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ABSTRACT

We consider abstraction-based design of output-feedback controllers
for dynamical systems with a finite set of inputs and outputs against

specifications in linear-time temporal logic. The usual procedure

for abstraction-based controller design (ABCD) first constructs a

finite-state abstraction of the underlying dynamical system, and

second, uses reactive synthesis techniques to compute an abstract

state-feedback controller on the abstraction. In this context, our con-

tribution is two-fold: (I) we define a suitable relation between the

original system and its abstraction which characterizes the sound-

ness and completeness conditions for an abstract state-feedback
controller to be refined to a concrete output-feedback controller for

the original system, and (II) we provide an algorithm to compute a

sound finite-state abstraction fulfilling this relation.

Our relation generalizes feedback-refinement relations from

ABCD with state-feedback. Our algorithm for constructing sound

finite-state abstractions is inspired by the simultaneous reachability

and bisimulation minimization algorithm of Lee and Yannakakis.

We lift their idea to the computation of an observation-equivalent

system and show how sound abstractions can be obtained by stop-

ping this algorithm at any point. Additionally, our new algorithm

produces a realization of the topological closure of the input/output

behavior of the original system if it is finite-state realizable.

CCS CONCEPTS

•Computer systems organization→ Sensors and actuators; Robotic
control; • Theory of computation→ Abstraction;
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1 INTRODUCTION

Controller synthesis for dynamical systems against specifications

in linear temporal logic is a core problem in correct-by-construction

design of cyber-physical systems. One way to solve this problem

relies on abstracting the state space to a finite-state system, followed

by algorithmic techniques from reactive synthesis to compute an
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Figure 1: Tank reactormodeled as a dynamical system S over
an infinite bounded state space X ⊂ R3 with finite input

space U = {+, 0} and finite output space Y ⊆ 2
σ
denoting

the set of sensors σ = {l0, . . . , l5,o} which are currently ‘true.’

abstract controller which is then refined to a concrete one for the

original system [1, 7, 22, 26]. Most algorithms, and certainly most

state-of-the-art synthesis tools such as SCOTS [23], pFaces [11],

or Mascot [10], implement this abstraction-based control design

(ABCD) workflow while assuming the entire state of the underlying

system to be observable. In this paper, we relax the condition of

full state observation. We consider ABCD when the system has a

finite number of observable outputs and a controller must decide

its input choice (from a finite set) based solely on the history of

applied inputs and observed outputs. Such output-feedback control
is common in control design, as the observation of the state is

usually limited by the availability and precision of the sensors.

As an example, consider the tank reactor shown in Fig. 1. It has

a finite number of water level sensors (l0, . . . , l5) which indicate

whether the current water level touches the sensor or not by re-

turning true or false. Further, it can be observed (but not controlled)

whether the outlet valve is open (o = true) or closed (o = false).
The controller can set the inlet valve open (by applying u = +) or
closed (by applying u = 0). The actual state of the system, i.e., the

precise value of the water level, is not observable. In this example,

a given input/output sequence of observed true sensor values and

applied inputs (e.g., ν = {l0}{+}{l0}{+}{l0, l1,o}{0}{l0,o}{+} . . .)
provides a certain knowledge about the current true state (i.e., real

water level value) of the tank system, which might be sufficient to

implement a controller ensuring the satisfaction of a specification

over the observables. For example, one might want to ensure that

the tank never overflows (i.e., l5 never becomes true) while still

containing a limited amount of water (i.e., l1 is always true). We

show how finite-state abstractions of the input/output behavior of

such an infinite state dynamical system can be constructed for the

purpose of ABCD with output-feedback.

There is a rich history of output-feedback control design for

continuous dynamical systems w.r.t. classical control objectives

(such as stability or tracking) based on observer design [13, 25], with

recent extensions to systems with finite external alphabets [6] and

estimator-based abstractions for control with partial-information

[5, 8, 16]. In the context of temporal-logic control of finite-state
systems, output-feedback control gives rise to games of incomplete

https://doi.org/10.1145/3365365.3382219
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information [3, 5, 20]. The construction of finite-state abstractions

of input/output traces for the purpose of output-feedback control is

further enabled by so called l-complete abstractions [18, 21, 24, 30].

Here, the underlying state dynamics of the original system are

typically not assumed to be known, which is in contrast to the

situation commonly handled in ABCD for dynamical systems.

In this paper we connect the above listed lines of work by build-

ing a sound ABCD framework for synthesizing output-feedback

controllers for infinite-state dynamical systems with finite input

and output sets. In this context, our contribution is two-fold.

(I)We define sound abstractions for ABCD under output feedback

by relating states of the abstract system to the external input/output
traces of the original system which directly allows to refine an ab-

stract state-feedback controller to an output-feedback controller on

the original system. Our relation generalizes feedback-refinement

relations (FRR) [22] to systems with inputs and outputs and is

inspired by the framework of abstract interpretation [4], which

formalizes the interpretation of a given abstraction function over

different system semantics.

(II) We provide an algorithm to compute a sound finite-state ab-
straction of the original infinite-state system, which we call KAM,

the Knowledge-based Abstraction with Minimization algorithm. It

combines two distinct ideas. First, it utilizes the forward computa-

tion of a Knowledge-based Abstraction (KA) typically used to solve

partial observation games over finite-state systems [3, 20]. Second, it

deploys a backward partition refinement algorithm for bisimulation-

equivalence [9, 19] to construct the language equivalence quotient

of a given system. Neither algorithm is guaranteed to terminate

for infinite-state systems, even if there exists an exact finite-state

realization of the input/output behavior of the original system.

The KAM algorithm simultaneously executes the KA algorithm for-
ward, and theMinimization of sets through refinement of partitions

backward and computes a finite-state realization of the topologi-

cal closure of the input/output behavior of the original system if

it exists. Further, stopping KAM after any finite number of itera-

tions returns a sound finite-state abstraction, even if no finite-state

realization exists.

The minimization part of KAM is inspired by the simultaneous

reachability and bisimulation minimization algorithm of Lee and

Yannakakis [12]. However, as we are aiming at constructing an

observation- (not bisimulation-) equivalent system, our algorithm

only applies predecessor operations and intersection with outputs,

but does not take set differences [9]. This is, indeed, in contrast to

any algorithm that constructs bisimulation relations, and is crucial

in implementations. For example, one can implement KAM for

linear dynamical systems by only manipulating convex polyhedra,

as convexity is maintained by both predecessor operations and

intersections, but not by set difference.

To decide when KAM should terminate it must recognize when

the current abstraction captures the reachable portion of the lan-

guage equivalence quotient, which is undecidable in general. Thus,

for infinite-state systems, KAM might not realize when it should

terminate, even though it may have constructed the language equiv-

alence quotient. This is also the case for the Lee-Yannakakis algo-

rithm and the construction of l-complete abstractions.

We tackle the termination problem similar to the l-complete

abstraction framework [18]. Since KAM always constructs sound

abstractions of the original system, we can run a synthesis pro-

cedure at any point to see if an abstract controller ensuring the

specification exists. If a controller can be found, the abstraction

construction can stop. If not, the construction continues until we

try again after a future iteration. This iterative ABCD procedure is

sound and relatively complete—if a topologically closed finite-state

abstraction that allows to construct an abstract controller for the

given specification exists, our procedure will eventually find it.

Additional proofs can be found in the extended version [14].

2 PRELIMINARIES

Notation.We use the symbols N, Z, R, and R>0 to denote the sets

of natural numbers, integers, reals, and positive reals, respectively.

Given a,b ∈ R s.t. a ≤ b, we denote by [a,b] a closed interval and

define [a;b] = [a,b] ∩ Z as its integer counterpart. For a setW , we

writeW ∗ andW ω
for the sets of finite and infinite sequences over

W , respectively. Forw ∈W ∗, we write |w | for the length ofw and

ε for the empty string with |ε | = 0; the length of w ∈ W ω
is ∞.

We define dom(w) = {0, . . ., |w | − 1} if w ∈W ∗, and dom(w) = N
ifw ∈W ω

. For k ∈ dom(w) we writew(k) for the k-th symbol of

w and w |[0;k ] for the restriction of w to the domain [0;k]. Given
two sets A and B, f : A⇒B and f : A→B denote a set-valued

and ordinary map, respectively. f is called strict if f (a) , ∅ for
all a ∈ A. The inverse mapping f −1 : B⇒A is defined via its

respective binary relation: f −1(b) = {a ∈ A | b ∈ f (a)}. By slightly

abusing notation, we lift maps to subsets of their domain in the

usual way, i.e., for a set-valued map f : A⇒B and α ⊆ A we have

f (α) = {b | ∃a ∈ α . b ∈ f (a)}, and similarly for ordinary maps.

Systems. A system S = (X ,X0,U , F ,Y ,H ) consists of a state space
X , a set of initial states X0 ⊆ X , a finite input space U , a strict

set-valued transition function F : X ×U ⇒X , a finite output space
Y , and an output function H : X→Y . To simplify notation, we

assume that H respects X0, that is, if H
−1(y) ∩ X0 , ∅ we have

H−1(y) ⊆ X0. The system S is called finite state if X is finite.

Trace Semantics. A path of S is an infinite sequence π =

x0u0x1u1 . . . such that x0 ∈ X0 and for all k ∈ N we have

xk+1 ∈ F (xk ,uk ). The set of all paths over S is denoted by Paths(S).
The prefix up to xn of a path π over S is denoted by π[0;n] with
length |π[0;n] | = n + 1 and last element Last(π[0;n]) = xn . The set
of all such prefixes is denoted by Prefs(S).

The unique external sequence of a path π of S is defined as

Ext(π ) = y0u0y1u1 . . ., where yk = H (xk ) for all k ∈ N. The
sets of all external sequences over S are denoted by Ext(S) and
we define EPrefs(S) := Ext(Prefs(S)). The set Ext(S) is called topo-
logically closed (or closed for short) if for any infinite sequence

ν = y0u0y1u1 . . . ∈ Y (UY )ω , whenever ν[0;k ] ∈ EPrefs(S) for all
k ∈ N it holds that ν ∈ Ext(S). We say that S has closed external
behavior if Ext(S) is closed (see, e.g., [29] for details).

We lift the map Last to external sequences and write x ∈
LastXS (ρ) if there exists π ∈ Prefs(S) s.t. ρ = Ext(π ) and x =
Last(π ). For a state x ∈ X we define all prefixes of S that reach x as

HistS (x) = {π ∈ Prefs(S) | Last(π ) = x} and all external sequences
generated by such prefixes as EHistS (x) = {ρ ∈ EPrefs(S) | x ∈
LastXS (ρ)}. If the system S we are referring to is clear from the

context we omit the subscript S from the maps LastX and EHist.
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Control Strategies. We define state-feedback and output-feedback
control strategies as functions C† : Prefs(S)→U and C :

EPrefs(S)→U , respectively. We say that a path π of S is compliant
with C (resp. C†) if for all k ∈ N, we have u(k) = C(Ext(π[0;k−1]))

(resp. u(k) = C†(π[0;k−1])). We denote the set of all paths and

prefixes of S compliant with C by CPaths(S,C) and CPrefs(S,C),
respectively. We further use Ext(S,C) and EPrefs(S,C) to denote

the sets Ext(CPaths(S,C)) and Ext(CPrefs(S,C)), respectively. For

a state-feedback controller C† all sets are defined analogously.

y defining compliance of a controller C with a system S over

the set of path prefixes, the set Ext(S,C) is topologically closed if

Ext(S) is.

Control Problem. We consider ω-regular specifications over a
finite set of atomic input and output propositions API and APO .
We omit the standard definitions of ω-regular languages (see,

e.g., [27, 28]). To simplify notation, we assume that U = 2
API

and Y = 2
APO

. In this setting, an ω-regular specification ψ can

be written as a language ⟨[ψ ]⟩ ⊆ Y (UY )ω of desired external

sequences. Given a system S and a specification ψ , the output-
feedback control problem, written ⟨S,ψ ⟩, asks to find an output-

feedback control strategy C such that Ext(S,C) ⊆ ⟨[ψ ]⟩. We define

W(S,ψ ) = {C | Ext(S,C) ⊆ ⟨[ψ ]⟩} as the set of all such output-

feedback control strategies. For a state-feedback controller C†, we

define analogously the setW†(S,ψ ).

3 ABSTRACTION-BASED CONTROLLER

DESIGNWITH OUTPUT-FEEDBACK

Abstraction-Based Controller Design (ABCD) is a well-known ap-

proach to solving a controller synthesis problem for a dynamical

system S against specifications defined by a language ⟨[ψ ]⟩. Here,

the dynamical system S is first abstracted to a finite-state system Ŝ
and then techniques from reactive synthesis (e.g., [15, 28]) are used

to design an abstract controller for Ŝ ensuringψ .
In this section, we will formalize the required relation between

S and Ŝ to refine an abstract state-feedback controller Ĉ† on Ŝ to

an output-feedback controller C on S . We start our formalization

by providing a general definition of sound abstractions in Sec. 3.1

which adapts feedback refinement relations [22] to systems with

finite input and output sets. We show that for this definition the

usual refinement of an abstract state-feedback controller to a con-

crete state-feedback controller carries over from [22]. As the main

contribution of this section, we then show in Sec. 3.2 that the defi-

nition of sound abstraction needs to be applied to the external trace

semantics of S rather than to its state transitions to allow for ABCD

with output feedback control.

3.1 Sound Abstractions

Given two systems we define a sound abstraction as follows.

Definition 3.1. Let S = (X ,X0,U , F ,Y ,H ) and Ŝ =

(X̂ , X̂0,U , F̂ ,Y , Ĥ ) be systems. Further, let α : X ⇒ X̂ andγ : X̂ ⇒X
be two set valued functions s.t. x ∈ γ (x̂) iff x̂ ∈ α(x). Then we call

Ŝ a sound abstraction of S , written S ≼γ
α Ŝ , if

(A1) α(X0) ⊆ X̂0,

(A2) ∀x ∈ X ,u ∈ U . α(F (x ,u)) ⊆ F̂ (α(x),u), and

(A3) ∀x̂ ∈ X̂ . H (γ (x̂)) ⊆ {Ĥ (x̂)}.

Ŝ is a sound realization of S , written S �
γ
α Ŝ , if S ≼γ

α Ŝ and Ŝ ≼α
γ S .

As common in abstract interpretation [4], we make γ explicit in

Def. 3.1 to emphasize that {x̂} ⊆ α(γ (x̂)), where equality may not

hold. However, to simplify notation, we often omit γ and write ≼α
and �α , as γ is fully determined by knowing α . Further, we write
≼ to indicate that there exists α s.t. ≼α holds.

Remark 1. Sound abstractions are an adaptation of feedback re-
finement relations (FRR) [22, Def. V.2] to systems with finite input
and output sets in the following sense.

(A1): An FRR is defined for fully initialized systems (i.e., X0 = X ),
where (A1) follows from the fact that an FRR must be a strict relation.

(A2): To simplify notation, we assume that F is a strict function1.
This implies that all inputs are enabled in every state, i.e., EnabS (x) =
{u ∈ U | F (x ,u) , ∅} = U for all x ∈ X . The definition of FRR makes
Enab(x) explicit by replacing (A2) with the two conditions
(A2. 1) ∀x ∈ X . EnabŜ (α(x)) ⊆ EnabS (x), and
(A2. 2) ∀x ∈ X ,u ∈ EnabŜ (α(x)) . α(F (x ,u)) ⊆ F̂ (α(x),u)
which coincide with (A2) if Enab(x) = U .
(A3): An FRR is defined for systems with full state observation, i.e.,
Y = X , Ŷ = X̂ and Ĥ = H = id with id(x) = x for all x ∈ X .
This renders Y infinite if X is infinite and does not allow the direct
interpretation of an ω-regular specification overU and Y . While our
condition (A3) enables the use of a common specification for both S
and Ŝ (due to their equivalent finite input/output spaces), this is not
possible in [22], due to Y being infinite and Y = X , X̂ = Ŷ . [22,
Def.VI.2] handles this by defining a different abstract specification
from the defined FRR and the specification over the original system S .

Observe that for a system S and its sound abstraction Ŝ , corre-
sponding states in two runs x0u0x1 . . . and x̂0u0x̂1 . . . stay related

by α during arbitrarily but finite executions, if they start at related

initial states x̂0 ∈ α(x0) (A1) and the same input sequence is ap-

plied (A2). In this case (A3) ensures that S always produces a subset

of the outputs generated by Ŝ in every instance of the trace. This

implies that any arbitrarily but finite external sequence ν generated

by the original system is contained in EPrefs(Ŝ). Therefore, any

abstract controller solving a given control problem over Ŝ can be

guaranteed to be refinable to a sound controller for S , if Ŝ has closed
external behavior. If this is not the case, spurious infinite external
traces generated by this controller on S which are not contained in

Ext(Ŝ) might violate the specification. Requiring Ŝ to have closed

external behavior is not with loss of much generality in ABCD: any

finite-state system (of the form considered in this paper) has closed

external behavior, and we require Ŝ to be finite-state in order to

apply reactive synthesis techniques for abstract controller design

anyways. The next theorem formalizes the above discussion for

ABCD with state feedback. The proof uses the same insights as the

proof of [22, Thm.VI.3] and is provided in [14].

Theorem 3.2. Let S and Ŝ be systems s.t. Ŝ has closed external
behavior. If S ≼α Ŝ and Ĉ† ∈ W†(Ŝ,ψ ) then C† = Ĉ† ◦ α ∈
W†(S,ψ ). Further, if S has closed external behavior and S �α Ŝ then
W†(S,ψ ) = ∅ iffW†(Ŝ,ψ ) = ∅.

1
See Rem. 2 in Sec. 4.1 for a discussion of this choice.
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3.2 Sound Abstractions for Output Feedback

Now we consider the case of output feedback. Here, the only avail-

able information about the system S that we can utilize for control

are external prefixes ν ∈ EPrefs(S). With this, however, we usu-

ally cannot uniquely determine the current state of the system, i.e.,

LastX(ν ) is usually a set of states and not a singleton. Further, it is

well known that any state of a system S possesses the Markovian

property, that is, knowing the current state of the system is enough

to uniquely determine all its future behaviors, which is utilized in

(A2) of Def. 3.1. This is, however, not true for the output space Y . In
general, one needs to look at the entire history seen so far, i.e., at

the generated string ν ∈ EPrefs(S), to uniquely determine all future

observable behaviors of this system. This intuition is captured by

the so called external trace system S⋆ of S in which a state represents
a finite external history of S , and the transitions extend the external
history by one step.

Definition 3.3. Given a system S = (X ,X0,U , F ,Y ,H ), its induced
external trace system is the system S⋆ = (X⋆,X⋆

0
,U , F⋆,Y ,H⋆),

where X⋆
:= EPrefs(S), X⋆

0
:= H (X0), F

⋆(ρ,u) := {ρuy |

F (LastX(ρ),u) ∩ H−1(y) , ∅} and H⋆(ρ) := Last(ρ).

It should be noted that, by definition, S⋆ has closed external be-

havior. We further have EPrefs(S) = EPrefs(S⋆), Ext(S) ⊆ Ext(S⋆),
and Ext(S) = Ext(S⋆) iff S has closed external behavior. That is,

Ext(S⋆) is the behavioral closure of Ext(S) [29].
To refine an abstract state-feedback controller to an output-

feedback controller for the original system, one needs to relate

abstract states to external prefixes of S . As the latter form the state

space of S⋆, such a refinement is possible if Ŝ is a sound abstraction

of S⋆. More precisely, it follows from Thm. 3.2 that S⋆ ≼ Ŝ implies

that a state-feedback control strategy Ĉ† : Prefs(Ŝ)→U for Ŝ can be

refined into a state-feedback control strategy C⋆† : Prefs(S⋆)→U
for the external trace system S⋆ of S . Now recalling the defini-

tion of S⋆’s state space X⋆
:= EPrefs(S), we see that for a string

ξ0u0ξ1u1 . . . ξk ∈ Prefs(S⋆) we have ξi = ξk |[0;i] for all i ∈ [0;k].

Therefore, ξk carries all information needed for C⋆†’s control

choice. C⋆† can therefore be redefined into a memoryless strategy

C⋆ : X⋆→U , which, by definition, is an output-feedback con-

trol strategy for the original system S (as X⋆
:= EPrefs(S)). The

following corollary of Thm. 3.2 summarizes this observation.

Corollary 3.4. Let S be a system, S⋆ its external trace system
and Ŝ a system with closed external behavior. If S⋆ ≼α Ŝ and Ĉ† ∈
W†(Ŝ,ψ ) then C = Ĉ† ◦ α ∈ W(S,ψ ). Further, if S has closed
external behavior and S⋆ �α Ŝ thenW(S,ψ ) = ∅ iffW†(Ŝ,ψ ) = ∅.

It should be noted that S⋆ is infinite state even when the system

S is finite state. This should not worry us too much as S is typically

also infinite state and we cannot efficiently check Def. 3.1 over S
either. The contribution of Cor. 3.4 is therefore conceptual. It shows

that the same notion of sound abstractions developed for ABCD

with state-feedback control can be utilized for output-feedback

when applied to the external trace semantics of S captured by S⋆.
In addition, the next section shows a construction of a finite-state

(and therefore closed) abstraction Ŝ directly from S which can be

proven to be a sound abstraction of S⋆ and thereby allows to apply

Algorithm 1 KA: Knowledge-Based Abstraction

Require: S = (X ,X0,U , F ,Y ,H )

1: X̂0 ← {X0 ∩ H
−1(y) ∈ 2X \ {∅} | y ∈ Y }

2: X̂old ← ∅ and X̂ ← X̂0

3: while X̂old , X̂ do

4: X̂old ← X̂

5: for x̂ ∈ X̂old ,u ∈ U ,y ∈ Y do

6: x̂ ′ ← F (x̂ ,u) ∩ H−1(y)

7: X̂ ← X̂ ∪ {x̂ ′} if x̂ ′ , ∅
8: end for

9: end while

10: Define x̂ ′ ∈ F̂ (x̂ ,u) iff there exist y s.t. x̂ ′ = F (x̂ ,u) ∩ H−1(y)

11: Define Ĥ (x̂) = y iff y ∈ H (x̂)

12: return ŜK = (X̂ , X̂0,U ,Y , F̂ , Ĥ )

Cor. 3.4 to obtain a sound ABCD framework for output-feedback

control without explicitly computing S⋆.

4 COMPUTING ABSTRACTIONS

We now turn to the algorithmic problem of computing system ab-

stractions such that designing a state-feedback controller on the

abstraction allows us, through Cor. 3.4, to construct a correspond-

ing output-feedback controller for the original system. For this we

assume that the original system has an infinite state space—e.g.,

defined by a continuous-state dynamical system—and our goal is to

compute a finite-state abstraction on which algorithmic techniques

for state-based controller synthesis (e.g., [15, 28]) can be applied.

We first recall two well-known approaches to compute such

finite-state abstractions which were developed for the setting where

the original system has a finite state space, and show that they may

not terminate for infinite-state systems, even if a finite-state realiza-

tion of the topological closure of its external behavior exists. Based

on this insight, we provide (Sec. 4.4) an algorithm for abstracting

infinite-state systems which overcomes this problem.

4.1 Knowledge-Based Abstraction

A standard way to solve control-strategy synthesis problems over

finite-state systems with partial observation [3, 20, 31] is to use

a knowledge-based subset construction. Starting from the subsets

of initial states generating the same output, the knowledge-based

subset construction algorithm, given in Alg. 1, explores all inputs

to the system and successively generates subsets of states that

are indistinguishable given the full history of applied inputs and

observed outputs. Such subsets x̂ of states of the original system S

become the states of the knowledge-based abstraction ŜK := KA(S).

Note that every reachable state x̂ of ŜK computed via Alg. 1 has the

property that all x ∈ x̂ have the same output; thus, we can define

Ĥ (x̂) as the (unique) output H (x) of some x ∈ x̂ .

Remark 2. We restrict our attention to systems with strict tran-
sition function in this paper to simplify the discussion of the KA
algorithm in Alg. 1 and KAM in Alg. 2. If not all inputs are enabled
in every state, KA would need to distinguish state sets further based
on the set of available inputs. This would require the controller to
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S :

a1
A

b1
B

a2
A

b2
B

bn
B

ŜK
:

{a1, a2 } A

{a2 }A {b1 } B

{b2 } B

{b1, b3 } B

Ŝbi
:

{a1 }
A

{a2 }
A

{bn }n∈N
B

KA(Ŝbi) :

{a1, a2 } A

{a2 }
A

{bn }n∈N
B

Figure 2: The system S (top left) has an infinite-state knowl-

edge abstraction ŜK (top right)while an exact finite-state rep-

resentation of Ext(S) exists, which is correctly computed by

first computing the bisimilarity abstraction Ŝbi (bottom left,

see Sec. 4.2) and then applying Alg. 1 (bottom right).

“observe” the status of currently enabled inputs. The not fully input-
enabled case can be implicitly handled by introducing an observable

“dummy” state and redirecting all transitions with disabled inputs to
the dummy state. This indirectly observes the status of enabled inputs
and provides a system with strict transition function. Then one can
conjoin the specification with the constraint that the dummy state is
never visited to obtain the original control problem. We postpone a
more in-depth treatment of this implicit observation of enabled inputs
to future work.

The next proposition formalizes the intuition that ŜK is a use-

ful abstraction for a given output-feedback control problem over

S . With Prop. 4.1 in place, it immediately follows from Cor. 3.4

that one can compute an output feedback controller C := Ĉ† ◦

LastXŜK ∈ W(S,ψ ) from an abstract state-feedback controller

Ĉ† ∈ W†(ŜK,ψ ), if it exists.

Proposition 4.1. Let S be a system, S⋆ its external trace system,
and ŜK = KA(S). Then, S⋆ �α ŜK with α = LastXŜK .

Proof. To simplify notation we define Ŝ := ŜK.

▶ We first prove that LastXŜ (EHistŜ (x̂)) = {x̂} for all x̂ ∈ X̂

by picking π̂ = x̂0u0x̂1u1 . . . x̂n and π̂ ′ = x̂ ′
0
u0x̂
′
1
u1 . . . x̂

′
n s.t.

Ĥ (x̂k ) = Ĥ (x̂ ′k ) for all k ∈ [0;n] and showing x̂n = x̂ ′n by in-

duction. ▷ For k = 0 we have x̂0, x̂
′
0
∈ X̂0. As Ĥ (x̂0) = Ĥ (x̂ ′

0
), we

have x̂0 = x̂ ′
0
. ▷ Now let k ∈ [1;n] and assume x̂k−1 = x̂ ′k−1. Then

it follows that there exists y,y′ s.t. x̂k = F (x̂k−1,uk−1) ∩ H−1(y)

and x̂ ′k = F (x̂k−1,uk−1) ∩ H
−1(y′). Again, Ĥ (x̂k ) = Ĥ (x̂ ′k ) implies

y = y′. Then it is easy to see that x̂k = x̂ ′k .

▶We now show that equality holds for (A1)-(A3) from Def. 3.1:

▷ (A1): By definition, X⋆
0
= H (X0); and by line 1 in Alg. 1, we have

LastXŜ (H (X0)) = X̂0. ▷ (A2): Let x̂ = LastXŜ (ν ) and u ∈ U . Fur-

ther, let x̂ ′y = F (x̂ ,u) ∩ H−1(y) and define Y ′ = {y ∈ Y | x̂ ′y , ∅}.

Now recall that F⋆(ν ,u) = {νuy | F (LastXŜ (ν ),u) ∩ H−1(y) ,

∅}. This implies x̂ ′y ∈ LastXŜ (F
⋆(ν ,u)) if y ∈ Y ′. Further, as

LastXŜ (EHistŜ (x̂)) = {x̂} we have LastXŜ (F
⋆(ν ,u)) =

⋃
y∈Y ′{x̂

′
y }.

From the definition of F̂ , it further follows that x̂ ′y ∈ F̂ (x̂ ,u) if

y ∈ Y ′ and in particular F̂ (x̂ ,u) =
⋃
y∈Y ′{x̂

′
y }. Recalling that

x̂ = LastXŜ (ν ) this shows that LastXŜ (F
⋆(ν ,u)) = F̂ (LastXŜ (ν ),u).

▷ (A3): Observe that γ = EHistŜ for α = LastXŜ . Then H (γ (x̂)) =

H (EHistŜ (x̂)) = H ({x̂}), hence H ({x̂}) = {Ĥ (x̂)}. □

Alg. 1 incrementally constructs ŜK from S by forward exploration
from the initial states. As the abstract state space X̂ ⊆ 2

X
contains

subsets of X it terminates if X is finite. This case is the one most

prominently discussed in existing literature, e.g., in [3, 31]. However,

Alg. 1 might also terminate if X̂ is infinite (see, e.g., the example in

Sec. 4.3), given that the necessary operations (in particular “Post”

and “Intersect”) can be implemented if state subsets are infinite. If

X is infinite, Alg. 1 might however also not terminate even if there

exists a finite-state realization of S . This is shown in Ex. 4.2. It is

interesting to note that this might still be the case even if X = X0.

This can be verified by checking that Alg. 1 does also not terminate

if all states in the system S depicted in Fig. 2 are initial.

Example 4.2. Consider the infinite state system S in Fig. 2, with

U = {u}, Y = {A,B}. By omitting the trivial input, the external

language Ext(S) of this system isA(B)+(A)ω | A(B)ω , for which one
can construct a finite trace equivalent system, for instance, using

one of the methods discussed in the following sections. Yet, Alg. 1

will separate every state labeled with B, leading to an infinite chain

of states with observation B, and will therefore not terminate.

4.2 Bisimulation Minimization

The knowledge-based abstraction algorithm KA computes reach-

able subsets going forward, but it may fail to terminate by trying

to distinguish states that are language equivalent to already com-

puted ones, that is, states that generate the same future sequence

of outputs under the same input sequence. Thus, one could first

compute a bisimulation quotient [2, 9, 17] of the system S and only

then compute the knowledge-based abstraction. It is possible that

an infinite-state system has a finite bisimulation quotient; in that

case, constructing the quotient first will allow the knowledge-based

abstraction to terminate (see Fig. 2 (bottom) for an example).

For a system S = (X ,X0,U , F ,Y ,H ), a partition of the set X
is a set of non-empty sets of X , called blocks, that are pairwise

disjoint and whose union is X . A partition is stable if the following
properties hold. First, for each block x̂ of the partition, every state

in the block has the same output: for all x ,x ′ ∈ x̂ , we have H (x) =
H (x ′). Second, for each block x̂ of the partition, every state in the

block has the same possible future outputs: for all x ,x ′ ∈ x̂ and

u ∈ U , we have Postu (x) = Postu (x
′), where Postu (x) := {x̂

′ |

F (x ,u) ∩ x̂ ′ , ∅}.
Using the notion of a stable partition of X we can define the

bisimulation abstraction Ŝbi = (X̂ , X̂0,U , F̂ ,Y , Ĥ ) of S as follows.

The set of abstract states X̂ is the minimal stable partition of X .

The initial abstract states X̂0 are those blocks that contain some

initial states from X0. The abstract transition function is defined

as F̂ (x̂ ,u) = {x̂ ′ ∈ X̂ | ∃x ∈ x̂ .F (x ,u) ⊆ x̂ ′}. Moreover, since every

state in each block of the partition has the same output, we can

uniquely define Ĥ (x̂) to be the output of some state in x̂ .
A partition refinement algorithm [9, 19] can be used to compute

Ŝbi from S . Unlike Alg. 1, this algorithm proceeds backwards by split-
ting blocks based on their predecessors, starting with the partition

defined by the outputs, i.e., {q ∈ 2X \ {∅} | ∃y ∈ Y . q = H−1(y)}.
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This algorithm may terminate if X is infinite and the necessary

operations are implementable over infinite state subsets. Going

back to the system described in Ex. 4.2 we see that the bisimulation

quotient Ŝbi (depicted in Fig. 2 (bottom left)) is finite, while the orig-

inal system S (depicted in Fig. 2 (top left)) and its knowledge-based

abstraction ŜK (depicted in Fig. 2 (top right)), are infinite. Applying

the KA algorithm on Ŝbi returns the desired finite state abstraction

(depicted in Fig. 2 (bottom right)) which allows for output feedback

control. However, if S is infinite-state, the partition refinement algo-

rithm is not guaranteed to terminate even if the knowledge-based

abstraction of the original system is finite. This is further illustrated

by the example discussed in the next section, which shows that

knowledge-based abstraction and bisimulation minimization are

incomparable and the suggested procedure to compute Ŝbi first,
before utilizing KA, may not terminate.

4.3 Illustrative Example

Before explaining KAM, we introduce an illustrative example. Con-

sider the infinite state system S depicted in Fig. 3 (top left) with

U = {u} and Y = {A,B,C,D,E, F }. It consists of one initial state
a1 which outputs A, an infinite chain of states bi , i ∈ N, all of
which output B, and four different modules ΛID (light blue, dashed),

ΛI ID (dark blue, dashed), ΛIE (light orange, dotted) and ΛI IE (dark or-

ange, dotted), attached to one b-state each. System S is constructed

s.t. modules of type D (resp. of type E) are reachable after output
B has occurred an odd (resp. even) number of times, i.e., from all

statesXodd
B := {b2i+1}i ∈N (resp. from all statesX even

B := {b2i }i ∈N).
However, the sequence of class I and I I modules of the same type

i ∈ {E,D} is irregular, i.e., there is no ω-regular expression to

describe how ΛIi and ΛI Ii modules repeat.

By closely investigating the modules of the same i-type it can be

observed that modules ΛIi and ΛI Ii for the same i ∈ {D,E} are ex-
ternal language equivalent. Therefore, the regularity of alternating

between type D and type E modules is enough to obtain a sound

finite-state realization Ŝ of S depicted in Fig. 3 (top right).

KA-algorithm (Sec. 4.1). The KA algorithm computes the abstract

state space by combining all states with the same observable past
while going forward. For the system S in Fig. 3 (top left) it constructs
state subsets as depicted in Fig. 3 (bottom left). We see that the KA

algorithm discovers that class I modules are a sound realization of

class II modules, i.e., ŜK only consists of class I modules s.t. type D

and type E modules are reachable from states in Xodd
B and X even

B
respectively. However, the KA algorithm still does not terminate on

this example as it explores language equivalent states unnecessarily.

I.e., by computing state subsets only going forward, it computes

a new, not yet explored subset of b-states in every iteration. The

KA-algorithm is not able to generalize and thereby merge all states

corresponding to Xodd
B or X even

B due to their unique future.

Bisimulation-Quotient (Sec. 4.2). A partition refinement algo-

rithm computing the bisimulation quotient of S merges states

with the same observable future going backward. For the system
S in Fig. 3 (top left) it immediately discovers that all states in

XF := { fi }i ∈N as well as XG := {дi }i ∈N have the same observ-

able future (namely Fω and Gω
, respectively). It further merges all

states contained in the same Λ
j
j module into one equivalence class

(see Fig. 3 (bottom right) indicated by the four color/line patterns).

However, as it proceeds backwards, it does not take into account

the reachable portion of all state subsets and thereby considers

states within class I and II modules of the same type as different.

This differentiates b states depending on the class of modules they

are connected to (indicated by the coloring of the b-states in Fig. 3

(bottom right)). As the partition refinement algorithm constructs

equivalence classes going backward, it generates a distinct equiva-

lence class for the left and right “color pattern” a b state “sees”. As

we assume that class I and II modules are irregularly sequenced,

there exist infinitely many such equivalence classes and the algo-

rithm therefore never terminates.

Combining both algorithms. For this example, running the KA

algorithm first and the partition refinement algorithm second, re-

sults in the finite state abstraction Ŝ depicted in Fig. 3 (top right).

This is, however, not practically implementable, as the KA algorithm

never terminates. Further, we have shown that for Ex. 4.2 one needs

to execute the partition refinement algorithm first, followed by the

KA algorithm. One can therefore construct an example where one

reachable part of the state space requires executing the KA algo-

rithm first, while the other part requires the partition refinement

algorithm to be executed first. In this case, no order would lead to

the desired result.

4.4 Knowledge Abstraction with Minimization

We now present the Knowledge-based Abstraction algorithm with
Minimization (KAM), given in Alg. 2, which interlaces the forward

Knowledge-based Abstraction (KA) with backward refinement-

based Minimization (M). We also illustrate the algorithm using

the example from Sec. 4.3.

Algorithm Description. KAM generates a rooted, labeled tree

and a cover set Cover ⊆ 2
X
. The nodes of the tree are kept in EXPX

and the edges in EXPF. The edges are labeled with inputs from U .

The nodes are labeled with a three-tuple ⟨ν ,q, c⟩ ∈ EXPX, consisting
of a sequence ν of external events seen when reaching the current

node from the root of the tree, a block q ⊆ X in the current Cover,
and a subset of states c ⊆ X (called a cell). Intuitively, a tuple

⟨ν ,q, c⟩ ∈ EXPX remembers the observed input/output sequence

from the initial states (in ν ), the available knowledge about the

current state (in c), and the current “guesses” on states which are

future observation-equivalent to c (in q). The cells c and blocks q
correspond to the data structures manipulated by the KA and the

Minimization algorithm, respectively, and are initialized similarly:

Cover is initialized with the partition induced byH onX (line 1, see

Sec. 4.2), cells are initialized with all initial cover blocks containing

an initial state (line 3). Note that the initialization of cells simplifies

as we have assumed that H respects the initial state set X0.

Example 4.3. For the example in Sec. 4.3, we see that the partition

induced by H on X results in the initial cover set Cover = {Xy |
y ∈ Y } s.t. Xy collects all states of S that generate the output y, e.g.,
XA := {a1} and XC := {ci }i ∈N. On the other hand, there is only

one initial cell, namely {a1} with H ({a1}) = A. This results in the

initialization of EXPX with ⟨A,XA, {a1}⟩ (see Fig. 4 (left)).

The main loop of KAM (lines 5–21) grows the tree by iterating

between a forward exploration (as in KA) and backward refinement
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Figure 3: Infinite-state system S (top left) discussed in Sec. 4.3, its sound finite-state abstraction Ŝ (top right), part of its infinite-

state knowledge abstraction ŜK (bottom left) and its infinite bisimulation quotient Ŝbi (bottom right). The single inputU = {u}
is omitted and outputs Y = {A, . . . , F } are indicated next to the respective state. A state subset {αi } denotes the set {αi }i ∈N.
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Figure 4: Exploration tree EXPF of S in Fig. 3 computed by Alg. 2 (left) and the abstract system Ŝ♯ extracted after its 5th iteration

(right). Nodes are labeled by tk (blue) for easier reference and the single input u is omitted to avoid clutter. Diamond-enclosed

numbers indicate the iteration in which this transition is explored. Dotted red arcs indicate cover block refinements in the

iteration of themain while loop depicted by the red circled number and caused by the line of Refine indicated on its top right.

E.g., XB of t1 is refined by re-calling Refine in line 35 after XC of t21 was refined in line 23 (as t1 is a predecessor of t21). The
notation 35/31 in t45 indicates that its cover block XB is refined by line 31 after re-calling Refine via line 35 on node t22.

(as in bisimulation). The forward exploration picks the current

leaves (ν ,q, c) of the tree (line 7) and executes one step of KA to

generate new cells c ′ for every u ∈ U and y ∈ Y (compare Alg. 1,

line 6 and Alg. 2, line 10).

For each minimal block q′ in the current Cover set that contains
c ′, KAM adds a new node ⟨ν ′,q′, c ′⟩ to the tree (line 12), where ν ′

extends the parents event sequence with the latest input and the

last output. The edge from the parent to the new node is labeled

with the input and stored in EXPF (line 13).

Example 4.4. The resulting exploration tree for the example in

Sec. 4.3 is depicted in Fig. 4 (left). Here, the diamond-enclosed

number on the edges indicates the iteration of the while loop (in

line 5-21 of Alg. 2) in which this transition and its child are added to

the tree. When comparing Fig. 4 (left) and the KA-abstraction ŜK of

this example (Fig. 3 (bottom left)), we see that the third component

of all tuples generated by KAM coincides with the abstract states

generated by KA in the same iteration (i.e., in a state with the same

distance from the initial state).

Having thus created all the children for a node ⟨ν ,q, c⟩, if c is
a proper subset of q, the next step in KAM is to check if q, the
current guess for the observation equivalence class for c , needs to
be refined. Refinement is performed by the function Refine (Alg. 2,

line 15) and works similarly to the bisimulation algorithm.

In contrast to the usual bisimulation algorithm, Refine(⟨·,q, c⟩)
only splits a block q based on its possible successors in the tree if

this split respects c , thereby avoiding the splitting of indistinguish-

able states, which caused the non-termination issue discussed in

Sec. 4.2. One can intuitively think of s ⊆ X computed in line 27

of Alg. 2 as the set of all states which are equivalent to c in terms

of their one-step observable future. However, in contrast to the

bisimulation algorithm, KAM only adds s to Cover but does not

add its complement q \ s (see line 29). This is due to the fact that

this operation might not respect the currently available cells and

again split indistinguishable states. If q \ s is indeed needed, it will

be discovered by another call to Refine.

Summarizing the above description, we see that Refine refines

the Cover set based on the one-step future of the computed cell.
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Algorithm 2 KAM: Knowledge Abstraction and Minimization

Require: S = (X ,X0,U , F ,Y ,H )
1: Cover← {q ∈ 2X \ {∅} | ∃y ∈ Y . q = H−1(y)};
2: EXPΓ ← ∅;
3: EXPX ← {⟨H (c),q, c⟩ | q ∈ Cover ∧ c = q ∧ c ∩ X0 , ∅};
4: EXPF ← ∅;
5: while EXPΓ , {⟨q, c⟩ | ∃ν . ⟨ν ,q, c⟩ ∈ EXPX} do
6: EXPΓ ← {⟨q, c⟩ | ∃ν . ⟨ν ,q, c⟩ ∈ EXPX};
7: for ⟨ν ,q, c⟩ ∈ EXPX s.t. |ν | is maximal do

8: for u ∈ U ,y ∈ Y do

9: ν ′ = νuy;
10: c ′ = F (c,u) ∩ H−1(y) , ∅;
11: Q ′ = {q′ ∈ Cover | c ′ ⊆ q′ and q′ is minimal};

12: EXPX ← EXPX ∪ {⟨ν
′,q′, c ′⟩ | q′ ∈ Q ′};

13: EXPF ← EXPF ∪ {(⟨ν ,q, c⟩,u, ⟨ν
′,q′, c ′⟩) | q′ ∈ Q ′};

14: end for

15: if c ⊂ q then Refine(⟨ν ,q, c⟩);
16: end if

17: end for

18: Ŝ ← Extract(EXPX, EXPF);
19: if TermCond() == true then return Ŝ ;
20: end if

21: end while

22: return Ŝ ;
23: function Refine(⟨ν ,q, c⟩)
24: for u ∈ U do

25: PostQu←
⋃
{q′ ∈Cover | (⟨ν ,q, c⟩,u, ⟨·,q′, ·⟩) ∈EXPF};

26: end for

27: s ← {x ∈ q | ∀u ∈ U . F (x ,u) ⊆ PostQu };
28: if s ⊂ q then

29: Cover← Cover ∪ {s};
30: for all ⟨ν̃ , q̃, c̃⟩ ∈ EXPX s.t. q̃ = q do

31: if c̃ ⊂ s then change ⟨ν̃ ,q, c̃⟩ to ⟨ν̃ , s, c̃⟩ in EXPΓ,X ,F ;

32: end if

33: end for

34: for all (⟨ν̃ ′, q̃′, c̃ ′⟩, ·, ⟨ν̃ , q̃, c̃⟩)∈EXPF s.t. q̃=s ∧ c̃
′⊂ q̃′ do

35: Refine(⟨ν̃ ′, q̃′, c̃ ′⟩);
36: end for

37: end if

38: end function

39: function Extract(EXPX,EXPF)

40: X̂ ← {q ∈ 2X | ⟨·,q, ·⟩ ∈ EXPX};

41: X̂0 ← {X0 ∩ H
−1(y) ∈ 2X \ {∅} | y ∈ Y };

42: F̂ ← {(q,u,q′) | ⟨·,q, ·⟩,u, ⟨·,q′, ·⟩) ∈ EXPF};

43: Ĥ (x̂) = y if y ∈ H (x̂);

44: return Ŝ = (X̂ , X̂0,U , F̂ ,Y , Ĥ );
45: end function

Given this refinement, all previously obtained relations between

cells and blocks need to be re-evaluated as s ⊂ q implies that s
is now the minimal cover of c , if c was previously related to q
in EXPX (see line 31). Thus, KAM updates its guess on the set of

states possibly external language equivalent to a state in c . This,
however, might imply new block splits in cell/block pairs reaching

c , which have been checked for refinement in previous iterations of

the algorithm. This is taken care of by the recursive call to Refine

in line 35. Note that the recursion always moves up to the parent

in the tree, and thus it eventually terminates. One can show that

after the recursive call to Refine terminates, we always have a

single minimal cover box q for every cell c computed so far. That

is, given the relation α̃(c) = {q ∈ Cover | ⟨c,q⟩ ∈ EXPX
↓} for

EXPX
↓
:= {⟨q, c⟩ | ∃ν . ⟨ν ,q, c⟩ ∈ EXPX}, we have |α̃(c)| = 1 (see

[14, Lem. A.2] for a formal proof).

Example 4.5. For the example in Sec. 4.3, we see that for the tuple

t0 we have c = q as XA = {a1}, hence, Refine is not called in the

first iteration of KAM. In its second iteration, it computes the leaves

t21 and t22 in the main while loop and then checks the parent node
t1 for refinement. For this, it computes all cover cells reachable by

b1 (which is PostQ =
⋃
{XB ,XC }) and then computes all states in

q = XB with the same reachable cover blocks (which is s = XB ). As

q = s , no split occurs and a new iteration of the main while loop

starts. After the computation of the leaves t31 − t33 KAM checks the

parent node t21 for refinement. Here we obtain PostQ = XD and

s = Xodd
C = {c2i+1}i ∈N. As s ⊂ q = XC the cell Xodd

C is added to

Cover. As there is no other node in the tree with a cell component

contained in Xodd
C , we only update the block component of t21

(indicated by the red dotted arrow pointing to it in Fig. 4) and

schedule all its predecessors for refinement. Therefore, node t1 is

checked for refinement again. Given the new cover cell Xodd
C we

now obtain PostQ =
⋃
{XB ,X

odd
C } and s = Xodd

B . This updates the

cover element of t1 and t33. This schedules only t22 for refinement,

as t0 does not fulfill the condition that c ⊂ q. Now checking t22
for refinement still gives PostQ =

⋃
{XB ,XC } as we have not yet

added the cover element X even
B = XB \ X

odd
B . This is due to the

fact that we do not know whether this element is indeed needed

and respects the constructed state subsets. We therefore leave node

t22 unchanged and proceed to the forth iteration of the main while

loop. This computes the leaves t41 − t45. During this computation

we now have the new cover cell Xodd
C available and KAM uses this

smaller cover cell to correctly tack the equivalence class for t44
(indicated in green in Fig. 4). Now the only interesting refinement

check is on t32 which discovers the new cover element X even
C and

induces the further refinement of node t22 introducing the cover

cell X even
B . This updates t22 and t45. Due to space constraints, we

do not depict the constructed tree further. It should be noted that

t43 clusters e
l
2
and er

2
, as these states are not distinguishable based

on the past observations. Therefore, calling Refine on t43 in the

next iteration of KAM will not refine the equivalence class XE as

PostQ =
⋃
{XF ,XG } and we therefore obtain s = XE . The same

happens for nodes dli and d
r
j . This prevents the non-termination

issue of the bisimulation algorithm for this example.

After exploration and refinement, KAM extracts an abstraction

Ŝ via the function Extract in line 19. Intuitively, Extract projects

the tree in EXPF to the blocks in the current Cover set which are

reachable. It thereby “forgets” the forward-computed cells. For the

example in Sec. 4.3 the abstraction extracted after the fifth iteration

of KAM is depicted in Fig. 4 (right). It can be observed that Fig. 4

(right) coincides with the abstraction Ŝ in Fig. 3 (top right) up to a

renaming of states.
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Termination. Intuitively, KAM should terminate if Cover sta-

bilizes. Then, all distinguishable subsets which are observation-

equivalent have been discovered, and hence, imply Ext(S) = Ext(Ŝ).
That is, we would ideally like to have TermCond() == true in

line 19 iff Cover has stabilized. Unfortunately, even if we observe

that Cover has not changed in the current iteration, we do not

know if it will never change again. This is because KAM bases

its search for cover splits on the already constructed state-subsets.

There might be a very long input/output event sequence which

only causes a subset split after a long exploration phase. As the

state space of S is infinite, we cannot check if this will ever happen.

Interestingly, this is also true for fully initialized systems (i.e., where

X = X0). Thus, this termination check is undecidable.

One interesting special case where termination is decidable oc-

curs if the KA algorithm (Alg. 1) terminates (which is for exam-

ple always the case if X is finite). In this case, one can show that

EXPΓ = EXPX
↓
holds in the l-th iteration of Alg. 2 iff Γ = X̂ holds in

the l-th iteration of Alg. 1 (see [14, Lem. A.3] for a formal proof

of this statement). While Cover might have stabilized earlier, we

know it has surely stabilized by then.

Finite-State Abstractions. The termination condition discussed

above aims on computing a sound finite-state realization of the

external behavioral closure of S which might not exist. Indeed, for

arbitrary non-linear dynamical systems there rarely ever exists an

exact finite-state realization in this sense, even if their input and

output sets are finite. Therefore, as the name suggests, abstraction-

based controller synthesis is usually only aiming at computing a

finite-state abstraction which is accurate enough to synthesize an

abstract controller for the given specification.

In this context, it is interesting to investigate whether the system

Ŝ# computed in line 18 of Alg. 2 after running the while loop in

line 5-21 finitely often, is indeed a sound abstraction of S in the

sense of Def. 3.1 and therefore allows for abstraction based control

in the sense of Cor. 3.4. Interestingly, this is only true if KAM has

already explored all possible output events which are reachable in S
at least once when terminated. This is for example trivially satisfied

if X0 = X . Additionally, whenever Cover stabilizes after a finite

number of iterations, KAM indeed computes a sound realization of

S . This is formalized in the following theorem.

Theorem 4.6. Let S be a system, S⋆ its external trace system
and Ŝ# an abstract system extracted in line 18 of KAM(S) in some
iteration. Further, let Y # = {y ∈ Y | ∃⟨q, c⟩ ∈ EXPΓ . Ĥ (q) = y}
and Reach(Y ) = {y ∈ Y | ∃ρ ∈ EPrefs(S) . y = Last(ρ)}. If
Y # = Reach(Y ) it holds that S⋆ ≼α Ŝ# with α = LastXŜ#

. Further, if
Cover has stabilized, we additionally have S⋆ �α Ŝ#.

In order to prove Thm. 4.6, we first prove Prop. 4.7 below

which formalizes the intuition that, under the given premises, the

cell/block pairs ⟨q, c⟩ ∈ EXPX
↓
available when extracting Ŝ# in

line 18 of Alg. 2 actually induce a sound abstraction relation be-

tween ŜK and Ŝ#. I.e., we always have ŜK ≼α̃ Ŝ# for

α̃(c) := {q ∈ X̂ # | ⟨q, c⟩ ∈ EXPX
↓}. (1)

Further, Prop. 4.7 shows that ŜK �α̃ Ŝ# if ŜK is finite-state (and

thereby Cover has stabilized). With this result Thm. 4.6 becomes a

simple corollary of Prop. 4.7 and Prop. 4.1 by utilizing the composi-

tionality of sound abstractions (see [14, Prop. A.1]).

Proposition 4.7. Given the premises of Thm. 4.6, it holds that
ŜK ≼α̃ Ŝ# with α̃ as in (1). Further, if Cover has stabilized, we

additionally have ŜK �α̃ Ŝ#.

Proof. To simplify notation we use S̃ := ŜK and Ŝ := Ŝ#.
▶We first show that equality holds for (A1) and (A3) from Def. 3.1.

▷ (A1): Observe that line 1 in Alg. 1 and line 41 in Alg. 2 literally

match. Further, for all x̂ ∈ X̂0 we have that ⟨ε, x̂ , x̂⟩ is in the initial

cover set (line 1 in Alg. 2) and thereby ⟨x̂ , x̂⟩ ∈ EXPX
↓
, as we have

assumed X0 to respect H . As Alg. 2 always maintains x̃ ⊆ x̂ for

any ⟨x̂ , x̃⟩ ∈ EXPX and all elements in Cover only get refined, we

see that there is no other x̂ ′ ∈ X̂ related to x̃ ∈ X̃ . We therefore

have α̃(X̃0) = X̂0. ▷ (A3): It is easy to see that for all x̂ ∈ X̂ holds

that x ,x ′ ∈ x̂ implies H (x) = H (x ′) = Ĥ (x̂). As x̃ ⊆ x̂ for all

⟨x̂ , x̃⟩ ∈ EXPX, we have H̃ (x̃) = Ĥ (x̂) for all related states.

▶ Now we show that (A2) holds with equality for all ⟨x̃ , x̂⟩ ∈ EXPΓ
(possibly a subset of EXPX

↓
). For this, observe that Ŝ is extracted in

the last iteration of the while loop in line 5-21 of Alg. 2 and therefore

the recursive function Refine was applied to all ⟨x̂ , x̃⟩ ∈ EXPΓ with
x̃ ⊂ x̂ and has terminated. We can therefore utilize [14, Lem. A.2]

implying |α̃(x̃)| = 1 for all x̃ present in EXPΓ .

▷ (A2) for EXPΓ : Pick x̃ ∈ X̃ , u ∈ U and x̃ ′y = F (x̃ ,u) ∩ H−1(y).

Further, define Y ′ = {y ∈ Y | x̃ ′y , ∅} and let Q ′ contain all

x̂ ′ ∈ X̂ s.t. ⟨x̂ ′, x̃ ′y ⟩ ∈ EXPX and y ∈ Y
′
. Using the same argument

as in the proof of Prop. 4.1 we have F̃ (x̃ ,u) =
⋃
y∈Y ′ {x̃

′
y }, and

therefore, by definition, α̃(F̃ (x̃ ,u)) = Q ′. Now one can verify, by

looking at line 10, 13 and 25 of Alg. 2, that Q ′ = PostQu (⟨x̂ , x̃⟩) for

{x̂} = α̃(x̃). Further, we extract Ŝ after all covers have been refined.

With this we know that F (x̂ ,u) = PostQu (⟨x̂ , x̃⟩), as otherwise
there would exists a refinement s ⊂ x̂ in the sense of line 27 in

Alg. 2. This further implies that for all ⟨x̂ , x̃1⟩, ⟨x̂ , x̃2⟩ ∈ EXPΓ we

have that PostQu (⟨x̂ , x̃1⟩) = PostQu (⟨x̂ , x̃2⟩). With this it follows

that Q ′ = F̂ (α(x̃),u). This implies α̃(F̃ (x̃ ,u)) = F̂ (α̃(x̃),u).
▶ It remains to show that (A2) holds (with equality for a stable

cover and with inclusion for an unstable one) for tuples ⟨x̂ , x̃⟩ ∈

EXPX
↓ \EXPΓ . First, one can verify that ⟨x̂ , x̃⟩ ∈ EXPX

↓ \EXPΓ if (a) a
tuple ⟨σ , x̂ , x̃⟩ is added to EXPX in the last iteration of the while loop

before extracting Ŝ#, and (b) if there exists no tuple ⟨x̂ ′, x̃⟩ ∈ EXPΓ
for an arbitrary x̂ ′. While (a) is obvious, we show that (b) also holds.

It follows from [14, Lem. A.2], that after completing every iteration

of the while-loop in line 21 it holds for every x̃ already constructed,

that there exists a unique x̂ ′ s.t. ⟨x̂ ′, x̃⟩ ∈ EXPΓ . Now assume that

⟨σ , x̂ , x̃⟩ is added to EXPX via line 11 of Alg. 2. Then we know that

x̂ ′ = x̂ , as x̂ ′ is the unique minimal element of Cover covering x̃

and, hence, ⟨x̂ , x̃⟩ < EXPX
↓ \ EXPΓ .

▷ (A2) for EXPX
↓\EXPΓ with stabilized Cover: If Cover has stabilized

no element in Coverwill be further refined by Refine. In particular,

this implies that x̂ is stable for any ⟨x̂ , x̃⟩ ∈ EXPX
↓ \ EXPΓ . Further, a

stable cover implies that there already exists another tuple ⟨x̂ , x̃ ′⟩ ∈
EXPΓ for which all outgoing transitions are contained in EXPF. With

this, we use the same reasoning as for EXPΓ to construct Q ′ and to

show that (A2) holds with equality.

▷ (A2) for EXPX
↓ \ EXPΓ with unstable Cover: If the Cover is not
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stable, we cannot ensure that x̂ is stable for any ⟨x̂ , x̃⟩ ∈ EXPX
↓ \

EXPΓ , i.e., would not be refined in the next iteration of the while

loop. Further, we have to make sure that there exists another tuple

⟨x̂ , x̃ ′⟩ ∈ EXPΓ . Now recall that we initialize Cover with the largest

subsets x̂
y
0
⊆ X that generate the same output y. As Y # = Reach(Y ),

we know that all initial cover cells x̂
y
0
with y ∈ Reach(Y ) will be

explored (and possibly refined) at least once in Alg. 2. As x̂ ∈ Cover
and by construction x̂ ⊆ x̂

y
0
for y = H (x̂) ∈ Reach(Y ) we know

that ⟨x̂ , x̃ ′⟩ ∈ EXPΓ . With this we can use the same reasoning as

in the proof of (A2) for EXPΓ to construct Q ′. If it is stable, the
argument reduces to the previous one. If it is not, we have F (x̂ ,u) ⊂
PostQu (⟨x̂ , x̃⟩). With this, the same arguments as in the proof of

(A2) for EXPΓ show that (A2) holds with inclusion, i.e., α̃(F̃ (x̃ ,u)) ⊆

F̂ (α̃(x̃),u) where α̃(x̃) contains all minimal x̂ ’s covering x̃ . □

Proof of Thm. 4.6. As sound abstractions compose in the ex-

pected way (see [14, Prop. A.1]), we obtain a chain of sound abstrac-

tions S⋆ ≼
LastXŜK

ŜK ≼α̃ Ŝ# from Prop. 4.7 and Prop. 4.1, implying

S⋆ ≼α Ŝ with α = α̃ ◦ LastXŜK . It can be further observed from

the tree-structure generated by KAM that every external prefix ν

of S corresponds to a unique tuple (q, c) ∈ EXPX
↓
. Further, the same

external prefix ν reaches the state c of ŜK and the state q of Ŝ♯ . As
Prop. 4.7 shows that these states c and q are related via α̃ , we have
LastXŜ = α̃ ◦LastXŜK . With this, the first claim of Thm. 4.6 follows.

The second claim follows similarly. □

Iterative ABCD with KAM. By combining Cor. 3.4 and Thm. 4.6

we can compute an output-feedback controller C := Ĉ ◦

LastXŜ#
∈ W(S,ψ ) from an abstract state-feedback controller

Ĉ† ∈ W†(Ŝ♯ ,ψ ) whenever the latter synthesis problem allows

for such a solution, i.e.,W†(Ŝ#,ψ ) , ∅. Hence, ABCD with output

feedback is sound in this case. Given that Ŝ# is in general only

known to abstract S , we are however losing completeness. That is,

ifW†(Ŝ#,ψ ) = ∅, it does not imply that there is no solution to the

original synthesis problem ⟨S,ψ ⟩.
We can however take an eager abstraction-refinement ap-

proach instead to retain relative completeness. That is, whenever

W†(Ŝ#,ψ ) = ∅, we run KAM for some more steps, extract a new

abstraction Ŝ#
′

, and again try to synthesize a controller. We give up,

once an upper bound L on the iterations of KAM is reached. This

eager approach relies on the insight that abstractions extracted after

more iterations of KAM refine earlier abstractions (see Thm. 4.8).

Further, this abstraction-refinement procedure is relative complete.

That is, if there is a topologically closed finite-state abstraction Ŝ

for whichW(Ŝ,ψ ) , ∅, there always exists a large enough L s.t.

the abstraction Ŝ# extracted from KAM in the L’s iteration allows

to solve the controller synthesis problem, i.e.,W(Ŝ#,ψ ) , ∅.

Theorem 4.8. Given the premises of Thm. 4.6, let Ŝ#+1 be the system
computed in line 18 of Alg. 2 after one more iteration of Alg. 2 after
Ŝ# was extracted. Then Ŝ#+1 ≼ Ŝ#.

Proof. Let EXPΓ , EXPX
↓
and EXP′Γ , EXPX

↓′
be the sets computed

when extracting Ŝ# and Ŝ#+1, respectively. Further let us define an
abstraction map candidate α+1 using three cases. I.e., q ∈ α+1(p) if
there exists c s.t. either (a) ⟨q, c⟩ ∈ EXPΓ and q = p, or (b) ⟨q, c⟩ ∈

EXPX
↓ \ EXPΓ , ⟨p, c⟩ ∈ EXP

′
Γ and p ⊆ q, or (c) ⟨p, c⟩ ∈ EXPX

↓′ \ EXP′Γ
and there exists c ′ s.t. q is related to p as in (a) or (b).

This definition induces the following three cases for the proof.

▷ (a) holds for (q,p): This implies ⟨q, c⟩ ∈ EXP′Γ . It follows from the

same arguments as used in the proof of Prop. 4.7 that equality holds

for (A1)-(A4) in Def. 3.1 w.r.t. S̃ both for Ŝ# and Ŝ#+1. As α+1 reduces
to the identity map in this case, the claim trivially follows.

▷ (b) holds for (q,p): Then it follows again that equality holds for

(A1)-(A4) in Def. 3.1 w.r.t. S̃ for Ŝ#+1 but it follows from Thm. 4.6 that

only inclusion holds for (A3) w.r.t. Ŝ#. Formally, we fix c existen-
tially quantified in the definition of case (b) before. Then we have

α̃+1(F̃ (c,u)) = F̂+1(α̃+1(c),u)where α̃+1(c) contains the uniquemin-

imal p covering c and α̃(F̃ (c,u)) ⊆ F̂ (α̃(c),u) where α̃(c) contains
all minimal q’s covering c . We have p ⊆ q for all q ∈ α̃(c) due to

the additional refinement step run before extracting Ŝ#+1. In partic-

ular, we have α̃(c) = α+1(p). Hence, α̃+1(F̃ (c,u)) = F̂+1(p,u) and

α̃(F̃ (c,u)) ⊆ F̂ (α+1(p),u). Now define C ′ = F̃ (c,u). If for all c ′ ∈ C ′

case (a) or (b) holds, we have that α̃+1(c
′) maps to a unique p′. In

this case it holds that α+1(α̃+1(F̃ (c,u))) = α̃(F̃ (c,u)) and therefore

α+1(F̂+1(p,u)) ⊆ F̂ (α+1(p),u), what proves the statement. Now for

any c ′′ for which case (c) applies there exists a c ′′′ s.t. case (a) or (b)
applies while α̃(c ′′) = α̃(c ′′′) and α̃+1(c

′′) = α̃+1(c
′′′). With this,

the previous argument applies and the claim follows.

▷ (c) holds for (q,p): Fix c existentially quantified in the defini-

tion of (c) and recall that there exists c ′ s.t. α̃(c) = α̃(c ′) and
α̃+1(c) = α̃+1(c

′) and case (a) or (b) applies for c ′. Hence, without
loss of generality we can replace c by c ′ and the claim follows. □

Remark 3. The idea of abstraction-refinement for controller syn-
thesis is also often applied in the context of l-complete abstractions
[18, 21, 24, 30]. Similar to KAM, l-complete abstractions are con-
structed forward and generalize from initial observations to equiva-
lence classes. Here, the equivalence classes collect states which share
the same l-long external history. l-complete abstractions are typi-
cally constructed from the external behavior of S and do not assume
the state dynamics of S to be known. They thereby do not utilize
the memory structure implicitly given by the state dynamics of S in
their generalization step. Therefore, KAM generates tighter abstrac-
tions whenever the underlying state transition system is known, but
l-complete abstractions are to be preferred if this is not the case.

Symbolic Implementations. KAM differs from the simultane-

ous reachability and bisimulation minimization algorithm of Lee

and Yannakakis [12] as it constructs an external language- (not

bisimulation-) equivalent system. Hence, it only applies post com-

putations and intersection with outputs, but does not take set dif-

ferences. This is in fact crucial in implementations. For example,

for affine systems with polyhedral initial sets and output sets, one

can implement the algorithm exactly using a convex polyhedral

abstract domain, as both post computations and intersections main-

tain convexity while set differences do not.

5 HYBRID SYSTEM EXAMPLES

We now present two continuous-state discrete-time hybrid sys-

tem examples and show how our approach can be used to design

abstractions useful for output-feedback control. Along the way,

we also compare our approach with several alternatives and show
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Figure 5: Graphical representation of Σ1 (far left) and Σ2
(far right), showing the state space X with the partition in-

duced by the output maps H1 and H2, respectively. For Σ1,
X j = F (Xi ,u1) (dashed blue) indicates the reachable set of

Xi = H−1
1
(y00) (solid blue). Intersecting X j with the partition

generates transitions (blue) originating in y00 in the finite-

state abstraction (middle). Similarly, X j = F (Xi ,u2) (dashed

red) is reached from Xi = H−1
1
(y02) (solid red) generating

transitions (red) originating in y02 in the abstraction.

how state-of-the-art techniques for abstracting continuous-state

systems, such as those implemented in SCOTS or Mascot [10, 23],

can be incorporated in our approach.

Example 5.1. Consider a switched system Σ1 with ▷ state space
X = [0, 3) × [0, 3) ⊂ R2; ▷ initial states X0 = X ; ▷ input space
U = {u1,u2} (corresponding to two controllable modes); ▷ output

space Y = {y00,y01,y02,y10,y11,y12,y20,y21,y22}; ▷ output func-
tion H : x 7→ yi j , where i = ⌊x1/3⌋, j = ⌊x2/3⌋ for all x ∈ X ; and

▷ transition function F defined as

F (x ,u1) =mod3

(
x +

[
0.4

0.4

] )
, F (x ,u2) =mod3

(
x −

[
0.4

0.4

] )
,

where the functionmodk : Rn → [0,k)n wraps its input argument

component-wise around the perimeter of its codomain; i.e., if s =
modk (x), then si = xi − k ⌊

xi
k ⌋. In Fig. 5 (top left), state space X is

shown, where the domain of H for all y is indicated by the large

boxes with edge length 1. The dynamics of F are then interpreted

as upward (u = u1) and downward (u = u2) discrete-time flows of

points inX parallel to the diagonal connecting the lower left and top

right corner of X . When the boundary of X is reached, the system

continues to evolve in the block reached by wrapping X around

its boundaries. Note that the only source of non-determinism in

system Σ1 is due to the initial condition not being a singleton,

whereas the transition function is deterministic. We consider a

specificationψ1 stating that when starting in y00 the system should

always eventually (re-)visit y00 and y22.

Let us first consider constructing an abstract system Σ̂1 that

has a feedback refinement relation (FRR) with Σ1 by using forward

simulation as, e.g., implemented in SCOTS. Themain idea is to “grid”

the state space into hyperboxes of sizeη in a way consistent with the
outputs and treat each grid cellXi as an abstract state. Then for each
grid cell Xi and for each input ui , post F (Xi ,ui ) is computed and a

transition with input label ui is added from the abstract state Xi to
all abstract states X j that have a non-empty intersection with the

post. This process is illustrated in Fig. 5. Given the existence of an

FRR from Σ1 to Σ̂1 (rendering Σ̂1 a sound abstraction of Σ1 for state-
feedback control as discussed in Rem. 1) and the compositionality

of sound abstractions (see Prop. ??), we can use Σ̂1 with any of the

algorithms presented in Sec. 4 to construct an abstraction Σ̂′
1
which

allows to solve the output-feedback control problem over Σ1.

In order to apply this process, we need to select a grid sizeη when

constructing Σ̂1. We denote the resulting abstraction with Σ̂
(η)
1

. We

can start with η = 1 as discussed before. This, however induces

non-determinism and it can be easily seen by inspecting Fig. 5

(middle), that there does not exist a controller in the abstraction

that allows us to surely transition fromy00 toy22 and back infinitely
often—in the abstraction, applying the necessary input sequence

might lead to visiting y02 instead of y22. One can try a finer grid

size, e.g., η = 0.03, but the problem still does not admit a solution

for ⟨Σ̂
(0.03)
1

,ψ1⟩. By inspection, the problem only has a solution if

η is chosen such that 0.2 is an integer multiple of η. Here, 0.2 is

the greatest common divisor of 0.4 (the increments the dynamics

make) and 1 (the “fidelity" of the outputs). So, the set of grid sizes

that gives a solution is a measure-zero set in R>0 and, in general,

the “right" grid size is dictated by the dynamics and output map.

Further, even if we use an automatic refinement tool like Mascot,

the step size of the refinement of η is a design parameter and thus,

the tool may not ever explore an integer multiple of 0.2.

We now turn to solving the output-feedback control problem

⟨Σ1,ψ1⟩ by directly applying the algorithms discussed in Sec. 4 to Σ1
without constructing Σ̂1 first. For this example, all three algorithms

(i.e., KA, KA with bisimulation quotient, and KAM) will produce

the same abstraction. This is due to the fact that the dynamics of

the system are such that the post and the pre operations over F
cancel out. Therefore the forward and backward algorithms are

essentially performing the same operations. Further, all of them

terminate and generate a sound realization. Thus, these algorithms

automatically figure out that the largest cover of X which merges

states with the same future under any applied input sequence has

size η = 0.2.

Example 5.2. We consider another switched system Σ2 with

the same dynamics as Σ1 but with changed output space Y2 =
{y00, . . .,y21,y22u ,y22l } s.t. H2 maps the upper left and lower right

triangle of y22 to y22u and y
22l , respectively (see Fig. 5 (right) for

an illustration). The specificationψ2 requires to repeatedly visit y00
and either y22u or y

22l infinitely often after starting in y00.

Consider running KAM on Σ2. First observe that we are now
initializing KAM with the triangle shape domains of H (y

22l ) and

H (y22u ) in addition to the the boxed domains for all remaining

outputs. This will result in little triangles right above and right

below the diagonal ofy33, which collect reachable state subsets with
the same output. However, in the remaining part of the state space,

KAM will converge to the same rectangular grid as it does for Σ1.
The intuitive reason for this is that the post of any set H−1(y) with
y < {y

22l ,y22u } remains a box. Therefore, we can never distinguish

whether we observe y22u or y
22l if we transition to a box on the

diagonal of y33, no matter how fine we grid. Further, the post of

any such box will be either {y22u ,y22l } again, {y00} (for u = u1)
or {y22} (for u = u2). With this it is easy to see that boxes of size

η = 0.2 are again the largest partition of X that form equivalence

classes respecting observable subsets. KAM will therefore compute

the same sound realization for Σ2 as for Σ1. If we however run KA

(with or without the bisimulation quotient) one would additionally

chop every box of size η = 0.2 into an upper left and lower right
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triangle. This unnecessary doubles the state space of the abstraction,

but still resulting in a sound realization.

Let us now consider computing an abstraction Σ̂
(η)
2

by forward

simulation of Σ2 first, using SCOTS. Then we immediately get into

trouble, because we cannot find a rectangular grid that respects

the output map, as needed to fulfill (A3) in Def. 3.1. This approach

would therefore directly fail in this example.

Finally, consider a system Σ3 which has an unbounded state

space X3 = R
2
with transition function defined by F of Σ1 but

without the wrapping of its input argument. The output set Y3 and
the output function H3 of Σ3 are given by tiling the entire R2 space
irregularly with the 3x3 blocks of observationsY1 andY2 along with
their respective output maps H1 and H2. We still have a finite set of

inputs and outputs. By recalling that KAM produces the same sound

realization for Σ1 and Σ2, we can use the same arguments as in the

example of Sec. 4.3 to see that KAM will generate the same sound

realization for Σ3 as for Σ1 and Σ2, while all other algorithms will

produce infinite-state abstractions. Admittedly, while the example

distinguishes KAM from the other algorithms, it is not clear how

to symbolically represent the algorithm in this case.
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