to the edge structure.

• Creating a spawn structure for a node, returning a pointer to it.

• Modifying the node pointed to by a spawn structure.

• Removing a spawn structure. Must only be called once no more nodes
point to this spawn structure. The spawn structure will only actually be
freed once no more tasks in the queue point to it. Reference counting is
used to ensure this.

• Clear the whole graph. Removes all nodes and edges, but the tasks in
the queue will remain and spawn structures will not be removed but only
modified by setting the node pointer to NULL.

• Spawning an initial task. Takes a pointer to a spawn structure and adds a
task without a buffer to the task queue. This is used to bootstrap graph
execution.

Note that this interface should be extended in the future to allow more modifi-
cations to the graph, such as removing individual nodes or edges.

Remote To allow Dragonet to control instances of the dynamic execution
engine that are residing in different address spaces, an adapter is provided to
forward control commands through general communication channels such as
sockets. Since none of the operations is expected to fail, except possibly in the
case of memory allocation problems, and to provide better performance, the

28

remote control interface does not provide feedback messages. Since most control
operations either return a pointer to some structure and/or take such pointers
as parameters, a mechanism is implemented that requires the user to pass an id
for operations that return pointers. This id can then be used later on to refer to
the result of the corresponding operations, when providing it as a parameter for
other operations. The Haskell module to control dynamic execution engines is
based on this remote adapter.

3.2.3 LLVM-based
The other execution engine we implemented for the pure dataflow-based model
is based on the idea of generating LLVM code for executing the graph, which
should allow more efficient execution of protocol graphs. Due to time constraints
this execution engine has not yet been adapted for the task-based model. But
there is no inherent problem in adapting the implementation.

Generated Code

The implementation used for executing the pure dataflow graphs is also based on
executing the nodes in depth-first search order. But the main difference is that
the graph structure is not represented by a data structure used at runtime, but
directly in the source code. For each node a wrapper function is generated that
will be called when a node is enabled, and if/when a port to enable is determined,
the wrapper functions for the successor nodes will be called. These wrapper
functions take a pointer to the buffer as well as the port that was enabled on
the predecessor node as parameters.

The part of the wrapper function that decides if and what port should
be enabled, is again dependent on the node type. For O-nodes a counter is
maintained to count the number of non-short-circuit edges (either true or false,
depending on the operator) that have been enabled. If either all non-short-
circuit edges are enabled, or one of short-circuit edges is enabled, the counter
will be reset and the corresponding port is enabled. Note that in the cases of
short-circuiting or if not all edges are enabled, the counter is not necessarily
reset to 0 at the end of an execution iteration. Because of that, all counters are
reset before each graph execution. F-nodes are again executed using the same
implementation functions discussed before. The same special cases for F-nodes
discussed for the dynamic execution engine apply here as well, for this execution
engine code will be generated for the different special cases.

Optimizations

Using LLVM as a framework for generating machine code also allows us to
use the generic LLVM optimization passes. Depending on the settings for the
optimizer pass, the result will be one big function for executing the graph after
inlining and other optimization passes have been applied. There are presumably

29

other opportunities for execution that could be found by analyzing the resulting
code.

Adapting to Task-Based Model

The following changes could be used to adapt this execution engine to the current
execution model. For the wrapper functions, the type signatures need to be
changed to pass a pointer to a pointer to the buffer, since the implementation
functions need to be able to change the buffer. Also some of the special cases
for F-nodes would need to be adapted to the new model, e.g. by changing
nodes that poll queues to respawn themselves. The major change is replacing
the current main execution loop that is generated, which basically executes the
graph by starting execution at each of the entry nodes in turn, by a function
that implements a single iteration of taking a task off the queue and calling the
respective wrapper function for the entry node. The last part that is missing is
an implementation of the task spawn function, which could be implemented by
reading a node identifier from the node context that is passed, and then basically
building a case statement that will return an entry node id based on the current
node id and the spawn edge id passed as a parameter.

3.3 Multiple Cores
Given the concept of an execution engine we can now process packets using
a protocol graph. But having a single thread somewhere operating on a big
protocol graph and doing protocol processing will not be sufficient to achieve
good performance.

3.3.1 Naive Approach
A naive approach to improve this would be to add multiple threads working from
the same task queue, but there are a number of drawbacks to this approach.

First off, there is an obvious scalability issue caused by the shared task queue,
although this could be addressed by using multiple work-stealing queues [11]. In
addition there will also be the need for synchronization measures for any state
(that is not per task) accessed by a node, since this state might be accessed
concurrently on any of the other threads. This also includes accesses to the NIC,
even in cases where the NIC provides multiple hardware queues, since the queues
are not dedicated to specific threads.

The other major issue is with locality which has also been shown to have a
significant impact on network stack performance [30, 13]. For example protocol
processing for multiple packets of a single specific TCP connection should be
performed on the same core [13]. Another heuristic is that (as far as possible)
packets should only be touched by one core [19]. This implies that if a packet for
a specific socket arrives, it should arrive on the NIC receive queue assigned to
the core servicing that socket in the application, and protocol processing should
also be performed on this core.

30

Given that there are a significant performance impact as well as a number
of policy decisions involved with spatial scheduling of protocol graph execution,
this factor should also be captured by our model. If these factors are captured
in our model, we can also make these decisions based on our model and thereby
also externalize the policy decisions.

3.3.2 Partitioning
In order to be able to reason about the resulting performance we need to be able
to figure out where a particular node will be executed for a particular packet.
The obvious solution given our graph abstractions is to assign each node to
a particular core, resulting in a partition of the graph into subsets of nodes
executed on the same core. While this restricts each node to only one core, nodes
can be replicated before partitioning the graph, meaning that this restriction
does not reduce flexibility.

Reasoning

Using this information it is straight forward to start reasoning about commu-
nication costs and interconnect loads. The graph provides all the necessary
information, if an edge crosses between protocol graph components there will
be communication involved, and therefore a path in the graph provides the
necessary information to arrive at a cost estimate.

Implementation

From an implementation point of view each of the resulting graph components
is assigned to an instance of an execution engine. An edge that crosses between
components means that the buffer (including its attributes) needs to be handed
off to a different execution engine instance, which implies some communication
mechanism.

One possibility for implementing this hand-off would be to extend the execu-
tion engines so they know about the other instances and can hand off buffers
when required. We chose an alternative implementation that is based on modify-
ing the graph and adding nodes for handing off buffers to, and receiving buffers
from other components. This approach avoids the need to modify and couple
the execution engines, and also adds explicit information to the graph about
communication.

We implement a partitioning pass that takes the protocol graph as an input,
and outputs both, independent protocol graphs for each execution engine instance,
as well as information about what communication channels to establish. The
partition pass will add a number of additional nodes to the resulting graphs.
The following kinds of nodes will be added when partitioning a graph:

• ToNodeX: Add multiplexing identifier to buffer, to enable demultiplexing
at the receiving end.

31

A

b

c

d

B c

C p

D p

Figure 3.1: Example protocol graph for partitioning

A

b

c

d

ToNB p

ToND p

ToNC p

ToQ2 p

ToQ3 p

FromQ2 p Demux B B c ToNC p ToQ4 p

FromQ3 p

Demux
C

D

FromQ4 p

C p

D p

Figure 3.2: Simplified example of partitioned example graph

• ToQueueX: Enqueue buffer on queue.

• FromQueueX: Poll queue.

• Demux: Demultiplex based on the multiplexing identifier of buffer.

Both regular dataflow edges and spawn edges crossing between components will
be redirected to the local ToNodeX node, from where they will be passed on to
the responsible ToQueueX node.

Figure 3.1 shows an example protocol graph, and Figure 3.2 shows the
resulting output after partitioning.

Restrictions

To avoid excessive synchronization and generally simplify the implementation,
we currently allow a buffer to be used by only one execution engine at a time.
This means that partitions where nodes in more than one component are enabled
for the same buffer are considered illegal. If the need should arise in the future, it

32

might be possible to allow this in some cases by adding additional nodes during
the partition pass and passing the buffer through the components sequentially.

For simplicity’s sake, we currently also assume that only one node in the
destination component is enabled for each buffer. Allowing multiple nodes
to be enabled could presumably be accomplished by using a bit map for the
multiplexing identifier, and rearranging the ToNodeX nodes.

It is currently also not possible to spawn tasks without buffers using spawn
edges crossing between components. This is due to the way the channels between
components are currently implemented (basically by passing buffers with some
annotations).

In practice, none of these restrictions have caused problems for our use cases.

3.3.3 Communication
For the implementation of the channels used for communication between graph
components we decided to use a Linux implementation of the bulk data transfer
infrastructure developed in an earlier project for Barrelfish [6, 14]. The channel
implementation used provides single-producer/consumer channels, and is based
on a modified version of URPC [10] and Barrelfish UMP [9], which offer inexpen-
sive communication between different cores without kernel involvement in the
critical path. We decided to use the bulk transfer infrastructure since it provides
full control over buffer management, good performance, and a generic interface
making it easy to use multiple channel implementations.

Bulk Transfer Overview

The bulk transfer infrastructure developed earlier provided both a generic in-
terface for transferring bulk data over a variety of underlying communication
mechanisms, as well as implementations for machine local communication and
cross machine communication based on Ethernet. The actual interface developed
is callback-based, i.e. an endpoint specifies a set of functions to be called in
reaction to different events. Data is transferred in buffers over unidirectional
single producer and consumer channels. Buffers are managed in pools, to avoid
some per-buffer management overhead, while still providing the flexibility by
using different pools.

Communication starts with the establishment of a channel between two
endpoints. Before a buffer can be transferred through a channel, the buffer’s pool
needs to be assigned to the channel, which will prepare the channel to transfer
buffers in the pool, i.e. by mapping the associated memory on both endpoints
to enable fast transfers. After this, two different data transfer operations can be
used to send a buffer through the channel: move transfers the buffer through
the channel, and at the same time passes ownership of the buffer to the receiver,
meaning that the sender can no longer access this buffer, while the receiver
now has full control over it. With copy on the other hand, buffer ownership
remains with the sender, and the receiver gets read-only access to the buffer,
while ownership remains with the receiver allowing for transfers of the same

33

buffer over other channels, although the buffer will be read-only for the sender
until the buffer is released on the receiver. When a buffer is no longer needed
by the receiver it can be passed back to the sender by either a pass operation
thereby passing ownership back to the sender but without a guarantee for the
contents of the buffer at the sender side, or by a release operation if a read-only
copy was received.

Design Choice

We decided to use single producer and single consumer queues for handing
off packets from one specific component to another. The other two alterna-
tive extremes for this design choice would be, on one side using one multi-
producer/single-consumer channel for each component, or on the other side
to use one channel for each edge. We decided against the first extreme since
multi-producer/single-consumer channels require more synchronization and are
therefore generally more expensive, and we would have lost the flexibility of
choosing different channel implementations for communicating between different
component pairs. The other extreme of using one channel per edge results in
higher overheads, since each channel will require memory and possibly other
resources. Thus the chosen solution seems like a reasonable compromise.

Modifications to Bulk Transfer

In the course of adapting the bulk transfer infrastructure to implement communi-
cation between components we made some changes to the original infrastructure.
One one hand we implemented a channel back-end for Linux, which is based on
POSIX shared memory, and can be applied for both communication inside and
across process boundaries. This also involved implementing generic infrastruc-
ture for sharing buffer pools between different processes, and enabling clients to
allocate physically contiguous buffers.

The other significant change was to the interface. After starting to use the
existing interface, we realized that the original callback-based interface was not
ideal for our purposes, since it did not offer sufficient control over when what
kinds of callbacks and from what channel events will be received. Therefore we
added a more low-level interface exposing more detail, while at the same time
allowing for an implementation of the existing callback-based interface based on
the new low-level interface.

The main change in the low-level interface is to use a function to poll for
events and another function to indicate that the application is done processing
an event. This allows the application to control when events should be accepted,
and also makes it possible to process events asynchronously and possibly out of
order.

3.4 Buffer Management
In Dragonet a buffer consists of three things:

34

• struct input: This structure is the main handle for referring to buffers
and passing them around, and contains pointers to the other two parts and
some bookkeeping information. It is local to an execution engine instance.

• Data buffer: Contains the actual packet data in a bulk transfer buffer. The
input struct contains information about what part of the buffer actually
contains valid data.

• Attribute buffer: Used to pass information about the buffer between nodes.
Also stored in a bulk transfer buffer to enable zero-copy transfer when
passing the buffer.

3.4.1 Requirements
Buffer management operations, i.e. allocate and free, are heavily used on the
critical path, and therefore slow buffer management will result in a significant
slowdown of overall networking performance. Another factor that makes buffer
management more difficult is that it is required on multiple cores and, in the
case of applications, even in multiple processes. Combining those two facts
also implies that a scalable solution is required, which in turn suggests using a
distributed approach instead of a centralized one. In the case of applications
the issue of trust also enters the picture, since the buffer management scheme
must not leak data between applications, and there is also a potential issue of
malevolent applications trying to sabotage the system.

3.4.2 Implementation
The bulk transfer infrastructure provides the some of the necessary mechanisms
to implement distributed buffer management. For our case we currently allocate
one local pool for each component, and buffers are always allocated from the
local pool.

Since pool management is also local to the pool owner, buffers must be
returned through the bulk transfer channels to the pool owner in order to free
them. And given that a buffer can be moved through an arbitrary number of
channels, and since not all components are pairwise connected, in the general
case there is no direct channel to the pool owner when freeing a buffer, and it
needs to be passed through a series of channels. To avoid the need for a general
routing scheme in order to figure out which channel to use for transferring a
buffer back to the pool owner, a buffer will be tagged with the channel it was
received from, and when it is being freed it will be returned through this channel.

3.4.3 Limitations
Note that this simplistic buffer management scheme does not necessarily use
the shortest possible path when freeing buffers, which would require a general
routing scheme. The current implementation also does not provide any facility
to enforce buffer management, since it just keeps all the buffers from all assigned

35

pools mapped for performance reasons. This can be problematic when dealing
with uncooperative applications.

3.5 Incremental Changes
Until this point we assumed that the graph remains static once execution starts.
But since the protocol graph also contains the network state, changes to the
network state at runtime will also result in changes to the protocol graph. The
network state will change for example in when an application opens a new
connection or closes an existing connection. Depending on the workload such
changes can occur frequently, therefore the cost of implementing the graph
modifications at runtime, will contribute directly to the cost for these actions.

3.5.1 Implementation
Note that it is also not feasible to stop the execution of all graph components
by waiting until all communication channels and task queues are empty. First,
since the number of graph components in real systems can be large and since
scheduling can cause unknown reaction times for components, synchronizing
would just take too long. The other problem is that tasks queues will never be
empty at runtime, since there will always be some tasks that re-spawn themselves,
e.g. for polling queues.

Implementing changes at runtime is also complicated by the fact that com-
ponents are potentially executed in different processes. This implies some
communication and/or synchronisation mechanism is required in order to imple-
ment changes. Currently commands describing changes are sent to components
using either a Unix socket if the component is running outside of the Dragonet
main process, or a basic locked queue for local communication.

Partitioning

In general changes to the protocol graph, will result in both, changes to the
component graph, as well as changes to the protocol graphs for the different
components. Changes to the component graph can involve the following:

• Starting new components; includes preparing a new instance of an execution
engine.

• Adding a communication channel between two components.

• Modifying the protocol graphs executed by components.

• Removing a communication channel.

• Stopping components

36

The above changes are shown in the order in which they need to be applied if
multiple changes are required, since there are dependencies between some of
the changes. For example, a node polling a communication channel cannot be
added before the channel itself is initialized, and vice versa when tearing down a
channel.

Note that some of these changes are (mostly) independent of the execution
engine being used. Adding and removing communication channels needs to be
done the same way for all execution engines.

Dynamic Execution Engine

For the dynamic execution engine applying changes is by construction incre-
mental. The challenge here is calculating a diff between the existing graph
and the new graph, to know what exactly needs to be changed. Applying the
incremental changes can be done using the same interface that is used to set up
the initial graph, and the only difference is that the commands are preceded by
a command to suspend graph execution and followed by another command to
resume execution.

LLVM Execution Engine

In the LLVM execution engine changing the protocol graph basically boils down
to generating new LLVM code for the changed graph, and applying the LLVM
optimization and code generation passes from scratch. There might be some
opportunities to apply caching to avoid regenerating parts of the LLVM code
that have not changed, but most of the time will be spent in the optimization
and code generation passes anyway.

Hybrid Execution Engine

Given the trade-offs between the dynamic execution engine allowing for cheap
updates, and the LLVM execution engine featuring more efficient execution a
combined approach seems to be a reasonable compromise. The main idea here,
would be to keep both an instance of the dynamic and LLVM execution engines.
Changes will be applied first to the dynamic instance, and then execution will
start based on this instance. Afterwards, possibly after some delay since changes
might occur in bursts, an optimized LLVM implementation of the graph can
be generated and optimized. Once the LLVM instance is ready, the dynamic
instance will be stopped and the LLVM instance can start executing. Due to
time constraints this approach has not been implemented or evaluated at the
time of writing.

3.5.2 Limitations
Currently not all types of changes are supported at runtime. Moving tasks
between components is not supported at the moment, i.e. a task in the task
queue whose start node disappears or moves to a different component, it will

37

simply be dropped. This can be problematic in cases of tasks that spawn
themselves where the destination node is moved to another component, since the
task will not be started in the destination component. For our current graphs
we can work around this issue because all of these self re-spawning nodes are
tagged as with the init attribute, and will therefore be spawned manually after
creating the node in the new component.

A similar issue also occurs with the communication channels between compo-
nents if the destination node for a buffer on the channel moves. Note that simply
waiting for the channels to be drained is not sufficient due to the asynchronous
updates of components. Currently these buffers will be dropped and freed.

One possible approach to solve this issue would be to add proxy nodes,
that will forward these tasks to the right component. The difficulty here is to
find out when it will be safe to remove the proxy nodes. In the general case,
especially with fast successive updates, just dropping the nodes after a fixed
number of updates will not work. Another complicating factor is the fact that
the communication channels between components are generally opaque to the
execution engine and to the Dragonet control path.

3.6 Application Interface
The following section describes the interface used by applications for both data
and control operations in the network stack in the first half, while the second
half will discuss its implementation.

3.6.1 Interface
At the time of writing Dragonet only provides a low-level interface that provides
the application with full control. In the future there will likely be a compatibility
interface providing (limited) socket compatibility, and possibly also another
interface hiding some of the details while still allowing for an efficient zero-copy
data path.

There are two main concepts in the low level application interface:

• Application Queue: The application queue represents a connection of the
application to the network stack. An application can open more than one
application, e.g. one for each thread. Application queues are used both
for to exchange control information with the stack, such as opening a new
connection, and also to send and receive data.

• Socket Handle: Used to send and receive packets for a particular network
endpoint or connection. Note that there can be multiple socket handles,
usually on different application queues, that serve the same network end-
point/connection. In case of multiple socket handles packets can be sent
from each, and received packets can be received on any of the socket
handles, although the stack provides no guarantees about the distribution
of packets to socket handles.

38

It is worth noting that operations on a specific application queue, even if
accessed through distinct socket handles, are not thread-safe. So if multiple
application threads will be performing operations on a particular application
queue, the application is responsible for ensuring mutual exclusion. This choice
is in line with leaving full control to the applications, since it allows applications
that do not require synchronization to avoid the unnecessary overhead.

The resulting full application interface is reproduced in appendix A.

Application Queue Operations

The following operations in the interface are related to dealing with application
queues:

• Create a new application queue. A label identifying the stack instance
to connect to, and a label for the application queue, that is used for
informational and debugging purposes, need to be passed as parameters.

• Destroy an application queue.

• Allocate and free buffers. Currently a fixed-size buffer pool is allocated
when creating an application queue. In the future the interface should be
modified to allow the application to allocate buffer pools of specified size.

• Process events on the application queue. This is the operation that needs
to be called to receive packets, as well as perform internal processing that
might be required. There are three outcomes for this operation:

– An event occurred, and information about the event is returned.
– Internal processing was performed.
– No visible event occurred and no internal processing was performed.

The idea behind the separation of no event and internal processing is to
let the application know about opportunities to perform other tasks than
network processing when no more work is to be done temporarily. Note
that it is also quite likely that multiple calls in a row will perform internal
processing, since one goal for the implementation is to keep the run time
of this call bounded, as far as possible.
Currently the only event is the receipt of some data on a socket handle, in
which case the event information will provide the buffer and socket handle.

Socket Handle Operations

Socket handles can be manipulated with the following operations:

• Create new socket handle on the specified application queue. The socket
handle cannot be used for receiving or sending data until it is bound.

• Destroy a socket handle.

39

• Span a socket handle, i.e. create another socket handle bound to the same
network endpoint. This operation is usually used to span a socket to
another application queue, allowing packets for the same network endpoint
to be received on the specified application queue as well.
Note again that the interface does not provide any guarantees about load
balancing between socket handles for the same endpoint. The client also
needs to make sure events from all application queues with socket handles
for a particular network endpoint are being processed, otherwise data could
be missed.

• Bind an unbound socket handle to a network endpoint. The current
implementation only supports IPv4/UDP endpoints, and the endpoint
specification consists of source and destination IP and port, where not all
entries need to be provided. After a successful bind operation the socket
handle will be ready to send and receive data. Attempting to bind to a
network endpoint that is already used by another socket handle in the
system will result in an error.

• Send out the specified buffer on the socket handle.

3.6.2 Implementation
From an implementation point of view an application queue consists basically
of two parts: There is the data path used to send and receive data (packets),
which is basically implemented by instantiating a component for each application
queue. The control path to Dragonet that is used to send commands such as
to create a new socket, and to receive control messages from Dragonet, such as
commands for modifying the data path.

Data Path

The component used for implementing the data path of an application queue is
treated by Dragonet like any other component. There are however some special
nodes, similar to the nodes generated by the partitioning pass (see 3.3.2), that
can only appear in these application queue components:

• ToSocketX node: One node for each socket handle that is bound to a
network endpoint will be created. This node is used for receiving data, if
this node is enabled a data receive event for the respective socket handle
will be issued.

• FromSocketX node: Again, one of these nodes will be created for each
socket handle, and is used to send out data originating from the respective
socket. Data will be sent out by externally spawning a task starting at
this node.

Note that the execution engine instance will not be running in a separate
thread, but execution works by processing one task at a time for each call to the

40

"process events" function. No task will be executed if internal processing on the
control channel is performed on a particular call.

If a ToSocketX node is enabled during task execution, an event containing
the socket handle and the buffer will be returned by the call. For sending out
a buffer over a socket handle, a task starting at the FromSocketX node will be
spawned. Note that the socket send call will only spawn the task but not execute
it, meaning that the buffer will only be actually sent out on one the next "process
events" calls.

Currently, send tasks are spawned with high priority, which means that they
will be enqueued at the top of the task queue. However, in the case of multiple
sending tasks being spawned on the same application queue without processing
events in between, this will lead to a LIFO order when executing the sending
tasks. While this might be useful in terms of cache locality, this can lead to
reordering and even starvation. Spawning these tasks with low priority is also
undesirable, since they should be executed before other operations such as polling
queues. Therefore fixing this will probably require the introduction of a third
priority higher than low, where tasks are processed in a FIFO manner.

Control Path

The control path is used to communicate information that is not data to and
from Dragonet. A Unix socket is currently used for communicating control
information related to each application queue. The socket is opened when
creating an application queue. Currently there are two different types of control
information that is exchanged.

On one side, there will be control messages that are sent to the execution
engine instance, to implement graph changes and so on. These messages can
arrive either in response to a request sent by the application, e.g. to close a
socket, or they can arrive unsolicited in the case where Dragonet implements
changes in the graph in response to some other event not originating from this
application queue.

For operations such as e.g. binding, closing or spanning a socket handle, a
request is sent to Dragonet which will either succeed or return an error. In the
case of success this usually leads to changes in the protocol graphs issued by
Dragonet. Operations such as binding a socket will depend on the changes in
the protocol graph being implemented (otherwise they might run into missing
FromSocketX nodes). These operations will currently block and wait until the
necessary changes have been implemented. This is implemented by processing
messages on the control channel until the success message arrives, which will
only be issued by Dragonet once all the graph modification are issued, and since
the control commands to the execution engine instance are sent through the
same channel and will not be buffered, this is sufficient.

41

Chapter 4

Evaluation

This chapter provides evaluation results to show that Dragonet can provide
throughput and latency that is competitive with existing network stacks, using
a comparison to the Linux network stack. Performance is evaluated using a
micro benchmark for each latency and throughput, plus a benchmark evaluating
throughput of memcached[3], a widely used key-value store. In addition there is
also an experiment showing Dragonet’s current Achilles’ heel: the cost of opening
new sockets.

4.1 Setup
4.1.1 Hardware
Two different sets of machines were used for the following experiments. For
the throughput experiments, both the micro benchmark and the memcached
benchmark, the machine described in table 4.1 was used. The latency benchmarks
as well as the socket open benchmarks were run on machines of the type described
in table 4.2.

Both machines support Intel Data Direct I/O also known as DDIO [15], which
allows the NIC to directly write packets to the L3 cache and also read them from
the L3 cache without the need for going through RAM. DDIO replaces direct
cache access or DCA [23] on previous generation Xeon CPUs which allowed
for data to be prefetched into L3 cache when receiving data, but data was still
going through RAM, which can be avoided in DDIO for both directions. Also
according to Intel, DDIO is fully transparent in the sense that it does not require
support from PCIe devices, and should work with existing devices. There is one
caveat, which is that data will be written to the L3 cache of the CPU where the
PCIe bus is local to, which implies that careful placement of tasks to cores is
needed, to get the maximum benefits.

42

CPU: 2 x Intel Xeon E5-2670 v2
Ivy Bridge, 10 cores each, hyper-threading disabled

NIC: Intel 82599ES
OS: Ubuntu 14.04 x86_64, Linux Kernel 3.13.0

Table 4.1: Machine used as a server in for the throughput benchmarks

CPU: Intel Xeon E5-2430
Sandy Bridge, 6 cores, hyper-threading enabled

NIC: Intel X520 (82599-based)
OS: Ubuntu 13.04 x86_64, Linux Kernel 3.8.0

Table 4.2: Machine for the latency and socket open benchmarks

4.1.2 Dragonet Configuration
Intel 82599 [17] based NICs were used for the experiments below. Support for
the NIC is implemented in Dragonet based on the igb_uio kernel module from
the Intel data plane development kit [17], or DPDK, which is used to expose
the hardware registers to user space. On top of that a modified version of the
Barrelfish e10k driver was used for interacting with the NIC. No protocol offload
features besides Ethernet CRC and padding were used.

For these experiments Dragonet was configured to implement a basic policy
distributing flows evenly to 4 hardware queue pairs using the 5-tuple filters
offered by the Intel 82599. The policy will start assigning flows in a round robin
manner starting with queue 1, since queue 0 handles a number of application-
independent functions such as ICMP and ARP. The reason for not using more
than 4 queues is that Dragonet will currently poll queues, which means that
each additional queue will add a thread that will just be polling the hardware
queue, and processing packets when they arrive. Combining these hardware
queue threads with application threads that are also busy polling results in poor
performance, because both threads will just keep polling until preempted by the
kernel.

4.2 Latency Micro Benchmark
The first experiment is a simple UDP round-trip time benchmark. On the server
side a basic UDP echo server, fancyecho, is used, that just sends back any data
it receives. fancyecho is configured to listen on a single port and use a single
thread. Note that the server itself does not touch the packet payload, but just
forwards it. To determine the RTT the benchmark client will send packets of
various sizes, with one packet in flight at a time, and measure the time delay
until a response arrives. For both cases, Dragonet and Linux, the server is run
on the respective platform, while the client runs on Linux in both cases.

43

 0

 20

 40

 60

 80

 100

 120

32 64 128 256 512 1024

R
T
T
 [
μ

s]

Payload Bytes

Dragonet
Linux

Figure 4.1: Round-trip time

4.2.1 Results
The results for this experiment are shown in figure 4.1, which compares the
round-trip time when running with the server on Linux to the scenario when
the server is running on Dragonet. The x-axis shows the UDP payload size, to
which at least 46 bytes of headers will be added 1. On the y-axis the round-trip
time is shown, where each bar shows the average over 10000 runs, and the error
bars represent the minimum and 99th percentile. For small packets with 32
bytes payload the RTT with Dragonet is roughly 25% lower, and this difference
increases further to over 45% for 1024 bytes payload. This leads to two questions:

Why is the RTT lower with Dragonet than with Linux?

One of the differences between the Linux stack and Dragonet is that Dragonet
currently uses polling for getting packets from the NIC and also in the application
for receiving packets from the stack. For this experiment there will be 3 threads
running and polling: One for the application polling the application queue, and
two for polling hardware queues. There will be two hardware queues being polled
since Dragonet will assign the echo server flow two queue 1 to avoid interference
from other packets on the default queue. Each thread is assigned to its own
core, in which case a single ping-pong cycle will involve two cores. The packet
will be received on the NIC receive queue and processed by the corresponding
thread and then passed to the application, which will in turn pass it back to
the originating thread for protocol processing and to send it out through the

18 bytes UDP header + 20 bytes IPv4 minimal header length + 14 bytes Ethernet header
+ 4 bytes Ethernet CRC = 46 bytes. Note that the Ethernet CRC will be both added and
stripped by the NIC on both ends, so these four bytes will never be visible to software or
transfered over the memory bus

44

hardware queue. Note that passing the packet between the two threads is cheap
since there are no context switches involved, and the queue is polled. And
since the echo server does not touch the packet payload, there should only be
cache misses for the queue, the attributes used to identify the socket handle,
the header, and a number of attributes used to pass the destination information
when sending the packet.

Another major difference is that Dragonet implements a zero copy data path
from the NIC hardware queue to the application and vice versa. Note that the
impact of this even more pronounced as the echo server does not actually touch
the packet payload, otherwise the copy at least serves to warm up the cache and
thereby partially amortizing the cost. The POSIX API used by Linux makes it
hard, if not impossible, to implement efficient zero copy, since the application
can just specify any range of memory as a buffer for storing received data, or to
send out data. For receiving, the issue is that advanced hardware support would
be required to make sure that the right part of the right packet ends up in the
specified buffer. In addition for both directions, there is also the complication of
integrating this with the rest of the memory management, to ensure that the
physical memory backing the buffers will remain available while a buffer is used
by the NIC, be it for receiving or sending.

For the forwarding scenario used in the echo server, Dragonet also allows
for the buffer in which the packet is received to be reused for sending out the
response. On one hand this saves buffer management overhead, since no buffer
needs to be freed or allocated. In addition there is also a locality advantage for
protocol processing on the send path, since the headers as well as the payload,
will still be warm in the cache when doing the processing such as adding headers
and calculating checksums.

In general Dragonet uses quite simplified protocol processing as opposed to
Linux which implements full protocol processing including all kind of generic
corner cases. While part of this is currently definitely due to the fact that
Dragonet is missing many of these features, there is also an argument to be made
that the performance should not suffer from adding support for more advanced
corner case to Dragonet if they are not actually being used. The rationale here
is that Dragonet can use the model to figure out which parts are actually used
in a specific instance of the stack, and therefore eliminate unused parts using
the graph simplification pass. Marinos et al. [27] also provided some evidence
that there is significant cost to the generality in Linux’ network stack, and that
specialized network stacks can significantly improve performance.

Why does Dragonet scale better with the packet size?

The graph points to some higher per-byte overhead in Linux than in Dragonet.
Looking at the discussion the obvious candidate is the copying of the payload in
Linux. Linux actually copies the data twice, once when receiving and once when
sending. Note that the performance penalty is not just about the CPU cycles
wasted for the actual copy, but might also incur cache misses for the destination
buffers, depending on how exactly buffers are managed.

45

4.2.2 Improving Latency
The next question is: what can we do to further improve latency? For achieving
lower latency one of the main goals is to minimize the number of cycles required
for getting a packet from the NIC, processing it, and handing it off to the
application.

One way to reduce the latency for receiving and sending packets is to directly
map a receive and send queue pair to the application address space [25, 31].
The NIC needs to provide the required hardware support, both for allowing
this do be done in a secure manner, and to get sufficient flexibility to set up
packet demultiplexing in hardware. For implementing this in Dragonet, only
a small number of changes is required: The graph execution environment in
the application that is already used in connection with the application interface
would need to be extended to support executing generic F-nodes. In order to
implement support for moving Intel 82599 driver nodes to the application, the
Intel 82599 driver infrastructure will need to be modified so nodes have a way
to access the descriptor rings in hardware, where currently the assumption is
used that all Intel 82599 nodes are all in the same process. There is also often a
trade-off to doing user space networking of losing control of outgoing packets,
which can only be done if the NIC provides sufficient hardware mechanisms,
including egress filtering, rate limiting, etc. With Dragonet the decision if user
space networking should be used if e.g. proper egress filtering is not possible
should eventually be captured by the cost function, so it can be used in scenarios
where the missing egress support is not a problem.

Implementing support for a number of offload features such as checksum of-
fload could also improve latency. For example if the NIC can calculate checksums
faster than the software implementation, offloading the checksum will reduce
the latency.

Updating the LLVM-based execution engine to work with the current execu-
tion model and possibly implementing additional optimizations for generating
more efficient code, could also potentially reduce latency by reducing the number
cycles spent for executing the graph for the packet.

There is also a number of inefficiencies in the node implementations, such as
bounds checks for each packet access for debugging purposes. Addressing these
inefficiencies could also result in some improvement.

4.3 Throughput
The following two benchmarks are discussing the UDP throughput that can be
achieved with Dragonet compared to Linux, in a micro benchmark and using
a real application, and how performance scales with an increasing number of
application threads.

46

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 6 8 10 12 14 16 18

T
h
ro

u
g

h
p

u
t

[G
b

it
/s

]

Application Cores

Dragonet
Linux

Figure 4.2: Throughput micro benchmark

4.3.1 Micro Benchmark
On the server side this experiment again uses fancyecho, the UDP echo server.
In contrast to the latency experiment, the payload size is now fixed to 1024 bytes,
but the number of threads used will vary. Four other servers, each with a 10Gbps
NIC, were used to generate load and measure throughput, using netperf [5]
on the Linux network stack for both cases. Static load balancing based on the
source IP address of the packets is used to distribute packets to the echo server
threads, this is implemented by opening multiple listening sockets that specify
both the destination port and the source IP. Note that locality regarding which
server thread processes which client packet does not matter for this particular
experiment, because the server only echoes back the data. The load balancing is
only used to balance the packets across the hardware receive queues, so as to
achieve parallelism for packet processing.

Results

In figure 4.2 the resulting throughput with different numbers of application
threads is shown, both for Linux and Dragonet. For each data point 3 iterations
with a measurement time of 10 seconds each were performed, and the error bars
show the minimal and maximal values. The x-axis shows the number of threads
used for fancyecho. On the y-axis the throughput, measured as payload/time,
is shown.

After factoring in the overhead for protocol headers, i.e. 46 bytes of headers
in addition to the 1024 bytes of payload, the actual throughput including headers
is ∼ 4.4% above the numbers shown in the graph. Which makes for a peak
throughput of roughly 9.9Gbps. This graph again suggests a number of questions:

47

Why is Dragonet’s throughput higher than Linux’? Note that many of
the causes already discussed in the context of the latency benchmark also apply
here. In particular both using zero copy and the simplified protocol processing
results in fewer cycles that are required for processing a single packets, thereby
freeing up CPU cycles for processing additional packets, resulting in a higher
throughput.

In addition, for this throughput benchmark not doing protocol processing
on the same core where the application thread resides could actually improve
performance. The reason here is that the penalty for the reduced locality will be
a small number of cache misses for the queue and accessing a small number of the
attributes or headers to identify the socket handle when the buffer arrives in the
application process, but no cache misses for the actual payload. Processing on a
separate core also almost eliminates the instruction cache footprint of the code
required for sending a packet in the application thread. And as long as enough
cores are available to avoid sharing cores between threads, this will actually lead
to some parallelism between protocol processing and the application code.

Linux also has a number of points in the network stack where coordination
among cores is required. Some profiling of the Linux stack actually showed that
an increasing fraction of the total time spent in the network stack will be spent
for the lookup in the routing table when sending out an IP packet as the number
of cores used grows. In Dragonet currently no routing table is used, since no
complex routing decisions are required benchmarking scenario. But even if some
routing were required, this could presumably be expressed in the protocol graph
directly without requiring synchronization. The only data structure currently
requiring synchronization in Dragonet is the ARP cache, where a reader-writer
lock is used.

What happens with Linux when going from 8 to 10 cores? In the
graph there is a significant performance drop for Linux when going from 8 to 10
cores. Note that the application threads are manually assigned to cores while
skipping the first core, which means that there will be one thread pinned to a
core on the second CPU die. This causes synchronization between the cores to
become more expensive, as it involves traversing the interconnect. In addition
this also means that DDIO will send the packets for the additional thread to the
wrong L3 cache, and sending out packets will also get more expensive since the
buffers cannot be accessed directly from the L3 cache.

Why does Dragonet’s throughput drop after 10 cores? For Dragonet
the drop from 8 to 10 cores is less pronounced, since much less coordination
among cores is required. But there is still some throughput drop-off, which is
partly due to the fact that communication between the application thread and
the hardware queue threads will be more expensive, but after 12 cores there
will also be some penalty because there will be cores that are shared between
threads that are all polling. This experiment was using 8 threads for serving

48

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 6 8 10 12 14 16 18

T
h
ro

u
g

h
p

u
t

[G
b

it
/s

]

Application Cores

Dragonet
Linux

Figure 4.3: memcached throughput benchmark

the send and receive hardware queues, 4 each 2, meaning that there won’t be
enough cores once there are more than 12 application threads.

4.3.2 memcached Benchmark
memcached throughput is evaluated using the widely used memaslap benchmark
[2]. The setup for this benchmark is identical to the throughput micro bench-
mark, except that fancyecho is replaced by memcached as a server. Again the
performance of Dragonet is compared to Linux with different numbers of worker
threads for memcached. For memaslap a configuration of 10% writes and 90%
reads, with 64 byte keys and 1024 byte object size was used.

Results

The results are shown in figure 4.3. The x-axis again shows the number of worker
threads used in memcached, while the y-axis shows the average over 3 runs of
10 seconds each, with the error bars showing the minimal and maximal value.
In general the discussion about the throughput results from above still applies.
But there are some additional questions to be discussed for this experiment:

Why is the throughput for Dragonet lower than in the micro bench-
mark? The major difference to the micro benchmark is that the application
now performs some work before a response will be sent, which will also include
using the packet payload. Therefore it is not surprising that more threads will
be required to get close to line rate. This also explains why the performance hit

2Due to time constraint the experiments were not re-run once Dragonet supported serving
a send and receive queue pair with one thread.

49

taken when going beyond 12 cores is significantly more pronounced, since the
time spent polling when there are already packets enqueued for the corresponding
application thread will be more costly in terms of throughput, and since the
application thread might not even be able to process all requests during its
time-slice. Also note that executing a thread doing processing on a core together
with an application thread will not only impact the specific application thread,
but might also cause additional idle time for other application threads waiting
for packets from the same queue.

Why is Linux doing so much worse than in the micro benchmark?
One part is that with Linux no control over which packets go to which core will
be available, resulting in no locality for requests. In the case of the throughput
micro benchmark, the impact of this will be fairly minimal, since the echo server
will just send the packet back out, while memcached will have to perform some
operations on internal data structures, where request locality will have an impact.

Note that the hit for the instruction cache pollution caused by the operations
that are performed for sending and receiving packets in Linux will cause a higher
performance penalty since there will be significantly more instructions to execute
with memcached than with the micro benchmark.

The drop from 8 to 10 cores where threads will start to be executed on
the second CPU socket, and with that in another NUMA domain, is also more
pronounced since the memcached threads will have to access common data
structures. But this effect will apply to Dragonet and Linux equally.

4.3.3 Improving Throughput
Most of the suggestions for improving latency mentioned above will also lead
to improved throughput. Protocol offloads will generally lead to increased
throughput as long as the NIC can perform them at line rate, and as long as
there is no dominating configuration overhead. In general any optimization
leading to fewer cycles spent on packet processing should improve throughput,
since more packets can be processed per time interval.

For directly mapping NIC hardware queues to applications, the case is a
bit less clear cut. If CPU heavy processing is required for requests and if
separate cores for processing can be spared, it could in some cases be beneficial
to hand off protocol processing to a different core, so as to reduce the number
of required cores for application threads, and thereby improving cache locality
for the application. This would have to be evaluated empirically for the specific
application scenario, but again this should be something that should very easy
eventually by just modifying the cost function.

Introducing notifications instead of polling queues, both for software queues
and also for hardware in form of interrupts, will also significantly reduce the
overhead for mixing multiple threads on the same core, since threads can be
suspended until a notification arrives instead of just polling for the full time slice.
This should significantly reduce the drop-off for higher numbers of application
threads in the scenarios above. Here there will again be a number of different

50

design choices that will have to be evaluated, and some form of adaptive polling
might still be desirable depending on the scenario [37]. Notifications could also
be useful in conjunction with directly mapped hardware queues, to allow the
application to execute some low-priority operations while there are no packets
to be processed.

There is currently still a more general issue not directly related to performance
which is the fact that there are still some implementation details preventing
Dragonet to gracefully drop packets when queues fill up and so on. Currently
an overflowing software queue will lead to an abort, which is obviously not
acceptable for real applications, and also complicates benchmarking throughput
somewhat.

4.4 Graph Modification Performance
One consequence of the implementing changes on the model first, and then going
through the whole process of re-running the optimization to find a configuration
and then preparing the graph to be implemented, is that changing things will be
more expensive than just adding an entry to a data structure. The following
experiment shows the current state of this in Dragonet, by measuring the time it
takes to open different numbers of listening UDP sockets. Note that this part of
Dragonet has not been optimized for performance in any way, so this experiment
is only intended to show that this needs to be addressed, especially for scenarios
where sockets are being opened and closed dynamically after the initialization
phase.

4.4.1 Results
Figure 4.4 shows the results of this very basic benchmark. The x-axis shows the
number of sockets that were opened, while the y-axis shows the total time it
took to open x sockets. Looking at this graph it is clear that this is an issue
to be addressed, since times in the order of magnitude of seconds will clearly
be inappropriate for many applications. The graph also shows that the time to
open a number of sockets is growing faster than linear, which might also need to
be addressed. Due to time constraints no additional analysis was performed to
evaluate where the time is spent.

4.4.2 Improving
As no in-depth analysis was performed of where the time is spent, the following
suggestions are just educated guesses to be taken with a grain of salt. The
process for instantiating the stack for a particular LPG is also likely to change
while performing subsequent research on the optimization process for finding
the configuration to be used.

One thing that should definitely help to reduce this cost, would be to use
incremental algorithms for the whole process of generating an updated LPG,

51

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 8 16 24 32 40 48 56 64

C
u
m

u
la

ti
v
e
 t

im
e
 [

s]

Socket #

Figure 4.4: Cumulative time for opening multiple sockets

then going through the optimization loop, and finally setting up the graph to be
executed. Currently every each change to the network stack state implies starting
from scratch with an unconfigured LPG and go through the whole process of
building a stack from there. At the moment no incremental algorithms are used
since they are generally a lot more difficult to develop than an algorithm which
just starts from scratch.

As discussed in section 2.3.2 currently there is also an SMT solver used in
each iteration when building up the graphs. It is possible that this process could
be sped up by using more efficient special purpose solvers. There might also
be optimizations for the interaction with the SMT solver, such as using models
from previous versions of the graph as a starting point for the solver.

The data structure for representing protocol graph is another design point
that might be subject to change. Currently a fully functional representation
from Martin Erwig’s functional graph library[20] is used. Given how heavily we
rely on graphs, it might could turn out that a more efficient not purely functional
data structure will need to be used.

52

Chapter 5

Conclusion

Processing network data at the still increasing rates offered by current and
future network technologies requires hardware support to effectively distribute
packets to multiple cores and generally reduce CPU load, resulting in more
complicated NIC designs, which are difficult to fully exploit with current network
stack designs. Our approach to address these issues is to leverage a model-based
approach to build a flexible network stack capable of adapting to the myriad of
hardware features offered by current and future NICs.

This thesis discussed our design of Dragonet, a full network stack based
on this approach, and compared its performance characteristics to Linux. The
performance evaluation showed that Dragonet offers both throughput and latency
that are at least comparable to Linux, and in many cases superior. Dragonet’s
current Achilles’ heel was also evaluated, namely the cost of control operations
such as opening new sockets.

The contributions of this thesis are as follows:

• Discussion of the currentminimal control plane in chapter 2, which produces
a graph to be implemented by the data plane. The graphs are built and
modified in reaction to changes in the network state, such as sockets being
opened and closed. Although the control plane is currently very basic, it
provides a foundation for future extensions.

• The data plane implementation in chapter 3, is responsible for executing
the software part of the graph generated by the control plane. This includes
executing the graph efficiently across multiple cores, and interfacing with
applications.

• Chapter 4 presented a performance evaluation comparing Dragonet to
Linux, demonstrating that a network stack built using our model-based
approach can deliver competitive performance. For a UDP latency micro
benchmark improvements of 25-45% were seen, depending on the payload
size, when running the server on Dragonet instead of Linux. Throughput
results also show significant improvements in most cases, both for a micro

53

benchmark, and also for an application-based benchmark using memcached.
Dragonet has not been optimized yet for fast control operations such as
opening sockets, and a micro benchmark also confirms that more work will
be needed on that front.

5.1 Future Work
In addition to addressing the limitations documented in the previous chapters,
there are a number of possible extensions to Dragonet that could be implemented
as future work. The following sections discuss some potentially interesting
starting points.

5.1.1 Extending the Control Plane
In contrast to the data plane, the control plane in Dragonet is currently fairly
minimal, providing just enough to allow basic performance evaluation. Now
the data plane and the current Dragonet implementation in general provide a
reasonable foundation for implementing and evaluating options for the control
plane implementation. Some interesting questions to answer there are:

• Is there an efficient way to implement the configuration space exploration
where all policy is externalized in the cost function?

• How much information does need to be provided on a per-device basis to
allow for an efficient search?

• What representation should be used for the cost function to enable both a
high degree of generality and make it feasible for sys-admins to write cost
functions?

• Can Dragonet provide good performance for scenarios with a lot of short-
lived connections being opened and closed at a high frequency, and what
optimizations and trade-offs does this require?

5.1.2 Modelling Additional Protocols and NICs
In order to substantiate our claim for the generality of our approach, it needs to
be evaluated both with additional protocols such as TCP, and also by applying it
to more different NICs. One example, that would make a strong case, would be a
sufficiently complete TCP implementation, together with physical resource graphs
for NICs supporting different types of TCP offloads, as these are notoriously
difficult to handle by traditional network stacks.

5.1.3 Instrumentation of Execution Engine
Given our execution model, which is based on combining implementation func-
tions for multiple nodes into a full protocol stack, it should be possible to add

54

various instrumentations to graph execution without the need to modify the
implementation functions. The instrumentations could be added with a number
of different goals:

Profiling

One motivation would be to obtain detailed accounts of the execution time,
using profile annotations, that are added to all nodes or some subset thereof.
An infrastructure similar to the trace-based approach used in Barrelfish for both
collection and analysis of event traces [36] could be used.

Debugging

Given the relatively complex graphs used during execution, some bugs and
therefore a need for a debugging mechanism are inevitable. While general
purpose debuggers can certainly be applied to Dragonet, building special-purpose
debugging tools could definitely make debugging substantially easier. One
example would be a graphical representation of a graph execution for specific
packets, which could then be combined with features such as breakpoints on
certain nodes/ports/edges, and single step execution on a per-node granularity,
or more fine-grained if desired.

5.1.4 Application Interface Changes
Currently Dragonet exposes a fairly low-level interface which, while providing
the application with a high degree of control, might not be appropriate for all
applications.

Notifications

One problem that has to be addressed is the current need for polling, which is
not suitable for all applications. Ideally Dragonet should provide a light-weight
notification mechanism, that can be used when appropriate, but is not mandatory
if polling is preferred. In addition there should be a possibility to combine the
notifications from the network interface, with other notifications, such as data
being ready on a file descriptor in a Unix system.

Backwards Compatibility

While there is a lot of evidence that the POSIX socket interface imposes substan-
tial performance overhead [22, 31, 32], it is never the less desirable to provide
applications where performance is not critical with a backwards compatible
socket interface. Ideally Dragonet should still be able to provide some perfor-
mance improvements even when using the socket interface, depending on the
scenario.

55

Integration of the Application into the Graph

Another approach for applications to interface with the network stack requiring
more substantial changes to an application, but possibly yielding additional bene-
fits, would be to integrate them directly into the graph. This integration could be
partial, by basically adding a number of nodes to the graph, which the interface
with other code running in some application threads in an application specific
manner. But depending on the application, it could be possible to implement it
fully using our graph execution semantics, allowing for tight integration with the
rest of the stack, and therefore possibly resulting in performance benefit, as well
as a simpler implementation. There are a number of options in the design space
such as how the application-contributed parts of the graph will be executed, or
what kind of isolation guarantees between applications need to be provided.

5.1.5 DSL for Node Implementations
Node implementation functions are currently implemented in C. But there might
be a number of reasons to switch to alternative languages there. It would be
especially interesting to see what benefits can be obtained by using a domain-
specific language especially designed for implementing nodes in Dragonet. One
benefit could be significantly simpler implementations of nodes, but there are
others as discussed below.

Optimization for Generated Code

Using a DSL for specifying node implementations would also presumably enable
more efficient code generation, since Dragonet would then actually understand
node implementations and the assumptions used therein. This applies especially
to the LLVM-based execution engine, where Dragonet could be able to imple-
ment additional optimizations when stitching together node implementations to
generate code for executing the graph.

Offloading Code to NIC

Having a representation of node implementations that can be understood by
the control plane, could also enable it to take advantage of additional hardware.
One example would be generating code for NICs that can be programmed[1], or
even NICs with FPGAs on board [4], at runtime.

5.1.6 Extending to more Complex Systems
Once Dragonet is sufficiently complete as a network stack using a single NIC, it
is conceivable to extend Dragonet to more complicated systems.

56

Multiple NICs

The obvious next step would be support for managing more than one NIC. This
should be mainly an engineering issue, but there is some question about what
information needs to be specified about the NICs to allow Dragonet to decide
which NIC to use for what, e.g. if they are connected to different networks.

Across Machine Boundaries

In a data-center setting it could even be desirable to extend Dragonet to control
the network stack across multiple machines communicating with each other, e.g.
to control what requests should be sent to what machine, or to move different
parts of processing to different machines, in settings where packets pass through
multiple machines. This approach could possibly even be used to model and
configure additional network devices such as switches.

57

Bibliography

[1] Flownics | netronome. http://www.netronome.com/product/flownics/.
Retrieved September 2014.

[2] memaslap - load testing and benchmarking a server – libmemcached 1.1.0
documentation. http://docs.libmemcached.org/bin/memaslap.html. Re-
trieved September 2014.

[3] memcached - a distributed memory object caching system. http://
memcached.org/. Retrieved September 2014.

[4] Netfpga. http://netfpga.org. Retrieved September 2014.

[5] The netperf homepage. http://www.netperf.org/netperf/. Retrieved
September 2014.

[6] Reto Achermann and Antoine Kaufmann. Bulk transfer over network. Dis-
tributed systems lab, ETH Zurich, February 2014.

[7] Boon S Ang. An evaluation of an attempt at offloading TCP/IP protocol
processing onto an i960RN-based iNIC. Computer Systems and Technology
Laboratory HP Laboratories, 2001.

[8] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The Univer-
sity of Iowa, 2010. Available at www.SMT-LIB.org.

[9] Andrew Baumann. Inter-dispatcher communication in Barrelfish, Barrelfish
Technical Note 011. Barrelfish Project, ETH Zurich, December 2011.

[10] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. User-level interprocess communication for shared memory multiproces-
sors. ACM Transactions on Computer Systems, 9(2):175–198, May 1991.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM, 46(5):720–748, September
1999.

58

http://www.netronome.com/product/flownics/
http://docs.libmemcached.org/bin/memaslap.html
http://memcached.org/
http://memcached.org/
http://netfpga.org
http://www.netperf.org/netperf/

[12] Christoph Borchert, Daniel Lohmann, and Olaf Spinczyk. CiAO/IP: A
highly configurable aspect-oriented IP stack. In 10th International Conference
on Mobile Systems, Applications, and Services, pages 435–448, 2012.

[13] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of
Linux scalability to many cores. In 9th USENIX Symposium on Operating
Systems Design and Implementation, pages 1–8, 2010.

[14] Jeremia Bär and Claudio Föllmi. Bulk transfer over shared memory. Dis-
tributed systems lab, ETH Zurich, February 2014.

[15] Intel Corporation. Intel data direct I/O technology (Intel DDIO): A primer.
http://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/data-direct-i-o-technology-brief.pdf, Febru-
ary 2012. Revision 1.0. Retrieved September 2014.

[16] Intel Corporation. Intel 82599 10 GbE controller datasheet.
http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/82599-10-gbe-controller-datasheet.pdf, January 2014.
Revision 2.9. Retrieved September 2014.

[17] Intel Corporation. Intel data plane development kit (Intel DPDK). http://
dpdk.org/doc/intel/dpdk-prog-guide-1.7.0.pdf, June 2014. Reference
Number: 326003-008. Retrieved September 2014.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[19] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Rat-
nasamy. Routebricks: Exploiting parallelism to scale software routers. In
22nd ACM Symposium on Operating Systems Principles, pages 15–28, 2009.

[20] Martin Erwig and Ivan Lazar Miljenovic. fgl: Martin erwig’s functional
graph library. https://hackage.haskell.org/package/fgl. Retrieved
September 2014.

[21] V. Gazis, E. Patouni, N. Alonistioti, and L. Merakos. A survey of dy-
namically adaptable protocol stacks. IEEE Communications Surveys and
Tutorials, 12(1):3–23, January 2010.

[22] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
MegaPipe: A new programming interface for scalable network I/O. In 10th
USENIX Symposium on Operating Systems Design and Implementation,
pages 135–148, 2012.

59

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://dpdk.org/doc/intel/dpdk-prog-guide-1.7.0.pdf
http://dpdk.org/doc/intel/dpdk-prog-guide-1.7.0.pdf
https://hackage.haskell.org/package/fgl

[23] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct cache access for
high bandwidth network I/O. In 32nd Annual International Symposium on
Computer Architecture, pages 50–59, 2005.

[24] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architec-
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[25] Antoine Kaufmann. Low-latency OS protocol stack analysis. Bachelor
thesis, ETH Zurich, January 2012.

[26] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click modular router. ACM Transactions on Computer
Systems, 18(3), August 2000.

[27] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network stack
specialization for performance. In 2014 Conference on SIGCOMM, pages
175–186, 2014.

[28] Florian Thiel Maxim Krasnyansky, Maksim Yevmenkin. Universal
tun/tap device driver. https://www.kernel.org/doc/Documentation/
networking/tuntap.txt. Retrieved September 2014.

[29] Jeffrey C. Mogul. TCP offload is a dumb idea whose time has come. In 9th
Workshop on Hot Topics in Operating Systems, pages 5–5, 2003.

[30] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris.
Improving network connection locality on multicore systems. In 7th ACM
European Conference on Computer Systems, pages 337–350, 2012.

[31] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. Technical Report UW-CSE-13-10-01,
University of Washington, June 2014. Version 2.1.

[32] Luigi Rizzo. Netmap: A novel framework for fast packet I/O. In 2012
USENIX Annual Technical Conference, 2012.

[33] Pravin Shinde, Antoine Kaufmann, Kornilios Kourtis, and Timothy Roscoe.
Modeling NICs with Unicorn. In 7th Workshop on Programming Languages
and Operating Systems, 2013.

[34] Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle.
We need to talk about NICs. In 14th Workshop on Hot Topics in Operating
Systems, 2013.

[35] Inc. Solarflare Communications. OpenOnload. http://www.openonload.
org/. Retrieved September 2014.

60

https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://www.openonload.org/
http://www.openonload.org/

[36] David Stolz and Alexander Grest. Trace collection, analysis, and visu-
alization for Barrelfish. Distributed systems lab, ETH Zurich, February
2013.

[37] The Linux Foundation. napi. http://www.linuxfoundation.org/
collaborate/workgroups/networking/napi, November 2009. Retrieved
September 2014.

[38] The Linux Foundation. toe. http://www.linuxfoundation.org/
collaborate/workgroups/networking/toe, November 2009. Retrieved Au-
gust 2014.

61

http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe

Appendix A

Application Interface

1 // These s t ruc tures are opaque to a p p l i c a t i o n s
2 struct dnal_app_queue ;
3 struct dnal_socket_handle ;
4
5 /∗ ∗
6 ∗ Connection of the app l i ca t ion to the network stack .

Concep i t iona l l y th i s is a queue pair packets can be received
on or sent out through . An app l i ca t i on can have mul t ip le
app l i ca t i on connections (e . g . for d i f f e r e n t threads) .

7 ∗/
8 typedef struct dnal_app_queue ∗ dnal_appq_t ;
9

10 /∗ ∗
11 ∗ A socket handle represents a p a r t i c u l a r socket on a p a r t i c u l a r

app l i ca t i on queue . It w i l l be used to send out packets from
the r e s p e c t i v e socket through the r e s p e c t i v e app l i ca t ion
queue , as wel l as to spec i f y the des t ina t ion socket for
packets received on the r e s p e c t i v e app l i ca t ion queue .

12 ∗/
13 typedef struct dnal_socket_handle ∗ dnal_sockh_t ;
14
15
16 enum dnal_aq_event_type {
17 DNAL_AQET_INPACKET ,
18 };
19
20 /∗ ∗ Event received on app queue ∗/
21 struct dnal_aq_event {
22 enum dnal_aq_event_type type ;
23 union {
24 struct {
25 /∗ ∗ Socket handle th i s packet is dest ined for ∗/
26 dnal_sockh_t socket ;
27 /∗ ∗ Buffer for received packet ∗/
28 struct input ∗ buf fe r ;
29 } inpacket ;
30 } data ;
31 };
32

62

33
34 enum dnal_net_destination_type {
35 DNAL_NETDSTT_IP4UDP ,
36 };
37
38 /∗ ∗ S p e c i f i e s a network des t ina t ion . ∗/
39 struct dnal_net_destination {
40 enum dnal_net_destination_type type ;
41 union {
42 struct {
43 // 0 can be used as a wildcard
44 uint32_t ip_loca l ;
45 uint32_t ip_remote ;
46 uint16_t port_local ;
47 uint16_t port_remote ;
48 } ip4udp ;
49 } data ;
50 };
51
52
53 /∗ ∗∗ ∗/
54 /∗ Appl icat ion queues ∗/
55
56 /∗ ∗
57 ∗ Create app l i ca t ion queue
58 ∗
59 ∗ @param stackname Label for the stack to connect to (current ly

always ‘ Dragonet ’)
60 ∗ @param slotname Label for s l o t th i s queue connects to on

Dragonet side (can only connect one app l i ca t i on queue to each
s l o t)

61 ∗ @param appqueue Location to store handle
62 ∗/
63 errval_t dnal_aq_create (const char ∗ stackname ,
64 const char ∗ slotname ,
65 dnal_appq_t ∗ appqueue) ;
66
67 /∗ ∗
68 ∗ Destroy app l i ca t ion queue (not implemented) . All sockets

created on or spanned to th i s app queue need to be destroyed
f i r s t .

69 ∗
70 ∗ @param appqueue Handle for app queue to destroy
71 ∗/
72 errval_t dnal_aq_destroy (dnal_appq_t appqueue) ;
73
74 /∗ ∗
75 ∗ Poll app l i ca t ion queue for an event
76 ∗
77 ∗ @param appqueue Appl icat ion queue to po l l
78 ∗ @param event Location to store the received event
79 ∗
80 ∗ @return Four cases to handle :
81 ∗ − If an event is found , SYS_ERR_OK is returned
82 ∗ − If i n t e r n a l l process ing is done , but no event is generated
83 ∗ DNERR_EVENT_ABORT w i l l be returned . Pol l ing again

immediately could

63

84 ∗ return an event .
85 ∗ − If no event was found , DNERR_NOEVENT
86 ∗ − Other error codes might be returned in case of f a i l u r e
87 ∗/
88 errval_t dnal_aq_poll (dnal_appq_t appqueue ,
89 struct dnal_aq_event ∗ event) ;
90
91 /∗ ∗
92 ∗ Allocate new buf f er for use on th i s queue .
93 ∗
94 ∗ NOTE: Eventual ly we should decopule bu f f er a l l o c a t i o n from

app l i ca t i on queues .
95 ∗
96 ∗ @param appqueue Appl icat ion queue to a l l o c a t e bu f f er from
97 ∗ @param buf fer Location to store pointer to the bu f f er
98 ∗/
99 errval_t dnal_aq_buffer_alloc (dnal_appq_t appqueue ,

100 struct input ∗∗ buf fe r) ;
101
102 /∗ ∗
103 ∗ Free bu f f e r
104 ∗
105 ∗ @param appqueue Appl icat ion queue to free bu f f er to
106 ∗ @param buf fer Buffer to free
107 ∗/
108 errval_t dnal_aq_buffer_free (dnal_appq_t appqueue ,
109 struct input ∗ buf fe r) ;
110
111 /∗ ∗
112 ∗ Get pointer to shared g loba l dragonet s ta te .
113 ∗/
114 struct state ∗ dnal_aq_state (dnal_appq_t appqueue) ;
115
116
117 /∗ ∗∗ ∗/
118 /∗ Sockets ∗/
119
120 /∗ ∗
121 ∗ Create new socket . Note th i s socket needs to be bound to a

network endpoint before i t can be used .
122 ∗
123 ∗ @param appqueue App queue to create socket on
124 ∗ @param sockethandle Location to store socket handle
125 ∗/
126 errval_t dnal_socket_create (dnal_appq_t appqueue ,
127 dnal_sockh_t ∗ sockethandle) ;
128
129 /∗ ∗
130 ∗ Bind socket to network endpoint .
131 ∗
132 ∗ @param sockethandle Socket handle
133 ∗ @param des t ina t ion Network endpoint to bind to
134 ∗/
135 errval_t dnal_socket_bind (dnal_sockh_t

sockethandle ,
136 struct dnal_net_destination

∗ des t ina t i on) ;

64

137
138 /∗ ∗
139 ∗ Span socket to other queue . Creates a new socket handle that

can be used to rece ive packets that belong to the s p e c i f i e d
socket on the s p e c i f i e d app l i ca t i on queue . The new socket
handle can also be used to send out packets from th i s socket
using the new app l i ca t i on queue . Note : This provides no kind
of guarantees about which queue which packets w i l l be received
on .

140 ∗
141 ∗ @param orig Handle for socket to be spanned (must be

bound)
142 ∗ @param newqueue App queue to create socket on
143 ∗ @param sockethandle Undbound socket handle (from socket_create)

on newqueue
144 ∗/
145 errval_t dnal_socket_span (dnal_sockh_t orig ,
146 dnal_appq_t newqueue ,
147 dnal_sockh_t sockethandle) ;
148
149 /∗ ∗
150 ∗ Close p a r t i c u l a r socket handle . Other handles to the same

socket w i l l remain untouched .
151 ∗
152 ∗ @param sockethandle Handle to be c losed
153 ∗/
154 errval_t dnal_socket_close (dnal_sockh_t sockethandle) ;
155
156 /∗ ∗
157 ∗ Send out data on a socket handle .
158 ∗
159 ∗ @param sockethandle Handle to send on
160 ∗ @param buf fer Buffer to send out
161 ∗ @param dest Network des t ina t ion to send to . Can be NULL

for
162 ∗ flow −based sockets (UDP flows , or TCP

connections in
163 ∗ the future) .
164 ∗/
165 errval_t dnal_socket_send (dnal_sockh_t

sockethandle ,
166 struct input ∗ buffer ,
167 struct dnal_net_destination ∗ dest) ;
168
169 /∗ ∗
170 ∗ Reads out the per −socket opaque value saved previously , or NULL

i f not i n i t i a l i z e d .
171 ∗/
172 void ∗ dnal_socket_opaque_get (dnal_sockh_t sockethandle) ;
173
174 /∗ ∗
175 ∗ Set the per −socket opaque value .
176 ∗/
177 void dnal_socket_opaque_set (dnal_sockh_t sockethandle ,
178 void ∗ opaque) ;

65

	Introduction
	Dragonet – The Vision
	Project Context
	Related Publications

	Related Work
	Graph-based Processing
	Network Stack Specialization

	Outline

	Dragonet
	Architecture
	The Model
	Pure Dataflow
	Issues with Pure Dataflow Model
	Task-Based
	Future Extensions
	Unicorn

	Instantiating a Configuration
	Embedding
	Simplification

	Optimization
	Cost Function
	Oracle

	Data Plane
	Haskell Prototype
	Execution Engine
	C-Implementation of Nodes
	Dynamic
	LLVM-based

	Multiple Cores
	Naive Approach
	Partitioning
	Communication

	Buffer Management
	Requirements
	Implementation
	Limitations

	Incremental Changes
	Implementation
	Limitations

	Application Interface
	Interface
	Implementation

	Evaluation
	Setup
	Hardware
	Dragonet Configuration

	Latency Micro Benchmark
	Results
	Improving Latency

	Throughput
	Micro Benchmark
	memcached Benchmark
	Improving Throughput

	Graph Modification Performance
	Results
	Improving

	Conclusion
	Future Work
	Extending the Control Plane
	Modelling Additional Protocols and NICs
	Instrumentation of Execution Engine
	Application Interface Changes
	DSL for Node Implementations
	Extending to more Complex Systems

	Application Interface

