
Chapter 20

Girard’s System F

The languages we have considered so far are all monomorphic in that every
expression has a unique type, given the types of its free variables, if it has
a type at all. Yet it is often the case that essentially the same behavior is re-
quired, albeit at several different types. For example, in L{nat→} there is
a distinct identity function for each type τ, namely λ (x:τ) x, even though
the behavior is the same for each choice of τ. Similarly, there is a distinct
composition operator for each triple of types, namely

◦τ1,τ2,τ3 = λ (f:τ2 → τ3)λ (g:τ1 → τ2)λ (x:τ1) f(g(x)).

Each choice of the three types requires a different program, even though
they all exhibit the same behavior when executed.

Obviously it would be useful to capture the general pattern once and
for all, and to instantiate this pattern each time we need it. The expression
patterns codify generic (type-independent) behaviors that are shared by all
instances of the pattern. Such generic expressions are said to be polymor-
phic. In this chapter we will study a language introduced by Girard under
the name System F and by Reynolds under the name polymorphic typed λ-
calculus. Although motivated by a simple practical problem (how to avoid
writing redundant code), the concept of polymorphism is central to an im-
pressive variety of seemingly disparate concepts, including the concept of
data abstraction (the subject of Chapter 21), and the definability of product,
sum, inductive, and coinductive types considered in the preceding chap-
ters. (Only general recursive types extend the expressive power of the lan-
guage.)

174 20.1 System F

20.1 System F

System F, or the polymorphic λ-calculus, or L{→∀}, is a minimal functional
language that illustrates the core concepts of polymorphic typing, and per-
mits us to examine its surprising expressive power in isolation from other
language features. The syntax of System F is given by the following gram-
mar:

Typ τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Exp e ::= x x
lam[τ](x.e) λ (x:τ) e abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) Λ(t.e) type abstraction
App[τ](e) e[τ] type application

A type abstraction, Lam(t.e), defines a generic, or polymorphic, function with
type parameter t standing for an unspecified type within e. A type application,
or instantiation, App[τ](e), applies a polymorphic function to a specified
type, which is then plugged in for the type parameter to obtain the result.
Polymorphic functions are classified by the universal type, all(t.τ), that
determines the type, τ, of the result as a function of the argument, t.

The statics of L{→∀} consists of two judgement forms, the type forma-
tion judgement,

∆ $ τ type,

and the typing judgement,
∆ Γ $ e : τ.

The hypotheses ∆ have the form t type, where t is a variable of sort Typ,
and the hypotheses Γ have the form x : τ, where x is a variable of sort Exp.

The rules defining the type formation judgement are as follows:

∆, t type $ t type (20.1a)

∆ $ τ1 type ∆ $ τ2 type
∆ $ arr(τ1; τ2) type

(20.1b)

∆, t type $ τ type
∆ $ all(t.τ) type

(20.1c)

The rules defining the typing judgement are as follows:

∆ Γ, x : τ $ x : τ (20.2a)

VERSION 1.22 DRAFT REVISED 12.25.2011

20.1 System F 175

∆ $ τ1 type ∆ Γ, x : τ1 $ e : τ2
∆ Γ $ lam[τ1](x.e) : arr(τ1; τ2)

(20.2b)

∆ Γ $ e1 : arr(τ2; τ) ∆ Γ $ e2 : τ2
∆ Γ $ ap(e1; e2) : τ

(20.2c)

∆, t type Γ $ e : τ
∆ Γ $ Lam(t.e) : all(t.τ)

(20.2d)

∆ Γ $ e : all(t.τ′) ∆ $ τ type

∆ Γ $ App[τ](e) : [τ/t]τ′ (20.2e)

Lemma 20.1 (Regularity). If ∆ Γ $ e : τ, and if ∆ $ τi type for each assumption
xi : τi in Γ, then ∆ $ τ type.

Proof. By induction on Rules (20.2).

The statics admits the structural rules for a general hypothetical judge-
ment. In particular, we have the following critical substitution property for
type formation and expression typing.

Lemma 20.2 (Substitution). 1. If ∆, t type $ τ′ type and ∆ $ τ type, then
∆ $ [τ/t]τ′ type.

2. If ∆, t type Γ $ e′ : τ′ and ∆ $ τ type, then ∆ [τ/t]Γ $ [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ $ e′ : τ′ and ∆ Γ $ e : τ, then ∆ Γ $ [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context, Γ,
as well as into the term and its type, because the type variable t may occur
freely in any of these positions.

Returning to the motivating examples from the introduction, the poly-
morphic identity function, I, is written

Λ(t.λ (x:t) x);

it has the polymorphic type

∀(t.t → t).

Instances of the polymorphic identity are written I[τ], where τ is some
type, and have the type τ → τ.

Similarly, the polymorphic composition function, C, is written

Λ(t1.Λ(t2.Λ(t3.λ (f:t2 → t3)λ (g:t1 → t2)λ (x:t1) f(g(x))))).

REVISED 12.25.2011 DRAFT VERSION 1.22

176 20.1 System F

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3) → (t1 → t2) → (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, writing
C[τ1][τ2][τ3]. Each such instance has the type

(τ2 → τ3) → (τ1 → τ2) → (τ1 → τ3).

Dynamics

The dynamics of L{→∀} is given as follows:

lam[τ](x.e) val (20.3a)

Lam(t.e) val (20.3b)

ap(lam[τ1](x.e); e2) &→ [e2/x]e (20.3c)

e1 &→ e′1
ap(e1; e2) &→ ap(e′1; e2)

(20.3d)

App[τ](Lam(t.e)) &→ [τ/t]e (20.3e)

e &→ e′
App[τ](e) &→ App[τ](e′) (20.3f)

Rule (20.3d) endows L{→∀} with a call-by-name interpretation of applica-
tion. One could easily define a call-by-value variant as well.

It is a simple matter to prove safety for L{→∀}, using familiar methods.

Lemma 20.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam[τ1](x.e2) with x : τ1 $ e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type $ e′ : τ′.

Proof. By rule induction on the statics.

Theorem 20.4 (Preservation). If e : τ and e &→ e′, then e′ : τ.

Proof. By rule induction on the dynamics.

Theorem 20.5 (Progress). If e : τ, then either e val or there exists e′ such that
e &→ e′.

Proof. By rule induction on the statics.

VERSION 1.22 DRAFT REVISED 12.25.2011

20.2 Polymorphic Definability 177

20.2 Polymorphic Definability

The language L{→∀} is astonishingly expressive. Not only are all finite
products and sums definable in the language, but so are all inductive and
coinductive types. This is most naturally expressed using definitional equal-
ity, which is defined to be the least congruence containing the following
two axioms:

∆ Γ, x : τ1 $ e : τ2 ∆ Γ $ e1 : τ1

∆ Γ $ λ (x:τ) e2(e1) ≡ [e1/x]e2 : τ2
(20.4a)

∆, t type Γ $ e : τ ∆ $ ρ type

∆ Γ $ Λ(t.e)[ρ] ≡ [ρ/t]e : [ρ/t]τ
(20.4b)

In addition there are rules omitted here specifying that definitional equality
is reflexive, symmetric, and transitive, and that it is compatible with both
forms of application and abstraction.

20.2.1 Products and Sums

The nullary product, or unit, type is definable in L{→∀} as follows:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ (x:r) x)

The identity function plays the role of the null tuple, since it is the only
closed value of this type.

Binary products are definable in L{→∀} by using encoding tricks sim-
ilar to those described in Chapter 17 for the untyped λ-calculus:

τ1 × τ2 = ∀(r.(τ1 → τ2 → r) → r)
〈e1, e2〉 = Λ(r.λ (x:τ1 → τ2 → r) x(e1)(e2))

e · l = e[τ1](λ (x:τ1)λ (y:τ2) x)
e · r = e[τ2](λ (x:τ1)λ (y:τ2) y)

The statics given in Chapter 11 is derivable according to these definitions.
Moreover, the following definitional equalities are derivable in L{→∀}
from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and
〈e1, e2〉 · r ≡ e2 : τ2.

REVISED 12.25.2011 DRAFT VERSION 1.22

178 20.2 Polymorphic Definability

The nullary sum, or void, type is definable in L{→∀}:

void = ∀(r.r)
abort[ρ](e) = e[ρ]

There is no definitional equality to be checked, there being no introductory
rule for the void type.

Binary sums are also definable in L{→∀}:

τ1 + τ2 = ∀(r.(τ1 → r) → (τ2 → r) → r)
l · e = Λ(r.λ (x:τ1 → r)λ (y:τ2 → r) x(e))
r · e = Λ(r.λ (x:τ1 → r)λ (y:τ2 → r) y(e))

case e {l · x1 ⇒ e1 | r · x2 ⇒ e2} =

e[ρ](λ (x1:τ1) e1)(λ (x2:τ2) e2)

provided that the types make sense. It is easy to check that the following
equivalences are derivable in L{→∀}:

case l · d1 {l · x1 ⇒ e1 | r · x2 ⇒ e2} ≡ [d1/x1]e1 : ρ

and
case r · d2 {l · x1 ⇒ e1 | r · x2 ⇒ e2} ≡ [d2/x2]e2 : ρ.

Thus the dynamic behavior specified in Chapter 12 is correctly implemented
by these definitions.

20.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation)
are also definable in L{→∀}. The key is the representation of the iterator,
whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ $ e2 : τ
natiter(e0; e1; x.e2) : τ

.

Since the result type τ is arbitrary, this means that if we have an iterator,
then it can be used to define a function of type

nat → ∀(t.t → (t → t) → t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, given the initial result for z and a trans-
formation from the result for x into the result for s(x), yields the result of
iterating the transformation n times, starting with the initial result.

VERSION 1.22 DRAFT REVISED 12.25.2011

20.3 Parametricity Overview 179

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that we may define the type of natural numbers in L{→∀} by the following
equations:

nat = ∀(t.t → (t → t) → t)
z = Λ(t.λ (z:t)λ (s:t → t) z)

s(e) = Λ(t.λ (z:t)λ (s:t → t) s(e[t](z)(s)))
natiter(e0; e1; x.e2) = e0[τ](e1)(λ (x:τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type
given in Chapter 9 are derivable in L{→∀} under these definitions.

This shows that L{→∀} is at least as expressive as L{nat→}. But is it
more expressive? Yes! It is possible to show that the evaluation function
for L{nat→} is definable in L{→∀}, even though it is not definable in
L{nat→} itself. However, the same diagonal argument given in Chap-
ter 9 applies here, showing that the evaluation function for L{→∀} is not
definable in L{→∀}. We may enrich L{→∀} a bit more to define the eval-
uator for L{→∀}, but as long as all programs in the enriched language
terminate, we will once again have an undefinable function, the evaluation
function for that extension.

20.3 Parametricity Overview

A remarkable property of L{→∀} is that polymorphic types severely con-
strain the behavior of their elements. One may prove useful theorems about
an expression knowing only its type—that is, without ever looking at the
code. For example, if i is any expression of type ∀(t.t → t), then it must
be the identity function. Informally, when i is applied to a type, τ, and
an argument of type τ, it must return a value of type τ. But since τ is
not specified until i is called, the function has no choice but to return its
argument, which is to say that it is essentially the identity function. Sim-
ilarly, if b is any expression of type ∀(t.t → t → t), then b must be either
Λ(t.λ (x:t)λ (y:t) x) or Λ(t.λ (x:t)λ (y:t) y). For when b is applied to
two arguments of some type, its only choice to return a value of that type
is to return one of the two.

What is remarkable is that these properties of i and b have been de-
rived without knowing anything about the expressions themselves, but only their

REVISED 12.25.2011 DRAFT VERSION 1.22

180 20.4 Restricted Forms of Polymorphism

types. The theory of parametricity implies that we are able to derive the-
orems about the behavior of a program knowing only its type. Such the-
orems are sometimes called free theorems because they come “for free” as
a consequence of typing, and require no program analysis or verification
to derive. These theorems underpin the remarkable experience with poly-
morphic languages that well-typed programs tend to behave as expected
when executed. That is, satisfying the type checker is sufficient condition
for correctness. Parametricity so constrains the behavior of a program that
there are relatively few programs of the same type that exhibit unintended
behavior, ruling out a large class of mistakes that commonly arise when
writing code. Parametricity also guarantees representation independence
for abstract types, a topic that is discussed further in Chapter 21.

20.4 Restricted Forms of Polymorphism

In this section we briefly examine some restricted forms of polymorphism
with less than the full expressive power of L{→∀}. These are obtained in
one of two ways:

1. Restricting type quantification to unquantified types.

2. Restricting the occurrence of quantifiers within types.

20.4.1 Predicative Fragment

The remarkable expressive power of the language L{→∀} may be traced
to the ability to instantiate a polymorphic type with another polymorphic
type. For example, if we let τ be the type ∀(t.t → t), and, assuming that
e : τ, we may apply e to its own type, obtaining the expression e[τ] of type
τ → τ. Written out in full, this is the type

∀(t.t → t) → ∀(t.t → t),

which is larger (both textually, and when measured by the number of oc-
currences of quantified types) than the type of e itself. In fact, this type is
large enough that we can go ahead and apply e[τ] to e again, obtaining the
expression e[τ](e), which is again of type τ — the very type of e.

This property of L{→∀} is called impredicativity1; the language L{→∀}
is said to permit impredicative (type) quantification. The distinguishing char-

1pronounced im-PRED-ic-a-tiv-it-y

VERSION 1.22 DRAFT REVISED 12.25.2011

20.4 Restricted Forms of Polymorphism 181

acteristic of impredicative polymorphism is that it involves a kind of cir-
cularity in that the meaning of a quantified type is given in terms of its
instances, including the quantified type itself. This quasi-circularity is re-
sponsible for the surprising expressive power of L{→∀}, and is corre-
spondingly the prime source of complexity when reasoning about it (for
example, in the proof that all expressions of L{→∀} terminate).

Contrast this with L{→}, in which the type of an application of a func-
tion is evidently smaller than the type of the function itself. For if e :
τ1 → τ2, and e1 : τ1, then we have e(e1) : τ2, a smaller type than the type of
e. This situation extends to polymorphism, provided that we impose the re-
striction that a quantified type can only be instantiated by an un-quantified
type. For in that case passage from ∀(t.τ) to [ρ/t]τ decreases the num-
ber of quantifiers (even if the size of the type expression viewed as a tree
grows). For example, the type ∀(t.t → t) may be instantiated with the
type u → u to obtain the type (u → u) → (u → u). This type has more
symbols in it than τ, but is smaller in that it has fewer quantifiers. The re-
striction to quantification only over unquantified types is called predicative2

polymorphism. The predicative fragment is significantly less expressive than
the full impredicative language. In particular, the natural numbers are no
longer definable in it.

20.4.2 Prenex Fragment

A rather more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to occur
within the arguments to any other type constructors. This restriction, called
prenex quantification, is often imposed for the sake of type inference, which
permits type annotations to be omitted entirely in the knowledge that they
can be recovered from the way the expression is used. We will not discuss
type inference here, but we will give a formulation of the prenex fragment
of L{→∀}, because it plays an important role in the design of practical
polymorphic languages.

The prenex fragment of L{→∀} is designated L1{→∀}, for reasons that
will become clear in the next subsection. It is defined by stratifying types
into two sorts, the monotypes (or rank-0 types) and the polytypes (or rank-1
types). The monotypes are those that do not involve any quantification,
and may be used to instantiate the polymorphic quantifier. The polytypes

2pronounced PRED-i-ca-tive

REVISED 12.25.2011 DRAFT VERSION 1.22

182 20.4 Restricted Forms of Polymorphism

include the monotypes, but also permit quantification over monotypes.
These classifications are expressed by the judgements ∆ $ τ mono and
∆ $ τ poly, where ∆ is a finite set of hypotheses of the form t mono, where t
is a type variable not otherwise declared in ∆. The rules for deriving these
judgements are as follows:

∆, t mono $ t mono (20.5a)

∆ $ τ1 mono ∆ $ τ2 mono
∆ $ arr(τ1; τ2) mono

(20.5b)

∆ $ τ mono
∆ $ τ poly

(20.5c)

∆, t mono $ τ poly
∆ $ all(t.τ) poly

(20.5d)

Base types, such as nat (as a primitive), or other type constructors, such as
sums and products, would be added to the language as monotypes.

The statics of L1{→∀} is given by rules for deriving hypothetical judge-
ments of the form ∆ Γ $ e : ρ, where ∆ consists of hypotheses of the form
t mono, and Γ consists of hypotheses of the form x : ρ, where ∆ $ ρ poly.
The rules defining this judgement are as follows:

∆ Γ, x : τ $ x : τ (20.6a)

∆ $ τ1 mono ∆ Γ, x : τ1 $ e2 : τ2
∆ Γ $ lam[τ1](x.e2) : arr(τ1; τ2)

(20.6b)

∆ Γ $ e1 : arr(τ2; τ) ∆ Γ $ e2 : τ2
∆ Γ $ ap(e1; e2) : τ

(20.6c)

∆, t mono Γ $ e : τ
∆ Γ $ Lam(t.e) : all(t.τ)

(20.6d)

∆ $ τ mono ∆ Γ $ e : all(t.τ′)
∆ Γ $ App[τ](e) : [τ/t]τ′ (20.6e)

We tacitly exploit the inclusion of monotypes as polytypes so that all typing
judgements have the form e : ρ for some expression e and polytype ρ.

The restriction on the domain of a λ-abstraction to be a monotype means
that a fully general let construct is no longer definable—there is no means
of binding an expression of polymorphic type to a variable. For this reason
it is usual to augment L{→∀p} with a primitive let construct whose statics
is as follows:

∆ $ τ1 poly ∆ Γ $ e1 : τ1 ∆ Γ, x : τ1 $ e2 : τ2
∆ Γ $ let[τ1](e1; x.e2) : τ2

. (20.7)

VERSION 1.22 DRAFT REVISED 12.25.2011

20.4 Restricted Forms of Polymorphism 183

For example, the expression

let I:∀(t.t → t) beΛ(t.λ (x:t) x) in I[τ → τ](I[τ])

has type τ → τ for any polytype τ.

20.4.3 Rank-Restricted Fragments

The binary distinction between monomorphic and polymorphic types in
L1{→∀} may be generalized to form a hierarchy of languages in which
the occurrences of polymorphic types are restricted in relation to function
types. The key feature of the prenex fragment is that quantified types are
not permitted to occur in the domain of a function type. The prenex frag-
ment also prohibits polymorphic types from the range of a function type,
but it would be harmless to admit it, there being no significant difference
between the type ρ → ∀(t.τ) and the type ∀(t.ρ → τ) (where t /∈ ρ).
This motivates the definition of a hierarchy of fragments of L{→∀} that
subsumes the prenex fragment as a special case.

We will define a judgement of the form τ type [k], where k ≥ 0, to mean
that τ is a type of rank k. Informally, types of rank 0 have no quantification,
and types of rank k + 1 may involve quantification, but the domains of
function types are restricted to be of rank k. Thus, in the terminology of
Section 20.4.2, a monotype is a type of rank 0 and a polytype is a type of
rank 1.

The definition of the types of rank k is defined simultaneously for all
k by the following rules. These rules involve hypothetical judgements of
the form ∆ $ τ type [k], where ∆ is a finite set of hypotheses of the form
ti type [ki] for some pairwise distinct set of type variables ti. The rules defin-
ing these judgements are as follows:

∆, t type [k] $ t type [k] (20.8a)

∆ $ τ1 type [0] ∆ $ τ2 type [0]
∆ $ arr(τ1; τ2) type [0]

(20.8b)

∆ $ τ1 type [k] ∆ $ τ2 type [k + 1]
∆ $ arr(τ1; τ2) type [k + 1]

(20.8c)

∆ $ τ type [k]
∆ $ τ type [k + 1]

(20.8d)

∆, t type [k] $ τ type [k + 1]
∆ $ all(t.τ) type [k + 1]

(20.8e)

REVISED 12.25.2011 DRAFT VERSION 1.22

184 20.5 Notes

With these restrictions in mind, it is a good exercise to define the statics
of Lk{→∀}, the restriction of L{→∀} to types of rank k (or less). It is most
convenient to consider judgements of the form e : τ [k] specifying simul-
taneously that e : τ and τ type [k]. For example, the rank-limited rules for
λ-abstractions is phrased as follows:

∆ $ τ1 type [0] ∆ Γ, x : τ1 [0] $ e2 : τ2 [0]
∆ Γ $ lam[τ1](x.e2) : arr(τ1; τ2) [0]

(20.9a)

∆ $ τ1 type [k] ∆ Γ, x : τ1 [k] $ e2 : τ2 [k + 1]
∆ Γ $ lam[τ1](x.e2) : arr(τ1; τ2) [k + 1]

(20.9b)

The remaining rules follow a similar pattern.
The rank-limited languages Lk{→∀} clarify the need for a primitive (as

opposed to derived) definition mechanism in L1{→∀}. The prenex frag-
ment of L{→∀} corresponds to the rank-one fragment L1{→∀}. The let

construct for rank-one types is definable in L2{→∀} from λ-abstraction
and application. This definition only makes sense at rank two, since it ab-
stracts over a rank-one polymorphic type, and is therefore not available at
lesser rank.

20.5 Notes

System F was introduced by Girard (1972) in the context of proof theory
and by Reynolds (1974) in the context of programming languages. The
concept of parametricity was originally isolated by Strachey, but was not
fully developed until the work of Reynolds (1983). The description of para-
metricity as providing “theorems for free” was popularized by Wadler (1989).

VERSION 1.22 DRAFT REVISED 12.25.2011

