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Abstract—Existing architectures for network protocol process-
ing incur bottlenecks in communication-intensive cloud applica-
tions. Software processing competes for scarce CPU cycles with
applications, fixed protocol offloads such as RDMA lack required
flexibility, and SmartNICs are inefficient, expensive, or power-
hungry. The design space for alternative architectures remains
largely unexplored, and choosing a suitable architecture is com-
plicated by rapidly evolving application and transport protocols.
We draw parallels to machine learning acceleration and argue for
a similar approach: configurable domain-specific architectures
(DSAs) combined with a domain-specific high-level programming
model decoupling applications from architectures. We propose
Kugelblitz, an implementation and design exploration framework
for network DSAs enabling flexible and efficient protocol offload.
Kugelblitz comprises abstractions for separately specifying hard-
ware configuration and protocols, a hardware RTL generator,
and a compiler to generate runtime configurations to implement
specific protocols on specific hardware configurations.

Index Terms—Protocol offload, packet processing, hardware
acceleration, domain-specific architectures, design exploration.

I. INTRODUCTION

Cloud systems fundamentally rely on efficient network com-
munication — for scaling across multiple servers, accessing
back-end services, and communicating with the outside world.
While network bandwidth steadily increases, the required
transport and application layer processing also proportionally
consumes more processor cycles. Offloading part of this
processing to dedicated hardware on the network interface
controller (NIC) is a proven approach to reduce CPU over-
head. For example, even basic NICs include functionality to
compute and validate protocol checksums, most data center
NICs include many additional features to avoid particularly
expensive processing steps in software [1]. Full offloads, such
as RDMA [2] adapters and TCP offload engines [3] go a step
further and implement the complete protocol functionality for
data transfers on the NIC ASIC, only leaving application-layer
and control-path processing on the CPU.

Unfortunately, the lack of flexibility in these “fixed” offloads
causes operational challenges and limits efficiency. Fixed
ASIC offloads, by definition cannot adapt to new protocols or
changing application requirements and do not even allow bug
fixes [4], [5]. Further, even with full transport layer offload,
such as a TCP offload, application protocols still need to be
implemented on the host processor, consuming processor time.

To address this, SmartNICs offer programmability by inte-
grating network processors (NPUs) [6], [7], or FPGAs [8],
[9] onto the NIC. Both have found adoption in the pub-
lic cloud; Amazon deploys ARM-based SmartNICs in their
Nitro architecture [10] and Microsoft deploys FPGAs with
Catapult [5]. NPUs comprise many smaller processors cores
augmented with additional acceleration blocks, e.g. content-
accessible memory or crypto [11]. They only perform well
for processing that can be effectively parallelized [12], which
is often not the case for complex stateful protocols like
TCP. FPGAs provide a hardware programming model with
much greater flexibility to adapt the architecture to different
protocols, e.g. with tailored pipelines for specific protocols.
But FPGAs operate at lower clock rates and require larger
chip area for the same functionality compared to ASICs [13].

This is reminiscent of ML acceleration before domain-
specific architectures (DSAs) [14], such as the TPU [15],
gained acceptance. Compared to GPUs and FPGAs, DSAs
set new records in performance, energy efficiency, and chip
area, for a broad range of ML workloads by offering efficient
hardware primitives for tensor operations common in the ML
domain. ML has also converged on high-level domain-specific
programming models that decouple applications from specific
hardware [16]–[18], and capture semantics at the mathematical
level without binding to specific implementation choices. This
combination has enabled rapid innovation and adoption for
architectures, by providing a quick and low-risk path to
adoption. For architecture research this also enables robust
evaluation, as the same model can directly be evaluated and
compared on different architectures, even automatically [19].

We argue this is also a promising path for network protocol
processing acceleration. Just as TPUs enable fast and energy-
efficient tensor operations for a wide range of ML algorithms,
network accelerators should enable efficient packet processing
for a broad class of protocols with domain specific hardware
primitives. To innovate and effectively evaluate we need a
portable programming model for network protocol processing,
that decouples protocols from specific architectures.

In this paper we present Kugelblitz, a framework for design-
ing, implementing, evaluating, and comparing domain specific
architectures for network protocol processing. We first define
an abstract domain-specific programming model for protocol
processing. Next, we design a highly parametrized hardware
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model for specifying a broad range of domain-specific protocol
processing architectures, and implement an RTL generator
for this model. Finally, we propose a compiler that takes a
protocol specification and hardware parameters, and generates
an implementation of the protocol for the specific architecture.

II. BACKGROUND AND MOTIVATION

A. Related Work: Reconfigurable Switches & P4

Programmable switches, such as RMT [13], Barefoot
Tofino [20], and Cavium XPliant [6], demonstrate that flexible
packet processing is feasible with manageable overhead, even
at the required aggregate bandwidths of terabits in switches.
These architectures rely on pipelines of match-and-action
stages, where each stage performs configurable table lookups,
and based on the results modifies a vector of packet fields
traversing the pipeline. Designed for typical switch processing,
these architectures employ table lookups, simple parallel pro-
cessing, and minimal memory for keeping state across packets.

The P4 [21] programming language provides a portable
interface for reconfigurable switches. The match-and-action
paradigm is also central to P4, where processing is described
as a sequence of table lookups and actions triggered based on
lookups. Actions in P4 can execute multiple parallel operations
without data dependencies. Programmers have to manually
split sequential operations across stages. Ongoing development
of P4 is lifting restrictions, introducing additional flexibility,
and adding support for other network devices, such as NICs.

B. End-Host Processing is Complex

Requirements for end-host protocol processing for modern
cloud applications are fundamentally different from switches:
complex and inherently stateful. For example, TCP, the domi-
nant protocol in clouds and data centers in general, is notorious
for complex processing and state management. We find that
even just handling common case TCP data reception requires
more than 70 operations, with multiple chains of more than
10 dependent operations. Each packet for a connection also
reads and updates the same connection state and only behaves
correctly if it operates on the most recent version of the state.

C. Cloud Applications need Flexible Processing

Finally, much recent work has demonstrated that fixed
protocol offload is insufficient, as protocols and application
requirements evolve. Proposals range from offloading TCP
splicing functionality to accelerate proxies [22], extending
RDMA with application operations [23], to offloading RPC
protocols [24] and even application logic [25], [26]. But
currently much of this work is limited by and consequently
guided by the drawbacks of FPGA and NPU SmartNICs.

D. Technical Challenges

We identify three open technical challenges for flexible
network protocol offload in the cloud and data centers:
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Fig. 1. Kugelblitz system overview.

a) Wide and largely unexplored design space: First,
beyond SmartNICs based on NPUs and FPGAs the design
space is largely unexplored (at least in published work).
We originally set out to design a concrete flexible offload
architecture, but quickly realized that even making educated
guesses for good design directions choices is a challenge.

b) Manual protocol implementation does not scale:
When exploring different designs, re-implementing protocols
for different architectures requires significant effort. We found
that this is often even the case for small changes, such adding
or removing a few ALUs, or changing the depth of a pipeline.

c) Evaluating overall system efficiency: Finally, eval-
uation for protocol offload architectures is a challenge as
we generally need full system results to draw meaningful
conclusions. Offloading protocol processing from the CPU to
dedicated hardware will reduce host cycles by design. But
if the area and power required for the dedicated hardware
outweighs the overheads for the additional CPU cores then
this is a net loss. Even more so for comparing two offload
designs that require different processing on the host CPU.

III. KUGELBLITZ DESIGN

We seek to address these challenges with Kugelblitz in
four core components as shown in Figure 1. The abstract
protocol specifications are Kugelblitz’s programming model
for architecture-agnostic implementation of network offloads.
Our hardware configurations are the programming interface
for specifying concrete hardware architecture design points in
Kugelblitz. The hardware generator generates full RTL im-
plementations from hardware configurations provided as input.
Finally, the protocol compiler creates a runtime configuration
implementing the specified protocol offload on the specified
hardware configuration.

With this architecture, Kugelblitz aims to enable efficient
and systematic exploration of the design space for flexible
offload. We can quickly generate full RTL implementations for
different architecture configurations without laborious manual
implementation. Next, by decoupling protocol implementation
from architecture, Kugelblitz enables rapid and systematic
”apples-to-apples” comparisons of different architectures for
a reference corpus of protocols implemented once.

The Kugelblitz hardware architecture integrates into existing
NICs as a ”bump in the wire”, interposing between the
Ethernet MAC and the regular NIC logic. Kugelblitz can
inspect, modify, and drop packets from the network before



passing them to the NIC, and vice versa for outgoing packets.
Microsoft Azure uses a similar architecture with their Catapult
FPGAs for implementing network virtualization and manage-
ment [5]. We leave DMA integration, which would enable even
broader offload functionality, as future work.

A. Protocol Specifications

Hardware-agnostic protocol specifications are essential for
effectively exploring the hardware design space. Our key de-
sign goal for this programming interface is to capture all neces-
sary protocol detail for the compiler without binding to specific
implementation choices. For example, while the LLVM [27]
intermediate representation is portable across many processor
architectures, it is inherently processor-centric and captures
implementation choices, e.g. by requiring sequential ordering
of instructions. We instead aim for abstractions that allow the
compiler to understand the specification at a semantic level
and leave maximal flexibility for implementation on a broad
range of different architectures.

To this end, we use a data-flow graph (DFG) abstraction
for protocol processing. DFGs only capture data dependencies
without enforcing additional ordering constraints, and as a
result explicitly expose parallelism. We specify protocols with
two separate DFGs, once for receive processing and one for
transmit. In addition, Kugelblitz protocols includes declara-
tions for elements keeping state across packets and allowing
software on the host (control plane) to configure processing.

1) State Declarations: Kugelblitz includes two types of
state elements: arrays and lookup tables. A protocol can
include multiple state elements or none at all.

Arrays declarations consist of a name, the element size, and
the number of elements. Kugelblitz protocols can read from
and write to arrays by index, as can the software control plane.
Only one read access followed by at most one write access
are allowed in each processing direction. For arrays with write
accesses, the semantics guarantee atomic operation between
read and write with regard to other packets.

Lookup tables translate a key to an index in the table, or
an error if the key is not present. The declaration comprises
a name, key length, and table size. Protocols can read lookup
tables, while writes are only possible from the control plane.
Lookup tables are typically combined with arrays of the same
size to translate the returned index into a value, but can also
be used separately if only the existence of a key is checked.

2) RX & TX Processing Graphs: Each protocol speci-
fication consists of two separate data-flow graphs, one for
receive and one for transmit. A Kugelblitz DFG specifies
the complete processing for an individual packet in the cor-
responding direction. Our semantics guarantee that packets
appear to be processed sequentially and in isolation, compiler
and architecture ensure this.

DFGs consist of nodes connected by directed edges indi-
cating data flow from one node to another. Each node can
have multiple inputs, a single output, and attributes specified
at declaration time. We represent data as bit vectors and each

Inputs Outputs Attributes

Conversions
Constant value value, bits
Slice value result offset, bits
Merge a, b, ... value
Zero Extend value result bits
Sign Extend value result bits

Compute
Unary operand result operation
Binary left, right result operation
Conditional/mux cond., t-value, f-value result

Input / Output
Read Packet result offset, length
Write Packet value offset, length
Read Control result register
Write Control value register

State
Table Lookup key index table
State Read index value memory
State Write index, value memory

TABLE I
KUGELBLITZ PROTOCOL DATA-FLOW GRAPH NODE TYPES.

edge is typed with the number of bits it carries. These types
are enforced in the compiler and all conversions are explicit.

Table I shows the 15 node types in Kugelblitz. To start
with, read packet extracts len bit from the packet at offset.
Read control provides access to the metadata specified as the
node attribute, such as the packet length. Packet and control
reads always access the original packet data and metadata even
when writes are present. Protocols modify outgoing packets
with the complementary write packet and write control. Write
control can additionally also indicate that the packet should
be dropped, the original version should be forwarded, or that
it should be sent out in the other direction (loopback). State
read and state write provide access to the element at index of
the array specified in the node attribute. Finally, Table lookup
takes the key as an input and searches the table specified in
the attribute, returning the index or a value indicating failure.

Most of the other node types are similar to prior data flow
graphs, so we omit a description here for brevity, except for
two: Slice extracts len bits from the input starting at offset.
Merge concatenates the bit vectors from all inputs.

B. Hardware Specifications

The second core abstraction in Kugelblitz are specifications
for hardware configurations that serve as inputs for the hard-
ware generator and the compiler.

1) Hardware Model: Our current design exclusively targets
spatial pipelines that combine ALUs, registers, and routing
elements, that each packet traverses in the same order. While
Kugelblitz hardware specifications do support completely
static pipelines where no runtime configuration is possible, the
main focus is on reconfigurable pipelines, where the operations
for each ALU as well as input/output routing are configured



at runtime. Such pipelines have proven successful at handling
high packet rates in programmable switches [6], [13], [20].

The Kugelblitz hardware model comprises a separate
pipeline for transmit and receive and a central pool for
memory elements, and the configuration reflects this structure.
The pipeline architecture combines a parser for extracting a
parallel vector of pipeline inputs per packet from the serial
stream of flits arriving from the network or NIC. From there,
packets traverse a sequence of parallel registers, ALUs and
routing elements. At the end, packets arrive at the de-parser,
which reassembles the modified packet and prepares it for
serialization into flits for transmission. Finally, for state mem-
ory array and lookup table elements, the pipeline configuration
specifies connection points and the separate state configuration
contains attributes such as memory capacity.

2) Pipeline Configuration: For each pipeline the configura-
tion specifies the parser and de-parser attributes, and lists the
registers, ALUs, and routing elements, and their connections.

In our initial design, we support a basic parser and de-parser
model. The parser extracts a prefix of configurable length from
the packet and routes it to a configurable group of registers
at the beginning of the pipeline, along with an additional
register for the packet length. Conversely, the de-parser takes
its inputs, from configurable registers at the end of the pipeline
and then serializes the packet. The de-parser inputs are the
(potentially) modified packet prefix of a configured maximal
length, length of the prefix to use, and offset and length of
the rest of the original packet that should be appended to the
prefix when serializing the updated packet.

Registers, ALUs and, routing elements are the main source
of flexibility in the Kugelblitz hardware model. Registers
break up the pipeline into individual stages. The pipeline
configuration contains a list of registers, with each register’s
bit width and the routing element where the register obtains its
input. ALUs perform the main data processing in Kugelblitz,
and have up to three inputs from routing elements, and a
single output. The hardware configuration for the ALU lists all
opcodes that it supports, and the runtime configuration selects
the specific opcode to use for each ALU. A routing element
selects one of multiple inputs to pass along to its output based
on its runtime configuration. For each routing element, the
configuration specifies a list of all possible inputs, registers,
ALUs, or state access units.

Within the pipeline we also configure three types of state
access units: table lookup, memory read, memory write. The
Table lookup unit configuration specifies the table to access
and a routing element providing the lookup key, and outputs
the index. The Memory read unit configuration specifies the
memory instance and a routing element for the address,
and outputs the value. Conversely, the memory write unit
configuration also includes a routing element for the value,
but does not generate an output.

The pipeline configuration is highly flexible, e.g. through
routing elements ALUs can obtain their inputs from registers,
state access units, or even other ALUs. ALUs can also span
multiple pipeline stages if inputs come from a different stage,
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Fig. 2. Kugelblitz hardware architecture.

in which case the instantiated ALU uses internal pipeline regis-
ters. Similarly, multiple ALUs can be chained without registers
in between, resulting in larger combinatorial components.

3) State Memory Configuration: Finally, the configuration
for state memory comprises a list of memory instances. For
each lookup table instance, the configuration specifies the
width of the key and size of the table memory, along with the
implementation strategy (currently we only support hardware
CAM) Each memory instance is configured by a width and size
of the memory. The control plane is responsible for initializing
and updating state memory instance contents.

C. Hardware Generator

The Kugelblitz hardware generator then takes a specific
hardware configuration specification and generates RTL for
use in either simulation or synthesis. We implement the
hardware generator in Chisel [28]. The generator comprises
implementations of individual Kugelblitz hardware compo-
nents with Chisel primitives, and leverages Scala for meta-
programming to combine components into a full RTL im-
plementation according to the input configuration. We make
extensive use of the Chisel parameter system to hierarchically
pass relevant subsets of the configuration into subsystems
and components. As Kugelblitz hardware configurations reflect
hardware structure, the generator first iterates over all elements
in the configuration and instantiates them, and then in a second
step connects them according to the configuration.

For routing elements and ALUs that need runtime configu-
ration, the hardware generator instantiates a register to hold
the configuration. The generator also creates infrastructure
to connect configuration registers to a management bus for
access from the control plane. State memory instances are
also connected to the same configuration bus. We expose this
configuration bus as memory mapped registers over PCIe. In
addition to the RTL, the hardware generator also produces an
address map that lists the addresses for all individual registers
and memory instances, as the concrete address layout depends
on the specific hardware configuration.

Figure 2 shows how the generated components for pipelines
and memory integrate into the complete architecture. Packets
enter Kugelblitz through a (typically very wide) AXI stream
from either the Ethernet MAC or the NIC. From there, the
de-serializer stores them in the packet buffer and passes the



flits along to the parser. When packets exit the de-parser,
the serializer reassembles the prefix, based on the control
information also arriving with the packet, with the original
packet in the packet buffer before streaming out the flits via
the outgoing AXI stream. We expose the configuration via an
AXI-lite interface externally connected to PCIe via vendor IP.

D. Protocol Compiler

Our compiler takes a protocol specification and a hard-
ware configuration as an input, and generates the necessary
runtime configuration for the specific hardware to implement
the protocol. The compiler first internally builds a graph
representation of the hardware pipeline represented by the
configuration. Now the compilation is essentially a graph
embedding/search problem of finding a feasible assignment
of operations to ALUs, state elements to memory instances,
along with a configuration of routing elements to respect the
data flow. The I/O nodes are constrained to be assigned to
fixed registers at the beginning and end of the pipeline. This
mapping is not always feasible depending on hardware and
protocol specification. Further, the combinatorial search space
for mappings is typically large depending on the configuration.

Our work-in-progress prototype uses an SAT solver to
search for feasible mappings. Support for memories is cur-
rently still incomplete.

E. Fixed Hardware Configuration Generator

We also implement a converter to generate fixed hardware
configurations from a protocol specification. These fixed con-
figurations are primarily intended to serve as baselines to
evaluate the cost of flexibility compared to fixed architectures.

This converter takes the data flow graph and builds up a
hardware configuration that matches the structure of the data
flow graph. It instantiates an ALU for each compute node
only supporting the corresponding operation. For each edge,
we instantiate a register, and set up routing elements with only
one option for routing. Finally, we create memory instances
for each state declaration and also connect access units in the
pipeline. The resulting hardware configuration only requires
runtime-configuration for initializing state memories, all other
configuration registers are omitted when generating RTL.

IV. PRELIMINARY EVALUATION

We now describe our evaluation methodology for Kugel-
blitz, and give a few initial results to demonstrate feasibility.

A. Goals

For a convincing evaluation of Kugelblitz we need to mea-
sure three metrics with a range of combinations of protocols
and hardware configurations. First, we are primarily inter-
ested in end-to-end performance, including overall throughput,
latency, and CPU utilization with multiple connected hosts.
Next, we need results from hardware synthesis, especially the
required chip area and timing analysis confirming how fast
the design can run. Finally, we want to evaluate overall system
power consumption, including host and generated architecture.

B. Methodology

Achieving these evaluation goals is a challenge. For an
ideal evaluation we would tape out each design, and deploy
the chip on a board in real servers. Unfortunately, this is not
conducive to a broad design exploration. Instead, we rely on
a combination of full system simulations, VLSI synthesis and
timing as well as power analysis, and FPGA deployment.

For simulation, we have obtained the SimBricks [29] mod-
ular simulation framework from the authors, and integrate
an RTL simulation of Kugelblitz into SimBricks. SimBricks
combines this simulator with other simulators such as gem-5
into a full end-to-end system, including cycle-accurate syn-
chronization to enable meaningful performance measurements.
We use the results from the timing analysis of the VLSI
synthesis to set the simulation frequency, and then measure
overall system performance. Finally, we use this simulation to
also generate signal activity files for VSLI power analysis.

To measure realistic power results for the host CPU, we also
deploy Kugelblitz configurations on a NIC with a very large
Xilinx UltraScale+ FPGA. We also use this setup for testing
and to validate simulation results where possible.

C. Early Results

At this point, we have working end-to-end simulation of
Kugelblitz and have implemented two protocol offloads: IPv4
network address translation and a TCP firewall. Because of
incomplete state memory support in the compiler, we have so
far only evaluated fixed hardware configuration end-to-end. In
addition, we have synthesized configurations for our FPGA
board in combination with the Corundum open source FPGA
NIC [30]. We also have initial VLSI synthesis results.

V. CONCLUSIONS AND FUTURE WORK

Kugelblitz enables rapid and principled design exploration
for reconfigurable network protocol offload. The hardware
generator automatically generates full RTL implementations
from high-level hardware specifications. By decoupling pro-
tocol implementation from hardware architecture, we can
automatically combine multiple protocol specifications with
a broad range of architectures. We have also outlined a
methodology for evaluating end-to-end performance, power,
and hardware cost, without the need for a full tape out. Our
early stage results demonstrate the feasibility of our approach.

Naturally, much work remains to be done and there are
many open challenges. In the compiler we anticipate scalabil-
ity challenges when mapping large complex protocols to large
hardware configurations, because of the large search space. Be-
sides our SAT-based mapping we plan to explore other search
algorithms. We would also like to explore program synthesis
techniques for more flexible compilation, where there is no
1-to-1 correspondence between nodes in the protocol and in
the hardware graphs. A second open challenge is integrating
DMA into Kugelblitz, to overcome the limits of the bump-in-
the-wire architecture and support a broader range of offloads.
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