1. **Problem:** Network side channels can reveal application secrets

- **Network side channels**
 - Traffic observation in the network (e.g., by ISP)
 - Traffic sensing via contention at bottleneck links (in a Cloud)

- **Traffic shape**
 - Packet size, timing, bandwidth, etc.

- **Secrets**
 - Traffic content (e.g., VoIP, Web)
 - Application secrets (e.g., crypto keys, medical records)

2. **Solution:** Make traffic shape independent of secrets

- **Strawman:** uniform packet stream
 - Fixed inter-packet gap
 - Fixed sized packets

- **Our approach:** allow variations in traffic shape based on public information

3. Compute traffic shape using **distributed profiling**

 - **Step 1:** Distributed tracing
 - Capture message causalities, network packet trace

 - **Step 2:** Traffic shape as a directed acyclic graph
 - Subsumes communication in all requests
 - Example: size shaping (edge labels denote message sizes)

4. Enforcement using **traffic-shaping tunnel between each node pair**

- **Tunnel requirements**
 - Payload obfuscation:
 - Hide flow control
 - Pad packet size at/above TCP
 - Encrypt packets after padding
 - Secret-independent transmission:
 - Transmit only at scheduled times
 - Performance-isolate transmission from app, secrets
 - Congestion control:
 - Only to ensure network stability (no implications for confidentiality)

Conceptual endpoint design

Realization on end host

Realization on middlebox

Attack scenarios

- Co-located VMs
- Intranet service outsourced to public Cloud

Workload-partitioned shaping

- Partition workloads by public inputs
- Select different shape for each partition

Per-request shaping

- Shape only in response to client requests
- (Assume: time of client requests does not reveal secrets)