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Abstract. Reactive synthesis and supervisory control theory both pro-
vide a design methodology for the automatic and algorithmic design
of digital systems from declarative specifications. The reactive synthe-
sis approach originates in computer science, and seeks to synthesise a
system that interacts with its environment over time and that, doing
so, satisfies a prescribed specification. Here, the distinguishing feature
when compared to other synthesis problems in computer science is that
the interaction is temporal in that it explicitly refers to a sequence of
computation cycles. Supervisory control originates in control theory and
seeks to synthesise a controller that – in closed-loop configuration with a
plant – enforces a prescribed specification over time. The distinguishing
feature compared to other branches of control is that all dynamics are
driven by discrete events as opposed to continuous physical signals.

While both methods apparently are closely related, the technical de-
tails differ significantly. We provide a formal comparison which allows
us to identify conditions under which one can solve one synthesis prob-
lem using methods from the other one; we also discuss how the resulting
solutions compare. To facilitate this comparison, we give a unified intro-
duction to reactive synthesis and supervisory control and derive formal
problem statements and a characterisation of their solutions in terms
of ω-languages. Recent contributions to the two fields address different
aspects of the respective problem, and we expect the formal relationship
identified in this paper to be useful in that it allows the application of
algorithmic techniques from one field in the other.
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Introduction

Reactive synthesis (RS) addresses the systematic design of digital systems that dy-
namically interact with their environment by alternating input readings from dis-
crete variables and output assignments to discrete variables. The progress of time
is modelled by successive computation cycles and the current output assignment is
considered to depend on all past input readings. Thus, the digital system imposes
a causal feedback on the environment and it is therefore referred to as a reactive
module. In practical applications, a reactive module is realised as a finite automa-
ton. The synthesis problem here is to construct a reactive module realized by a
finite automaton that exhibits a behaviour that satisfies some prescribed specifi-
cation. The problem of reactive synthesis was first proposed by [Church, 1957]
with solutions provided by [Büchi and Landweber, 1969], and [Rabin, 1972]. It
is since then an active field of research in computer science, addressing temporal
logic specifications (e.g. [Pnueli and Rosner, 1989, Emerson and Jutla, 1991, Maler
et al., 1995,Thomas, 1995]), partial observation (e.g. [Kupferman and Vardi, 2000]),
stochasticity (e.g. [de Alfaro and Henzinger, 2000,de Alfaro et al., 2007,Chatterjee
and Henzinger, 2012]), and, most relevant for the present report, environment as-
sumptions (see [Bloem et al., 2014] and [Brenguier et al., 2017] for an overview). For
a comprehensive introduction to the field see e.g. [Thomas, 1995,Finkbeiner, 2016].

Supervisory Control Theory (SCT) is a branch of control theory that also ad-
dresses the systematic design of digital systems. It models systems as discrete-event
systems — dynamical systems in which relevant variables are of finite range and
in which changes of their respective values are referred to as events. The synthesis
problem in control theory is to construct a controller that provides causal feedback
to a given plant such that the closed-loop system satisfies a prescribed specification.
For supervisory control, the plant is a discrete-event system and the causal feedback,
referred to as the supervisor, maps the past event sequence to a control pattern in
order to restrict the plant behaviour. Supervisory control theory was originally pro-
posed by [Ramadge and Wonham, 1987] and now is an established field of research.
Topics addressed include partial observation (e.g. [Lin and Wonham, 1988,Cai et al.,
2015, Yin and Lafortune, 2016]), robustness (e.g. [Cury and Krogh, 1999, Bourdon
et al., 2005]), modularity (e.g. [Ramadge and Wonham, 1989,de Querioz and Cury,
2000]), hierarchical control architectures (e.g. [Zhong and Wonham, 1990,Wong and
Wonham, 1996, Schmidt et al., 2008]), fault-tolerance (e.g. [Wen et al., 2008, Paoli
et al., 2011, Moor, 2016]), and, most relevant for this report, infinite behaviours
(e.g. [Ramadge, 1989,Thistle and Wonham, 1994b]).

Both design methodologies seek to synthesize a causal feedback map that operates
on a finite alphabet and that satisfies a formal specification. When used to synthe-
size solutions for particular instances of a given synthesis problem, both techniques
appear to be closely related. However, the technical details differ significantly. In
this paper we provide a formal comparison, allowing us to identify conditions un-
der which one can solve one synthesis problem via the respective other one and we
discuss how the resulting solutions compare. To facilitate this comparison, we give
a concise introduction to RS and SCT and derive formal problem statements and a
characterisation of their solutions in terms of ω-languages. Recent contributions to
the two fields focus attention on different aspects of the respective problem, and we
expect the formal relationship identified in this paper to be useful in that it allows
the application of algorithmic techniques from one field to the other.
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Scope Regarding reactive synthesis, our study considers a variant that explicitly
addresses assumptions on the environment behaviour, as these assumptions corre-
spond to the prescribed plant behaviour in supervisory control. For ease of compar-
ison, we consider both the assumption and the specification to be given abstractly
as ω-languages —formal languages of infinite words— and for algorithmic effective-
ness, as ω-regular languages which allow automata-based representations. For ease
of illustration, we restrict attention to specifications given as deterministic Büchi
automata. While deterministic Büchi automata capture only a strict subset of ω-
regular languages, it allows us to keep the notation and algorithms simple; our com-
parisons can be extended to the full class of all ω-regular specifications. While many
papers on RS use specifications given in linear temporal logic (LTL) [Pnueli, 1977],
it is well understood how such formulae can be translated into ω-automata [Vardi
and Wolper, 1986,Safra, 1988].

Regarding supervisory control, most of the literature, including [Ramadge and
Wonham, 1987], refers to ∗-languages as their base model, i.e., formal languages of
finite words. In this setting, synthesis can enforce safety properties while maintain-
ing liveness properties present in the plant behaviour. This contrasts the design of
reactive modules where the synthesis of liveness properties is conceived a relevant
challenge. We therefore conduct our study for a branch of supervisory control that
addresses the synthesis problem for ω-languages; see [Ramadge, 1989, Thistle and
Wonham, 1994b, Thistle, 1995], where the authors explicitly relate their work to
Church’s problem. For a comprehensive introduction to SCT for ω-languages see
also [Moor, 2017].

Contribution Within this perspective of our choice, our contribution is threefold:

(I) We show that one can solve the considered RS problem using SCT to obtain
a reactive module which will not falsify the assumptions on the environment.

(II) We show that one can solve the considered synthesis problem from SCT using
RS for restricted subclasses of plant (resp. environment) behaviours.

(III) We establish equivalence of the two synthesis problems regarding solvability
for the subclasses considered in (II).

The considered RS problem is formalised by an implication style logic formula,
i.e., the specification is such that if the assumptions are satisfied, then a guarantee
shall be provided. Hence, a valid solution to the synthesis problem might falsify
the assumption. SCT seeks to avoid this issue by requiring that valid solutions
to the synthesis problem need to be non-conflicting, i.e., at any point both the
plant and the supervisor can fulfil their liveness properties eventually. Due to this
additional property of solutions, our transformation in result (I) achieves reactive
modules which do not falsify the assumption. The reverse transformation (result
(II)), however, only holds if the computed reactive module returns solutions which
are non-conflicting and hence a solution to the initial SCT synthesis problem. We
identify three sufficient conditions for the latter to hold, namely (a) topologically
closed , (b) topologically closed input/output, and (c) strongly non-anticipating in-
put/output plant (resp. environment) behaviours. In the course of establishing
result (II)(c), we identify a close connection between strongly non-anticipating in-
put/output plant behaviours (see [Moor et al., 2011]) and non-falsifiable environment
assumptions (see e.g. [Brenguier et al., 2017]2) which ensure an almost identical form

2 In [Brenguier et al., 2017], Sec. 3, this well known phenomenon in reactive synthesis is called
Win-under-Hype.
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of non-conflictingness of solutions and were derived independently in both commu-
nities.

Both synthesis algorithms are formalized as fixed-points in the µ-calculus. The
RS algorithm uses a 3-nested fixed-point while SCT synthesis amounts to a 4-nested
fixed-point iteration. Result (I) clarifies that this additional fixed-point iteration
indeed generates an additional property on the solution. Notably, this additional
property cannot be encoded as a ω-regular property and hence, the 4-nested fixed-
point from SCT cannot result from a translation of an LTL synthesis problem into
a µ-calculus formula. Regarding result (II), we may expect some computational
benefits as a trade-off when imposing conditions (a)-(c) on the synthesis problem
in SCT. Moreover, we show that for topologically closed plant (resp. environment)
behaviours with alternating inputs and outputs both fixed-points collapse to the
same 2-nested fixed-point. Using result (III)(b), the latter establishes equivalence
of both algorithms in this case.

Related Work The question of how to synthesize solutions to an RS problem which
do not falsify the assumptions has recently gained some attention from the reactive
synthesis community, see e.g. [Chatterjee and Henzinger, 2007, Chatterjee et al.,
2008,Chatterjee et al., 2010,Bloem et al., 2015,Brenguier et al., 2017]. Interestingly,
it turns out that all these synthesis methods in general result in different solutions
to a given reactive synthesis problem compared to our solution via result (I) based
on the SCT perspective; see Section 5 for a detailed discussion.

Our study complements the recent comparison between RS and SCT by [Ehlers
et al., 2017]. There, the authors focus attention on SCT over ∗-languages and discuss
maximal permissiveness of a solution to the synthesis problem. This contrasts our
choice of ω-languages, where a maximally permissive solution fails to exist in general
and, taking a perspective common in RS, we resort to computing some solution
provided that one exists. Moreover, [Ehlers et al., 2017] encode the requirement
of a non-conflicting closed-loop configuration, as it is commonly discussed in the
context of SCT, by a specific CTL formula and solve the synthesis problem by a
specialised variant of RS. In contrast, to obtain our result (II), we address a non-
conflicting closed loop by structural assumptions on the problem parameters which
imply that for the corresponding RS problem the assumptions are non-falsifiable by
any reactive module.

Although in general there exists no maximally permissive solutions to the syn-
thesis problems discussed in this report, supervisory control theory for ω-languages
provides a tight upper bound on all achievable closed-loop behaviours; see [Thistle
and Wonham, 1994b]. In this regard our discussion relates to recent work in the
reactive synthesis community which computes maximally permissive solutions using
fair liveness requirements on edges to model liveness within these maximal solutions,
see e.g. [Chatterjee et al., 2008,Klein et al., 2015].

Outline This report is structured as follows. After recalling necessary notation
in Section 1, we give a concise introduction to reactive synthesis with environment
assumptions and to supervisory control theory of ω-languages in Sections 2 and 3,
respectively, including formal problem statements and a characterisation of their
solutions in terms of ω-languages. The latter characterisation facilitates our formal
comparison in Section 4, where our main technical results are obtained by (I) –
Theorem 2 (p. 27), (II) – Theorem 3 (p. 30), Theorem 4 (p. 33), and Theorem 5
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(p. 36), and (III) – Corollary 1 (p. 32), Corollary 2 (p. 33), and Corollary 3 (p. 36).
The qualitative discussion of recent approaches to reactive synthesis that propose
alternative means to handle environment assumptions in Section 5 concludes our
study. Technical propositions and proofs are organised in the Appendices A, B
and C.
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1. Preliminaries

We introduce common terminology and recall some elementary facts regarding for-
mal languages, automata and fixpoint calculus. A general introduction to these
topics can be found in e.g. [Hopcroft and Ullman, 1979,Thomas, 1990,Bradfield and
Stirling, 2006].

1.1. Formal Languages

Let Σ be a finite alphabet. The set of all ∗-words s = σ1σ2 · · ·σn, n ≥ 1, σi ∈ Σ
for all i, 1 ≤ i ≤ n, is denoted Σ+. The empty string is denoted ε, ε 6∈ Σ, and we
write Σ∗ := Σ+ ∪̇ {ε}. An ω-word over Σ is an infinite sequence α = σ1σ2σ3 · · · of
symbols where we write α(i) := σi ∈ Σ to denote the i-th symbol, i ∈ N. The set of
all ω-words over Σ is denoted Σω. We define Σ∞ = Σ∗ ∪ Σω. The subsets L ⊆ Σ∗

and L ⊆ Σω are called the ∗- and ω-languages over Σ, respectively.

For two words s ∈ Σ∗ and t ∈ Σ∞ we write st ∈ Σ∞ for the concatenation. As
with all other operators in this paper, we take point-wise images for an extension
to languages over Σ, e.g., we have LM = {st | s ∈ L, t ∈ M} for L, M ⊆ Σ∗. For
notational convenience, let L0 := {ε}, Li+1 := (Li)L and L∗ := ∪{Li | i ∈ N }, where
L ⊆ Σ∗, L 6= ∅. Likewise, let Lω := { s1s2s3 · · · ∈ Σω | ∀ i ∈ N : si ∈ L }.

If, for two words s ∈ Σ∗ and r ∈ Σ∞ there exists t ∈ Σ∞ such that st = r, we
say that s is a prefix of r, and we write s ≤ r. If, in addition, s 6= r, we also write
s < r. All prefixes of a word t ∈ Σ∞ are denoted pfx t ⊆ Σ∗. For L ⊆ Σ∗, we
have L ⊆ pfxL, and, if equality holds, we say that L is prefix closed. Closedness
of ∗-languages is retained under arbitrary union and under arbitrary intersection.
Moreover, we say that L is relatively closed w.r.t. M ⊆ Σ∗, if L = (pfxL) ∩ M .

The limit limL of L ⊆ Σ∗ contains all words α ∈ Σω which have infinitely many
prefixes in L and we define cloL := lim pfxL as the topological closure of L ⊆ Σω.
An ω-language L ⊆ Σω is said to be topologically closed if L = cloL and relatively
topologically closed w.r.t. M ⊆ Σω, if L = (cloL) ∩ M. This notion of closedness
indeed defines a topology, i.e., ∅ and Σω are closed, finite unions of closed ω-languages
are closed, and arbitrary intersections of closed ω-languages are closed.

For Ψ ⊆ Σ, the natural projection pΨ of a word s ∈ Σ∗ is defined by removing
all symbols not from Ψ, i.e., pΨ ε = ε; and pΨ(sσ) = pΨ(σ) for all σ ∈ Ψ, s ∈ Σ∗;
and pΨ(sσ) = pΨ s for all σ ∈ Σ−Ψ, s ∈ Σ∗. For the projection pΨ α of an ω-word
α ∈ Σω, we consider the set pΨ pfxα. Either there exists a unique maximal-length
element r ∈ pΨ pfxα, and we define pΨ α := r ∈ Ψ∗. Or, we have lim pΨ pfxα = {β}
for some β ∈ Ψω, and we let pΨ α := β ∈ Ψω. This concludes the definition of the
operator pΨ on Σ∞.

1.2. Automata

An automaton over the alphabet Σ is a tuple M = (Q, Σ, δ, Qo) with state set Q,
transition relation δ ⊆ Q × Σ × Q and set of initial states Qo ⊆ Q. M is called
finite if Q is finite. We identify δ with its respective set-valued map δ : Q× Σ Q
where δ(q, σ) := { q′ | (q, σ, q′) ∈ δ }, and with the common inductive extension to a
word-valued second argument s ∈ Σ∗ by δ(q, ε) := {q} and δ(q, sσ) := δ( δ(q, s), σ).
Likewise, we denote the set of enabled events Enab(q) := {σ ∈ Σ | δ(q, σ) 6= ∅ }
for q ∈ Q. If |Qo| ≤ 1 and |δ(q, s)| ≤ 1 for all q ∈ Q, s ∈ Σ∗, then M is said
to be deterministic. For deterministic automata, we interpret δ as partial function
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and write δ(q, s) = q′ and δ(q, s)! as short forms for δ(q, s) = {q′} and δ(q, s) 6= ∅,
respectively. A state q ∈ Q is reachable if there exists a word s ∈ Σ∗ such that
q ∈ δ(Qo, s). If all states are reachable, we say that the automaton M is reachable.
Likewise, a state q ∈ Q does not deadlock if there exists σ ∈ Σ such that δ(q, σ) 6= ∅.

We define L = L∗(M) := { s ∈ Σ∗ | δ(Qo, s) 6= ∅ } and L = Lω(M) := {α ∈
Σω | pfxα ⊆ L∗(M) } as the ∗- and ω-languages generated by M , respectively, which
are prefix closed and topologically closed, respectively. Any finite automaton M
can be transformed to a finite deterministic automaton that generates the same
languages.

Generated languages can be restricted by acceptance conditions. For ∗-languages,
we refer to a set of final states F ⊆ Q and the extended automaton tuple M =
(Q, Σ, δ, Qo, F ), to define the accepted ∗-language of M by L∗m(M) := { s ∈
Σ∗ | δ(Qo, s) ∩ F 6= ∅ }. In this case, a state q ∈ Q is called coreachable if there
exists a word s ∈ Σ∗ such that δ(q, , s) ∩ F 6= ∅. The automaton M is coreachable if
all states are coreachable. If M is reachable and coreachable, it is called trim. Reg-
ular ∗-languages are those that are accepted by a finite automaton, where requiring
the automaton to be deterministic is not restrictive.

For ω-languages, we refer to an acceptance condition F and the extended au-
tomaton tuple M = (Q, Σ, δ, Qo, F). We begin with the common Büchi acceptance
condition, where F ⊆ Q and where a run π over M to be accepted must visit
F infinitely often. Technically, a run π over M is an infinite sequence of states
q1q2q3 · · · ∈ Qω and it corresponds to the ω-word α = σ1σ2σ3 · · · ∈ Σω, if q1 ∈ Qo

and (qi, σi, qi+1) ∈ δ for all i ∈ N. The set of states that occur infinitely often in π is
denoted (Inf π) and, hence, π is accepted if (Inf π)∩F 6= ∅. The accepted ω-language
Lω

m(M) consists of all words α ∈ Σω for which there exists a corresponding accepted
run over M . For deterministic Büchi automata, we have Lω

m(M) = lim L∗m(M).

More general forms of acceptance conditions used in this paper occur with gen-
eralized Büchi automata and parity automata. For the former, we have that F =
{F1, F2, . . ., Fk} is a family of state sets Fi ⊆ Q, and a run π is accepted if (Inf π) ∩
Fi 6= ∅ for all i ∈ {1, . . ., k}. For parity automata, the acceptance condition is given
by a set of colours F = {C1, C2, . . ., Ck} which is defined by a colouring function
c : Q→{1, ..., k}, s.t. Ck = {q ∈ Q | c(q) = k}, and a run π is accepted if the
highest colour visited infinitely often is even, i.e., if max Inf c(π) is even. As with
Büchi automata, the set of ω-words corresponding to accepted runs is referred to
as the accepted ω-language. Referring to an acceptance condition, we say that the
automaton M is trim if for every state q there exists an accepted run that passes q
at least once. The class of ω-languages that is accepted by some finite Büchi, gen-
eralized Büchi or parity automaton is referred to as the ω-regular languages. The
class of ω-languages that is accepted by some deterministic finite Büchi automaton
is a strict subset of the ω-regular languages while any ω-regular language is accepted
by some deterministic parity automaton.

1.3. Two-Player Games

Let Σ = Σ0 ∪ Σ1 be a disjoint composition of symbols and let M = (Q0 ∪Q1, Σ0 ∪
Σ1, q0, γ

0∪γ1, F) be an automaton s.t. q′0 ∈ Q0, γ0 ⊆ Q0×Σ0×Q1, γ1 ⊆ Q1×Σ1×
Q0 and T 1 ⊆ Q, where Q = Q0 ∪ Q1. Then the tuple H = (Q0, Q1,Σ0,Σ1, γ0, γ1)
defines the turn-based two player game graph induced by M , where Ql, Σl and γl

with l ∈ {0, 1} are interpreted as the player l state set, alphabet and transition set,
respectively. Given a Büchi (reps. parity) acceptance condition F , we call the tuple
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(H,F) a Büchi (resp. parity) game. Any run π of M is called a play over H and π
is called a winning play for (H,F) if π ∈ Lω

m(M).
Given a game graph H, a strategy for player 1 is a function f1 : (Q0 ·Q1)+ → Σ1;

it is memoryless if f1(ν · q1) = f1(q1) for all ν ∈ (Q0 ·Q1)∗ ·Q0 and all q1 ∈ Q1. A
play π is compliant with f1 if for all k ∈ N with π(k) ∈ Q1 holds that π(k + 1) =
δ1(π(k), f1(π|[0,k])). The strategy f1 is a winning strategy for player 1 in the game
(H,F) if all plays compliant with f1 are winning for (H,F).

1.4. Fixpoint Calculus

Algorithmic solutions to synthesis problems are commonly stated as iterations of
monotone operators defined on the state set of an automaton computed from the
problem description. The purpose of the iteration is either to successively gain
“good” states or to successively remove “bad” states. In both cases, the iteration
stops when a fixpoint of the respective operator is attained. Since the subsets of
the state set form a complete lattice and since the operators under consideration
are monotone, the Tarski-Knaster-Theorem implies that the fixpoints also form a
complete lattice, and, in particular, that a greatest fixpoint and a least fixpoint
uniquely exist. A common formal framework for algorithms which can be expressed
as fixpoints on transition systems is the modal µ-calculus [Kozen, 1983,Emerson and
Jutla, 1991]. For the purpose of this paper, we pragmatically use notational conven-
tions from the µ-calculus since this enables a compact representation of synthesis
algorithms.

Let Q denote a finite set and consider a monotone operator f , i.e., f(P ′) ⊆
f(P ′′) ⊆ Q for all P ′ ⊆ P ′′ ⊆ Q. From finiteness of Q it follows that f(∪{Pi | i ∈
N }) = ∪{ f(Pi) | i ∈ N }, where Pi ⊆ Pi+1 ⊆ Q for all i ∈ N. Likewise f(∩{Pi | i ∈
N }) = ∩{ f(Pi) | i ∈ N }, where Pi+1 ⊆ Pi ⊆ Q. The latter two properties are
referred to as ∪-continuity and ∩-continuity, respectively.

As mentioned above, monotonicity of f implies the unique existence of the least
fixpoint. By ∪-continuity, the least fixpoint equals ∪{f i(∅) | i ∈ N } and can be
obtained by the iteration P1 := ∅, Pi+1 := Pi ∪ f(Pi). Note that for the finite
base set Q under consideration, monotonicity implies that the fixpoint is attained
for some finite i ∈ N. Likewise, the iteration P1 := Q, Pi+1 := Pi ∩ f(Pi) can be
used to obtain the greatest fixpoint.

As a µ-calculus formula, the least fixpoint of f is denoted µP.f(P ), whereas the
greatest fixpoint is denoted νP.f(P ). Now consider an operator g that depends on
multiple set-valued parameters, e.g., g(P ′, P ′′) ⊆ Q for P ′, P ′′ ⊆ Q. Assuming that
g is monotone in its first argument, the formulas µP ′.g(P ′, P ′′) and νP ′.g(P ′, P ′′)
are well defined, with evaluations depending of the second parameter P ′′. Pro-
vided that g is also monotone in its second argument, the respective fixpoints are
monotone in P ′′. In this case, nested µ-calculus formulae are well defined, e.g.
νP ′′.µP ′.g(P ′, P ′′) evaluates to the greatest fixpoint of µP ′.g(P ′, P ′′), interpreted
as an expression in terms of P ′′.

In typical applications, the multi-argument operator g is given as an expression
using boolean set operators and simple monotone operators f that are related to the
transition structure of an automaton. Care must be taken that the overall expression
satisfies relevant monotonicity requirements. For the purpose of this paper, we refer
to µ-calculus formulae that are known to be well formed and we therefore omit a
deeper discussion of this issue.
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2. Reactive Synthesis

This section gives a concise introduction to reactive synthesis with environment
assumptions, derives a formal problem statement, and a characterisation of its so-
lutions in terms of ω-languages. For illustration purposes, we recall an algorithmic
solution of the synthesis problem for the specific case where all relevant ω-languages
are provided as deterministic Büchi automata.

2.1. Reactive Modules

A reactive module is a device that reads the values of input variables in order to assign
values to output variables, and that, over time, does so once in every computation
cycle. A reactive module is commonly represented as a function r that maps the
sequence of past input readings s ∈ U+, to the current output assignment y ∈ Y ,
i.e,

r : U+→Y . (1)

Considering infinitely many computation cycles, the interaction of a reactive module
with its environment generates an infinite sequence α ∈ (UY )ω of alternating input
readings and output assignments. Therefore, the behaviour of a reactive module
r : U+→Y is defined as the ω-language L of all sequences α that comply with r over
all computation cycles :

L := {α ∈ (UY )ω | ∀ s ∈ (U ∪ Y )∗, y ∈ Y : sy < α ⇒ y = r(pU s) } . (2)

Note that, by construction, the above behaviour is topologically closed (see also
Lemma 1). If, in addition, r is implemented as a finite automaton, then L is ω-
regular.3

For our subsequent discussion we will eliminate the explicit reference to the reac-
tive module r : U+→Y by utilizing a more direct characterization of those languages
L that qualify for a representation by Eq. (2). Referring to J. C. Willems behavioural
systems theory [Willems, 1991], we adapt the notion of input-output systems to the
special case of topologically closed languages and to the notation used in the present
paper.4

Definition 1. Given two ω-languages L,M ⊆ (UY )ω or L,M ⊆ (Y U)ω of alter-
nating inputs and outputs, with non-empty ranges U and Y , U∩Y = ∅, respectively,
we say that

(i) U is a locally free input for L if
∀s ∈ pfxL, u′, u′′ ∈ U : su′ ∈ pfxL ⇒ su′′ ∈ pfxL ;

(ii) U is a relatively locally free input for L w.r.t. M if
∀s ∈ pfxL ∩ pfxM, u′, u′′ ∈ U : su′ ∈ pfxL ⇒ su′′ ∈ pfxL ;

3 Typical means of implementation considered in the literature are finite Mealy automata with
input alphabet U and output alphabet Y .

4The original literature [Willems, 1991] addresses the time axis R and Z, so there is no exact tech-
nical match to the situation presented here. However, considering topologically closed languages
the concepts are closely related: our notion of a locally free input corresponds to Willems’ notion
of a free input that does not anticipate the output, Definitions VIII.1 and VIII.4; our notion of
the output to locally process the input corresponds to Willems’ definition of the output processes
the input, Definition VIII.3.
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(iii) the output locally processes the input if
∀s ∈ pfxL, y′, y′′ ∈ Y : sy′ ∈ pfxL, sy′′ ∈ pfxL ⇒ y′ = y′′ . �

The above notion of inputs and outputs enables the following characterization of
behaviours associated with some reactive module.

Lemma 1. Let U and Y , U ∩ Y = ∅, denote the non-empty ranges of inputs and
outputs, respectively. For a reactive module r : U+→Y , the associated behaviour
L ⊆ (UY )ω defined by Eq. (2) is non-empty and possesses the following properties:

(RM1) L is topologically closed,

(RM2) U is a locally free input for L, and

(RM3) the output locally processes the input.

Vice versa, if a non-empty language L ⊆ (UY )ω satisfies conditions (RM1) – (RM3),
then there exists a reactive module r : U+→Y with associated behaviour L s.t. r(v)
is the unique element of the singleton set

{ y ∈ Y | ∃ s ∈ (UY )∗U . pU s = v ∧ sy ∈ pfxL} (3)

for v ∈ U+. �

2.2. Problem Statement

The problem commonly referred to as reactive synthesis is about the systematic
design of a reactive module, henceforth also referred to as the system, that provides
a formal guarantee G ⊆ (UY )ω. In the basic setting of reactive synthesis, it is
assumed that any input symbol may be generated by the environment at any time
and that, in turn, the environment accepts any output symbol generated by the
system. Then, properties (RM2) and (RM3) of L ensure that the interaction of
the system with its environment can be continued for infinitely many computation
cycles, i.e., the two components do not deadlock. Thus, we end up with an ω-word
α ∈ L. In turn, the system to provide the guarantee G amounts to the language
inclusion specification L ⊆ G. The crucial point here is that G is assumed to be
ω-regular, but, in contrast to L, in general fails to be topologically closed.

In many applications, an arbitrary behaviour of the environment is considered
unrealistic, and one explicitly accounts for formal assumptions imposed on the en-
vironment. For the purpose of our discussion, we parametrise such assumptions by
an ω-language A ⊆ (UY )ω to express that (i) after each computation cycle the en-
vironment generates an input symbol u ∈ U that complies with A in the sense that
su ∈ pfxA, where s ∈ (UY )∗ denotes the word generated so far, and that (ii) over
infinitely many computation cycles an ω-word α ∈ A is generated. For the system
and the environment not to deadlock we refer to assumption (i), (RM2) and (RM3),
and formally require that

∀s ∈ (pfxA) ∩ (pfxL) . ∃σ ∈ U ∪ Y . sσ ∈ (pfxA) ∩ (pfxL). (4)

Regarding the guarantee G to be provided by the system, we refer to assumption (ii)
and require that L ⊆ A → G := ((U ∪Y )ω −A) ∪ G. This amounts to the following
problem statement for the synthesis of a reactive module.
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Problem 1 (Reactive Synthesis under Environment Assumptions). Given two non-
empty finite sets of input symbols U and output symbols Y , U ∩ Y = ∅, an environ-
ment assumption A ⊆ (UY )ω and a guarantee G ⊆ (UY )ω, the reactive synthesis
problem RS[U, Y, A, G] asks to either construct a system such that the associated
behaviour L does not deadlock with A, see Eq. (4), and such that

∅ 6= L ⊆ A → G , (5)

or, to verify that no such system exists. �

Note that for A = ∅ the upper bound A → G degenerates and the specification
becomes L ⊆ (UY )ω. Thus, in our discussion of the above problem we may whenever
convenient assume that A 6= ∅ and, likewise, G 6= (UY )ω. Moreover, we have that
A → (G ∩ A) = A → G, and, hence, we can restrict our discussion without loss of
generality to the case where ∅ 6= G ⊆ A ⊆ (UY )ω. Finally, we can chooseA = (UY )ω

to recover the basic setting without assumptions from our formal problem statement,
i.e., in this case, Eq. (4) is trivially satisfied and the system to provide the guarantee
collapses to the simple inclusion L ⊆ G.

With Lemma 1, the problem of reactive synthesis amounts to the construction of
a non-empty subset L ⊆ A → G that satisfies (RM1) – (RM3) and that does not
deadlock, Eq. (4), or to the verification that no such subset exists. Henceforth, we
may refer to a qualifying behaviour L as a solution of the synthesis problem. For
practical reasons, one may additionally assume that the parameters A and G are
ω-regular and, in turn, ask for an ω-regular solution L to derive a finite automaton
realisation of the reactive module r. We conclude this section by commenting on
how our technical problem statement relates to the literature.

Remark 1. The problem of reactive synthesis is more commonly formalized by using
specifications given in linear temporal logic (LTL) over a set of atomic propositions
U ∪ Y (see, e.g., [Pnueli and Rosner, 1989]). Such an LTL formula ϕ over U ∪ Y
can be translated into a specification language G ⊆ (UY )ω with U = 2U and Y =
2Y by constructing a Büchi automaton from ϕ, and then, for algorithmic reasons,
determinizing this automaton to obtain a deterministic Rabin or Parity automaton.
The language accepted by the latter corresponds to the guarantee G in Problem 1.
This transformation is well understood [Vardi and Wolper, 1986, Safra, 1988]; see
e.g. [Finkbeiner, 2016] for a comprehensive discussion.

Remark 2. Environment assumptions are usually formalized in the reactive synthe-
sis literature by an LTL formula which can be translated to a Büchi automaton (see
Remark 1) or are directly given by an automaton model. The generated language
Aloc ⊆ (UY )∗ of this automaton is always a superset of pfxA, but not necessarily
identical to the latter. In the case of pfxA ( Aloc, the requirement of the system
and the environment not to deadlock, Eq. (4), is substituted by

∀s ∈ Aloc ∩ (pfxL) . ∃σ ∈ U ∪ Y . sσ ∈ Aloc ∩ (pfxL). (6)

For the purpose of this report we observe that pfxA ( Aloc only generates different
solutions to Problem 1, whenever (5) is fulfilled by a string α which is not in A,
i.e., falsifies the assumption. As our comparison only targets solutions which do not
have the latter property, assuming pfxA = Aloc is not restrictive for our discussion.
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2.3. Algorithmic Solution

The interaction of the system and its environment outlined above can be viewed
as a turn-based two player game: in every round the environment player selects
an arbitrary input u ∈ U and the system selects the output y ∈ Y according to
r. It was shown by [Gurevich and Harrington, 1982, Pnueli and Rosner, 1989] that
for ω-regular specifications there exists a winning strategy for the system player in
this game if and only if the reactive synthesis problem has an ω-regular solution
L. Based on this result, a solution can be obtained by constructing a deterministic
game, finding a winning strategy for the system player and translating this strategy
into a finite automaton representing the reactive module. For a concise presentation
of this construction, we consider the special case in which both G and A are realis-
able as deterministic Büchi automata. It should be noted that this does not imply
that A → G can be realized by a deterministic Büchi automaton. However, it was
shown in [Bloem et al., 2012] that there is nevertheless a direct and simple solution
procedure for this case, which we briefly recall.

We refer to the previous section and restrict, without loss of generality, the dis-
cussion to the case of ∅ 6= G ⊆ A. Given this setting, we consider a generalized
Büchi automaton M with acceptance condition F = {T 0, T 1} s.t. A = Lω

m(MA),
G = Lω

m(MG) and pfx(A) = L∗(M), where MA and MG refer to the simple Büchi
automaton obtained from M by using the single winning state set T 0 and T 1,
respectively. Additionally, we assume that M does not deadlock5. We refer to
G ⊆ A ⊆ (UY )ω to observe that the alternation of input readings and output as-
signments induces a disjoint union decomposition of the state set and the transition
relation, i.e., M can be defined by the tuple

M = (Q0 ∪Q1, U ∪ Y , q0, γ
0 ∪ γ1, {T 0, T 1}) (7)

s.t. q0 ∈ Q0, γ0 ⊆ Q0×U×Q1, γ1 ⊆ Q1×Y ×Q0 and T 0, T 1 ⊆ Q with Q = Q0∪Q1.
The generalized Büchi automaton M defines the turn-based deterministic game

graph H = (Q0, Q1, U, Y, γ0, γ1). In the context of the reactive synthesis problem,
player 0 and player 1 are the environment and system player, respectively, and
a system player winning strategy must ensure that all plays on H that visit T 0

infinitely often, must also visit T 1 infinitely often. This can be expressed by the
four-colour parity game (H, C) with C = {∅, Q \ T 0, T 0, T 1}, where C2 = Q \T 0 and
C4 = T 1 are the sets with even colour. Hence, a play π according to α on H is
winning for (H, C) if either T 0 is not visited infinitely often, i.e. α /∈ A or, else, if
T 0 is visited infinitely often, then T 1 is also visited infinitely often, i.e., α ∈ A ∩ G.
Both cases together amount to α ∈ A → G. Note also that, by construction, we
have α ∈ cloA for any play α on H.

It was shown in [Emerson and Jutla, 1991] that the winning states for the system
player in the 4-colour parity game can be computed by the fixed-point

Win1 = νX4.µX3.νX2.µX1.
4⋃

k=1

(
Ck ∩ Pre1(Xk)

)
,

5Given a trim deterministic Büchi automaton M1 that accepts G, we extend the state set by a
not-accepting dump-state to obtain a full transition function. We then use the common product
composition with a deterministic Büchi automaton M0 that accepts A to obtain M , where
the acceptance condition F = {T 0, T 1} is defined by the respective state component to be an
accepted state in the automaton M0 or M1, respectively.
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where Pre1 : 2Q→2Q is the player 1 controllable prefix, defined for a set A ⊆ Q by

Pre1(A) =
{
q0 ∈ Q0

∣∣∀u ∈ U . δ0(q0, u) ∈ A
}
∪
{
q1 ∈ Q1

∣∣∃y ∈ Y . δ1(q1, y) ∈ A
}
.

(8)
However, as C1 is empty, we can actually obtain the three-nested fixed point

Win1 = νX4.µX3.νX2.

4⋃
k=2

(
Ck ∩ Pre1(Xk)

)
. (9)

If q0 ∈ Win1, the synthesis problem has a non-empty solution and a memoryless
winning strategy for the system player can be derived from the iterations in (9)
as follows. Consider the last iteration of the fixed-point in (9) resulting in the set
X∞4 = Win1 ⊆ Q and assume that we have to iterate over X3 k-times before this
fixed-point is reached. If Xi

3 is the set obtained after the i-th iteration, we have that
X∞4 =

⋃k
i X

i
3 with Xi

3 ⊆ Xi+1
3 , X0

3 = ∅ and Xk
3 = X∞3 . This defines a ranking for

every state q ∈ X∞4 s.t.

rank(q) = i iff q ∈ Xi
3 \Xi−1

3 for 1 ≤ i ≤ k. (10)

Then f1 : Q1 ∩X∞4 → Y is a winning strategy for the system player in the Parity
game (H, C) if y = f1(q) implies rank(δ1(q, y)) < rank(q) if rank(q) > 1 and δ1(q, y) ∈
X∞4 otherwise. It should be observed that f1 defines r in (1) in the obvious way
s.t. r(pU s) = f1(q) iff δ(q0, s) = q. A finite automaton realizing r (and therefore L)
is obtained by pruning M from all states q /∈ X∞4 and all transitions (q, y, q′) s.t.
y /∈ f1(q). The proof that this winning strategy defines a reactive module solving
Problem 1 can be obtained as a special case of the construction presented in [Bloem
et al., 2012] and is therefore omitted.

Remark 3. Referring back to Remark 2, the outlined synthesis algorithm gener-
alizes to the case where G is not necessarily a subset of A and pfxA ⊆ Aloc. By
following the same construction as in footnote 5, we obtain an automaton M which
accepts A = Lω

m(MA) and G ∩ (limAloc) = Lω
m(MG) and generates Aloc = L∗(M).

In [Bloem et al., 2012] M is directly obtained from a particular fragment of LTL
s.t. these properties are satisfied and Q = U ∪Y . Our formalization is slightly more
general in terms of the allowed state space. However, it is more restrictive in terms
of acceptance conditions for A and G; we only allow Büchi acceptance conditions
while the algorithm in [Bloem et al., 2012] allows for generalized Büchi acceptance
conditions. The resulting game over H is called a General Reactivity Game of Rank
1 (GR(1) game for short) which can be solved by a vector version of (9).

Remark 4. In the special case where A is topologically closed, we can assume
without loss of generality that T 0 = Q and, hence, C2 = ∅ and C3 = Q. Then, the
synthesis formula in (9) simplifies to

Win1(C) = νX4.µX3.Pre
1(X3) ∪ (T 1 ∩ Pre1(X4)) . (11)

This observation can be equally motivated by noting that for T 0 = Q, the Parity
game (H, C) reduces to (H, {Q \ T 1, T 1}) which is equivalent to the Büchi game
(H,T 1). It is well known that Büchi games (H,T 1) are solvable by the fixed-point
in (11); see e.g. [Maler et al., 1995, Zielonka, 1998]. In this context, the basic
version of reactive synthesis without environment assumptions results in computing
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q0 q1

q2 q3

q4

q5

q6

q7

q8 q9 q10

Figure 1: Transition structure of the Büchi automaton M in (7) discussed in Exam-
ple 1. Environment and system states Q0 and Q1 are indicated by circles
and squares, respectively. The final states T 1 = {q5, q8} are indicated in
red and T 0 = Q0 is unrestricted, giving a topologically closed assumption
A. All winning states Win1 for Problem 1 are contained in the dashed
square.

a system winning strategy in the Büchi game (H ′, F 1) where H ′ is the game graph
obtained from M1 (given that G is realizable by the deterministic Büchi automaton
M1). In other words, adding a topologically closed environment assumption A,
algorithmically amounts to solving the basic reactive synthesis problem via Eq (11)
over M in (7) instead of M1.

2.4. Examples and Discussion

We illustrate the synthesis procedure of a reactive module via the algorithm pre-
sented in Section 2.3 by examples which outline some particularities of the algorithm
and its solution.

Example 1. We first consider a topologically closed assumption A as discussed in
Lemma 4 s.t. pfxA is the language generated by M depicted in Figure 1 and G is
accepted by M with final state set T 1 = {q5, q8} (indicated in red in Figure 1). It was
discussed in Remark 4 that this synthesis problem can be solved by the two nested
fixed-point in (11). Considering the j + 1-th iteration over X4, we can compute
Xj+1

4 by evaluating the innermost fixed-point over X3 using Xj
4 . This is done by

iteratively computing

X0
3 = ∅ and Xi

3 = Pre1(Xi−1
3 ) ∪ (F 1 ∩ Pre1(Xj

4)) ∪Xi−1
3 , (12)

initialized with X0
4 = Q. As Pre1(Q) = Q for this example, we obtain the sequence

X1
3 = F 1 = {q5, q8},

X2
3 = Pre1(X1

3 ) ∪X1
3 = {q4, q7} ∪X1

3 ,

X3
3 = Pre1(X2

3 ) ∪X2
3 = {q3, q1} ∪X2

3 ,

X4
3 = Pre1(X3

3 ) ∪X3
3 = {q6, q2, q0} ∪X3

3 = Q \ {q9, q10}.

It should be noted that X2
3 does not contain q9 as this is an environment state and

not all transitions of q9 reach X1
3 = F 1, and hence q9 /∈ Pre1(q8). Furthermore,
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q0 q1 q2 q3

q4

q5

q6

Figure 2: Transition structure of the Büchi automaton M in (7) discussed in Exam-
ple 2. Environment and system states Q0 and Q1 are indicated by circles
and squares, respectively. The final states T 0 = {q4} and T 1 = {q5} are
indicated in blue and red, respectively.

observe that throughout the iteration over X3, q9 (and therefore also q10) was never
added to X1,i due to the same reason. The inner fixed point therefore terminates
with Q \ {q9, q10} and copies this set to X1

4 .
We now run a new round of computing (12) iteratively, initialized with X1

4 . As
Pre1(X1

4 ) = Q \ {q8, q9, q10} and hence F 1 ∩ Pre1(X1
4 ) = {q5}, this results in the

sequence

X1
3 = {q5},

X2
3 = Pre1(X1

3 ) ∪ {q5} = {q4} ∪X1
3 ,

X3
3 = Pre1(X2

3 ) ∪ {q5} = {q3} ∪X2
3 ,

X4
3 = Pre1(X3

3 ) ∪ {q5} = {q6} ∪X3
3 ,

i.e., returning the states contained in the dashed square depicted in Figure 1 (which
is now copied to X2

4 ). It should be noted that the iteration terminates for X4
3 as

the environment state q2 has a successor (namely q1) which is never added to X3.
Using the obtained set X2

4 , we see that F 1∩Pre1(X2
4 ) = {q5} and the resulting inner

fixed-point is the same as in the previous iteration. Hence the algorithm terminates
with Win1(F 1) = X2

4 .
As q0 /∈ Win1(F 1), Problem 1 has no solution in this example. However, if we

would reduce M1 to its sub-automaton contained in the dashed square depicted in
Figure 1 and define q3 as its initial state, the resulting system strategy would always
choose the transition to q4 in q3 as rank(q3) = 3, rank(q4) = 2 and rank(q6) = 4. /

Example 2. We now consider a slightly different assumption A given by the lan-
guage accepted by M depicted in Figure 2 with accepting state set T 0 = {q4} and
the guarantee G ⊆ A accepted by M with accepting state set T 1 = {q5}. Simi-
lar to Example 1, we now evaluate the innermost fixed-point of Win1(C) in (9) by
iteratively computing

X0
2 = Q and Xi

2 = (T 1∩Pre1(Xk
4 ))∪(T 0∩Pre1(Xj

3))∪(Q\T 0∩Pre1(Xi−1
2 )). (13)

We initialize (13) with X0
4 = Q and X0

3 = ∅. As Pre1(Q) = Q and Pre1(∅) = ∅ we
obtain the sequence

X1
2 = T 1 ∪ (Q \ T 0 ∩ Pre1(Q)) = T 1 ∪ (Q \ T 0 ∩Q) = Q \ T 0

X2
2 = T 1 ∪ (Q \ T 0 ∩ Pre1(Q \ T 0)) = T 1 ∪ (Q \ T 0 ∩Q) = Q \ T 0 = X1

2 .
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As X1
2 = X2

2 = Q \ T 0 the inner fixed-point terminates and we obtain X1
3 = Q \ T 0.

Using Pre1(Q \T 0) = Q (which was already used to compute X2
2 ) we again evaluate

(13) with j = 1 and k = 0 iteratively. This yields

X1
2 = T 1 ∪ T 0 ∪Q \ T 0 = Q = X0

2

and hence X2
3 = Q = X1

3 , implying X1
4 = Q = X0

4 . Hence the fixed-point in (9)
terminates with Win1(C) = Q on this example. Using the ranking function in (10)
shows that all states in Q \ T 0 have rank 1 while q4 has rank 2. This implies that
the resulting winning strategy will trigger the transition from q3 to q6 instead of q4.

/

The problem discussed in Example 1 fails to have a solution, as the environment
can prevent the system from reaching q3 from where a system winning strategy exists.
Interestingly, adding liveness to the environment using the restricted final state set
T 0 = {q4} in Example 2 does not directly resolve this problem. The implication-style
specification used in the formal statement of Problem 1 rather adds more sequences
to the set of winning plays if A is not topologically closed; every sequence which does
not conform with G (i.e., does not reach q5 infinitely often) is still winning as long as
it does not conform with the assumptions A (i.e., does not visit q4 infinitely often)
either. As this is true for the sequence iterating between q1 and q2 and preventing
the system to reach q3, the synthesis problem now has a solution.

This has another consequence. Looking at the states in the dashed box of Figure 1,
we see that now choosing to transition to q4 or q6 from q3 is equally good. While
always choosing the former ensures to win by visiting both q4 and q5 infinitely often,
the latter ensures to win by visiting neither q4 nor q5 at all. As there is no way
to distinguish these two choices from the iteration of the fixed-point, one cannot
rank one over the other. Therefore, the ranking function in (10) simply assigns
ranks along a shortest path which happens to favour a transition from q3 to q6 in
this example. This results in a falsification of the assumption by the synthesized
reactive module.6

6We will comment on recent advances in reactive synthesis targeting this problem in Section 5.
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3. Supervisory Control

The purpose of this section is to give a concise introduction to supervisory control
for non-terminating processes and to do so from a perspective and in a notation most
convenient for a comparison to reactive synthesis. Technically, we refer to a branch
of supervisory control theory proposed by [Ramadge, 1989, Thistle and Wonham,
1994b] which explicitly accounts for non-terminating processes and therefore utilises
ω-languages as the base model. For illustration purposes, we again give an algorith-
mic solution of supervisory controller synthesis for the specific case of deterministic
Büchi automata realizations of the involved ω-languages.

3.1. Supervisors

A supervisory controller is a device that takes as input a finite sequence of events
from an alphabet Σ generated by a process which is commonly referred to as the
plant and, in turn, outputs a control pattern γ ⊆ Σ. Formally, the supervisor is
defined as a map

f : Σ∗ → Γ , with Γ := { γ ⊆ Σ |Σuc ⊆ γ } , (14)

where Σuc ⊆ Σ are so called uncontrollable events. On start-up, the supervisor
applies the control pattern γ = f(ε) and thereby restricts the plant to generate
an event σ ∈ γ. After the plant has generated its event, the control pattern is
updated accordingly, and so forth. In this process, the role of the uncontrollable
events Σuc is that, by the definition of Γ, their occurrence cannot be prevented by
the supervisor. From a reactive synthesis point of view, the supervisor is the system
we seek to design and, for practical purposes, a realisation as a finite automaton is
of a particular interest.

For the subsequent discussion, however, the following representation as an ω-
language turns out more convenient:7

L := {α ∈ Σω | ∀ s ∈ Σ∗, σ ∈ Σ : sσ < α ⇒ σ ∈ f(s) } . (15)

The language defined by Eq. (15) is referred to as the behaviour associated with the
supervisor f . The following lemma characterises languages that match the behaviour
of some supervisor.

Lemma 2. Given Σ, denote Σuc ⊆ Σ the non-empty set of uncontrollable events.
A behaviour L ⊆ Σω associated with some supervisor f : Σ∗ → Γ is non-empty and
exhibits the following properties:

(SC1) L is topologically closed, and

(SC2) L is universally controllable, i.e., (pfxL)Σuc ⊆ pfxL.

Vice versa, if a non-empty language L ⊆ Σω satisfies (SC1) and (SC2), then f :
Σ∗ → Γ defined by

f ′(s) := {σ ∈ Σ | sσ ∈ pfxL} ∪ Σuc (16)

for s ∈ Σ∗ is a supervisor with associated behaviour L. �
7The proposed representation of a supervisor f by the ω-language L does not account for super-

visors which deadlock by themselves, i.e., supervisors that output an empty control pattern.
However, assuming a non-empty Σuc is not restrictive and technically rules out the degenerated
case of empty control patterns.

17



3.2. Problem Statement

The problem commonly referred to as supervisory controller synthesis is about the
systematic design of a supervisor, such that the resulting closed-loop system – es-
tablished by the feedback composition of this supervisor with the plant – satisfies
a given specification. Referring to the reactive synthesis perspective, this identifies
the plant as the environment of the system that we seek to design.

When the plant behaviour is given as an ω-language A ⊆ Σω, the closed-loop
configuration with a supervisor with associated behaviour L ⊆ Σω evolves on words
that comply with both component behaviours. Technically, we distinguish the local
closed-loop behaviour

Kloc := (pfxL) ∩ (pfxA) (17)

and the accepted closed-loop behaviour

K := L ∩ A . (18)

Regarding liveness of the closed-loop configuration, supervisory control commonly
addresses not only deadlocks but also livelocks. The latter are characterised by
finite sequences s ∈ Kloc from the local closed-loop behaviour that can be continued
indefinitely within Kloc but any such infinite extension fails to satisfy the plant
acceptance condition. Technically, we ask for a non-blocking supervisor, i.e., we
require that L and A are non-conflicting :

(pfxL) ∩ (pfxA) = pfx(L ∩ A) . (19)

In particular, the local behaviour Kloc of a non-conflicting closed loop can be recov-
ered by Kloc = pfxK and we then refer to K concisely as the closed-loop behaviour.

In the absence of an acceptance condition of the plant, i.e., when A is topologi-
cally closed, livelocks are not an issue and, hence, non-conflictingness, Eq. (19), is
equivalent to the absence of deadlocks, Eq. (4). Then, the generation of the infinite
event sequence can be thought of purely in a step-by-step fashion.

The interpretation of the case when A is not topologically closed is more involved.
Here, Eq. (19) guarantees that at any instance of time, the plant under supervision
can achieve its acceptance condition on at least one infinite extension of the string
generated so far. Thus, at some stage the plant must actually choose a path that
not only attains a marked state but also complies with the restrictions subsequently
imposed by the supervisor. In general, this should be interpreted as a form of coop-
eration. We will come back to this point in Section 4.3.

For the purpose of our discussion, we observe that an upper-bound specification
K ⊆ G can be interpreted as a guarantee in the reactive synthesis context, with the
particular feature, that any supervisor enforcing this guarantee on the closed loop
behaviour cannot invalidate the assumption A representing the plant behaviour.
The latter observation is due to the definition of K in (18) implying K ⊆ A. Hence,
if we establish a supervisor such that the closed-loop behaviour K is non-empty and
satisfies K ⊆ G, we trivially obtain K ⊆ A ∩ G ⊆ A → G.

We summarize the above discussion in the following formal statement of the syn-
thesis problem for the supervision of non-terminating processes.
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Problem 2 (Supervisory Controller Synthesis). Given an alphabet Σ with the non-
empty set of uncontrollable events Σuc ⊆ Σ, a plant A ⊆ Σω and an upper-bound
specification G ⊆ Σω, the supervisory control problem SCT[Σ, Σuc, A, G] asks to
either construct a non-blocking supervisor with associated behaviour L ⊆ Σω, see
Eq. (19), such that

∅ 6= A ∩ L ⊆ G , (20)

or, to verify that no such supervisor exists. �

Referring to the behavioural characterisation of supervisors, Lemma 2, we identify
a qualifying associated behaviour L as a solution to the control problem. Note that
for A = ∅ the problem trivially has no solution and that for Σuc = Σ we have L = Σω

for the only qualifying supervisor; i.e., in this case the synthesis problem collapses to
the verification of A ⊆ G. Thus, in our discussion of supervisory controller synthesis
problems, we may whenever convenient assume non-trivial problem parameters A 6=
∅ and Σuc 6= Σ. As in the setting of reactive synthesis, Section 2.2, we can, without
loss of generality, restrict our discussion to the case of ∅ 6= G ⊆ A.

Remark 5. As with reactive synthesis, we may alternatively represent the plant
behaviour by two distinct languages Aloc ⊆ Σ∗ and A ⊆ Σω, where Aloc is prefix-
closed and represents the local behaviour. In this regard, the literature [Ramadge,
1989, Thistle and Wonham, 1994b] specifically addresses the case pfxA ( Aloc of
a blocking plant and the supervisors task is to avoid livelocks and deadlocks in the
closed loop. Since non-conflictingness is addressed by our formal problem statement,
we can introduce a distinguished uncontrollable event † 6∈ Σ to make plant conflicts
explicit; i.e., we substitute Aloc by Aloc ∪ ((Aloc− pfxA)†∗) and A by A ∪ ((Aloc−
pfxA)†ω), to formally obtain Aloc = pfxA. Using the original guarantee G, the
supervisor then must circumvent conflicts by implicitly avoiding the generation of
the uncontrollable event † 6∈ Σ. Using this pre-processing stage, our formal problem
statement with Aloc = pfxA is not restrictive.

3.3. Achievable Closed-Loop Behaviours

Given a plant, the common approach to solve Problem 2 is via a characterisation of
all closed-loop behaviours that can be achieved by non-blocking supervisory control.8

To this end, we refer to the following proposition from [Ramadge, 1989].

Proposition 1. Given an alphabet Σ with uncontrollable events Σuc ⊆ Σ, consider
two languages A and K with ∅ 6= K ⊆ A ⊆ Σω. Then there exists a non-blocking
supervisor f : Σ∗ → Γ for the plant A with closed-loop behaviour K if and only if

(i) K is relatively topologically closed w.r.t. A, i.e., K = clo(K) ∩ A, and

(ii) K is ∗-controllable w.r.t. A, i.e., ((pfxK)Σuc) ∩ (pfxA) ⊆ (pfxK) .

Given a closed-loop behaviour K that satisfies conditions (i) and (ii), a corresponding
supervisor f can be extracted by

f(s) := {σ ∈ Σ | sσ ∈ pfxK} ∪ Σuc for all s ∈ Σ∗ . (21)

8The style of argument here is similar to the Youla-Kučera parameterization of all stabilising
controllers for a linear time invariant system, which is conceived a major milestone in control
theory; see e.g., [Kučera, 2011] for a recent presentation. For the situation here, a convenient
characterisation of supervisors with the qualitative property not to block at the first stage, allows
us to care about the quantitative upper bound specification at an largely independent second
stage.
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So far, the solution of the controller synthesis problem is effectively reduced to
the synthesis of a non-empty closed-loop behaviour K ⊆ A ∩ G satisfying conditions
(i) and (ii) from Proposition 1. The existence of such a closed-loop behaviour K can
be formally assessed by the following union construct

K↑ := ∪{K ⊆ A ∩ G |K satisfies (i) and (ii) from Proposition 1 } . (22)

Clearly, a solution exists if and only if K↑ is non-empty. Moreover, if the above union
itself exhibits conditions (i) and (ii) from Proposition 1 then K↑ is referred to as the
supremal closed-loop behaviour and a so called maximally permissive supervisor to
solve the synthesis problem can be extracted from K↑ via Eq. (21). However, the
union in Eq. (22) in general fails to preserve topological closedness and hence, a
maximally permissive solution does not exist in general. This contrasts SCT for
∗-languages but conforms with the situation for reactive synthesis.

Remark 6. Condition (i) in Proposition 1 is specific for the supervision of ω-
languages, whereas condition (ii) is literally identical with the original notion of
controllability introduced by [Ramadge and Wonham, 1987] for the more common
setting of supervisory control where both A and G are ∗-languages. In that setting,
all relevant closed-loop properties are preserved under arbitrary union and a supre-
mal closed-loop behaviour uniquely exists. For ω-languages, it is only under the
additional assumption that A ∩ G itself is relatively topologically closed w.r.t. A,
that K↑ qualifies for an achievable closed-loop behaviour; see [Ramadge, 1989]. In
this case, K↑ can be computed by the common synthesis algorithm for ∗-languages
from [Ramadge and Wonham, 1987] with appropriately chosen parameters A ⊆ Σ∗

and G ⊆ Σ∗ and with a minor variation to address deadlocks; see also the appendix
of [Moor et al., 2012]. The relation between supervisory control of ∗-languages and
reactive synthesis is discussed in detail by [Ehlers et al., 2017], with a particular focus
on the supremal closed-loop behaviour and a corresponding maximally permissive
supervisor.

To this end, [Thistle and Wonham, 1994b] introduce the following notion of the
controllability prefix which, as we shall see, can be utilized to solve the controller
synthesis problem.

Definition 2. Given an alphabet Σ with uncontrollable events Σuc ⊆ Σ and a plant
A ⊆ Σω, consider the upper bound specification G ⊆ Σω. The controllability prefix
of G w.r.t. A is denoted cfxA G and defined as the set of strings s ∈ pfxG, for which
there exists V ⊆ A ∩ G ∩ (sΣω) such that

(i) V is relatively topologically closed w.r.t. A ∩ (sΣω), i.e., V = clo(V) ∩ (A ∩
(sΣω)), and

(ii) V is ∗-controllable w.r.t. A ∩ (sΣω), i.e., ((pfxV)Σuc) ∩ (pfxA) ∩ (sΣ∗) ⊆
(pfxV) .

When the role of the uncontrollable events is not clear from the context, we also
write cfxA,Σuc G

Comparing the above conditions (i) and (ii) with Proposition 1, we see that V
is a closed-loop behaviour that can be enforced by a non-blocking supervisor, if
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it “takes over to control the plant” after the string s in the controllability prefix
cfxA G was generated by the plant. As V ⊆ G this supervisor is able to enforce
the guarantee G. In [Thistle and Wonham, 1994b], the set cfxA G is referred to as
the “winning configurations of the supervisor” for a game theoretic interpretation.
The cited literature further develops a notion of ω-controllability in terms of the
controllability prefix, which leads to an alternative characterisation of K↑. Clearly,
Problem 2 has a solution if and only if ε ∈ cfxA G. For ω-regular parameters, the
controllability prefix can be represented in terms of a fixed-point similar to those
used in the context of reactive synthesis. The corresponding iteration allows to
extract a supervisor that solves the control problem, provided that a solution exists,
and we recall the fixed-point characterisation of cfxA(G) in the following section.

3.4. Algorithmic Solution

We state a solution procedure under the assumption that ∅ 6= G ⊆ A. By (20), this
is not restrictive: if G = ∅ the problem has no solution; and substitution of G by
A ∩ G does not affect solutions. For the sake of a concise exposition, we also assume
that we are given a trim generalized deterministic Büchi automaton9

M = (Q,Σ, q0, δ, {FA, FG}) (23)

s.t. A = Lω
m(MA), G = Lω

m(MG) and pfx(A) = L∗(M) where MA and MG refer to
the simple (and deterministic) Büchi automata obtained from M by using the single
winning state set FA and FG , respectively. We call M a representation of A and G.

Given the generalized deterministic Büchi automaton M , a winning configuration
s ∈ cfxA G corresponds to the state q = δ(q0, s) reachable by s from q0 in M , and
hence q is called a winning state. To compute the set of winning states, one needs to
test for each state q ∈ Q whether or not M can be constraint by control patterns such
that any infinite run that starts in q and that visits FA infinitely often is guaranteed
to also visit FG infinitely often. This test is organised as the four-nested fix-point

Win(M) := νZ . µY . νX . µW . Pre((W \ FA) ∪ Y ∪ (FG ∩ Z), X \ FA), (24)

computing the set of winning states, where

Pre(T, D) :=

{
q ∈ Q

∣∣∣∣( ∃σ ∈ Σ . δ(q, σ) ∈ T
∧∀σ ∈ Σuc . δ(q, σ)! ⇒ δ(q, σ) ∈ T ∪D)

)}
(25)

is the inverse dynamics operator Pre that maps a set of target states T ⊆ Q w.r.t.
a domain constraint D ⊆ Q to its one-step-predecessors.

The fixed-point in (24) is derived from an algorithm with more general scope pro-
vided by [Thistle and Wonham, 1994a], which we adapted to address the special
case in which both the plant A and the specification G are represented by deter-
ministic Büchi automata. By the following theorem, Eq. (24) indeed establishes a
representation of cfxA G and we provide an independent and self-contained proof in
Appendix B.

9If A and G are represented by Büchi automata MA and MG , respectively, M can be computed as
a result of a product composition of the two, followed by a removal of all states which are not
reachable or not coreachable.
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Theorem 1. Let Σ be an alphabet with the non-empty set of uncontrollable events
Σuc ⊆ Σ, and let A ⊆ Σω be a plant behaviour and G ⊆ A a non-empty upper-bound
specification. If a deterministic generalized Büchi automatonM = (Q,Σ, q0, δ, {FA, FG})
is a representation of A and G then, for all s ∈ Σ∗,

s ∈ cfxAG ⇔ δ(q0, s) ∈Win(M). (26)

�

Given the sets of winning states Win(M) computed in (24) we are left with con-
structing a non-blocking supervisor. Recall that a solution exists if and only if
ε ∈ cfxA G, which amounts to q0 ∈Win(M). We therefore assume that q0 ∈Win(M)
and derive a candidate supervisor from iterations of the fixed-point in (24) as follows.

Consider the last iteration of the fixed-point in (24) resulting in the set Z∞ =
Win(M) ⊆ Q of states and assume that the fixed point over Y is reached after k
iterations. If Y i is the set obtained after the i-th iteration, we have that Z∞ =

⋃k
i Y

i

with Y i ⊆ Y i+1, Y 0 = ∅ and Y k = Z∞. Furthermore, let Xi = Y i denote the fixed-
point of the iteration over X resulting in Y i and denote by W i

j the set obtained

in the jth iteration over W performed while computing Xi. Then we have for all
0 ≤ i ≤ k that Y i = Xi =

⋃l
j W

i
j with W i

j ⊆W i
j+1, W i

0 = ∅ and W i
l = Y i.

Using these sets, we define a ranking for every state q ∈ Z∞ s.t.

rank(q) =

{
(i, j), q ∈

(
Y i \ Y i−1

)
∩
(
W i

j \W i
j−1

)
, i, j > 0

(0, 0), q ∈ Z∞ ∩ FG
(27)

initialized with Y 0 := Z∞ ∩ FG and W i
0 = ∅ for all 0 < i ≤ k. We order ranks

lexicraphically. Based on this ranking function we define a state feedback map
g : Z∞ → Γ s.t. for all q ∈ Z∞

g(q) :=

{
Σuc ∪ {σ ∈ Σc | rank(δ(q, σ)) < rank(q)} if rank(q) > (0, 0)

Σuc ∪ {σ ∈ Σc | δ(q, σ) ∈ Z∞} otherwise.
(28)

The state feedback map g defines a supervisor f : Σ∗ → Γ in the obvious way, i.e.
f(s) = g(q) if δ(q0, s) = q and f(s) = ∅, otherwise. The behaviour L associated
with f is defined via (15). Given this supervisor we have the following soundness
result which is proven by Lemma 5 and Lemma 6 in Section B.

Proposition 2. Let Σ be an alphabet with the non-empty set of uncontrollable
events Σuc ⊆ Σ, and let A ⊆ Σω be a plant behaviour and G ⊆ A an upper-bound
specification, s.t. M in (23) is a representation of A and G. If q0 ∈ Win(M), the
supervisor f constructed via g in (28) with associated behaviour L solves Problem 2,
i.e., f is a non-blocking supervisor with ∅ 6= A ∩ L ⊆ G. �

Remark 7. The state feedback g, as defined in Eq. (28), will only enable controllable
events for transitions that decrease the rank and, hence, achieve progress in terms
of attaining a marked state. Regarding the acceptance condition, however, it is
sufficient to attain markings eventually. A more permissive feedback is obtained
by initially controlling the local closed-loop Kloc to be a subset of cfxA G and only
eventually to activate the supervisor constructed above. The original literature
[Thistle and Wonham, 1994b] addresses permissiveness by explicitly considering a
lower-bound specification E , ∅ 6= E ⊆ G. Under the condition that E is relatively
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Figure 3: Transition structure of automaton M in (23) representing A and G for the
instance of Problem 2 which is solved in Example 3.

topologically-closed w.r.t. A and that E ⊆ K↑, a supervisor can be constructed such
that the closed-loop behaviour K satisfies E ⊆ K ⊆ G. Thus, the additional problem
parameter E can be used to tune permissiveness of the supervisor. As mentioned
in Remark 6, if G ∩ A is relatively topologically-closed w.r.t. A then so is K↑. In
this case, one can choose E = K↑ and the supervisor constructed by [Thistle and
Wonham, 1994b] essentially matches the one that can be obtained by synthesis
procedures from ∗-languages.

Remark 8. Following the discussion in Remark 4, we consider the case where A
is topologically closed. Again, this implies that we can assume without loss of
generality that FA = Q in M . It is readily observed that in this case the fixed-point
in (24) collapses to

Win(M) = νZ . µY . Pre(Y ∪ (FG ∩ Z)),

= νZ . µY . Pre(Y ) ∪ (FG ∩ Pre(Z)), (29)

where we use the short form Pre(T ) := Pre(T, ∅) for the unconditional inverse dy-
namics operator, i.e., Pre(T ) denotes the set of states for which there exists a control
pattern such that the target T is attained by the next transition. It should be noted
that (11) and (29) are describing the same fixed-point, and this suggests a strong
connection between reactive synthesis and supervisory control for the special case
of a topologically closed language A.

3.5. Examples

Example 3. Consider the automaton M depicted in Example 3. We now discuss
the computation of Win(M) for four different cases.
I Case 1: FA = FG = {s}, Σuc = Σ \ {b}: As in Example 2, we consider the

inner-most fixed-point in (24) and evaluate it by iteratively computing

W 0 = ∅ and W i = Pre((W i−1 \ FA) ∪ Y k ∪ (FG ∩ Z l), Xj \ FA). (30)

For the initial state sets Z0 = X0 = Q and Y 0 = ∅ we obtain the sequence

W 1 = Pre({s}, Q \ {s}) = {q}
W 2 = Pre({q} ∪ {s}, Q \ {s}) = {p, q, r}
W 3 = Pre({p, q, r} ∪ {s}, Q \ {s}) = Q

W 4 = Pre(Q,Q \ {s}) = Q = W3

giving X1 = Q = X0 implying Y 1 = Q. With this, we re-evaluate (30) and obtain

W 1 = Pre(Q,Q \ {s}) = Q
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giving X1 = Q = X0 and therefore Y 2 = Q = Y 1 implying Z1 = Q = Z0, i.e.,
the algorithm terminates with Win(M) = Q. Now recall from (27) that the above
iteration implies the ranking

rank(s) = (0, 0), rank(q) = (1, 1), rank(r) = rank(p) = (2, 1).

Hence, the resulting supervisor disables b in q.
I Case 2: FA = FG = {s}, Σuc = Σ: It should be noted that the controllability

status of event b does not change the fixed-point computation, and hence we similarly
obtain Win(M) = Q in this case. However, as Σuc = Σ the resulting supervisor
enables all available events and lets the plant decide which transition to choose in
q. As we assume that the plant only generate runs which correspond to words in
A, we know that it will always eventually transition from q to s, implying that the
resulting closed loop behaviour fulfils the guarantee.
I Case 3: FA = {r, s}, FG = {s}, Σuc = Σ \ {b}: Consider again the inner-most

fixed-point in (24) initialized with Z0 = X0 = Q and Y 0 = ∅. Then we obtain
exactly the same iteration as in c and the algorithm terminates with Win(M) = Q.
Again, the given ranking results in a supervisor disabling b in q. However, now this
disabling is strictly necessary, as enabling b in q forever enables the plant to generate
an accepting run on MA which is not in G by simply alternating between r and q.
I Case 4: FA = {r, s}, FG = {s}, Σuc = Σ: Consider again the inner-most

fixed-point in (24) initialized with Z0 = X0 = Q and Y 0 = ∅. Then we obtain

W 1 = Pre({s}, Q \ {r, s}) = ∅ = W 0

and hence X1 = ∅. Re-evaluating (30) for X1 = ∅ yields

W 1 = Pre({s}, ∅) = ∅ = W 0

and hence X2 = ∅ = X1, implying Y 1 = ∅ = Y 0 and therefore Z1 = ∅. As
Pre({s}, Q \ {r, s}) = ∅, the re-evaluation of (30) remains empty and the algorithm
terminates with Win(M) = ∅. Hence, Problem 2 does not have a solution in this
case. Intuitively, this is due to the fact that b ∈ Σuc implies that the controller
cannot prevent the plant from generating an accepting run on MA which is not in
G by simply alternating between r and q. /

Remark 9. It should be noted that the first two cases discussed in Example 3 have
the property that G and A coincide and therefore it is easy to see that G is relatively
topologically closed w.r.t. A. This implies that a maximally permissive supervisory
controller (resulting in the closed loop K↑ in (22)) exists for this example and it can
be computed using the more common synthesis procedures for the supervision of
∗-languages (see the discussion in Remark 6). For case 1 of Example 3 it is actually
given by a supervisor enabling all available events. This coincides with the controller
computed in case 2.
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4. Comparison

This section provides a comparison between the reactive synthesis problem, as intro-
duced in Section 2, and the supervisory control problem, as introduced in Section 3.
For both problems, the system that one seeks to synthesize can be interpreted as
a causal feedback which is meant to be operated in interaction with its respective
environment. However, the problems differ in the interpretation of how the system
and the environment interact. For reactive synthesis, the system operates in com-
putation cycles with reading inputs and assigning outputs once per cycle. Thus, the
system is driven by some mechanism that triggers the cycle and the input readings.
In turn, the system drives its environment by output assignments. This contrasts the
common interpretation in supervisory control, where the system passively observes
past events to apply a control pattern, while the environment is responsible for the
actual execution of transitions. However, these interpretations of the interaction do
not show up explicitly either in the formal problem statement or in the algorithms.
Thus, we may very well consider a reactive system where computation cycles are
triggered by the environment and we may also consider supervisors that effectively
apply singleton control patterns to actively execute plant transitions. Thus, regard-
ing causality, the different interpretations of system interaction are irrelevant at this
stage.

Using this insight, we demonstrate how one can formally transform the two syn-
thesis problems and their solutions into each other. More specifically, we transform
the parameters of a reactive synthesis problem such that they constitute a super-
visory control problem and we show how any solution of the latter problem can
be transformed back to obtain a solution to the initial reactive synthesis problem.
From a practical perspective, we thus can employ the algorithm from supervisory
control, Section 3.4, to address reactive synthesis problems. As we shall see, the
converse transformation, i.e., to solve a supervisory control problem by means of
reactive synthesis procedures, is more involved and requires additional assumptions.
Here, we identify special cases, in which both problems are equivalent regarding the
existence of solutions in general, and also regarding the regularity of solutions for
regular parameters.

4.1. Reactive Synthesis via Supervisory Control.

In this section, we show how a solution to the reactive synthesis problem can be
computed using the supervisory controller synthesis method presented in Section 3.4.
This is done in three steps. Given a particular instance of the reactive synthesis
problem we (i) derive a corresponding supervisory control problem, (ii) compute
a solution of the latter in terms of a non-blocking supervisor, and (iii) derive a
reactive module that solves the original reactive synthesis problem. Step (ii) is
already addressed in 3.4 and we are left to discuss Steps (i) and (iii).

The Corresponding Supervisory Control Problem

Given the reactive synthesis problem RS[U, Y, A, G], we are provided the non-empty
and disjoint finite sets U and Y and two ω-languages A, G ⊆ (UY )ω. To construct
a corresponding supervisory control problem, a natural choice is to associate the
assumption A with the plant and the guarantee G with the specification. This
implies Σ = U ∪̇Y and our remaining choice is that of Σuc. We let Σuc = U and,
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hence, Y = Σ − Σuc, which will be justified below. Having set all parameters, we
obtain the supervisory control problem SCT[Σ, Σuc, A, G] and assume that we are
provided a solution in terms of a non-blocking supervisor f : Σ∗ → Γ with associated
behaviour L. The remaining part of this section discusses how to derive a reactive
module that solves the original problem RS[U, Y, A, G].

Extracting the Reactive Module

As our first observation, we recall from Lemma 2, that the behaviour L associ-
ated with the supervisor f is topologically closed (SC1) and universally control-
lable (SC2). In contrast, reactive modules are characterised by (RM1) – (RM3) in
Lemma 1, where topological closedness (RM1) matches (SC1) and the locally free
input (RM2) is implied by universal controllability (SC2) and Y = Σ−Σuc. Thus, to
transform L to qualify as the behaviour of a reactive module, we are left to address
that the output locally processes the input (RM3).

At a first stage, we trim f to only enable those controllable events that can actually
occur, i.e., we consider h : Σ∗ → Γ with

h(s) := Σuc ∪ {σ ∈ f(s) | sσ ∈ pfxA} (31)

for all s ∈ Σ∗. This is not expected to affect the closed-loop behaviour and, indeed,
the supervisor f constructed in Section 3.4 already possesses this property. At a
second stage, we ensure that at any instance of time exactly one controllable event
is enabled, i.e., we consider f ′ : Σ∗ → Γ that satisfies

f ′(s) = Σuc ∪̇ {σ} , where σ ∈ Σ− Σuc and, if h(s) 6= Σuc, then σ ∈ h(s) , (32)

for all s ∈ Σ∗. As a special case, f ′ can be constructed as a composition f ′ = h′ ◦ h
where h′ : Γ→ Γ is a static filter such that

h′(γ) = Σuc ∪̇ {σ} , where σ ∈ Σ− Σuc and, if γ 6= Σuc, then σ ∈ γ , (33)

for all γ ∈ Γ. In particular, this example demonstrates that f ′ can be implemented as
a finite Mealy automaton provided that L is ω-regular. Although this second post-
processing stage at instances enables an arbitrarily chosen additional controllable
event, it does so only when the plant at hand will not accept any controllable event
at all. Thus, the second post-processing stage is expected to restrict the closed-loop
behaviour.

Technically, f ′ is a supervisor and, by Lemma 2, the associated behaviour L′ is
non-empty and exhibits (SC1) and (SC2). Referring to the second post-processing
stage, we obtain the following additional properties:

∀ s ∈ preL′ ∃σ ∈ Σ− Σuc : sσ ∈ preL′ , (34)

∀ s ∈ preL′, σ′, σ′′ ∈ Σ− Σuc : sσ′ ∈ preL′, sσ′′ ∈ preL′ ⇒ σ′ = σ′′ , (35)

in support of (RM3).
In a third post-processing step, we intersect L′ with (UY )ω in order to enforce

alternating inputs and outputs, i.e.,

L′′ := L′ ∩ (UY )ω . (36)

Although the latter construct will formally invalidate (SC2), it retains (RM2) and
it does not affect the closed-loop configuration A ∩ L′ since we have A ⊆ (UY )ω.
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M̌ :

q0 q1 q2 q3

q4

q5

q6

Figure 4: Transition structure of the Büchi automaton M̌ representing the instance
of Problem 2 discussed in Example 4 which corresponds to the instance
of Problem 1 represented by M depicted in Figure 2 and discussed in
Example 2. The final states FA = {q4} and FG = {q5} are indicated
in blue and red, respectively. Transitions labelled by controllable events
Σ− Σuc are indicated by a tick.

Result

We can now state our first main result, i.e., L′′ indeed solves the initial instance of
the reactive synthesis problem. A proof is given in Section C.

Theorem 2. Given non-empty alphabets U , Y , U ∩ Y = ∅, the assumption A ⊆
(UY )ω, and the guarantee G ⊆ (UY )ω, consider the reactive synthesis problem
RS[U, Y, A, G]. Let Σ := U ∪̇Y and Σuc := U . If a supervisor f : Σ∗ → Γ with
associated behaviour L solves the supervisory control problem SCT[Σ, Σuc, A, G],
then L′′, as defined by Eqs. (31), (32) and (36), solves RS[U, Y, A, G]. Moreover, A
and L′′ are non-conflicting. If L is ω-regular, then f ′ can be chosen to be realisable
by a finite automaton, and, in turn, L′′ is ω-regular. �

By the above theorem, for any reactive synthesis problem under consideration for
which the corresponding supervisory control problem exhibits a solution, we can use
this solution to construct a reactive module that solves the original reactive synthesis
problem. For practical purposes, the overall procedure amounts to the synthesis
algorithm from supervisory control, Section 3.4, and the additional post-processing
given by Eqs. (31)-(36). This is demonstrated by the following two examples.

Example 4. Consider the reactive synthesis problem discussed in Example 2. There,
the automaton M depicted in Figure 2 with T 0 = {q4} and T 1 = {q5} is used to
derive a two player game and to compute a winning strategy for the system player in
this game which can be translated into a reactive module solving the given instance
of Problem 1. We now show how to translate M into an automaton M̌ conforming
with (23) which can be used to solve the corresponding supervisory control problem
via Proposition 2.

Due to the assumptions made on A and G in Section 2, it is easy to see that A =
Lω

m(MA), G = Lω
m(MG) and pfxA = L∗(M). The only structural difference between

M and M̌ is that the former distinguishes environment and system states, while the
latter distinguishes controllable (ticked) and uncontrollable transitions. However,
due to the alternation of Σuc = U and Σc = Y in A and G, these changes are only
cosmetic and we essentially get the same automaton as before. For convenience, we
have depicted the resulting automaton M̌ conforming with (23) in Figure 4.

We now synthesize a non-blocking supervisor from the problem representation M̌
in Figure 4 by evaluating the four-nested fixed-point in (24) for this automaton M̌ .
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As in Example 3, we consider the inner-most fixed-point of (24) and evaluate it by
iteratively computing

W 0 = ∅ and W i = Pre((W i−1 \ FA) ∪ Y k ∪ (FG ∩ Z l), Xj \ FA). (37)

For the initial state sets Z0 = X0 = Q and Y 0 = ∅ we obtain the sequence

W 1 = Pre({q5}, Q \ FA) = {q4}
W 2 = Pre({q5}, Q \ FA) = W 1

giving X1 = {q4}. With this, we re-evaluate (37) and obtain

W 1 = Pre({q5}, ∅) = {q4}
W 2 = Pre({q5}, ∅) = W 1

giving X2 = {q4} = X1 and therefore Y 1 = {q4}. Now we reset X to X0 = Q and
re-evaluate (37), giving

W 1 = Pre({q4, q5}, Q \ FA) = {q3, q4}
W 2 = Pre({q3, q5}, Q \ FA) = {q2, q3, q4, q6}
W 3 = Pre({q2, q3, q5, q6}, Q \ FA) = {q1, . . ., q6}
W 4 = Pre({q1, . . ., q6}, Q \ FA) = Q

Hence, we obtain X1 = Q = X0 and therefore Y 2 = Q. With this, the re-evaluation
of (37) terminates again with W∞ = Q giving Y 3 = Q and hence Z1 = Q = Z0,
i.e., the algorithm terminates. This results in the ranking

rank(q5) = (0, 0), rank(q4) = (1, 1), rank(q3) = (1, 2), rank(q2) = rank(q6) = (2, 2),

rank(q1) = (3, 2), rank(q0) = (4, 2).

Defining a supervisor based on this ranking and extracting a reactive module via
(31)-(36) results in a system strategy which always transitions to q4 from q3. /

By comparing Example 2 and Example 4, we see that the four-nested fixed point
used in Example 4 allows us to distinguish between transitioning from q3 to q4 or
to q6 and, as a consequence, choose the former to not falsify the assumptions. This
constitutes a more desirable solution to the reactive synthesis problem given by M
as depicted in Figure 2, then the one computed via the three-nested fixed point (9)
in Example 2.

Remark 10. Similarly to the observation in Remark 9 on solutions of Example 3, it
should be noted that for the supervisory control problem discussed in Example 4 we
have that G is relatively topologically closed w.r.t A, and we can therefore compute
a maximally permissive supervisor. Again, this supervisor simply enables every
available transition in every state and therefore leaves the choice to the plant whether
it transitions to q4 or q6 in q3. As we assume that the plant only generates runs
which correspond to words in A, we know that it will always eventually transition
from q3 to q4, implying that the resulting closed loop behaviour fulfils the guarantee.

We have seen that any solution to the corresponding supervisory control problem
via Theorem 2 results in a particular solution to the original reactive synthesis prob-
lem, namely a reactive module whose associated behaviour does not conflict with
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A, i.e., the computed module does not falsify the assumptions. The question of how
to synthesize reactive modules which do not falsify the assumptions has recently
gained some attention from the reactive synthesis community. We will therefore dis-
cuss some recent advances in this direction and relate them to the reactive modules
obtained via Theorem 2 in Section 5.

4.2. Supervisory Control via Reactive Synthesis

We now consider the supervisory control problem and aim for a solution in terms
of a reactive module. Similarly to our approach in Section 4.1, we transform a
particular instance of the supervisory control problem into a corresponding instance
of a reactive synthesis problem. To this end, we establish a general transformation
to match the input ranges and output ranges of the respective feedback maps such
that we can address the behavioural requirements (SC1) and (SC2) by means of
(RM1)–(RM3). However, a distinguishing feature of a solution to a supervisory
control problem is that the closed-loop configuration must be non-conflicting and
this is not explicitly addressed by reactive synthesis. We therefore need to impose
additional conditions on the problem parameters to establish a non-conflicting closed
loop.

4.2.1. Control-Patterns as System Outputs

In this section, we match the ranges of the respective feedback maps without impos-
ing any a-priori assumptions on the problem parameters. In this sense, our approach
here is rather general. However, to obtain a qualifying supervisor, we will need to
impose relevant restrictions in retrospect. Similar to Section 4.1, our approach is or-
ganised in three steps. Given a particular instance of a supervisory control problem,
we (i) derive a corresponding reactive synthesis problem, (ii) identify a solution of
the latter in terms of a reactive module, and (iii) derive a supervisor that solves the
original control problem.

The Corresponding Reactive Synthesis Problem

Given a supervisory control problem SCT[Σ, Σuc, A, G], we are provided an alphabet
Σ, a set of uncontrollable events Σuc ⊆ Σ, a plant behaviour A ⊆ Σω and an upper-
bound specification G ⊆ Σω on the closed-loop behaviour.

As before, we associate the supervisory controller with the reactive module, i.e.,
the system to be designed. In order to define the input range U and the output
range Y , recall from Section 3.1 that a supervisor is a map f : Σ∗ → Γ that applies
a control pattern γ = f(s) after the system has generated the sequence s ∈ Σ∗. The
system in turn generates the next event σ ∈ Γ, and so forth. Therefore, a nearby
choice of U and Y is given by Σ and Γ, respectively.

The interaction of the supervisor and the plant always starts with the former
applying a control pattern γ = f(ε), i.e., the system to be designed has the first
move. In contrast, in our description of reactive synthesis, any run begins with
a move by the environment. We therefore introduce a distinguished dummy event
0 6∈ Σ which we will use below to pass on the first move to the system to be designed;
i.e.,

Σ′ := Σ ∪ {0}, Σ′uc := Σuc ∪ {0}, Γ′ := {γ ⊆ Σ′ |Σ′uc ⊆ γ } (38)
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and define U := Σ′ and Y := Γ′. With this choice, a reactive synthesis problem refers
to ω-languages that are subsets of (UY )ω = (Σ′Γ′)ω and we need to transform our
problem parameters A, G ⊆ Σω accordingly. We begin with the specification G by
pre-pending the distinguished event 0 ∈ Σ′ and by interleaving any control-patterns
between each two events from Σ to obtain

G′ := {α ∈ (Σ′Γ′)ω | pΣ′(α) ∈ 0G} . (39)

The plant A is transformed similarly, except that we additionally need to encode
that once a control pattern γ ∈ Γ′ has been applied, the next event σ ∈ Σ will be
within γ. We obtain

A′ :=
{
α ∈ (Σ′Γ′)ω

∣∣∣∣( pΣ′(α) ∈ 0A
∧∀γ ∈ Γ′, σ ∈ Σ′ . sγσ ∈ pfxα⇒ σ ∈ γ

)}
(40)

Now, we solve the reactive synthesis problem RS[U, Y, A′, G′] with U = Σ′, Y =
Γ′, A′ ⊆ (UY )ω, and G′ ⊆ (UY )ω as defined in (38)-(40), in order to obtain a
reactive module r : U+ → Y with associated behaviour L′.

Extracting the Supervisor

Let r : U+ → Y be a solution of the reactive synthesis problem RS[U, Y, A′, G′]
with associated behaviour L′. For the supervisor, consider the candidate behaviour

L :=

{
β ∈ Σω

∣∣∣∣∃α ∈ L′ . ( 0β = pΣ′(α)
∧∀γ ∈ Γ′, σ ∈ Σ′ . sγσ ∈ pfxα⇒ σ ∈ γ

)}
. (41)

It is shown in Appendix C, Proposition 4, that L satisfies (SC1), (SC2) and we
have that L ⊆ A → G, as consequences of (RM1) and (RM2) holding for L′ and
of L′ ⊆ A′ → G′. In particular, L is the behaviour associated with a supervisor
that enforces the upper bound specification K = A ∩ L ⊆ G. Furthermore, it is
shown in Appendix C, Proposition 5 that pfxL and pfxA do not deadlock. Referring
back to Problem 2, we are left to show that K is non-empty and that A and L are
non-conflicting, or to give conditions under which this holds.

Result

Whenever A is topologically closed, we know that the absence of deadlocks in the
closed loop, Eq. (4), implies non-conflictingness of A and L, Eq. (19). Hence we can
use topologically closedness as a sufficient condition to conclude that our candidate
supervisor solves the control problem.

Theorem 3. Given a finite alphabet Σ with the non-empty set of uncontrollable
events Σuc ⊆ Σ, a plant A ⊆ Σω and a specification G ⊆ Σω, consider the super-
visory control problem SCT[Σ, Σuc, A, G]. Preprocess the parameters according to
Eqs. (38) to (40) to obtain U = Σ′, Y = Γ′ and A, G′ ⊆ (UY )ω. Let L′ denote a
solution to the reactive synthesis problem RS[U, Y, A′, G′]. If the plant A is topolog-
ically closed, then L defined by Eq. (41) solves SCT[Σ, Σuc, A, G]. If L′ is ω-regular,
then so is L. �

By the above theorem we have the following result. Given an instance of the su-
pervisory control problem with topologically closed plant and assuming that the cor-
responding reactive synthesis problem has a solution, we can obtain a non-blocking
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Figure 5: Transition structure of the Büchi automaton M̌ representing the instance
of Problem 1 discussed in Example 5, which corresponds to the instance
of Problem 2 represented by M depicted in Figure 3 with Σuc = Σ \ {b}
(including state q′0) and Σuc = Σ (excluding state q′0). The final state sets
T 0 = {r0, s0} and T 1 = {s1} are indicated in blue and red, respectively.

supervisor solving the initial control problem. Technically, the overall procedure
amounts to pre-processing by Eqs. (38) to (40), the reactive synthesis procedure
discussed in Section 2.3, and post-processing by Eq. (41). This is illustrated by the
following example.

Example 5. Recall from Example 3, that M depicted in Figure 3 represents G
and A containing all strings visiting FG = {s} and FA = {s, r} infinitely often,
respectively. As M in Figure 3 cannot generate infinite strings which do not visit
either r or s infinately often, it is easy to see that A is topologically closed. Hence,
we can solve this instance of Problem 2 via Theorem 3. To obtain the corresponding
instance of Problem 1 w.r.t. U = Σ′, Y = Γ′, A′ and G′ (as defined in (38)-(40)), we
manipulate M in Figure 3 s.t. the resulting automaton M̌ conforms with (7) and
represents A′ and G′.

This essentially amounts to splitting every state q ∈ Q of M into a system state
q1 and k environment states q0

k with k ∈ {1, . . .,K} and K being the number of
possible control patters available in q. Then the transition from q1 to q0

k is labeled
with the respective control pattern γk ⊆ Γ. Furthermore, outgoing transitions of
q0
k mimic outgoing transitions of q in M with the restriction that only transitions

labeled with symbols within the k-th control pattern are allowed. Hence, a transition
(q, σ, q′) ∈ δ of M is copied to all (q1

k, σ, q
′0) ∈ δ̌ of M for which σ ∈ γk. Finally,

we add a dummy initial state d whose outgoing transition is labeled by the dummy
event 0 and leads to the system part p1 of M ’s initial state p.

The resulting automaton M̌ is depicted in Figure 5. For simplicity, we have
trimmed all γ-labels to the events actually available at its source state. The sets
of final states are translated in the obvious way, i.e., we obtain T 0 = {r0, s0} and
T 1 = {s1}, indicated in blue and red, respectively. It should be noted that depending
on the controllability status of event b we get one or two possible control patterns in
state q. I.e., if b ∈ Σuc we obtain the automaton without q0

2, while b ∈ Σ\Σuc results
in the full automaton containing both q0

1 and q0
2. We now use M̌ as the input to the

reactive synthesis algorithm in Section 2.3 and consider these two cases separately.
I Σuc = Σ: In this case the system has no choice in any of the system states.

Therefore, it cannot prevent the environment to always take transition b in q0.
Hence, the set of winning states is empty in this case. It should be noted that this
coincides with the solution obtained in the forth case of Example 3.
I Σuc = Σ \ b: Here the system has a choice in q1 and can apply the control
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pattern {d}, effectively disabling b in q of M in Figure 3. It should be noted that
this coincides with the solution obtained in the third case of Example 3. /

Equivalence of Problem Statements

Given the resuts in Theorem 2 and Theorem 3, we have established for topologically
closed plants that both synthesis problems can be solved via the respective other
one. However, in our construction we assume that the respective target problem
exhibits a solution. Since Theorem 3, in contrast to Theorem 2, uses a non-trivial
transformation of the problem parameters A and G, the two theorems alone do not
establish equivalence of the two problems regarding solvability. For this purpose, we
show in Appendix C, Proposition 6, that if the control problem SCT[Σ, Σuc, A, G]
exhibits a solution, then so does the reactive synthesis problem RS[U, Y, A′, G′]
with parameters defined via Eqs. (39)-(40). In other words, our transformation of
the supervisory control problem to an instance of the reactive synthesis problem
retains solvability. Referring to Theorem 3, we obtain the following corollary.

Corollary 1. Let Σ be a finite alphabet with the non-empty set of uncontrollable
events Σuc ⊆ Σ. For any non-empty topologically closed behaviour A ⊆ Σω and any
upper bound specification G ⊆ Σω, let U = Σ′, Y = Γ′, A′ and G′ as defined by
Eqs. (38)-(40). Then the control problem SCT[Σ, Σuc, A, G] has a solution if and
only if the reactive synthesis problem RS[U, Y, A′, G′] has a solution. �

The above corollary matches the close relations ship of the 2-nested fixed-point al-
gorithms (11) and (29) used as a basis to synthesise supervisors and reactive modules
for topologically closed plants, respectively.

4.2.2. Alternating Plant Behaviours

The transformation proposed in the previous section turned out technically involved
because it needed to encode a mechanism to interleave plant symbols with control
patterns in a single language. Therefore, we expect considerable simplifications when
turning to the special situation of alternating plant behaviours, i.e., plant behaviours
in which controllable and uncontrollable events alternate, and which, in this regard,
more closely reassemble the reactive synthesis setting. Technically, we consider
the supervisory control problem with parameters Σuc ( Σ and A, G ⊆ (Σuc(Σ −
Σuc))

ω. We refer to this class of plants as input-output behaviours and we present the
corresponding transformation to solve Problem 2 via reactive synthesis. In contrast
to the more general case discussed in the previous section, the transformation only
affects the solution L but not the problem parameters A and G.

The Corresponding Reactive Synthesis Problem

By the alternation of controllable and uncontrollable events, we can choose the
correspondence U := Σuc and Y := Σ − Σuc and obtain G, A ⊆ (UY )ω; i.e., our
choice constitutes qualifying parameters for reactive synthesis. For the following,
we consider a reactive module with behaviour L that solves the reactive synthesis
problem RS[U, Y, A, G] and seek to construct a non-blocking supervisor that solves
the original supervisory control problem.
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Extracting the Supervisor

The solution L of the reactive synthesis problem satisfies (RM1)–(RM3) and we need
to derive a behaviour that satisfies (SC1) and (SC2) for a solution of the supervisory
control problem. Topological closedness (SC1) is immediate by (RM1). Regarding
(SC2), we propose the following transformation:

L′ := L ∪ ((pfxL)(Σω
uc)) . (42)

It is shown in Appendix C, Proposition 7, that the above construct L′ indeed satisfies
(SC1) and (SC2) and, moreover, retains the absence of deadlocks, i.e., pfxL′ and
pfxA do not deadlock. For L′ to solve the control problem, we are left to establish
that its corresponding supervisor is non-blocking and that it enforces the language
inclusion specification; technically, A and L′ must be non-conflicting with ∅ 6= A ∩
L′ ⊆ G.

Result

Using the same reasoning as in Section 4.2.1, we see that non-conflictingness of
A and L′ is implied by the absence of deadlocks provided that A is topologically
closed. Using this sufficient condition, we get the following result on the synthesis
of supervisors for input-output behaviours via reactive synthesis.

Theorem 4. Given a finite alphabet Σ with the non-empty set of uncontrollable
events Σuc ⊆ Σ, a plant A ⊆ Σω and a specification G ⊆ Σω, consider the supervisory
control problem SCT[Σ, Σuc, A, G]. Assume that the plant exhibits an input-output
behaviour, i.e., A ⊆ (Σuc(Σ − Σuc))

ω, and, without loss of generality, that G ⊆ A.
Let L denote a solution to the reactive synthesis problem RS[U, Y, A, G], where
U = Σuc, Y = Σ − Σuc. If the plant A is topologically closed, then L′ defined by
Eq. (42) solves SCT[Σ, Σuc, A, G]. If L′ is ω-regular, then so is L. �

Given the results in Theorem 2 and Theorem 4, we have established that both
synthesis problems can be solved via the respective other one under the assumption
of a topologically closed plant. By additionally requiring that A and G alternate
controllable and uncontrollable events, neither of the proposed transformations af-
fects the problem parameters A and G. Complementing Corollary 1, we note that
our interpretation of the reactive synthesis problem as an instance of the supervisory
control problem retains solvability.

Corollary 2. Given an alphabet Σ with the non-empty set of uncontrollable events
Σuc ( Σ, let U = Σuc and Y = Σ − Σuc. For any non-empty topologically closed
behaviour A ⊆ (UY )ω and any upper bound G ⊆ A ⊆ (UY )ω, the supervisory
control problem SCT[Σ, Σuc, A, G] has a solution if and only if the reactive synthesis
problem RS[U, Y, A, G] has a solution. �

Theorem 2 and Theorem 4 show that in the special case of input-output be-
haviours a sound transformation is obtained by simply choosing U = Σuc and
Y = Σ−Σuc and keeping A and G unchanged otherwise. This simple transformation
reduces on the automaton level to (i) transforming states with outgoing transitions
from Σuc (resp. Σ−Σuc) to environment (resp. system) states when transforming M̌
in (23) to M in (7), or (ii) marking outgoing transitions from an environment (resp.
system) state uncontrollable (resp. controllable) when transforming M in (7) to M̌
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in (23). (See Figure 2 and Figure 4 for an example.) Therefore, the application of
the unconditioned version Pre(T ) = Pre(T, ∅) of the pre-operator defined in (25) on
M̌ coincides with the application of the controllable pre-operator Pre1 defined in (8)
on M . We have seen in Remark 4 and Remark 8 that for topologically closed plant
behaviours A both synthesis algorithms compute the same 2-nested fixed-point, see
Eqs. (11) and (29). This implies that both solution techniques coincide also on the
automaton level when considering topologically closed and input-output behaviours.

4.3. Non-Falsifiable Assumptions and Strong Non-Anticipation

By our comparison so far the reactive synthesis problem can be solved via supervi-
sory control. However, the converse transformation in general fails as a non-blocking
supervisor by definition requires that L and A are non-conflicting and this require-
ment cannot be expressed by an upper-bound specification in the reactive synthesis
problem under consideration. We have seen in Section 4.2 that topological closeness
of A can be used as a sufficient condition to ensure that the solution L obtained via
reactive synthesis is such that L does not conflict with A. In this section, we present
two alternative weaker conditions for a non-conflicting closed loop which were in-
dependently developed in either field, and we discuss how they relate. Technically,
both conditions address the situation of input-output behaviours and, in this regard,
follow up our discussion in Section 4.2.2.

Non-Falsifiable Assumptions in Reactive Synthesis

Referring to the simple transformation discussed in Section 4.2.2, we consider an in-
stance of the supervisory control problem SCT[Σ, Σuc, A, G] where A, G ⊆ (Σuc(Σ−
Σuc))

ω, and the corresponding reactive synthesis problem RS[U, Y, A, G], where
U = Σuc, Y = Σ − Σuc. Provided a solution L of the reactive synthesis prob-
lem, we have that L and A do not deadlock, and hence, the closed-loop configu-
ration can continue for infinitely many computation cycles to generate an ω-word
α ∈ (cloA)∩ (cloL). Since L is closed, we also have α ∈ L. However, one may fail on
α ∈ A, and, by the specification L ⊆ A → G, risk that α 6∈ G. Technically, the prob-
lem statement of reactive synthesis does not prevent the construction of a reactive
module such that there exists s ∈ (pfxA) ∩ (pfxL) but s 6∈ pfx(A ∩ L). For such un-
fortunate words we have for all extension β ∈ (U∪Y )ω that sβ 6∈ clo(A ∩ L) = cloG,
i.e., the generated ω-word not only fails to satisfy the guarantee G itself but also any
safety properties represented by cloG.

This issue can be avoided if the given assumption A is non-falsifiable10 in the
following sense. Given the two player game interpretation used in the algorithmic
synthesis of reactive modules, an assumption is called non-falsifiable, if the environ-
ment player has a winning strategy in the Büchi game (H, T 0) over the game graph
H. In this case, there exists a causal map by which the environment can organise its
moves, which ensures that for any infinite play some final environment state q ∈ T 0

is visited infinitely often, regardless of the moves chosen by the reactive module. In
this sense, both players win and we have α ∈ A ∩ L for any ω-word generated in
the closed-loop configuration.

10See [Brenguier et al., 2017], Sec. 3, for an illustrative explanation of this phenomenon, called
Win-under-Hype there.
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Figure 6: Transition structure of a Büchi-automaton realizing a plant behaviour that
needs to anticipate future control patterns in order to satisfy its acceptance
condition. Accepting states are marked in red and controllable transitions
are indicated by a tick.

Strong Non-Anticipation in Supervisory Control

A closely related issue has been identified in the context of supervisory control
in [Moor et al., 2011]. Consider a supervisory control problem SCT[Σ, Σuc, A, G]
with plant A ⊆ Σω and specification G ⊆ A, and let L ⊆ Σω denote a solution. As
we ask for a non-blocking supervisor, we know that at no specific instance of time
the supervisor can prevent the plant to attain its acceptance condition, i.e., for all
s ∈ Kloc we have s ∈ pfx(A ∩ L) and there exists β ∈ Σω such that sβ ∈ A ∩ L.
However, this does not rule out supervisors which require the plant to eventually
take certain transitions that depend on future control patterns, i.e., the plant may
need to anticipate the moves of the supervisor.

We illustrate this subtle issue by an example adapted from [Moor et al., 2011],
given in Figure 6. As states AA and BB are accepting, any supervisor that always
eventually enables a transition from A to AA or from B to BB is non-blocking.
Whenever in state 0 the plant needs to decide to either take the transition to A
or to B. Regardless which decision the plant takes, there is always a non-blocking
supervisor that requires just the opposite decision to allow the plant to visit its
marking. Only if the plant knew the next control pattern, it could, when in state 0,
take a decision that opens the chance for the plant to visit its marking.

In many applications it is unrealistic to assume that the plant knows about future
control patterns. Thus, there is an interest in plant behaviours that can attain their
acceptance conditions independently of a particular supervisor, and a class of such
plant behaviours has been characterized in [Moor et al., 2011] for the special case of
input-output behaviours. The results in [Moor et al., 2011] amount to representing
A as a union of topologically closed components that each exhibit Y = Σ − Σuc

as a locally free input. It is further shown that this condition is equivalent to the
controllability prefix of A w.r.t. the closure cloA to equal pfxA, i.e.,

cfxcloA, YA = pfxA (43)

where Y = Σ− Σuc takes the role the uncontrollable events.

The latter property is referred to as strong non-anticipation. Referring to the
game theoretic interpretation of supervisory control used in the discussion of the
synthesis algorithm in Section 3.4, Eq. (43) requires that the local plant pfxA is
always in a winning configuration regarding the satisfaction of its own acceptance
condition, i.e., at any time the plant can decide to apply a causal feedback map to
choose the next event such that the plant acceptance condition will be met regardless
the control imposed by the supervisor. By strong non-anticipation, a non-conflicting
closed loop, Eq. (19), is implied by the absence of deadlocks.
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Since non-conflictingness imposes its formal requirements only on words within the
local closed loop, (pfxA) ∩ (pfxL), we may alternatively use the weaker condition

(pfxA) ∩ (pfxL) ⊆ cfxcloA, YA . (44)

to conclude a non-conflicting closed loop from the absence of deadlocks; see Ap-
pendix C, Proposition 9, for a formal proof. If we synthesise L by supervisory
control, the closed loop will be non-conflicting by construction. However, if we still
are interested in establishing Eq. (44), we can pre-process the specification by

G′ := G ∩ {α ∈ Σω | pfxα ⊆ cfxcloA, YA} . (45)

With this specification, the synthesis algorithm of supervisory control assures that
the local closed-loop evolves within the controllability prefix as required by Eq. (44).

Comparison

When comparing the game theoretic interpretations of non-falsifiable assumption
and strong non-anticipation, the former requires the “environment to play clever”
from the very beginning, whereas the latter allows the plant to start doing so
eventually. This suggests that an assumption is non-falsifiable if and only if ε ∈
cfxcloA, Y (A), which we prove in Appendix C, Proposition 8. Hence, it is easy to see
that the condition of a non-falsifiable assumption is weaker then the condition of a
strongly non-anticipating plant behaviour. In particular, we have that (i) topolog-
ical closedness of A implies (ii) strong non-anticipation, which in turn implies (iii)
Eq. (44), to finally imply (iv) A to be a non-falsifiable assumption. The converse
implications, however, do not hold in general. It should be noted that, in contrast to
strong non-anticipation, the condition in Eq. (44) constitutes a closed-loop property.
As such, we can verify whether Eq. (44) is satisfied after we have obtained L via
reactive synthesis and, if the test passes, conclude that the absence of deadlocks,
Eq. (4), implies a non-conflicting closed loop, Eq. (19).

Result

Given the above discussion we can use (44) as a sufficient condition to establish
a solution of a supervisory control problem via reactive synthesis analogously to
Theorem 4. However, (44) is weaker then topological closeness of A, and, thus, we
obtain a generalisation of Theorem 4.

Theorem 5. Given a finite alphabet Σ with the non-empty set of uncontrollable
events Σuc ⊆ Σ, a plant A ⊆ Σω and a specification G ⊆ Σω, consider the supervisory
control problem SCT[Σ, Σuc, A, G]. Assume that the plant exhibits an input-output
behaviour, i.e., A ⊆ (Σuc(Σ − Σuc))

ω, and, without loss of generality, that G ⊆ A.
Let L denote a solution to the reactive synthesis problem RS[U, Y, A, G], where
U = Σuc, Y = Σ−Σuc. If (44) holds for A and L, then L′ defined by Eq. (42) solves
SCT[Σ, Σuc, A, G]. If L′ is ω-regular, then so is L. �

Again referring to Theorem 2 from Section 4.1, but now using Theorem 5 rather
than Theorem 4, we obtain the following generalisation of Corollary 2.

Corollary 3. Given an alphabet Σ with the non-empty set of uncontrollable events
Σuc ( Σ, let U = Σuc and Y = Σ − Σuc. For any non-empty behaviours A, G ⊆
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(UY )ω where A is strongly non-anticipating, the control problem SCT[Σ, Σuc, A, G]
has a solution if and only if the reactive synthesis problem RS[U, Y, A, G] has a
solution. �

Referring back to the discussion below Corollary 2, we still have that the automata
realizations of the two corresponding problem instances are directly connected and
induce an equivalence of the respectively applied pre-operators. However, as A is
not assumed to be topologically closed, we now have to use the three-nested fixed-
point algorithm in (9) to solve the synthesis problem. Nevertheless, this shows that
for strongly non-anticipating plants, supervisory controller synthesis reduces to the
evaluation of a 3-nested fixed-point.

Example 6. Consider the supervisory control problem represented by M̌ depicted in
Figure 4 and the automaton M depicted in Figure 2 representing the corresponding
instance of Problem 1. Recall from Example 2 that a solution of this instance of
Problem 1 is given by a reactive module which always transitions from from q3

to q6. The only possible run on M is hence given by the sequence q0q1q2(q3q6)ω,
and this run generates an ω-word α ∈ (cloA) ∩ L but α 6∈ A. In particular,
we have pfxα ⊆ (pfxA) ∩ (pfxL) and, if our condition in Eq. (44) was satisfied,
we had that pfxα ⊆ cfxcloA, YA. Here, the definition of the controllability prefix,
Definition 2, requires that there exists a choice of uncontrollable events, by which the
plant can enforce to attain its acceptance condition. However, this is not possible
given that the choice of controllable events taken by the module only allows for
the run q0q1q2(q3q6)ω. Therefore, our condition Eq. (44) is not satisfied for this
example. This is as expected, since the given solution to Problem 1 actively falsifies
the assumptions. /
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5. Discussion

So far, we have formally compared supervisory controller synthesis for non-terminating
processes and a version of reactive synthesis which incorporates environment assump-
tions. As one of our main results we have shown that one can solve the considered
reactive synthesis problem using supervisory controller synthesis to obtain a reactive
module which will not falsify the assumptions on the environment (see Theorem 2).
The question of how to synthesize a reactive module which does not falsify the
assumptions has recently gained some attention from the reactive synthesis commu-
nity. This section compares some recent advances in this direction with our solution
based on the SCT perspective. We will base our informal discussion mostly on
illustrative examples and intuitive explanations.

Cooperative Reactive Synthesis Cooperative Reactive Synthesis (CRS) was intro-
duced in [Bloem et al., 2015] and solves a synthesis problem which is closely related
to Problem 1 but substitutes the single specification A → G in (5) with a set of
different logical combinations of A and G, organized in a hierarchy of cooperation
levels. The highest element in this hierarchy of specifications is A ∩ G, as the most
desirable situation is to ensure that both A and G hold. However, this might not
always be realizable. If so, the authors propose a systematic way to relax this speci-
fication until a solution to the synthesis problem can be found. When going down in
the hierarchy to do so, the authors favour the satisfaction of G over the satisfaction
of A. Hence, solutions to synthesis problems along that hierarchy might sacrifices
A in favour of enforcing G.

The solution to this synthesis problem is computed by solving an extended version
of the “usual” reactive synthesis algorithm involving the translation of a specification
given in LTL to deterministic Rabin automata. The main feature of the algorithm
is that it allows to switch to higher cooperation levels during synthesis, when a
specification from a higher level becomes satisfiable during the game. This allows
to synthesize maximally cooperative strategies in the sense that the system makes as
much effort as possible to fulfill both A and G.

Algorithmically, our solution via SCT differers from this approach in that the ad-
ditional property ensured by SCT, namely non-conflictingness, cannot be expressed
by an LTL formula. Hence, the four-nested fixed-point algorithm used to solve a
given RS problem via SCT is not the translation of an LTL synthesis problem into
a µ-calculus formula. As a result, solutions to both synthesis problems differ in the
way assumptions are handled. For example, if the specification A∩G is realizable in
the CRS setting, this means that there exists a system strategy that enforces both A
and G. On the contrary, a supervisor computed for this problem can assume that A
will always be satisfied by the environment as long as the system is not preventing
it from doing so. Hence, a system strategy extracted from this supervisor does not
necessarily enforce A but only makes sure that it always remains satisfiable. We
illustrate this difference by the following example.

Example 7. Consider the automation M depicted in Figure 7 (left) as representing
the instances of Problem 1 we are interested in. The input automaton to the corre-
sponding supervisory synthesis problem11 is given by M̌ depicted in Figure 7 (left).
We consider two different cases w.r.t. the sets FA = T 0 and FG = T 1. For each case

11See Example 4 for a discussion of the conversion.
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M :

q0 q1

q3

q2 q4

M̌ :
q0 q1

q3

q2 q4

Figure 7: Transition structure of the automaton M (right) representing an instance
of Problem 1 considered in Example 7 and the automaton M̌ (left) repre-
senting the corresponding instance of Problem 2.

we discuss the solution obtained by: (RS) – the reactive synthesis algorithm applied
to M (see Section 2.3), (SC) – the supervisory controller synthesis algorithm ap-
plied to M̌ (see Section 3.4 and Section 4.1), and (CRS) – the Cooperative reactive
synthesis algorithm from [Bloem et al., 2015].

I Case 1: T 0 = FA = {q0} and T 1 = FG = {q4}:
. RS: Running the fixed-point algorithm in (9) on M returns the whole state set as
the winning set. As there is essentially no choice for the system player in this game,
we see that all transitions in the automaton stay enabled. The interpretation of this
solution is that no matter which edge the environment chooses in q2, it will either
falsify the assumption or fulfill both the assumption and the guarantee and is hence
a suitable solution in both cases.
. SC: The transition structure of M̌ results in a similar synthesis problem as the one
discussed in case 2 of Example 3; the resulting supervisor enables any controllable
edge. I.e., the reactive module extracted from this supervisor coincides with the one
computed via RS. However, the interpretation of its soundness differs; given that
FA = {q0}, it is known that the environment chooses to transition from q2 to q4

infinitely often, and hence, the guarantee will always be fulfilled.
. CRS: First note that G ∩ A cannot be enforced, as the transition from q2 to q3

cannot be disabled. The highest realizable specification in the cooperation hierarchy
of CRS is given by G〈E〉(G ∩A) denoting that there always exists a continuation of
the current trace which satisfies G ∩A. The strategy that enforces this is equivalent
to the RS and the SC strategy discussed before.

I Case 2: T 0 = FA = {q0, q3} and T 1 = FG = {q4}:
. RS: Running the fixed-point algorithm in (9) on M returns the empty set, as
there is no way to prevent the system from entering state q2 and preventing the
environment to always transition to q3 from there.
. SC: Due to the same reason, there also exists no supervisor solving this synthesis
problem.
. CRS: Still G ∩ A cannot be enforced. The highest realizable specification in the
cooperation hierarchy of CRS is given by A ∩ G〈E〉G denoting that any trace will
satisfy A and there always exists a continuation of the current trace which satisfies
G. The strategy that enforces this is equivalent the one computed in case 1. /

Interestingly, the CRS solutions coincide in both cases; hoping that the plant
cooperates s.t. A∩ G will be fulfilled. By viewing the assumptions A as a model of
the plant, we are sure that the plant will cooperate s.t. A is satisfied. As this is the
cooperation needed in case 1 to obtain A ∩ G, the SCT solution coincides with the
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CRS solution in this case. As case 5 allows the plant to fulfill A without ensuring
A∩G, we obtain an empty SCT solution for case 2, while the CRS solution remains
unchanged. Intuitively, the CRS solution hopes for any type of cooperation while
SCT uses a particular cooperation type to verify its solutions.

Intuitively, the difference between CRS and SCT steams from the fact that the
SCT algorithm interprets the environment as a separate process with an individual
strategy while CRS does not assume a particular rational behaviour of the envi-
ronment w.r.t. the assumptions. The multi-process interpretation of the problem
used in supervisory control is also employed in various other extensions of reactive
synthesis, including obliging games [Chatterjee et al., 2010], assume-guarantee syn-
thesis [Chatterjee and Henzinger, 2007] or assume-admissible synthesis [Brenguier
et al., 2017].

These works compute a strategy for every player in the game w.r.t. its local spec-
ification. Translated to our setting, this implies that one computes an environment
strategy w.r.t. its local specification given by A and a system strategy w.r.t. its local
specification given by G. These two specifications are usually synchronized; the play
is only won if both player stick to their strategies. This view, however, does not
directly match the setting of supervisory control where only the system strategy is
computed. The environment is simply assumed to behave in accordance with its
model, i.e., only generating plays that are in A, but it cannot be directly influenced
s.t. a particular strategy can be deployed. This setting used in supervisory control
is met most closely by assume-admissible synthesis (AAS), when interpreting its
solution slightly differently.

Assume-Admissible Synthesis (AAS) AAS [Brenguier et al., 2017] is based on
the concept of strategy dominance. A system strategy f is dominated by another
system strategy f ′ if (i) for all environment strategies g holds that whenever a play
π compliant with f and g is winning, then so is the play π′ compliant with f ′ and
g, and (ii) there exists an environment strategy g′ s.t. the play π′ compliant with f ′

and g′ is winning while the play π compliant with f and g′ is not. Every strategy
that is not dominated is called admissible. If a player is restricted to play only
admissible strategies, this implies that for every state in the game graph for which
this player has a winning strategy, this strategy needs to be executed. In particular,
this implies that no moves from winning states to non-winning states are allowed.

Intuitively, solving AAS for two players (the system and the environment) results
in two individual synthesis problems, each synthesizing an admissible strategy for
one player assuming that the other one is restricted to play only admissible strate-
gies. Given that these two games have a solution, we have the following connection
to the SCT synthesis procedure. If we only implement the obtained admissible sys-
tem strategy, we know that (due to the existence of a solution to the AAS problem
for the environment player) the environment can still fulfill its own objective. So,
similarly to supervisory control, an assume-admissible system strategy assumes a
rational behaviour of the environment w.r.t. the assumptions A even without im-
plementing a particular environment strategy. However, the interpretation of a “ra-
tionally behaving other player” differs. We illustrate this difference by the following
example.

Example 8. We first consider the instance of an reactive synthesis problem repre-
sented by the automaton M depicted in Figure 8 (top left) and the corresponding
instance of Problem 2 represented by M̌ depicted in Figure 8 (bottom left). We
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q2

q3

q4

q5

q6 q7

M ′:

q0

q1

q2

q3

q4
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q6 q7

M̌ :

q0

q1

q2

q3

q4

q5

q6 q7

M̌ ′:

q0

q1

q2

q3

q4

q5

q6 q7

Figure 8: Transition structure of the automata M (resp. M ′) (top) representing
the instance of Problem 1 considered in Example 7 and the automaton M̌
(resp. M̌ ′) (bottom) representing the corresponding instance of Problem 2.

will discuss how assume-admissible strategies (AAS) and supervisors (SC) are con-
structed for this example using three different cases.

I Case 1a: M with T 0 = {q0, q6} and T 1 = {q3}:
. SC: Running the fixed-point in (24) on M̌ returns the empty set. Hence, this
problem has no solution. Intuitively, this is due to the fact that the supervisor
cannot prevent the plant from staying in the right component of M̌ , and therefore
visiting q6 infinitely often, but not q3.
. AAS: When computing the system strategy, it is assumed that the environment
player (player 0) plays an admissible strategy. This means that for any state from
which there is a player 0 winning strategy w.r.t. its final states T 0 = {q0, q6}, it will
execute exactly this one. It can be observed from M in Figure 8 that player 0 has
a winning strategy in state q0. This strategy is given by always transition from q2

to q3. It should be noted that transitioning from q2 to q4 instead, allows player 0 to
win only if player 1 cooperates (by choosing the transition from q4 to q6 infinitely
often). I.e., q4 is not a winning state for player 0, while state q2 is. Moving from a
winning to a maybe-winning state is not part of an assume-admissible strategy.
Based on this observation, the system (player 1) strategy is computed by assuming
that player 0 will always transition from q2 to q3 and never to q4. In this case the
system strategy is given by always transitioning from q4 to q6 (as this is a winning
strategy for player 1 and it needs to try to win even if the environment does not play
admissible) and choosing the only available transition in every other system state.

I Case 2a: M with T 0 = {q0, q6} and T 1 = {q3, q7} :
. SC: A supervisor obtained via the algorithm in Section 3.4 applied to M̌ enables
all controllable transitions except for the one from q4 to q5.
. AAS: In this case both the system and the environment player have a winning
strategy. The resulting strategy profile is however still equivalent to case 1a as the
environment has to execute its winning strategy in q2. Hence, the environment keeps

42



the play in the left part of the game graph.

I Case 3a: M with T 0 = {q0, q6} and T 1 = {q7}: :
. SC: Running the fixed-point in (24) on M̌ returns the empty set. Hence, this
problem has no solution. The reason is similar to case 1a.
. AAS: As discussed in case 1a, the only admissible strategy of player 0 is to always
transition to q3 from q2. As this prevents player 1 from reaching its winning state
q7, there exists no assume-admissible player 1 strategy.

I Case 4a: M with T 0 = {q6} and T 1 = {q3, q7}:
. SC: We see that G 6⊆ A in this case. We therefore have to use a different marking
on M̌ , namely FA = {q6} and FG = {q7}. Running the synthesis algorithm from
Section 3.4 on this automaton returns the same supervisor as in case 2a, as the
supervisor can rely on the plant to transition from q2 to q4 infinitely often.
. AAS: Player 0 has no winning strategy in this case. However, admissible strate-
gies are defined such that player 0 will always try its best to still win if player 1
cooperates, hence it will always choose to transition from q2 to q4. Given this ad-
missible strategy, player 1 wins if it also tries its best to cooperate and hence always
transitions from q4 to q6. Hence, AAS results in the same system strategy as SC.

Now consider the automation M ′ depicted in Figure 8 (top right) as representing
the instances of Problem 1 we are interested in. We again consider the four cases
discussed for M .

I Case 1b: M ′ with T 0 = {q0, q6} and T 1 = {q3}:
. SC: Running the fixed-point in (24) on M̌ ′ returns the empty set due to the same
reason as discussed in case 1a.
. AAS: The change of M to M ′ causes every state to be winning for player 0.
This implies that there exists no assume-admissible system strategy, as the reactive
module cannot assume anymore that the environment will transition from q2 to q3.

I Case 2b: M ′ with T 0 = {q0, q6} and T 1 = {q3, q7} :
. SC: The supervisor obtained via the algorithm in Section 3.4 enables every avail-
able transition.
. AAS: In this case both the system and the environment player have a winning
strategy. Interestingly, the resulting closed loop behavior is now given by the lan-
guage accepted by the full automaton, while in case 2a, player 0 is assumed to always
keep the play in the left part of M .

I Case 3: M ′ with T 0 = {q0, q6} and T 1 = {q7}: :
. SC: Running the fixed-point in (24) on M̌ ′ returns the empty set. Hence, this
problem has no solution. The reason is similar to case 1b.
. AAS: As discussed in case 1b, the admissible strategy of player 0 can transi-
tion from q3 to either q2 and q4. This implies that player 0 can prevent player 1
from reaching its winning state q7 by always choosing to transition from q3 to q2.
Therefore, there exists no assume-admissible player 1 strategy.

I Case 4b: M ′ with T 0 = {q6} and T 1 = {q3, q7}:
. SC: As in case 4a, we need to consider M̌ ′ with marking FA = {q6} and FG = {q7}.
Running the synthesis algorithm from Section 3.4 on this automaton returns the
same supervisor as in case 2b, as the supervisor can rely on the plant to transition
from q2 to q4 infinitely often. Hence, the resulting supervisor simply enables every
available transition.
. AAS: Observe that player 0 has a winning strategy in this case by always transi-
tioning from q2 to q4 and from q6 to q7. Under this assumption there also exists a
player 1 strategy, which is simply given by enabling all available transitions. /
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Example 8 suggests that the assumptions on the environment player, i.e., on
the plant behaviour, are strictly weaker in AAS than in SCT. Hence, there exist
situations where AAS has a solution, while there exists no supervisor solving the
corresponding synthesis problem (see case 1a). Furthermore, we see that in all cases
where a supervisor exists, the assume-admissible system strategy is a subset of (or
equivalent to) the reactive module extracted from the computed supervisor. We
were not able to construct a case in Example 8 which allows for a supervisor but not
for an assume-admissible system strategy. Intuitively, this is due to the fact that
the algorithm for supervisory controller synthesis requires G ⊆ A. Restricting the
guarantee for supervisor synthesis to A∩G (case 4a and 4b) rules out all potentially
interesting scenarios in this respect. While the above observations conform with our
intuition, we have not proven the described connection formally.

A Connection to Probabilistic Games The use of environment assumptions in re-
active synthesis makes synthesis problems easier to solve. Hence, a natural question
to ask is whether there exists an assumptionA which renders a given (unconstrained)
synthesis problem solvable. Ideally, one would like to compute A s.t. it is “maxi-
mally permissive” in the sense that it restricts G as little as possible and such that
it cannot be falsified by a reactive module (in the sense of Section 4.3).

This problem has been addressed by [Chatterjee et al., 2008]. The authors show
that computing such maximally permissive assumptions is NP hard and their actual
implementation only obtains locally optimal solutions. Interestingly, the considered
problem is reduce to finding almost sure winning strategies in probabilistic games.

Indeed, there is a strong connection between the two-nested fixed-point used to
calculate almost sure winning strategies in concurrent reachability games [de Alfaro
and Henzinger, 2000, de Alfaro et al., 2007] and the two inner-most fixed points of
the synthesis algorithm for supervisors, Eq. (24). Both use a pre-operator with two
arguments (see Eq. (25)), where the first argument specifies the set which should be
reached and the second argument specifies the set which should not be left (resp.
surely avoided) while doing so. Intuitively, this connection is not surprising as the
setting of supervisory control still leaves the freedom to the plant to choose one of
the events allowed by the supervisor. This can also be formalized by a probability
distribution over all events available in a given state.

However, the match between these two fixed-points is not exact. Intuitively, the
pre-operator used in the supervisory controller synthesis algorithm has the additional
twist that source states of valid transitions might be excluded from the winning set.
This is required for the outer two fixed-points in Eq. (24) to work properly. It is the
subject of further research to see if Eq. (24) can be transformed into a version using
a probabilistic pre-operator instead.
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6. Conclusion

We have described a variant of reactive synthesis (RS) with upper-bound language-
inclusion specification which explicitly addresses environment assumptions and, thus,
is a promising candidate when aiming for a comparison with supervisory control the-
ory (SCT). For SCT, we have presented a variant that uses ω-languages as the base
model and, hence, match this characteristic feature of RS. For both domains we
present technical problem statements and we derive behavioural characterisations of
reactive modules and supervisors, respectively. This facilitates a technical compari-
son. In our attempt to transform problem instances from one domain of research to
the other, we make the following core observations.

We succeed unconditionally in solving any instance of the considered RS prob-
lem by using SCT; see Section 4.1 (Theorem 2). On the practical side, our proposed
transformation retains regularity and we may apply the four-nested fixed-point algo-
rithm from SCT to obtain a reactive module. Notably, the obtained reactive module
will not actively falsify the assumptions on the environment. This additional prop-
erty is enforced by the SCT algorithm as it only computes solutions which do not
conflict with the environment assumptions. As the latter property cannot be en-
coded as an ω-regular property, the four-nested fixed-point algorithm cannot result
from a straightforward translation of an LTL synthesis problem into a µ-calculus
formula over a two-player game. This provides a new perspective on algorithms
ensuring solutions which do not falsify the assumptions, which is an active field of
research in the RS community.

The reverse transformation does not work out in general. The reason is that the
additional property of non-conflicting solutions required by SCT is not guaranteed
by solutions to the RS problem. For this reason, we can only solve a synthesis
problem from SCT by RS, if we ensure a non-conflicting closed-loop by imposing
additional restrictions on the problem parameters. To this end, we identify three
cases: topologically closed plants, Theorem 3, topologically closed plants with alter-
nating inputs and outputs, Theorem 4, and strongly non-anticipating plants with
alternating inputs and outputs, Theorem 5. The last, in our opinion, is of partic-
ular interest since the additional assumption of strong non-anticipation is weaker
then topologically closedness and well motivated for hybrid systems or abstractions
thereof, see [Moor et al., 2011]. It is furthermore both conceptionally and technically
closely related to non-falsifiable assumptions, a condition developed independently
in the RS community. Again, each of the proposed transformations retains regularity
of the problem parameters and, hence, can be used to practically synthesize super-
visors by algorithms from RS. Hence, for the considered class of plant behaviours we
see that a three nested fixed-point computation suffices and may therefore expect
computational benefits as a trade-off when imposing additional conditions on the
supervisor synthesis problem.

Referring back to the transformation of RS problems via Theorem 2 into synthesis
problems in SCT, it is observed that it affects the solutions but not the problem
parameters. The same is true for the reverse transformations of input/output be-
haviours in Theorems 4 and 5. This establishes equivalence of the two problems
regarding solvability for respective subclasses of plants as stated in Corollaries 2
and 3. Likewise, we establish by Corollary 1 the equivalence of the transformed
problems regarding solvability for topologically closed but non-alternating plants
behaviours. Moreover, we show that for topologically closed plant behaviours with
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alternating inputs and outputs both fixed-point algorithms collapse to the same 2-
nested fixed-point. Using Corollary 2, this establishes equivalence of both synthesis
algorithms in this case.
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A. Behavioural Characterisations of Problem Statements

The proofs for the behavioural characterization of Problem 1 and Problem 2 in
Lemma 1 and Lemma 2, respectively, are very similar and rather straight forward.
We provide them here in the interest of a complete and self-contained presentation.

Proof of Lemma 1. We prove both directions separately.

“⇒” Let r : U+→Y be a reactive module with associated behavior L ⊆ (UY )ω.
Consider the ∗-language

Lr := { s ∈ (UY )∗ | ∀ t ∈ (U ∪ Y )∗ , y ∈ Y : sy ≤ t ⇒ y = r(pU s) } , (46)

to observe (pfxL) ∩ (UY )∗ ⊆ Lr. By L ⊆ (UY )ω, this implies cloL = lim pfxL ⊆
limLr. Moreover, s ∈ Lr implies (pfx s) ∩ (UY )∗ ⊆ Lr. In particular, we obtain
limLr ⊆ L and, hence, limLf = L.
(RM1) From the preliminary considerations, we observe cloL ⊆ limLr = L, and,
hence, L is topologically closed.
(RM2) We first show that for any s ∈ (pfxL) ∩ (UY )∗ and for any u ∈ U it
follows that su ∈ pfxL. Consider a sequence (si)i∈N such that si ∈ Lr for some
i ∈ N and define si+1 := siur(pU siu) ∈ Lr. We initialise our construction with
s ∈ (pfxL) ∩ (UY )∗ ⊆ Lr to obtain si ∈ Lr for all i ∈ N. By construction,
(si)N is strictly monotone and, hence the limit amounts to a singleton α ∈ (UY )ω,
{α } = lim{ si | i ∈ N } ⊆ limLr = L. Observe that su ≤ s2 < α, to conclude
su ∈ pfxL. As u was arbitrary, we can now consider any su′ ∈ pfxL and pick an
arbitrary u′′ ∈ U to see that su′′ ∈ pfxL follows from the above construction.
(RM3) Pick any s ∈ pfxL and any y′, y′′ ∈ Y such that sy′, sy′ ∈ pfxL. We
need to show that y′ = y′′. As sy′, sy′ ∈ pfxL, we have sy′, sy′ ∈ Lr and, hence,
y′ = r(pU s) = y′′.
(non-emptiness) Observe the ε ∈ Lr. Hence, we can pick an arbitrary u ∈ U and do
the same construction as in (RM2), now staring with s1 = ε, to obtain α ∈ L.

“⇐” Given a non-empty language L ⊆ (UY )ω that complies to (RM1) to (RM3),
construct a reactive module r : U+→Y with associated behavior L. We prove this
claim in three steps (A)-(C).
(A) Show that for any v ∈ U+ there uniquely exist s ∈ (UY )∗U and y ∈ Y such
that

pU s = v and sy ∈ pfxL . (47)

We establish the claim by induction over the length of v.
– For v ∈ U , non-emptiness of L and (RM2) implies v ∈ pfxL. In particular, we
can choose y ∈ Y such that vy ∈ pfxL. By (RM3), the latter choice of y is unique
and, with s := v this establishes the claim for input strings v of length 1.
– Now assume that the claim holds for some v ∈ U+ and consider vu for an arbitrary
u ∈ U . Let s ∈ (UY )∗U and y ∈ Y denote the unique choice to satisfy Eq. (47)
for v. By (RM2), we obtain syu ∈ pfxL, and, hence, there exists y′ ∈ Y such that
syuy′ ∈ pfxL. With s′ = syu, we observe pU s

′ = vu and s′y′ ∈ pfxL. Now consider
any s′′ ∈ (U ∪ Y )∗ and y′′ ∈ Y ′ with pU s

′′ = vu and s′′y′′ ∈ pfxL. Since the length
of vu is at least 2, we can decompose by s′′ = tu′′′y′′′u with u′′′ ∈ U and y′′′ ∈ Y .
By the induction hypothesis, we obtain t′u′′′ = s and y′′′ = y. Hence, s′′ = syu = s′.
Together with (RM3), this also implies y′′ = y′.
(B) Given that the claim of step (A) is satisfied we can define functions f : U+ →
(U∪Y )∗ and r : U+ → Y with domain U+ such that Eq. (47) is true for s ∈ (UY )∗U
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and y ∈ Y if and only if s = f(v) and y = r(v). Clearly, r is a reactive module.
(C) Show that the associated behavior of r constructed in step (B) matches L: Pick
any α ∈ L and consider any prefix sy < α with s ∈ (UY )∗U and y ∈ Y . Denote
v = pU s. By sy ∈ pfxL and the claim in (A) this implies s = f(v) and y = r(v).
Since this holds true for any prefix, α complies with the behavior associated with
r. For the converse inclusion, let α ∈ (UY )ω belong to the behavior associated with
r. By siyi < α, si ∈ (UY )(i−1)U , yi ∈ Y , i ∈ N, we construct a strictly monotone
sequence of prefixes of α. Observe via (RM2) that s1 ∈ pfxL. Now assume si ∈ pfxL
for some i ∈ N and consider v := pU si. By the claim in (A), there uniquely exists
s ∈ (UY )∗U and y ∈ Y such that Eq. (47) holds, where we have y = r(v) and
s = f(v). Uniqueness then implies si = s and, referring to the definition of the
associated behavior, we also have yi = r(v). We conclude siyi ∈ pfxL, and hence,
by (RM2), si+1 ∈ pfxL. Thus, infinitely many prefixes (si)i∈N of α are within pfxL.
Topological closedness (RM1) then implies α ∈ L.

Proof of Lemma 2. We prove both directions separately.
“⇒” Let f : Σ∗ → Γ be a supervisor with associated behavior L. Consider the
∗-language

Lf := { s ∈ Σ∗ | ∀ t ∈ Σ∗ , σ ∈ Σ : sσ ≤ t ⇒ σ ∈ f(s) } , (48)

to observe pfxL ⊆ Lf and, hence, cloL = lim pfxL ⊆ limLf . Moreover, s ∈ Lf

implies pfx s ⊆ Lf , i.e., Lf is prefix-closed and we conclude that limLf ⊆ L. This
amounts to limLf = L.
(SC1) As the limit of a prefix-closed ∗-language, L is topologically closed.
(SC2) Pick any s ∈ pfxL and any σ ∈ Σuc and show that sσ ∈ pfxL. Consider
a sequence (si)i∈N and assume that si ∈ Lf for some i ∈ N. As ∅ 6= Σuc ⊆ f(si),
the property si ∈ Lf implies that si+1 := siσ ∈ Lf . Furthermore, as s ∈ pfxL ⊆
Lf we can choose s1 := s to initialise the sequence. By construction, (si)N is
strictly monotone and, hence, the limit amounts to a singleton α ∈ Σω with {α } =
lim{ si | i ∈ N } ⊆ limLf = L. Observe that sσ = s2 < α, to conclude sσ ∈ pfxL.
(non-emptiness) Observe that ε ∈ Lr. Since Σuc we can pick an arbitrary σ ∈ Σuc

and conduct the same construction as in (SC2), now starting with s1 = ε, to obtain
α ∈ L.

“⇐” Given a non-empty language L ⊆ Σω s.t. (SC1) and (SC2) hold, we construct
the canditate supervisor f : Σ∗ → Γ defined by

f ′(s) := {σ ∈ Σ | sσ ∈ pfxL} ∪ Σuc (49)

and show that its associated behaviour L′ defined via Eq. (15) coincides with L.
L ⊆ L′: Pick any α ∈ L and consider an arbitrary prefix sσ < α with s ∈ Σ∗, σ ∈ Σ.
In particular, we have sσ ∈ pfxL and, hence, σ ∈ f ′(s). By the arbitrary choice of
the prefix, we conclude that α ⊆ L′ from Eq. (15).
L′ ⊆ L: Pick any α ∈ L′. We fist show that pfxα ⊆ pfxL by induction over the
length of the respective prefix. Clearly, the claim is true for the prefix of length 0, i.e.,
we have ε ∈ pfxL by non-emptiness of L. For the induction step, consider s ∈ pfxL
and σ ∈ Σ with sσ < α. Since α ∈ L′ we have that σ ∈ f(s) (from Eq. (15)). If
σ is in the left union component of Eq. (49), we directly obtain sσ ∈ pfxL. If σ
is in the right union component Σuc, we also obtain sσ ∈ pfxL from the proof of
(SC1). Hence, pfxα ⊆ pfxL and we finally obtain α ∈ L by topological closeness
(SC1).
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B. Fixed-Point Characterisation of the Controllability Prefix

Although the synthesis algorithm for supervisory controllers via the controllability
prefix as used in this study is a specialization of the one provided by [Thistle and
Wonham, 1994a], we believe that it is instructive to provide a self-contained and
independent proof12 of Theorem 1. We discuss both directions of Eq. (26) separately.

B.1. “⇐:” From Win(M) to cfxA G

Consider the sets Z∞, Y i, Xi, W i
j for 0 ≤ i ≤ k and 0 ≤ j ≤ l as constructed in

Section 3.4 and assume that we redo the calculation of the fixed-point in (24) after
Z∞ has been computed in the previous iteration. Under the assumption that the
iteration over X has already converged, i.e., Xi = Y i, we consider the last iteration
of the inner-most fixed-point of (24), which is evaluated by iteratively computing

W i
j = Pre((W i

j−1 \ FA) ∪ Y i−1 ∪ (FG ∩ Z∞), Y i \ FA) (50)

initialized with Y 0 = ∅ and W i
j . This equation can be interpreted as follows. Given

a state q ∈ Z∞ with rank(q) = (i, j) > (0, 0) we know that q ∈ W i
j from (27). Now

(50) tells us (via the definition of Pre in (25)) that there exists a transition (q, σ, q′)
s.t. either
(a) q′ ∈W i

j−1 \ FA (resulting in rank(q′) ≤ (i, j − 1) and q′ ∈ Z∞), or

(b) q′ ∈ Y i−1 (resulting in rank(q′) ≤ (i− 1, ·) and q′ ∈ Z∞), or
(c) q′ ∈ (FG ∩ Z∞) (resulting in rank(q′) = (0, 0) and q′ ∈ Z∞).

Furthermore, we know for any uncontrollable transition (q, σ′, q′) with σ′ ∈ Σuc

that either cases (a)-(c) is true or we have
(d) q′ ∈ Y i \ FA (resulting in rank(q′) ≤ (i, ·) and q′ ∈ Z∞).
This observation is the essential ingredient in all proofs of lemmas utilized in this
section.

Now let f be a supervisor constructed via g in (28) and L its associated behaviour
defined via (15). We start by proving the two properties of f in Proposition 2,
namely, non-blockingness and soundness, separately. After that, we proceed with
the actual proof of the “⇐” part of (26).

Non-conflictingness Given the constructed supervisor f and a string s ∈ Σ∗ s.t.
q = δ(q0, s) ∈ Z∞, let f restrict the behaviour of the plant after q was reached. It is
easy to see that the supervisor f constructed via g in (28) only enables uncontrollable
transitions (which always keep the system in Z∞ due to cases (a)-(d)) or (if they
exist) controllable transitions resulting in a state q′ for which a ranking is defined,
which is only true for q′ ∈ Z∞. Hence, it is easy to see that the closed loop formed
by the plant A and f always keeps the system in Z∞. This is formalized by the
following lemma.

Lemma 3. Let s ∈ Σ∗ s.t. δ(q0, s) ∈ Z∞. Then it holds for all α ∈ Σ∗ that

sα ∈ (pfxL) ∩ (pfxA)⇒ δ(q0, sα) ∈ Z∞. (51)

Proof. Let ρ be the corresponding run of α on M with ρ(0) = δ(q0, s) ∈ Z∞. Hence,
there exists i, j ≥ 1 s.t. either rank(ρ(0)) = (i, j) > (0, 0), i.e., ρ(0) ∈W i

j ⊆ Y i ⊆ Z∞

12This proof is inspired by a discussion with Nir Piterman during a Dagstuhl Seminar in May 2017.
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or rank(ρ(0)) = (0, 0), i.e., ρ(0) ∈ Z∞ ∩ FG ⊆ Z∞. Furthermore, we know that
α(0) ∈ f(s) = g(ρ(0)) with ρ(1) = δ(ρ(0), α(0)). Given this, the claim follows by
induction: assuming that rank(ρ(l)) = (i, j) and hence ρ(l) ∈ Z∞ we know from the
above reasoning about f that α(l) ∈ f(sα|[0,l−1]) = g(ρ(l)) and ρ(l+1) = δ(ρ(l), α(l))
implies ρ(l + 1) ∈ Z∞.

Intuitively, the above interpretation of (50) shows that when using f to control
A there always exists the posibility to decrease the rank with the next transition
(cases (a)-(b)). As l and k are finite, this implies that we eventually reach a state q
with rank (0, 0), implying q ∈ FG . In this case any transition that keeps the system
in Z∞ (which always exists) is applied and the ranking is reset, allowing for the
same reasoning as before. This shows that there always exists a run ρ on M which
is allowed by f and visits FG infinitely often. This is formally stated in the next
lemma.

Lemma 4. For all s ∈ Σ∗ holds

δ(q0, s) ∈ Z∞ ⇒ ∃β ∈ Σω .

(
sβ ∈ L ∩ (cloA)
∧sβ ∈ G

)
. (52)

Proof. Let s′ := s and q := (q0, s
′) ∈ Z∞ implying the existence of i, j > 0 s.t.

q ∈ W i
j . Hence, we know that we can pick a particular σ ∈ Σ which is enabled in q

s.t. the post state q′ = δ(q, σ) fulfills at least one of the cases (a)-(c). If σ ∈ Σuc it
is easy to see that σ ∈ g(q) and hence sσ ∈ (pfxL) ∩ (pfxA). Now assume σ ∈ Σc

and recall that rank(q) = (i, j). If (i, j) > (0, 0) we see that cases (a),(b) and (c)
correspond to rank(q′) < rank(q) and hence σ ∈ g(q). If (i, j) = (0, 0) we see that
for all cases q′ ∈ Z∞ and hence σ ∈ g(q).

By resetting s′ to sσ we can redo the above transition construction infinitely often
to obtain a state sequence ρ corresponding to the word sβ (with β(l) being the σ
selected in the lth iteration of the above reasoning and ρ(l + 1) = δ(ρ(l), β(l))). It
is easy to see that for all l ∈ N holds ρ(l) ∈ Z∞ by construction and therefore there
exists i and j s.t. ρ(l) ∈W i

j and furthermore sβ ∈ lim((pfxL)∩(pfxA)) = L∩(cloA).
It remains to show that sβ ∈ G.

First, observe that whenever rank(ρ(l)) > (0, 0) the rank is decreased by any
transition corresponding to cases (a),(b) and (c). As by definition of Pre such a
transition always exists we eventually reach an l′ s.t. rank(ρ(l′)) = (0, 0) implying
ρ(l′) ∈ FG ∩ Z∞. In this case g allows for any transition that keeps ρ in Z∞ and
therefore resets the ranking of ρ(l′ + 1) to some (i, j). Applying this reasoning
infinitely often yields infinitely many visits to FG and therefore implies sβ ∈ G.

As an immediate consequence of Lemma 3 and Lemma 4 we can now show that
the constructed supervisor is non-blocking, i.e., its induced behavior and the plant
behavior are non-conflicting. Interestingly, this is only true for the supervisor f
constructed via g in (28) if G ⊆ A.

Lemma 5. If G ⊆ A, the languages L and A are non-conflicting, i.e.,

pfx(L ∩ A) = (pfxL) ∩ (pfxA). (53)

Proof. Observe that “⊆” in (53) always holds. We therefore only prove the reverse
direction. Pick sα ∈ (pfxL)∩ (pfxA). As f in (28) is only defined for states in Z∞

we know that this implies δ(q0, s) ∈ Z∞. With this it follows from Lemma 3 that
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δ(q0, sα) ∈ Z∞. Then we can use Lemma 4 to pick β ∈ Σω s.t. sαβ ∈ L ∩ clo(A)
and sαβ ∈ G. If G ⊆ A we therefore have sαβ ∈ A and hence sαβ ∈ L ∩ A. With
this we immediately have that sα ∈ pfx(L ∩ A).

Soundness of the Induced Closed Loop Behaviour While Lemma 4 shows that
there exists a run ρ visiting FG infinitely often, it should be noticed that due to the
use of uncontrollable events, such a run might not be “enforceable” by the supervisor.
However, using the property of the plant which is assumed to only generate runs
corresponding to words in A, it follows that for all such runs allowed by f , FG is
visited infinitely often.

Lemma 6. Let s ∈ Σ∗ s.t. δ(q0, s) ∈ Z∞. Then

sα ∈ L ∩ A ⇒ sα ∈ G. (54)

If q0 ∈ Z∞ this implies ∅ 6= L ∩ A ⊆ G.

Proof. Pick sα ∈ L∩A and let ρ be its corresponding run on M , i.e. inf(ρ)∩FA 6= ∅.
We need to show that for any l ∈ N s.t. ρ(l) ∈ FA there exists a j ≥ l s.t. ρ(j) ∈ FG .

As ρ(l) ∈ Z∞ (from Lemma 3) there exist i, j s.t. rank(ρ(l)) = (i, j). Now recall
that any σ ∈ g(ρ(l)) will result in a post state q′ = ρ(l + 1) covered by one of
the cases (a)-(d). As inf(ρ) ∩ FA 6= ∅ we know that there exists a l′ ≥ l s.t.
ρ(l′) ∈ FA. Now assume that there exists no l < l̃ ≤ l′ s.t. ρ(l̃) ∈ FG (as otherwise
rank(ρ(l̃)) = (0, 0) and hence the ranking would have been reset). Then we know
that rank(ρ(l′)) < rank(ρ(l)) as ρ(l′) ∈ FA is only possible if ρ(l′) corresponds to
case (b) or (c). If it corresponds to case (b) we still have rank(ρ(l′)) > (0, 0) and
can repeat the above reasoning. As we can only decrease the rank finately many
times we see that we eventually obtain rank(ρ(l′′)) = (0, 0) for some l′′ > l′ and
hence ρ(l′′) ∈ FG . As this resets the ranking in ρ, we can repeat the above reasoning
infinitely often and obtain sα ∈ G.

Proving the “⇐” part of (26) Using Lemma 5 and Lemma 6 we can finally prove
the “⇐” part of (26). For this purpose let s ∈ Σ∗ be s.t. q = δ(q0, s) ∈ Z∞ and
construct Vs s.t.

Vs := (sΣω) ∩ L ∩ A. (55)

We now proceed by proving all required properties for Vs from Definition 2 implying
that s ∈ cfxAG:
• Show Vs ⊆ G∩(sΣω): Observe, that it follows directly from (55) and Lemma 6 that
Vs ⊆ G. Furthermore, it follows from Lemma 4 that s ∈ pfx(L ∩ A) and therefore
s ∈ pfxVs by the specific structure of (55). Combining both observations implies
Vs ⊆ G ∩ (sΣω).
• Show Vs = (cloVs) ∩ A: Relative closedness w.r.t. A is implied by Vs to be the
intersection of a closed set with A.
• Show ((pfxVs)Σuc) ∩ ((pfxA) ∩ (sΣ∗)) ⊆ pfxVs: Pick sασ ∈ ((pfxVs)Σuc) ∩
(pfxA) ∩ (sΣ∗). This implies sασ ∈ (pfxA) and sα ∈ pfxL. Then it follows from
the construction of f via g in (28) that for any σ ∈ Σuc we have sασ ∈ pfxL and
therefore sασ ∈ pfxL. As sασ ∈ pfxA this implies sασ ∈ (pfxL) ∩ (pfxA). Then
it follows from Lemma 5 that sασ ∈ pfxVs, which proves the statement.
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B.2. “⇒:” From cfxA G to Win(M)

Down the road, we will prove this direction in (26) by contradiction. For this, we
need to construct the complement of Z∞ by negating the fixed-point in (24).

Negating the fixed-point in (24) Consider the existential and controllable Pre-
operators

Pree(T ) := {q ∈ Q | ∃σ ∈ Σ . δ(q, σ) ∈ T}
Prec(T ) := {q ∈ Q | ∀σ ∈ Σuc ∩ Enab(q) . δ(q, σ) ∈ T}

and their negated versions

¬Pree(T ) = Preu(¬T ) := {q ∈ Q | ∀σ ∈ Σ ∩ Enab(q) . δ(q, σ) ∈ ¬T}
¬Prec(T ) = Preuc(¬T ) := {q ∈ Q | ∃σ ∈ Σuc . δ(q, σ) ∈ ¬T}

where Preu and Preuc denote the universal and un-controllable Pre-operators, respec-
tively. Then it is easy to see that the inverse dynamics operator Pre(T, D) defined
in (25) can be decomposed in an existential and a controllable part and we have

Pre(T, D) = Pree(T ) ∩ Prec(T ∪D).

With this the fixed-point in (24) becomes

νZ . µY . νX . µW . Pree((W \ FA) ∪ Y ∪ (FG ∩ Z)) (56)

∩ Prec((X \ FA) ∪ Y ∪ (FG ∩ Z))

as we always have W ⊆ X during the fixed-point iterations.

We now use the negation rule of the µ-calculus, i.e., ¬(µX . F (X)) = νX . F (X)
where over-lined sets and functions denote there negation, to negate (56). This
results in the fixed-point

µZ . νY . µX . νW . Preu(¬((W ∩ FA) ∪ Y ∪ (FG ∩ Z)))

∪ Preuc(¬((X ∩ FA) ∪ Y ∪ (FG ∩ Z)))

= µZ . νY . µX . νW . Preu((W ∪ FA) ∩ Y ∩ (F G ∪ Z)))

∪ Preuc((X ∪ FA) ∩ Y ∩ (F G ∪ Z))

= µZ . νY . µ X . ν W . Preu(Z ∪ (W ∩ F G) ∪ (Y ∩ FA ∩ F G))) (57)

∪ Preuc(Z ∪ (X ∩ F G) ∪ (Y ∩ FA ∩ F G))

where the last line of the derivation follows from Z ⊆ X ⊆ W ⊆ Y given by the
properties of the µ-calculus.

Let Z
∞

denote the fixed-point computed by (57). Then Z
i

denotes the set ob-

tained in the ith iteration over Z and we denote by Y
i

= Z
i

the corresponding

fixed-point of the iteration over Y . Furthermore, we denote by X
i
j the set obtained

in the jth iteration over X performed while computing Y
i
. Then it follows from

the properties of the fixed point that after the ith iteration over Z has terminated,

we have Z
i

=
⋃

j X
i
j (in particular Z

k
=
⋃

j X
k
j for Z

∞
= Z

k
) and the algorithm is

initialized with Z
0

= ∅ and X
0
0 = ∅. With this we see that after the termination of
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the inner fixed-point over W the following holds for all states in X
i
j :

X
i
j =Preu(Z

i−1 ∪ (X
i
j ∩ F G) ∪ (Z

i ∩ FA ∩ F G))) (58)

∪ Preuc(Z
i−1 ∪ (X

i
j−1 ∩ F G) ∪ (Z

i ∩ FA ∩ F G)).

Now we can interpret (58) similar to (50). Given a state q ∈ Z∞ = Z
k

we know
that there exists a j s.t. q ∈ Xk

j . Now (58) tells us (via the definition of Preu and
Preuc ) that one of the following two cases is true.

(1) All events enabled in q lead to a next state q′ = δ(q, σ) s.t. either

(1a) q′ ∈ Zk−1 ⊆ Z∞,

(1b) q′ ∈ Xk
j ∩ F G ⊆ Z

∞
, or

(1b) q′ ∈ Zk ∩ FA ∩ F G ⊆ Z
∞

, or
(2) there exists an uncontrollable event σ ∈ Σuc enabled in q which leads to the

next state q′ = δ(q, σ) s.t. either

(2a) q′ ∈ Zk−1 ⊆ Z∞,

(2b) q′ ∈ Xk
j−1 ∩ F G ⊆ Z

∞
, or

(2b) q′ ∈ Zk ∩ FA ∩ F G ⊆ Z
∞

.
This observation is again essential for all proofs in this section.

Invariance of Z
∞

Consider a string t ∈ Σ∗ and any behaviour Ṽt ⊆ A∩(tΣω) which
fulfills properties (i) and (ii) in Definition 2. Then we can use (21) to construct a
map

f̃(s) := {σ ∈ Σ | tsσ ∈ pfx Ṽt } ∪ Σuc for all s ∈ Σ∗ (59)

with associated behaviour L̃ defined via (15). We now show that this map renders
Z
∞

invariant, i.e., we show that given a string s ∈ Σ∗ s.t. δ(q0, s) ∈ Z
∞

(i.e.,
δ(q0, s) /∈ Z∞), there exists a path in the behaviour of M restricted by f̃ which will
keep the system in Z

∞
and only visits FG finitely often.

Lemma 7. Let s ∈ Σ∗ s.t. δ(q0, s) ∈ Z
∞

. Then

∃sβ ∈ L̃ ∩ A .

(
∀l ∈ N . δ(q0, sβ|[0,l]) ∈ Z

∞

∧sβ /∈ G

)
. (60)

Proof. Define s′ := s and q := (q0, s
′) ∈ Z∞ = Z

k
, which implies the existence of j

s.t. q ∈ Xk
j , i.e. (58) holds. If the first line of (58) holds, we can pick any σ enabled

in q (in particular one ensuring sσ ∈ pfx(L̃ ∩ A)) s.t. the post state q′ = δ(q, σ)
fulfills one of the cases (1a)-(1c). If the second line of (58) holds, we know that
there exists σ ∈ Σuc s.t. the post state q′ = δ(q, σ) fulfills one of the cases (2a)-(2c).
To establish that for any such σ ∈ Σuc we have sσ ∈ pfx(L̃ ∩ A), recall that (SC2)
holds for L̃ and therefore sσ ∈ pfx L̃. As sσ ∈ pfxA by the definition of M , it
follows that sσ ∈ pfx(L̃ ∩ A).

By resetting s′ to sσ we can redo the above transition construction infinitely often
to obtain a state sequence ρ corresponding to the word sβ (with β(l) being the σ
selected in the lth iteration of the above reasoning and ρ(l + 1) = δ(ρ(l), β(l))). It
is easy to see that for all l ∈ N holds ρ(l) ∈ Z∞ by construction and therefore there

exists i and j s.t. ρ(l) ∈ Xi
j and furthermore sβ ∈ clo(L̃ ∩ A). It remains to show

that sβ /∈ G and sβ ∈ L̃ ∩ A.
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First, observe that whenever (1a) or (2a) is true in iteration l the i rank of ρ(l) is
decreased by one. Similarily, whenever (2b) is true, the j rank of ρ(l) is decreased. As

the iteration bound over Z and X is finite and Z
0

= ∅ we can only go through cases
(1a), (2a) and (2b) finitely often. This immediately implies sβ /∈ G. Furthermore, as
sβ ∈ clo(L̃ ∩A) we know that for any ρ(l) there exists a path to FA. As the second
line of (58) eventually reduces to case (2c), implying that FA is visited whenever an
enabled uncontrollerable event is applied in ρ(l) the universal pre-operator in the
first line of (58) ensures that we can always eventually select a transition visiting
FA (as this possibility is retained given that sβ ∈ clo(L̃ ∩ A)). This shows that we
can construct sβ s.t. sβ ∈ L̃ ∩ A, what proves the statement.

Proving the “⇒” part of (26) We now proceed to the actual proof of the “⇒”
part of (26) using the fact that t ∈ cfxA G and constructing a supervisory candidate
via (59) for the behaviour Ṽt associated with t via Definition 2.

Lemma 8. Let t ∈ cfxA G and Ṽt ⊆ G ∩ (tΣω) s.t. Ṽt fulfills properties (i) and (ii)
in Definition 2. Furthermore, let f̃ be a supervisor defined for Ṽt via (59) and let L̃
denote its associated behaviour. Then it holds that

Ṽt = L̃ ∩ A. (61)

Proof. NWe show both directions of (61) separately:
“⊆” Pick α ∈ Ṽt. Then it follows from condition (i) in Definition 2 that α ∈ A
and α ∈ clo(Ṽt). As clo(Ṽ) = clo(L̃ ∩ A) ⊆ L̃ ∩ clo(A) ⊆ L̃ we have α ∈ L̃, hence
α ∈ L̃ ∩ A.
“⊇” Pick α ∈ L̃ ∩ A and construct a sequence (ri)i∈N s.t. ri = α|[0,i]. As α ∈ L̃ and

L̃ is associated to f̃ in (59) via (15), we know that α(i + 1) ∈ f̃(ri) for all i ∈ N.
Doing induction over i we see that r0 = ε ∈ pfx Ṽt and for ri ∈ pfx Ṽt we have two
cases. Either α(i + 1) /∈ Σuc implying ri+1 ∈ pfx Ṽt from (59), or α(i + 1) ∈ Σuc

in which case condition (ii) from Definition 2 implies ri+1 ∈ pfx Ṽt. With this, it
follows that α ∈ clo(Ṽt), hence α ∈ clo(Ṽt) ∩ A. Using condition (i) in Definition 2
again we get α ∈ Ṽt.

Given that (61) holds, the “⇒” part of (26) can be easily proven by contradiction
using Lemma 7. I.e., given t ∈ cfxA G we know that there exists Ṽt ⊆ G ∩ (tΣω) s.t.
Ṽt fulfills properties (i) and (ii) in Definition 2. As G ⊆ A, we have Ṽt ⊆ A ∩ (tΣω)
and we can therefore apply Lemma 7. Now assume that δ(q0, t) /∈ Win(M) and
therefore δ(q0, t) ∈ Z

∞
. Then it follows from Lemma 7 and (61) that there exists

a string tβ ∈ Ṽt s.t. sβ /∈ G. However, this is a contradiction to the hypothesis
Ṽt ⊆ G ∩ (tΣω) and we can therefore conclude δ(q0, t) ∈ Win(M), what proves the
statement.

C. Technical Propositions and Proofs to Support the
Comparison

Reactive Synthesis via Supervisory Control

The following technical proposition summarises relevant properties obtained by our
construction of L′′ in Eqs. (31), (32) and (36).
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Proposition 3. Given non-empty alphabets U , Y , Σ and Σuc, where Σ = U ∪̇Y
and Σuc = U , consider any supervisor f : Σ∗ → Γ with associated behaviour L that
solves SCT[Σ, Σuc, A, G] for parameters A, G ⊆ (UY )ω as plant and specification,
respectively. Then the behaviour L′′ defined by Eqs. (31), (32) and (36), exhibits
properties (RS1) – (RS3). Moreover, we have that A and L′′ do not deadlock and
that A ∩ L′′ ⊆ A ∩ L.

Proof. As a preliminary observation, we show the L′ and (UY )ω are non-conflicting.
Pick any s ∈ (pfxL′) ∩ (pfx(UY )ω). If s ∈ (UY )∗, we refer to universal con-
trollability (SC1) to obtain su ∈ pfxL′ for any u ∈ U . If s 6∈ (UY )∗, we must
have s ∈ (UY )∗U and we refer to Eq. (34) to obtain that sy ∈ pfxL′ for some
y ∈ Y . In both cases, we have established the existence of some σ ∈ Σ such that
sσ ∈ (pfxL′) ∩ (pfx(UY )ω), i.e., the two languages do not deadlock. Recall that
L′ is topologically closed by (SC1), and note hat (UY )ω is topologically closed, too.
Thus, not to deadlock implies non-conflictingness.

We now turn to the properties (RS1)–(RS3). Ad (RS1). The intersection L′′ of
two topologically closed languages is itself topologically closed. Ad (RS2). Pick any
s ∈ Σ∗, u′, u′′ ∈ U and assume that su′ ∈ pfxL′′. In partiular, su′ ∈ pfxL′ and, by
(SC2), su′′ ∈ pfxL′. By su′ ∈ pfxL′′ ⊆ pfx(UY )ω, we obtain su′′ ∈ pfx(UY )ω. Since
L′ and (UY )ω are non-conflicting, this implies su′′ ∈ pfx(L′′ ∩ (UY )ω) = pfxL′′.
Ad (RS3) Pick any s ∈ Σ∗, y′, y′′ ∈ Y and assume that sy′ ∈ pfxL′′. sy′′ ∈ pfxL′′.
This implies sy′ ∈ pfxL′ and sy′′ ∈ pfxL′, and, by Eq. (35), y′ = y′′.

To prove that A ∩ L′′ ⊆ L, pick any w ∈ A ∩ L′′. Since L is topologically closed, it
is suffient to show that pfxw ⊆ pfxL and we do so by induction. By L 6= ∅, we have
ε ∈ pfxL, i.e., the claim is true for the prefix ε < w of length 0. Now consider s ∈ Σ∗,
σ ∈ Σ with sσ < w and assume that s ∈ pfxL. If s ∈ (UY )∗, we have that σ ∈ U
and refer to (RS2) to obtain sσ ⊆ pfxL. If s 6∈ (UY )∗, we must have s ∈ (UY )∗U ,
and, hence, σ ∈ f ′(s) ∩ Y . Denote Yf(s) the ouputs that comply with the original
supervisor f given s, i.e., Yf(s) := f(s) ∩ Y = { y ∈ Y | sy ∈ pfxL}. Likewise,
denote Ya the ouputs that comply with the plant given s, i.e., Ya(s) := { y ∈ Y | sy ∈
pfxA}. Then non-conflictingness of A and L implies Ya(s) ∩ Yf(s) 6= ∅. By the
definition of the post-processed supervisor h, we have h(s) ∩ Y = (Ya(s) ∩ Yf(s)).
By the definition of f ′, we have that f ′(s) ∩ Y is a singleton, i.e., we obtain that
{σ} = f ′(s)∩Y ⊆ h(s)∩Y = Ya(s) ∩ Yf(s). In particular, this implies σ ∈ f(s). We
extend sσ by an arbitrary β ∈ Σω

uc, and refer to the induction hypothesis s ∈ pfxL
to obtain sσβ ∈ L. This implies sσ ∈ pfxL and thereby completes the induction
step.

To see that A and L′′ do not deadlock, pick any s ∈ (pfxA) ∩ (pfxL′′). If
s ∈ (UY )∗, we refer to (RS2) to obtain sU ⊆ pfxL′′. Since A ⊆ (UY )ω, there must
exist some u ∈ U such that su ∈ pfxA. Thus, we have su ∈ (pfxA) ∩ (pfxL′′). If
s 6∈ (UY )∗, we must have s ∈ (UY )∗U . Consider the same sets of enabled output
events as above, i.e., Yf := f(s) ∩ Y = { y ∈ Y | sy ∈ pfxL} and Ya := { y ∈
Y | sy ∈ pfxA}, and we recall that Ya ∩ Yf 6= ∅. By the definition of the post-
processed supervisor h, we have h(s) = Σuc ∪ (Ya ∩ Yf). Thus, y ∈ f ′(s) for some
y ∈ Ya ∩ Yf . As above, we extend sy by an arbitrary β ∈ Σω

uc to obtain syβ ∈ L′,
and, hence sy ∈ pfxL′. Since L′ and (UY )ω are non-conflicting, we finally obtain
that sy ∈ (pfxL′) ∩ (pfx(UY )ω) = pfxL′′.

Proof of Theorem 2. We refer to the above proposition an obtain that L′′ satisfies
(RS1) – (RS3) and that A ∩ L′′ ⊆ A ∩ L. Hence L′′ ⊆ (A ∩ L) ∪ (Σω −A). Since
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L solves the supervisory control problem, Problem 2, we also have that A ∩ L ⊆ G.
Thus, L′′ ⊆ G ∪ (Σω − A) = A → G. This establishes that L′′ solves Problem 1.
Regarding ω-regularity, we first observe that all post-processing is performed for
topologically closed languages. Thus, there are no acceptance conditions. The
language associated with g is the intersection of cloA and L and amounts to a
product composition. This concludes the proof of Theorem 2.

Supervisory Control via Reactive Synthesis (Control-Patterns as Outputs)

Our proof of Theorem 3 is based on the following two technical propositions.

Proposition 4. Consider a finite alphabet Σ, uncontrollable events Σuc, ∅ 6= Σuc ⊆
Σ, control patterns Γ := { γ ⊆ Σ |Σuc ⊆ γ } and extended variants thereof as defined
in Eq. (38), and, for an arbitrary language L′ ⊆ (Σ′Γ′)ω, the variant L ⊆ Σω defined
in Eq. (41). If L′ is non-empty and satisfies (RM1) and (RM2) with U = Σ′ and
output Y = Γ′, then L is non-empty and satisfies (SC1) and (SC2). Consider the
additional parameters A ⊆ Σω and G ⊆ Σω and extended variants thereof as defined
in Eqs. (39) and (40). If L′ ⊆ A′ → G′ then L ⊆ A → G.

Proof. In general, topological closedness is not retained under projection. Thus, in
order to establish (SC1) by (RM1) we need to explicitly refer to the special situation
of alternating visible symbols and invisible symbols, as well as to the fact that the
alphabet under consideration is finite. Pick an arbitrary β ∈ cloL and denote (si)i∈N
a sequence si < si+1 ∈ pfxβ ⊆ pfxL for all i ∈ N. Define the sets of ∗-words from
the full alphabet that comply with si, i ∈ N, by

Ri := { r ∈ (Σ′Γ′)∗ | ∃α ∈ (Σ′Γ′)ω with rα ∈ L′ such that

pΣ′ r = 0si and ∀ γ ∈ Γ′, σ ∈ Σ′, sγσ ∈ pfx r : σ ∈ γ } . (62)

Note that si ∈ pfxL implies that Ri 6= ∅, and observe by pΣ′ Ri = {0si} and
Ri ⊆ (Σ′Γ′)∗ that words in Ri have uniform length. In particular, Ri is a finite set.
Moreover, we have the following property:

∀ i, j ∈ N, i ≤ j, t ∈ Rj , ∃ r ∈ Ri : r ≤ t ; (63)

i.e., Rj consists of specific postfixes from Ri. Next, denote

Ri,j := { r ∈ Ri | ∃ t ∈ Rj : r ≤ t } , (64)

where i, j ∈ N, i ≤ j. By Eq. (63), Ri,j is monotonously decreasing w.r.t. j, and,
since Rj is non-empty, so is Ri,j , i.e., ∅ 6= Ri,j+1 ⊆ Ri,j for all i, j ∈ N, i ≤ j. For
i ∈ N, consider the limit

Ni := ∩
j≥i

Ri,j ⊆ Ri (65)

and observe that Ni 6= ∅, since all components of the monotone sequence are non-
empty and finite. To establish that

∀ i ∈ N, r ∈ Ni ∃ t ∈ Ni+1 : r ≤ t (66)

by contradiction, assume that we can pick i ∈ N, r ∈ Ni such that rv 6∈ Ni+1 for
all v ∈ Σ∗. Since the words in Ri and Ri+1 are of uniform length, the last clause
is equivalent to rv 6∈ Ni+1 for all v ∈ Σl and some suitably chosen l ∈ N. Next,
referring to the definition of Ni+1, we pick for each v ∈ Σl some jv ≥ i+ 1 such that
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rv 6∈ Ri+1,jv and denote the maximum k := maxv∈Σl jv ∈ N. By monotonicity of
Ri+1,j w.r.t. j, this implies rv 6∈ Ri+1,k for all v ∈ Σl, and, hence, rvw 6∈ Rk for all
v ∈ Σl, w ∈ Σ∗. The latter collapses to rt 6∈ Rk for all t ∈ Σ∗ and thereby implies
r 6∈ Ri,k. This is a contradiction with r ∈ Ni and concludes the proof of Eq. (66).
By the latter property, we begin with an arbitrary r1 ∈ N1 and successively obtain
a a sequence (ri)i∈N, ri ∈ Ni, ri < ri+1 for all i ∈ N. Denote the singleton limit
by α ∈ (Σ′Γ′)ω. We then have pΣ′ α = 0β and, by topological closedness (RM1),
α ∈ L′. Referring to the second condition in Eq. (62), we also obtain that σ ∈ γ for
all γ ∈ Γ′, σ ∈ Σ′ and s with sγσ ∈ pfxα, and, hence β ∈ L. This concludes the
proof of topological closedness of L and therefore establishes (SC1).

In order to establish controllability (SC2), pick any s ∈ pfxL and σ ∈ Σuc and
choose β ∈ Σω such that sβ ∈ L. By the definition Eq (41) of L, we can further
choose r1 ∈ (Σ′Γ′)∗ and α ∈ (Σ′Γ′)ω with r1α ∈ L′, such that pΣ′ r1 = 0s and
σ1 ∈ γ1 for all v1 ∈ (Σ′Γ′)∗ with v1γ1σ1 ≤ r1. Referring to (RS2), we extend
r1 pfxL′ by σ to obtain r1σ ∈ pfxL′. Writing r1 = v1γ1 with γ1 ∈ Γ′ we observe
σ ∈ γ1 by σ ∈ Σuc. Referring to L′ ⊆ (Σ′Γ′)ω, we further extend r1σ by some γ ∈ Γ′

to obtain r2 := r1σγ ∈ pfxL′ and note that and σ2 ∈ γ2 for all v2 ∈ (Σ′Γ′)∗ with
v2γ2σ2 ≤ r2. This construction is repeated to obtain a strictly monotone sequence
(ri)i∈N, ri ∈ (0Γ′)(ΣΓ′)∗, ri < ri+1 for all i ∈ N, and we denote the singleton limit
α′ ∈ (0Γ′)(ΣΓ′)ω. In particular, pfxα′ ⊆ pfxL′ and we obtain α′ ∈ L′ by topological
closedness (RM1). By our construction, we have that σ′ ∈ γ′ for all v′ ∈ (Σ′Γ′)∗ with
v′γ′σ′ < α′. Let β′ := pΣ α to obtain 0β′ = pΣ′ α and, thus, β′ ∈ L. In particular,
0sσ = pΣ′ r2 ∈ 0 pfxβ′ and, hence, sσ ∈ pfxL.

For non-emptyness of L, we refer to L′ 6= ∅ and (RM2) to observe that 0 ∈
pfxL′. Thus, we can pick r1 ∈ 0Γ′ such that r1 ∈ pfxL. Now assume that ri ∈
pfxL′ ∩ (0Γ′)(ΣΓ′)∗ for some i ∈ N. Then, we can write ri = sγ for some γ ∈ Γ′.
Because Σuc ⊆ γ, we can extend sγ by some σ ∈ γ ∩ Σ to observe sγσ ∈ pfxL′ by
(RM2). Hence, there exists ri+1 ∈ riσΓ′ such that ri+1 ∈ pfxL′ ∩ (0Γ′)(ΣΓ′)∗. This
establishes a monotone sequence (ri)i∈N, ri < ri+1 ∈ pfxL′ for all i ∈ N. We denote
the singleton limit α ∈ (0Γ′)(Σ′Γ′)ω and conclude α ∈ L′ by topological closedness
(RM1). Moreover, there exists β ∈ Σω such that 0β = pΣ′ α. By construction, we
also have σ ∈ γ for all σ ∈ Σ′, γ ∈ Γ′, sγσ < α, and, hence, β ∈ L.

Regarding the inclusion L ⊆ A → G, pick any β ∈ L and choose α ∈ L′ according
to Eq (41), i.e, pΣ′ α = 0β and σ ∈ γ for all s ∈ (Σ′Γ′)∗ with sγσ < α. If β ∈ A,
we have α ∈ A′ by Eq. (39). Since L′ solves Problem 1, this implies α ∈ G′, and, by
Eq (40), 0β = pΣ′ α ∈ 0G. Thus, we observe that β ∈ G and conclude the proof of
L ⊆ A → G.

Proposition 5. Consider a finite alphabet Σ, uncontrollable events Σuc, ∅ 6= Σuc ⊆
Σ, control patterns Γ := { γ ⊆ Σ |Σuc ⊆ γ } and extended variants Σ′ and Γ′ thereof
as defined in Eq. (38). Given a plantA ⊆ Σω, construct the assumptionA′ ⊆ (Σ′Γ′)ω

by Eq. (40). For a reactive module L′ ⊆ (UY )ω with input range U := Σ′, output
range Y := Γ′ and satisfying (RS1) and (RS2), consider the supervisor candidate
L ⊆ Σω defined in Eq. (41). If pfxA′ in interconnection with pfxL′ does not
deadlock, then neither does pfxA in interconnection with pfxL.

Proof. To establish the absence of deadlocks, we pick an arbitrary s ∈ (pfxA) ∩
(pfxL) and extend this synchronously by one more symbol.

We first refer to s ∈ pfxL and extend by β ∈ Σω to obtain sβ ∈ L. By the
definition of L in Eq. (41), we can choose α ∈ L′ such that pΣ′ α = 0sβ and such
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that all prefixes comply with all past control patterns, i.e., we have pfxα ⊆ LSCT,
where

LSCT := pfx{ t ∈ (Σ′Γ)∗) | ∀σ ∈ Σ, γ ∈ Γ, r ∈ pfx t : rγσ ≤ t ⇒ σ ∈ γ } . (67)

In particular, we can rewrite

α = 0γ1σ1γ2σ2 · · · γnσnγn+1σn+1 · · · , (68)

with σk ∈ γk ⊆ Γ for k ∈ N to observe that s = σ1σ2 · · · σn, n := |s|. We now
refer to s ∈ pfxA and extend by β′ ∈ Σω to obtain sβ′ ∈ A. Here, we write
β′ = σ′n+1σ

′
n+2σ

′
n+3 · · · and let γ′k := Γ for all k ∈ N to assemble

α′ := 0γ1σ1γ2σ2 · · · γnσnγ′n+1σ
′
n+1 · · · . (69)

Again, we have pfxα′ ⊆ LSCT and, by sβ′ ∈ A, we conclude α′ ∈ A′.
Both ω-words α and α′ share the prefix 0t with t := γ1σ1γ2σ2 · · · γnσn and we

have that 0t ∈ (pfxA′) ∩ (pfxL′). Since A′ and L′ do not deadlock, we can extend
0t by σ′′ ∈ γ′′ ⊆ Γ to obtain 0tγ′′σ′′ ∈ (pfxA′) ∩ (pfxL′). Extending 0tγ′′σ′′ by α′′

to obtain 0tγ′′σ′′α′′ ∈ A′ we observe 0sσ′′ pΣ′ α
′′ = pΣ′(0tγ

′′σ′′α′′) ∈ 0A, and, hence,
sσ′′ ∈ pfxA. We can also extend 0tγ′′σ′′ to an ω-word in L′, however, in order to
address Eq. (41) we need to take care that all prefixes comply with past control
patterns. For an inductive argument, pick any rσ ∈ pfxL′. By the alternating
structure of L′, we find γ ∈ Γ such that rσγ ∈ pfxL′ and, by the free input (RS2),
we can choose any % ∈ γ to obtain rσγ% ∈ pfxL′. This construction maintains
compliance with control patterns, i.e., rσ ∈ LSCT implies rσγ% ∈ LSCT. Applying
this construction to the initial string 0tγ′′σ′′ ∈ pfxL′, and referring to topological
closedness (RS1), we obtain an ω-word 0tγ′′σ′′α′′′ ∈ L′ such that pfx(0tγ′′σ′′α′′′) ⊆
LSCT. For the projection, we have pΣ′(0tγ

′′σ′′α′′′) = 0sσ′′ pΣ′ α, and, referring to
the definition of L in Eq. (41), we obtain sσ′′ ∈ pfxL. This concludes the proof.

Proof of Theorem 3. Regarding L, non-emptyness, (SC1) and (SC2) are established
by Proposition 4. Moreover, we obtain by Proposition 5 that A and L do not dead-
lock. Since both languages are topologically closed, this implies non-conflictingness.
In turn, non-emptyness of A and L implies ∅ 6= K := A ∩ L. For the specification,
we again refer to Proposition 4 to obtain K = A ∩ L ⊆ A ∩ (A → G) = A ∩ G ⊆ G.
Now assume that L′ is ω-regular and consider a finite automaton realisation A′ =
(Q, Σ′ ∪ Γ′, δ, Qo). Since L′ is topologically closed, we do not need to consider an
acceptance condition and we can without loss of generality assume that A is deter-
ministic and reachable. A realisation of L can be obtained in three stages. First,
we can test on a per state basis whether or not enabled transition are labeled in
compliance with the recent control pattern. This step may require to split states in
order for the most recent control pattern to be unique for each state. The resulting
automaton A′′ then realises the language

L′′ := {α ∈ (Σ′Γ′)ω | ∀ γ ∈ Γ′, σ ∈ Σ′, sγσ ∈ pfxα : σ ∈ γ } . (70)

At a second stage, we refer to well known algorithms that implement the projection
to obtain A′′′ to realise L′′′ := pΣ′ L′′ and observe that

L′′′ := {β ∈ Σω | ∃α ∈ L′ with

β = pΣ′ α and ∀ γ ∈ Γ′, σ ∈ Σ′, sγσ ∈ pfxα : σ ∈ γ } . (71)
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Although in general, projection does not retain determinism, in the absence of
an acceptance condition we may determinise the result by the common subset-
construction. Third, we perform the intersection with 0(Γ′Σ′)ω and drop the leading
0-symbol. Again, these operations retain regularity and respective algorithms are
well known.

The following proposition is used to derive Corollary 1 from Theorem 3.

Proposition 6. Let Σ be a finite alphabet with the non-empty set of uncontrollable
events Σuc ⊆ Σ and let L be the solution of SCT[Σ, Σuc, A, G] with a non-empty
topologically-closed plant A ⊆ Σω and an upper-bound specification G ⊆ Σω. Fur-
thermore, let

L′ := {α ∈ (Σ′Γ′)ω | ∀ γ ∈ Γ′, s ∈ (Σ′Γ′)∗ : sγ < α→ γ = f(pΣ s) ∪ {0} } , (72)

where f denotes the supervisor with behaviour L. Then L′ solves RS[U, Y, A′, G′]
with U = Σ′, Y = Γ′, A′ and G′ defined via Eqs. (38)-(40).

Proof. We need to prove that (RS1)-(RS3) holds for L′, L′ and A′ do not deadlock,
L′ 6= ∅ and L′ ⊆ A′ → G′. As the last statement is implied by L′∩A′ ⊆ G′, we prove
this statement instead.
I (RS1): Pick any α ∈ cloL′ and γ ∈ Γ′, s ∈ (Σ′Γ′)∗ such that sγ < α. By
α ∈ cloL′, we can choose an arbitrary length prefix t < α such that t ∈ pfxL′, i.e.,
such that there exists an extension β with tβ ∈ L′. In particular, we can take the
choice such that sγ < t < tβ, which implies γ = f(pΣ s). We conclude that α ∈ L′
and obtain that L′ is closed.
I (RS2): Pick an arbitary ω-word β = σ1σ2σ3 · · · ∈ Σ′ω and denote γi := f(σ1σ2 · · · σi)∪
{0} ∈ Γ′. Then α := σ1γ1σ2γ2 · · · ∈ (Σ′Γ′)ω qualifies for α ∈ L′. This establishes
that pΣ′ L′ = Σ′ω which in turn implies a locally free input Σ′.
I (RS3): Consider some s such that sγ ∈ pfxL′ and sγ′ ∈ pfxL′ for γ, γ′ ∈ Γ′. By
the definitiom of L′ this immediately implies γ = f(pΣ s) ∪ {0} = γ′ and concludes
the proof of (RM3).
I ∅ 6= L′: To see this, we use the same witness α ∈ L′ as in the proof of (RM2).
I A′ ∩ L′ ⊆ G′: Pick any α ∈ A′ ∩ L′. From α ∈ A′ and Eq. (38) we obtain (i) that
pΣ′ α ∈ 0A and (ii), for all γ ∈ Γ′, σ ∈ Σ′, sγσ ∈ pfxα, that σ ∈ γ. From α ∈ L′,
we obtain that (iii) σ ∈ γ = f(pΣ s) ∪ {0} with the same quantification as in (ii).
Referring to the alternating structure α ∈ A′ ⊆ 0(Γ′Σ)ω, we cancel γ and obtain,
for all σ ∈ Σ and rσ ∈ pfx pΣ α, that σ ∈ f(r). This implies pΣ α ∈ L, and, hence
pΣ α ∈ A ∩ L ⊆ G. Finally, we obtain pΣ′ α = 0 pΣ α ∈ 0G, which establishes α ∈ G′
by Eq. (39) and we observe L′ ⊆ A′ → G′ from A′ ∩ L′ ⊆ G′.
I A′ and L′ do not deadlock: Pick any s ∈ (pfxA′) ∩ (pfxL′). First, assume
that s ∈ (Σ′Γ′)∗. Here, we choose σ ∈ Σ′ such that sσ ∈ pfxA′ and to refer
to (RM2) for sσ ∈ pfxL′. For the second case, we have s ∈ 0((Γ′Σ′)∗). From
s ∈ (pfxA′) and Eq. (38) we obtain (i) that pΣ′ s ∈ pfx(0A) and (ii), for all
γ ∈ Γ′, σ ∈ Σ′, tγσ ∈ pfx s, that σ ∈ γ. From s ∈ pfxL′, we obtain that (iii)
σ ∈ γ = f(pΣ t) ∪ {0} with the same quantification as in (ii). Referring to the
alternating structure s ∈ pfxA′ ⊆ 0 pfx((ΓΣ)∗), we cancel γ and obtain, for all
σ ∈ Σ and rσ ∈ pfx pΣ s, that σ ∈ f(r). This implies pΣ s ∈ pfxL, and, hence
pΣ s ∈ (pfxA) ∩ (pfxL). Now we extend by σ ∈ Σ for pΣ sσ ∈ (pfxA) ∩ (pfxL).
The second clause implies the existence of γ ∈ Γ such that σ ∈ γ = f(pΣ s). Hence,
with γ′ := γ ∪ {0}, we have that sγ′σ ∈ pfxA′ and σ ∈ γ′ = f(pΣ s) ∪ {0}. This
implies sγ′ ∈ pfxL′ to conclude the proof.
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Proposition 7. Consider a finite alphabet Σ, uncontrollable events Σuc, ∅ 6= Σuc (
Σ, let U = Σuc and Y = Σ − Σuc. Consider arbitrary languages A, L ⊆ (UY )ω

and the variant L′ ⊆ Σω defined in Eq. (42). If L satisfies (RM1) and (RM2) and
if pfxL and pfxA do not deadlock, then L′ satisfies (SC1) and (SC2). Moreover,
L′ ∩ (UY )ω = L, (pfxL′) ∩ (pfx((UY )∗)) = pfxL. Finally, pfxL′ and pfxA do not
deadlock.

Proof. For closedness (SC1) pick any α ∈ cloL′, i.e., pfxα ⊆ pfxL′. Note that

pfxL′ = (pfxL) ∪ ((pfxL)Σ∗uc) (73)

and that α must have infinitely many prefixes in at least one of the union compo-
nents. We distinguish two cases. If, case (a), α has infinitely many prefixes in pfxL,
we refer to refer to topological closedness (RM1) to obtain α ∈ L ⊆ L′. For the com-
plementary case (b), α has finitely many prefixes in pfxL and, hence, infinitely many
in (pfxL)Σ∗uc. In particular, there is a longest prefix s < α with s ∈ pfxL). There-
fore, we have α ∈ sΣω

uc ⊆ (pfxL)(Σω
uc). In both cases, we have established α ∈ L′.

Hence, L′ is topologically closed. For controllability (SC2), pick any s ∈ pfxL′ and
σ ∈ Σuc, to obtain sσ ∈ pfxL′ by Eq. (73). The equality L′ ∩ (UY )ω = L is
immediate from the fact that for every α ∈ L′ − L we have α ∈ (pfxL)Σω

uc and,
hence, α 6∈ (UY )ω. For the last equality in the proposition, we first show that L′
and (UY )ω are non-conflicting. Pick any s ∈ (pfxL′) ∩ (pfx(UY )∗). If s ∈ (UY )∗,
we refer to (SC2) and extend s by any σ ∈ U = Σuc to obtain sσ ∈ pfxL′. Else,
if s 6∈ (UY )∗, we must have s ∈ (UY )∗U . We write s = tu with u ∈ U and refer
Eq. (73) for t ∈ pfxL, to (RM2) for s = tu ∈ pfxL. Thus, we can extend s by
σ ∈ Y such that sσ = tuσ ∈ pfxL ⊆ pfxL′. In both cases, we have established
sσ ∈ (pfxL′) ∩ (pfx(UY )∗). Since both languages are topologically closed, this
concludes the proof of non-conflictingness of L′ and (UY )ω, which in turn implies
(pfxL′) ∩ (pfx((UY )∗)) = pfx(L′ ∩ ((UY )ω)) = pfxL. We are left to show that A
and L′ do not deadlock: (pfxA) ∩ (pfxL′) = (pfxA) ∩ (pfxL′) ∩ (pfx((UY )ω)) =
(pfxA) ∩ (pfxL); as A and L do not deadlock, the latter equality implies that A
and L′ do not deadlock, either.

Proof of Theorem 4. Referring to Proposition 7, we have (SC1) and (SC2) for L′.
Note also that L′ 6= ∅ is an immediate consequence of non-emptyness of L. Regarding
the specification, we observe for the closed-loop behaviour A ∩ L′ = A ∩ L′ ∩
(UY )ω = A ∩ L ⊆ A ∩ (A → G) = G. Again referring to Proposition 7, we also
have that pfxL′ and pfxA do not deadlock. Thus, non-conflictingness is implied by
both A and L′ being topologically closed. Since the latter two languages are also
non-empty, it follows that A ∩ L′ 6= ∅. Inspecting Eq. (42), all operations retain
regularity.

Non-Falsifiable Assumptions and Strong Non-Anticipation

Proposition 8. Given an alphabet Σ with the non-empty set of uncontrollable
events Σuc ( Σ, consider the instance of Problem 1, w.r.t. U = Σuc, Y = Σ − Σuc,
(pfxA,A) and G. Furthermore let H be the game graph induced by A and G via M
in (7) with acceptance condition {T 0, T 1}. Then player 0 has a winning strategy in
the Büchi game (H,T 0) iff ε ∈ cfxcloA, YA.
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Proof. ⇒ Assume there exists a winning strategy f0 for player 0 in the Büchi game
(H,T 0). Then we know that all plays compliant with f0 have corresponding words
α ∈ A. Now use f0 to define a map r : Y + → U s.t. f0(q) = r(pY s) iff δ(q0, s) = q
(which is possible as f0 always allows all outputs by definition). Then we can infer
from Lemma 2 that the behaviour L associated with r fulfills (RM1)-(RM3) (with
inverted inputs and outputs) and we have L ⊆ A from the above construction. Now
we can essentially apply the transformation from Section 4.2.2 (by swapping inputs
and outputs) to obtain L′ := L ∪ ((pfxL)((Σ−Σuc)

ω)) satisfying (SC1) and (SC2)
(with inverted controllable and uncontrollable events) and still having L′ ⊆ A. Using
V = L′, this implies that V ⊆ A, (i) V = cloV and (ii) pfxVY ∩ pfxA ⊆ pfxV.
Using Definition 2 implies ε ∈ cfxcloA, Y (A) and hence proves the statement.

⇐ Now assume that ε ∈ cfxcloA, Y (A). Using Definition 2 and Y = Σ − Σuc as
uncontrollable events, this implies the existence of V ⊆ A s.t. (i) V = cloV and (ii)
pfxVY ∩ pfxA ⊆ pfxV. Now define f : Σ∗ → Ξ with Ξ := { ξ ⊆ Σ |Σ − Σuc ⊆
ξ } s.t. f(s) := {σ ∈ Σ | sσ ∈ pfxV } ∪ Σ − Σuc. Now we can essentially apply
the transformation from Section 4.2.2 (by swapping controllable and uncontrollable
events) to obtain V ′′ in (36) (with swapped inputs and outputs) which fulfils (RM1)-
(RM3) (with inverted inputs and outputs) and V ′′ ⊆ A. Hence, we can infer from
Lemma 1 that V ′′ defines a map r : Y + → U s.t. r(v) is the unique element of the
singleton set {u ∈ u | ∃ s ∈ (UY )∗ . pY s = v ∧ su ∈ pfxV ′′ } for all v ∈ Y +. Using
r, define a player 0 strategy s.t. f0(q) = r(pY s) iff δ(q0, s) = q. Now it remains to
show that f0 is a winning strategy in the Büchi game (H,T 0). To see this, consider
a play π compliant with f0 and its corresponding word α. Observe that (RM2)
holding for V ′′ and the construction of r implies that α ∈ pfxV ′′. Then it follows
from topological closeness (RM1) that α ∈ V ′′ ⊆ A. As A = Lω

m(MA), this implies
that π visits T 0 infinitely often, what proves the statement.

Proposition 9. Given an alphabet Σ with the non-empty set of uncontrollable
events Σuc ( Σ, let U = Σuc and Y = Σ−Σuc. For an assumption A ⊆ (UY )ω and
a guarantee G ⊆ (UY )ω, let L denote a solution to the reactive synthesis problem,
Problem 1. If (44) holds then A and L are non-conflicting.

Proof. Given any s ∈ (pfxA) ∩ (pfxL), we first refer to the absence of deadlocks,
Eq. (4), and optionally extend s by one symbol to obtain s ≤ s′ ∈ (pfxA) ∩ (pfxL) ∩
(UY )∗. Referring to Eq. (44) and Definition 2, we can choose V ⊆ A ∩ (s′Σω)
such that (i) V is relatively topologically closed w.r.t. (cloA) ∩ (s′Σω) and (ii)
((pfxV)Y ) ∩ (pfxA) ∩ (s′Σ∗) ⊆ (pfxV). Since (cloA) ∩ (s′Σω) is topologically
closed, (i) implies that V is closed, too. We will construct a strictly monotone
sequence (ti)i∈N with ti < ti+1 and

s′ti ∈ (pfxV) ∩ (pfxL) ∩ (UY )∗ . (74)

We begin with t1 = ε and assume, for some i ∈ N, that we are provided a qualifying
ti. We can then pick u ∈ U such that s′tiu ∈ pfxV to observe s′tiu ∈ pfxL by
the free input (RM2). Likewise, we refer to the absence of deadlocks, Eq. (4), and
choose y ∈ Y such that s′tiuy ∈ (pfxA) ∩ (pfxL). By property (ii) of V, we obtain
s′tiuy ∈ (pfxV) ∩ (pfxL). Now ti+1 := tiuy satisfies the requirements and concludes
the iterative construction of (ti)i∈N. Denote β the singleton limit of the sequence.
Then s′β has infinitely many prefixes in pfxV and pfxL. Topological closedness of V
and L then implies that s < s′β ∈ V ∩ L ⊆ A ∩ L, and, hence, s ∈ pfx(A ∩ L).
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Proof of Theorem 5. As in the proof of Theorem 4, we refer to Proposition 7 to
obtain (SC1), (SC2), A ∩ L′ ⊆ G, A ∩ L′ = A ∩ L, and (pfxA) ∩ (pfxL′) =
(pfxA) ∩ (pfxL). For non-conflictingness, pick s ∈ (pfxA) ∩ (pfxL′), and refer to
Proposition 9 for s ∈ pfx(A ∩ L) = pfx(A ∩ L′). Again, non-conflictingness and
non-emptyness of A and L′ imply a non-empty closed-loop behaviour.
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