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Abstract
The rapid improvement in JavaScript virtual machines combined
with maturation of Web platform tools has given rise to sophis-
ticated and demanding web applications such as interactive 3D
maps, audio and video software, and games. The increasing am-
bition of these applications has made the efficiency and security of
mobile code on the web more important than ever. Yet JavaScript
has inconsistent performance and a number of other pitfalls, espe-
cially as a compilation target. Engineers from all major browser
vendors have risen to the challenge and collaboratively designed a
new low-level byte code for the web called WebAssembly. It offers
compact representation, fast and simple validation and compilation,
low to no-overhead safe execution, and easy interoperation with the
web platform, including direct access to JavaScript and Web APIs.
Rather than committing to a specific programming model, Web-
Assembly is an abstraction over modern hardware, making it both
language- and platform-independent. We describe the motivation,
design and formal semantics of WebAssembly and provide some
preliminary experience with implementations.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Macro and assembly lan-
guages; D.3.4 [Programming Languages]: Processors—Compilers,
Run-time environments

1. Introduction
The Web began as a simple document network but has now become
the widest available application platform ever, accessible across
a vast array of operating systems and device types. By historical
accident, JavaScript is the only natively supported programming
language on the Web, its ubiquity unmatched by other technolo-
gies available only via plugins like ActiveX, Java or Shockwave
Flash. Because of its ubiquity and improved performance, and per-
haps through sheer necessity, JavaScript has become a compilation
target for other languages. Through Emscripten [40], even C and
C++ programs can be compiled to a stylized low-level subset of
JavaScript called asm.js [4].

WebAssembly addresses the problem of portable, fast, and safe
low-level code on the Web. Previous attempts at solving this prob-
lem, from ActiveX to Native Client, to asm.js, have fallen short of
the design goals that a low-level compilation target should have:

• Safe, fast, and portable semantics:
safe to execute
fast to execute
language-, hardware-, and platform-independent
deterministic and easy to reason about
simple and universal interoperability with the web platform

• Safe and efficient representation:
compact and easy to decode
easy to validate and compile
easy to generate for producers
streamable and parallelizable

Why are these goals important? Why are they hard?

Safe Safety for mobile code is paramount on the Web, since
code originates from untrusted sources. Protection for mobile code
has traditionally been achieved by providing a managed language
runtime system such as the browser’s native JavaScript virtual
machine or a language plugin. Managed languages enforce memory
safety, preventing programs from accessing or compromising the
embedder’s internals, user data, or system state. However, managed
languages have traditionally been mismatched with portable low-
level code, such as compiled C/C++ applications, which do not
need garbage collection and are inherently fast but memory unsafe.

Fast Low-level code like that emitted by a C/C++ compiler is typ-
ically optimized ahead-of-time. Native machine code, either writ-
ten by hand or as the output of a highly optimizing compiler, can
utilize the full performance of a machine. Managed runtimes and
sandboxing techniques have typically imposed a steep performance
overhead on low-level code.

Portable The Web spans not only many device classes, but differ-
ent machine architectures, operating systems, and browsers. Code
targeting the Web must be hardware- and platform-independent to
allow applications to run across all browser and hardware types
with the same behavior. Previous solutions for low-level code were
tied to a single architecture or have had other portability problems.

Compact Code that is transmitted over the network should be as
compact as possible to reduce load times, save potentially expen-
sive bandwidth, and improve overall responsiveness. Code on the
Web is typically transmitted as JavaScript source, which is far less
compact than a binary format, even when minified and compressed.

1.1 Prior attempts at low-level code on the Web
Microsoft’s ActiveX[1] was a technology for code-signing x86
binaries to run on the Web. It relied entirely upon code signing
and thus did not achieve safety through technical construction, but
through a trust model.

Native Client [39, 8] was the first system to introduce a sand-
boxing technique for machine code on the Web that runs at near na-
tive speed. It relies on static validation of x86 machine code, requir-
ing code generators to follow certain patterns, such as bitmasks be-
fore memory accesses and jumps. While the sandbox model allows
NaCl code in the same process with sensitive data, the challenges of
doing so in the browser process led to an out-of-process implemen-
tation where NaCl code cannot synchronously access JavaScript or
Web APIs. Because NaCl is a subset of a particular architecture’s
machine code, it is inherently not portable. Portable Native Client
(PNaCl) [15] builds upon the sandboxing techniques of NaCl and
uses a stable subset of LLVM bitcode [21] as an interchange for-
mat, which addresses ISA portability. However, it is not a signif-
icant improvement in compactness and still exposes compiler- or
platform-specific details such as the layout of the call stack. NaCl
and PNaCl are integrated into Chrome, but other browser vendors
have not adopted them, in part because they require separate imple-
mentations of bindings to all Web APIs.

1 2017/2/16



Emscripten [40] is a framework for compiling mostly unmod-
ified C/C++ applications to JavaScript and linking them with a
JavaScript execution environment. Emscripten compiles to a spe-
cialized subset of JavaScript that later evolved into the assembly-
like asm.js [4], an embedded domain specific statically-typed lan-
guage. Asm.js eschews the dynamic type system of JavaScript
through additional type coercions coupled with a module-level val-
idation of interprocedural invariants. Since asm.js is a proper subset
of JavaScript, it runs on all JavaScript execution engines, generally
benefiting from sophisticated JIT compilers. However, it runs much
faster in browsers with dedicated support. Being a subset inherently
ties it to JavaScript semantics, and therefore extending asm.js with
new features such as int64 requires first extending JavaScript and
then blessing the extension in the asm.js subset. Even then it can
be difficult to make the feature efficient. Asm.js is also not a sig-
nificant compactness improvement over native code, as the type
annotations consume space even when minified and compressed.

While Java and Shockwave Flash [2] were early comers to the
Web and offered managed runtimes via plugins, neither support
high-performance low-level code, and usage of both is declining
due to security and performance issues. We discuss the differences
between the JVM and WebAssembly in Section 8.

1.2 Contributions
WebAssembly is the first solution for low-level code on the Web
that delivers on all of the above design goals. It is the result
of an unprecedented collaboration across major browser vendors
and an online community group to build a common solution for
high-performance applications. To our knowledge, it is the first
industrial-strength VM that has been designed with a formal se-
mantics from the start. In this paper we provide

• an overview of WebAssembly as a language that is the first truly
cross-browser solution for fast low-level code,
• an in-depth discussion of its design, including insight into novel

design decisions such as structured control flow,
• a complete yet concise formal semantics of both execution and

validation, including a proof of soundness,
• a report on implementation experience from developing several

production implementations available in 3 major browsers, in-
cluding novel techniques such as for memory protection.

This paper focuses on design and formalization. We leave an em-
pirical evaluation to future work.1

While the Web is the primary motivation for WebAssembly,
nothing in its design depends on the Web or a JavaScript environ-
ment. It is a completely open standard, and we expect that stand-
alone implementations will become available in the future. The ini-
tial version primarily focuses on supporting low-level languages
like C++, but we intend to grow it further in the future (Section 9).

2. Overview
Even though WebAssembly is a binary code format, we present it
as a language with syntax and structure. This was an intentional
design choice which makes it easier to explain and understand,
without compromising compactness or ease of decoding. Figure 1
presents its structure in terms of abstract syntax.2 For brevity we
omit some minor features; see Section 2.6.

1 Reviewer Note: Some preliminary numbers backing up the claims in this
paper can be found in the Supplementary Appendix.
2 WebAssembly has an S-expression text representation that closely resem-
bles this syntax and tools for assembling binaries from it, e.g. to write tests.

module
func (f64 → ε) import ”console” ”print”

export ”printFac” func (i32 → ε)
(get local 0) (i64.convert i32 u) (call 2) (f64.convert i64 u) (call 0)

func (i64 → i64)
local i64 ;; result
block (ε → ε) ;; break

loop (ε → ε) ;; continue
(get local 0) i64.eqz (br if 1) ;; break
(get local 0) (get local 1) i64.mul (set local 1)
(get local 0) (i64.const 1) i64.sub (set local 0)
(br 0) ;; continue

end
end
(get local 1) ;; result

Figure 2. Example: Module with factorial function

2.1 Basics
Let us start by introducing a few unsurprising concepts before we
dive into less obvious ones in the following sections.

Modules A WebAssembly binary takes the form of a module.
It contains possibly empty sequences of definitions for functions,
globals, tables, and memories. Each definition can optionally be ex-
ported under one or more names. Definitions can also be imported,
specifying a module/item name pair and a suitable type. Imports
can be re-exported.

While a module corresponds to the static representation of a
program, an instance of a module corresponds to a dynamic repre-
sentation, complete with mutable memory and an execution stack.
The instantiation operation for modules is provided by the embed-
der, such as a JavaScript virtual machine or an operating system. In-
stantiating a module requires providing definitions for all imports,
which may be exports from previously created WebAssembly in-
stances. WebAssembly computation can then be initiated by invok-
ing an exported function from this instance.

Functions The code in a module is organized into individual
functions. Each function takes a sequence of WebAssembly values
as parameters and returns a sequence of values as results as defined
by its function type. Functions can call each other, including re-
cursively. Functions are not first class and cannot be nested within
each other. As we will see later, the contents of the call stack for
execution are not exposed, and thus cannot be directly accessed by
a running WebAssembly program, even a buggy or malicious one.

Instructions The computational model of WebAssembly is based
on a stack machine in that the code for a function consists of a
sequence of instructions that manipulate data values on an implicit
operand stack, popping argument values and pushing result values.
However, thanks to the type system (Section 4), the layout of
the operand stack can be statically determined at any point in
the code, so that actual implementations can compile the data
flow between instructions directly without ever materializing the
operand stack.3 The stack organization is merely a way to achieve
a compact program representation, as it has been to be shown to be
smaller than a register machine [35].4

3 While structured use of the stack is normally the case for Java bytecode,
since it normally originates from Java source code, structured use of the
stack is enforced for WebAssembly code, leading to a host of benefits.
4 We also explored compressed, byte-encoded ASTs for WebAssembly, first
with a pre-order encoding and then later with a post-order encoding, even
going so far as to field full-scale production prototypes and development
tools for both representations. We found that post-order ASTs decode and
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(value types) t ::= i32 | i64 | f32 | f64
(packed types) tp ::= i8 | i16 | i32
(function types) tf ::= t∗ → t∗

(global types) tg ::= mut? t

unop iN ::= clz | ctz | popcnt
unopfN ::= neg | abs | ceil | floor | trunc | nearest | sqrt
binop iN ::= add | sub |mul | div sx | rem sx |

and | or | xor | shl | shr sx | rotl | rotr
binopfN ::= add | sub |mul | div |min |max | copysign
testop iN ::= eqz
relop iN ::= eq | ne | lt sx | gt sx | le sx | ge sx
relopfN ::= eq | ne | lt | gt | le | ge
cvtop ::= convert | reinterpret

sx ::= s | u

(instructions) e ::= unreachable | nop | drop | select |
block tf e∗ end | loop tf e∗ end | if tf e∗ else e∗ end |
br i | br if i | br table i+ | return | call i | call indirect tf |
get local i | set local i | tee local i | get global i |
set global i | t.load (tp sx )? a o | t.store tp? a o |
current memory | grow memory | t.const c |
t.unopt | t.binopt | t.testopt | t.relopt | t.cvtop t sx ?

(functions) f ::= ex∗ func tf local t∗ e∗ | ex∗ func tf im
(globals) glob ::= ex∗ global tg e∗ | ex∗ global tg im
(tables) tab ::= ex∗ table n i∗ | ex∗ table n im
(memories) mem ::= ex∗ memory n | ex∗ memory n im
(imports) im ::= import “name” “name”
(exports) ex ::= export “name”
(modules) m ::= module f ∗ glob∗ tab? mem?

Figure 1. WebAssembly abstract syntax

Traps Some instructions may produce a trap under some con-
ditions, which immediately aborts the current computation. Traps
cannot currently be handled by WebAssembly code, but an em-
bedder will typically provide means to handle this condition. Em-
bedded in JavaScript, a WebAssembly trap will create and throw
a JavaScript exception, complete with a WebAssembly-level stack
trace, that can be caught by the invoking JavaScript code.

Machine Types WebAssembly programs have only four basic
value types t, all of which are available in common hardware.
These are integers and IEEE-754 floating point numbers, each in
32 and 64 bit width. 32 bit integers also function as Booleans, as
addresses in the linear memory (Section 2.2), and indexes into func-
tion tables (Section 2.4). Most WebAssembly instructions simply
execute various operators on these basic data types. The grammar
in Figure 1 conveniently distinguishes between several categories,
such as unary and binary operators, tests and comparisons. Web-
Assembly provides the full matrix of conversions between the four
types, and the ability to reinterpret the bits of values across equally-
sized types. Like common hardware, WebAssembly has no distinc-
tion between signed and unsigned integer types. Instead, when the
signedness of values matters to an instruction, a sign extension suf-
fix u or s selects either unsigned or 2’s complement signed be-
havior.

Local Variables Functions may declare mutable local variables
(of types t∗) that are usable as virtual registers, in order to ex-
press imperative variables or more complex data flow. Locals are
zero-initialized and read or written by index via the get local and
set local instructions, respectively; tee local allows writing a lo-
cal variable while leaving the input value on the operand stack,
which is very common in real code. The index space for local vari-
ables starts with and includes the function parameters, meaning that
function parameters are also mutable.

Global Variables A module may also declare typed global vari-
ables that are accessed with the get global and set global instruc-
tions to read or write individual values. Globals can be either mu-
table or immutable and require an initializer which must be a con-
stant expression that evaluates without access to any function, table,
memory, local or mutable global. Importing globals and initializer
expressions allow a limited form of configurability, e.g. for linking.

verify faster than pre-order ASTs, but that the stack machine, which can be
seen as a generalization of the post-order format, more easily extended to
multi-value support and allowed even more space optimizations.

So far so boring. In the following sections we turn our attention
to more interesting features of the WebAssembly semantics.

2.2 Linear Memory
The main storage of a WebAssembly program is a large array of
bytes referred to as a linear memory or simply memory.

Creation and Growing Each module can define at most one
memory, which may optionally be shared with other instances via
import/export. Memory is created with an initial size but may be
dynamically grown with the grow memory instruction. Growing
may fail with an out-of-memory condition, which is indicated by
grow memory returning −1 to be handled by the program.5 The
size can be queried with the current memory instruction. The
unit of size and growth is a page, which is defined to be 64 KiB, the
least common multiple of minimum page sizes on modern virtual
memory hardware. The page size allows reusing virtual memory
hardware for bounds checks (Section 7). Page size is fixed instead
of being system-specific to prevent a common portability hazard.

Access Memory is accessed with load and store instructions
that take a static alignment exponent a, a positive static offset
o, an optional static width expressed as a packed type tp, and
the dynamic i32 address. Addresses are simply unsigned integers
starting at 0. The effective address of an access is the sum of the
static offset o (32 bits) and the dynamic i32 address as a 33 bit
address (i.e. no wraparound), which allows specific optimizations
shown in Section 7. Memory access is always dynamically checked
against the memory size, and out of bounds access results in a
trap. Memory can be accessed with 8, 16, 32, or 64-bit wide loads
and stores, with packed integer loads performing a zero or sign
extension sx to either 32 or 64 bits. Unaligned access, where 2a is
smaller than the (packed) type’s width, is supported, e.g. accessing
a 32 bit integer on an odd address. Such access may be slow on
some platforms, but always produces the same unexciting results.

Endianness Byte order in memory is observable to programs that
load and store to aliased locations with different types or widths.
Contemporary hardware seems to be converging on little-endian
byte order, either being natively little-endian (x86, x86-64, ARM)
or having optional endian conversion included in memory access
(Sparc, PowerPC, PA-RISC, IA-64), or being architecturally neu-
tral with both variants available (MIPS). Recognizing this conver-
gence, we chose to define WebAssembly memory to have little-

5 To support additional optimizations, WebAssembly also allows declaring
an upper limit for each memory’s size, which we omit in this presentation.
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endian byte order. Of course, that entails that big-endian platforms
require explicit endian conversions. However, these conversions
can be subjected to classical compiler optimizations such as redun-
dancy elimination and code motion by the WebAssembly engine.
Inheriting host system endianness would also be a portability risk,
since languages like C++ may depend on it statically. Thus the se-
mantics of memory access is completely deterministic and portable
across all engines and platforms, even for unaligned accesses and
unrestricted type-punning.

Security Unlike CCured [31] or other systems for securing
C/C++ code, WebAssembly does not enforce memory safety at
the granularity of language objects, but only at the granularity of a
whole memory. Linear memory is disjoint from code space, the ex-
ecution stack, and the engine’s data structures; therefore compiled
programs cannot corrupt their execution environment, jump to ar-
bitrary locations, or perform other undefined behavior. At worst, a
buggy or exploited WebAssembly program can make a mess of the
data in its own memory. This means that even untrusted modules
can be safely executed in the same address space as other code.
Achieving fast in-process isolation was a necessary design con-
straint for interacting with untrusted JavaScript and the full com-
plement of Web APIs in a high-performance way. It also allows
a WebAssembly engine to be embedded into any other managed
language runtime without violating memory safety, as well as en-
abling programs with many independent instances with their own
memory to exist in the same process.

2.3 Structured Control Flow
WebAssembly represents control flow differently from most stack
machines. It does not offer simple jumps but instead provides
structured control flow constructs more akin to a programming
language. This ensures by construction that control flow cannot
form irreducible loops, contain branches to blocks with misaligned
stack heights, or branch into the middle of a multi-byte instruction.
These properties allow WebAssembly code to be validated in a
single pass, compiled in a single pass, or even transformed to an
SSA-form intermediate form in a single pass. Structured control
flow disassembled to a text format is also easier to read, an often
overlooked but important human factor on the web, where users are
accustomed to inspecting the code of webpages to learn and share
in an open manner.

Control Constructs and Blocks As required by the grammar in
Figure 1, the block, loop and if constructs must be terminated by
an end opcode and be properly nested in the instruction stream to
be considered well-formed. The inner instruction sequences e∗ in
these constructs form a block. Note that loop does not automati-
cally iterate its block but allows constructing a loop manually with
explicit branches. The if construct encloses two blocks separated
by an else opcode. The else can be omitted if the second block is
empty. Executing an if pops an i32 operand off the stack and exe-
cutes one of the blocks depending on whether the value is non-zero.

Branches and labels Branches have “label” immediates that do
not reference positions in the instruction stream but instead refer-
ence outer control constructs by relative nesting depth. That means
that labels are effectively scoped: branches can only reference con-
structs in which they are nested. Taking a branch “breaks from” that
construct’s block; 6 the exact effect depends on the target construct:
in case of a block or if it is a forward jump, resuming execution
after the matching end (like a break statement); with a loop it is a
backward jump, restarting the loop (like a continue statement).

Besides unconditional branches, br if conditionally branches if
its stack operand is non-zero, and br table selects a target from

6 The instruction name br can also be read as “break” wrt. to a block.

an entire list of label immediates based on an index operand, with
the last label being the target for all out-of-bounds index values;
having these two instructions allows minimal code that avoids any
jumps-to-jumps.

Block Signatures and Unwinding Every control construct is an-
notated with a function type tf = t∗1 → t∗2 that describes how
it changes the stack.7 Conceptually, blocks execute like function
calls. Each block pops its argument values t∗1 off the stack, creates a
new stack, pushes the arguments onto the new stack, executes its in-
structions, pops its results off the internal stack, and then pushes its
results t∗2 onto the outer stack upon completion. Since the beginning
and end of a block represent control join points, all branches must
also produce compatible stacks. Consequently, branch instructions
themselves expect operands, depending on whether they jump to
the start or end of the block, i.e., with types t∗1 for loop targets and
t∗2 for block or if .

Branching unwinds a block’s local operand stack by implicitly
popping all remaining operands from it, similar to returning from
a function call. When a branch crosses several block boundaries,
all respective stacks up to and including the target block’s are un-
wound. This liberates producers from having to track stack height
across sub-expressions in order to make stack heights match up at
branches by adding explicit drops.

Production implementations perform register allocation and
compile away the operand stack when generating machine code.
However, the design makes sure that interpretation is still relatively
easy, e.g., to implement debuggers. An interpreter can represent the
individual block stacks as contiguous and just remember the height
upon entry to each block in a separate control stack. Further, an in-
terpreter can make a prepass to construct a mapping from branches
to instruction position and avoid dynamically searching for end
opcodes, making all interpreter operations constant-time.8

Expressiveness Structured control flow may seem like a severe
limitation. However, most control constructs from higher-level lan-
guages are readily expressible with the suitable nesting of blocks.
For example, a C-style switch statement with fall-through,

switch (x) {
case 0: ...A...
case 1: ...B... break;
default: ...C...
}

becomes

block block block block
br table 2 1 0
end ...A...
end ...B... br 1
end ...C...

end
Slightly more finesse is required when fall-through occurs between
unordered cases. Various forms of loops can likewise be expressed
with combinations of loop, block, br and br if .

By design, unstructured and irreducible control flow using goto
is impossible in WebAssembly. It is the responsibility of producers
to transform unstructured and irreducible control flow into struc-
tured form. This is the established approach to compiling for the
Web, where JavaScript is also restricted to structured control. It was
pioneered by tools like Emscripten [40] which uses the Relooper al-
gorithm to target asm.js, handling both unstructured and irreducible
control flow patterns. In our experience building an LLVM back-
end targeting WebAssembly, irreducible control flow is rare, and
a simple restructuring algorithm for introducing blocks is all that
is necessary to compile any reducible CFG to WebAssembly. The
benefit of requiring reducible control flow by construction is that
many algorithms in consumers are much simpler and faster.

2.4 Function Calls and Tables
A function body is a block (Section 2.3) whose signature maps the
empty stack to the function’s result. The arguments to a function

7 In the initial version of WebAssembly, t∗1 must be empty and |t∗2| ≤ 1.
8 That is the approach V8 takes in its debugging interpreter.
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are stored in the first local variables of the function. Execution of
a function can complete in one of three ways: (1) by reaching the
end of the block, in which case the operand stack must match the
function’s result types; (2) by a branch targeting the function block,
with the result values as operands; (3) by executing return, which
is a shorthand for a branch that targets the function’s block.

Direct Calls Functions can be invoked directly using the call
instruction which takes a static index immediate identifying the
function to call. The call instruction pops the required function
arguments from the operand stack and pushes the function’s return
values upon return.

Indirect Calls Function pointers and method tables can be emu-
lated with the call indirect instruction, which takes a runtime in-
dex into a global table of functions defined by the module. The
functions in this table are not required to have the same type. In-
stead, the type of the function is checked dynamically against an
expected type supplied to the call indirect instruction. The dy-
namic signature check protects integrity of the execution environ-
ment, since native calls pass arguments in registers and on the stack;
a successful signature check ensures that a single machine-level in-
direct jump to the compiled code of the target function is safe. In
case of a type mismatch or an out of bounds table access, a trap oc-
curs. The heterogeneous nature of the table is based on experience
with asm.js’s multiple homogeneous tables; it allows more faithful
representation of function pointers and simplifies dynamic linking.
To aid dynamic linking scenarios further, exported tables can be
grown and mutated dynamically through external APIs.

External and Foreign Calls Functions can be imported to a
module and are specified by name and signature. Both direct and
indirect calls can invoke an imported function, and through ex-
port/import, multiple module instances can communicate.

Additionally, the import mechanism serves as a safe foreign
function interface through which a WebAssembly program can
communicate with its embedding environment. For example, when
WebAssembly is embedded in JavaScript, imported functions may
be host functions that are not defined by WebAssembly code, but
are defined in JavaScript. Values crossing the language boundary
as arguments or results are automatically converted according to
JavaScript rules.9

2.5 Determinism
The design of WebAssembly has sought to provide a portable
target for low-level code without sacrificing performance. Where
hardware has differed in behavior, it has usually been corner cases
such as out-range integer shifts, integer divide by zero, underflow
or overflow in floating point conversion, and alignment. Our design
gives deterministic semantics to all of these across all engines and
hardware with only minimal execution time overhead.

However, there remain just three sources of implementation-
dependent behavior which are best explained as non-determinism:

NaN Payloads WebAssembly follows the IEEE-754 standard for
floating point arithmetic, which is generally fast on all modern
CPUs. However, IEEE-754 does not specify the exact bit pattern
for NaN values in all cases, and we found that CPUs differ with
regard to the sign bit of canonical NaNs and the rules for NaN
propagation. While programming languages generally make no
specific guarantees in these cases and programs don’t normally
observe NaN bit patterns, a low-level target like WebAssembly
should give tighter guarantees.

We found that normalizing after every numeric operation is
too expensive. However, based on our experience with JavaScript

9 Where trying to communicate an i64 value produces a JavaScript type
error, because JavaScript cannot yet represent such values adequately.

engines, we established rules that are sufficient for allowing NaN-
boxing [18]: (1) instructions only output canonical NaNs with a
nondeterministic sign bit, unless (2) if an input is a non-canonical
NaN, then the output NaN payload bits are nondeterministic.

Resource Exhaustion Available resources are always finite and
differ wildly across devices. In particular, an engine may be
out of memory when trying to grow the linear memory, which
can be viewed semantically as a grow memory instruction non-
deterministically returning −1. A call or call indirect instruction
may also experience stack overflow, but this is not semantically
observable inside of WebAssembly, since it results in a trap.

Calling Host Functions WebAssembly programs can behave
non-deterministically if they call host functions which are them-
selves non-deterministic or change WebAssembly state. This is
expected since the effect of calling host functions is outside the
realm of the WebAssembly semantics.

WebAssembly does not (yet) have threads, and therefore no
non-determinism arising from concurrent memory access. Adding
threads and a memory model is the subject of ongoing work beyond
the scope of this paper.

2.6 Restrictions
WebAssembly as presented in this paper is almost complete except
some minor omitted features related to module initialization:

• Tables can be partially initialized, separately from their defini-
tion, and initialization can be applied to imported tables.
• Memories can be pre-initialized with given data at given offsets.
• A module can specify a designated startup function that is

automatically executed upon instantiation.
• Tables and memories can have an optional maximum size that

limits how much they can be grown.

Relative to this presentation, the initial release of WebAssembly
also imposes a few restrictions, likely lifted in later versions:

• Blocks and functions may produce at most one result value.
• Blocks may not consume outer operands.
• Constant expressions for globals may only be of the form
(t.const c) or (get global i), where i refers to an import.

Modules may also define multiple tables and memories in the
future.

3. Execution
Presenting WebAssembly as a language provides us with conve-
nient and effective formal tools for specifying and reasoning about
its semantics very precisely. In this section we define execution in
terms of a standard reduction relation and in the next section we
will define validation as a standard typing relation.

3.1 Stores and Instances
Execution operates relative to a global store s. The upper part
of Figure 3 defines syntax for representations of stores and other
runtime objects. A store is represented as a record of the lists of
module instances, tables and memories that have been allocated
in it. Indices into these lists can be thought of as addresses, and
“allocation” simply appends to these lists.

As described in Section 2.1, a module must be instantiated be-
fore it can be used. The result is an initialized instance. Figure 3
represents such an instance as a record of the entities it defines. Ta-
bles and memories reside in the global store and are only referenced
by address, since they can be shared between multiple instances.
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(store) s ::= {inst inst∗, tab tabinst∗, mem meminst∗}
(instances) inst ::= {func cl∗, glob v∗, tab i?, mem i?}

tabinst ::= cl∗

meminst ::= b∗

(closures) cl ::= {inst i, code f} (where f is not an import and has all exports ex∗ erased)
(values) v ::= t.const c

(administrative operators) e ::= . . . | trap | call cl | label{t∗; e∗} e∗ end | local{i; v∗} e∗ end
(local contexts) L0 ::= v∗ [ ] e∗

Li+1 ::= v∗ label{t∗; e∗} Li end e∗

Reduction s; v∗; e∗ ↪→i s; v
∗; e∗s; v∗; e∗ ↪→i s

′; v′
∗
; e′
∗

s; v∗;Lk[e∗] ↪→i s′; v′∗;Lk[e′∗]

s; v∗; e∗ ↪→i s
′; v′
∗
; e′
∗

s; v∗0 ; local{i; v∗} e∗ end ↪→j s′; v∗0 ; local{i; v′∗} e′∗ end

(t.const c) t.unop ↪→ t.const unopt(c)
(t.const c1) (t.const c2) t.binop ↪→ t.const c if c = binopt(c1, c2)
(t.const c1) (t.const c2) t.binop ↪→ trap otherwise

(t.const c) t.testop ↪→ i32.const testopt(c)
(t.const c1) (t.const c2) t.relop ↪→ i32.const relopt(c1, c2)

(t1.const c) t2.convert t1 sx ? ↪→ t2.const c′ if c′ = cvtsx
?

t1,t2(c)
(t1.const c) t2.convert t1 sx ? ↪→ trap otherwise
(t1.const c) t2.reinterpret t1 ↪→ t2.const constt2(bitst1(c))

unreachable ↪→ trap
nop ↪→ ε

v drop ↪→ ε
v1 v2 (i32.const 0) select ↪→ v2

v1 v2 (i32.const i+ 1) select ↪→ v1

vn block (tn1 → tm2 ) e∗ end ↪→ label{tm2 ; ε} vn e∗ end
vn loop (tn1 → tm2 ) e∗ end ↪→ label{tn1 ; loop (tn1 → tm2 ) e∗ end} vn e∗ end

(i32.const 0) if tf e∗1 else e∗2 end ↪→ block tf e∗2 end
(i32.const i+ 1) if tf e∗1 else e∗2 end ↪→ block tf e∗1 end

label{t∗; e∗} v∗ end ↪→ v∗

label{t∗; e∗} trap end ↪→ trap
label{tn; e∗} Li[vn (br i)] end ↪→ vn e∗

(i32.const 0) (br if i) ↪→ ε
(i32.const j + 1) (br if i) ↪→ br i

(i32.const k) (br table ik1 i i
∗
2) ↪→ br i

(i32.const k + j) (br table ik1 i) ↪→ br i

s; call j ↪→i call sfunc(i, j)
s; (i32.const j) call indirect tf ↪→i call stab(i, j) if stab(i, j)code = (func tf local t∗ e∗)
s; (i32.const j) call indirect tf ↪→i trap otherwise

vn (call cl) ↪→ local{cl inst; v
n (t.const 0)k} block (ε→ tm2 ) e∗ end end ...

local{i; v∗l } v∗ end ↪→ v∗ | . . . if cl code = (func (tn1 → tm2 ) local tk e∗)
local{i; v∗l } trap end ↪→ trap

local{i; v∗l } Lj+1[return] end ↪→ local{i; v∗l } Lj+1[br j] end

vi1 v v
j
2; get local i ↪→ v

vi1 v v
j
2; v
′ (set local i) ↪→ vi1 v

′ vj2; ε
v (tee local i) ↪→ v v (set local i)
s; get global j ↪→i sglob(i, j)

s; v (set global j) ↪→i s′; ε if s ′ = s with glob(i, j) = v

s; (i32.const k) (t.load a o) ↪→i t.const constt(b
∗) if smem(i, k + o, |t|) = b∗

s; (i32.const k) (t.load tp sx a o) ↪→i t.const constsxt (b∗) if smem(i, k + o, |tp|) = b∗

s; (i32.const k) (t.load tp sx ? a o) ↪→i trap otherwise
s; (i32.const k) (t.const c) (t.store a o) ↪→i s′; ε if s ′ = s with mem(i, k + o, |t|) = bits

|t|
t (c)

s; (i32.const k) (t.const c) (t.store tp a o) ↪→i s′; ε if s ′ = s with mem(i, k + o, |tp|) = bits
|tp|
t (c)

s; (i32.const k) (t.const c) (t.store tp? a o) ↪→i trap otherwise
s; current memory] ↪→i i32.const |smem(i, ∗)|/64Ki

s; (i32.const k) grow memory ↪→i s′; i32.const |smem(i, ∗)|/64Ki if s ′ = s with mem(i, ∗) = smem(i, ∗) (0)k·64Ki

s; (i32.const k) grow memory ↪→i i32.const (−1)

Figure 3. Small-step reduction rules
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The representation of instantiated tables is simply a list of closures
cl and memories a list of bytes b.

A closure is the runtime representation of a function, consisting
of the actual function definition and a reference to the instance from
which it originated. The instance is needed to access stateful objects
such as the globals, tables, and memories, since functions can be
imported from a different instance. A typical implementation will
eliminate closures by specializing generated machine code to an
instance.

Globals are represented by the values they hold. Since mutable
globals cannot be aliased, they reside in their defining instance.
Values are simply represented by a t.const instruction, which is
convenient for the presentation of the reduction rules.

When dealing with the records introduced here, we use notation
like sfunc to refer to the func component of a store record s; sim-
ilarly for other records. Indexing xs(i) denotes the i-element in a
sequence xs . We extend it to stores with instance addresses i as a
major dimension by the following short-hands:

sfunc(i, j) = sinst(i)func(j)
sglob(i, j) = sinst(i)glob(j)

stab(i, j) = stab(sinst(i)tab)(j)
smem(i, j) = smem(sinst(i)mem)(j)

For memories, we generalize indexing notation to slices, i.e.,
smem(i, j, k) denotes the byte sequence smem(i, j) . . . smem(i, j +
k − 1); plus, smem(i, ∗) is the complete memory in instance i. Fi-
nally, we write “s with glob(i, j) = v” for the store s′ that is equal
to s, except that s′glob(i, j) = v; similarly for updating memories.

3.2 Instantiation
Instantiating a module m = (module f∗ glob∗ tab? mem?) in
a store s requires providing external function closures cl∗0, global
values v∗0 , table index i? and memory index k?, corresponding to
the respective imports declared by the module in order of appear-
ance. Their types must match the import declarations; for functions
and globals that means an exact match, and for tables or memories,
a reference to an instance with a size at least as large.

The new instance then is assigned a fresh address i = |sinst| and
defined as follows:

inst = {func cl∗, glob v∗, tab j?, mem k?}

where cl∗ is the list of closures such that each cl = {inst i, code f}
if it corresponds to a definition f in f∗ that is not an import, or the
corresponding import from cl∗0 otherwise. Each value in v∗ is the
result of evaluating the initializer expressions of a global definition,
or the respective import from v∗0 otherwise. The indices i and j are
either the imports, respectively, or j = |stab| and k = |smem| in
case the table or memory are defined in m itself as (table nt i

nt
t )

or (memory nm). New table or memory instances are created from
such definitions as:

tabinst = (inst func(it))
nt

meminst = (0)nm·64Ki

Instantiation results in a new store s′ which is s with inst and
possibly tabinst and meminst appended to the respective lists.

3.3 Reduction
The lower part of Figure 3 specifies WebAssembly execution in
terms of a small-step reduction relation [33], which enables very
compact rules and avoids the need for introducing separate notions
of operand or control stacks – the operand “stack” simply consists
of all t.const instructions left of the next redex. Reduction is
defined over configurations s; v∗; e∗ that consist of a global store s,
local variable values v∗, and the instruction sequence e∗ to execute.
In the reduction rules, we omit parts of the initial configuration that
are not used by a rule, and parts of the resulting configuration that
remain unchanged. Moreover, reduction is indexed by the address

i of the “current” instance it executes in, which we also omit where
it is not relevant.

Administrative Syntax To deal with control constructs and func-
tions, however, the syntax of instructions must be extended with a
number of administrative operators: trap signifies that a trap has
occurred, call cl is a call directly applied to a closure, label marks
the label and extent of an active control construct, and local essen-
tially is a call frame for function invocation. We will explain these
constructs in more detail later. To aid the formulation of rules deal-
ing with enclosing labels we additionally define local contexts Lk

that represent k nested labels.
We abuse notation slightly and let xn range over sequences of

different x’s with length n in the rules. We also write x∗ where the
length doesn’t matter; ε denotes the empty sequence.

Numerics The first group of rules handles the various numeric
instructions. We assume a number of auxiliary operators:

unopt : t→ t cvtsx
?

t1,t2 : t1 ⇀ t2
testopt : t→ i32 bitsnt : t→ bn (n ≤ |t|)
binopt : t× t ⇀ t constt : bn → t (n = |t|)
relopt : t× t→ i32 constsxt : bn → t (n < |t|)

The left group abstracts the actual numerics of those operators,
which have the “obvious” semantics. The others implement con-
versions and reinterpretation from and to sequences of raw bytes
bn in little endian with optional sign extension. Some of the binary
operators and conversions may trap for some inputs and thus are
partial (written ⇀). Notably, div sx in, rem sx in, and float-to-int
conversions trap when the results are unrepresentable.

Control Control constructs reduce into the auxiliary label con-
struct. It represents a block along with its label’s signature and the
continuation with which the block is replaced when branching to
the label. This continuation is empty in the case of block and if ,
terminating the block, and the original expression in the case of
loop, thereby restarting the loop.

Via the definition of local contexts Lk, evaluation proceeds
inside a label block until the label construct itself can be reduced
in one of several ways. When the label block has only values
remaining, it is exited, leaving those values as results. Similarly
in case of a trap has occurred. When a label is targeted by a br,
execution keeps as many values vn on the stack as prescribed by the
targeted label signature tn and reduces to the label’s continuation.
The remaining values of the local and all intermediate stacks are
thrown away, implementing unwinding.

Conditional and indexed branches reduce to regular branches
first. If a conditional branch is not taken, however, it just reduces to
the empty instruction sequence – note that this leaves any potential
branch operands on the operand stack, and they may have to be
dropped explicitly.

Calls Performing calls is a bit more involved. Both call and
call indirect reduce to the auxiliary form (call cl) that takes a
closure as immediate. To find that in the store, the instructions have
to know their own instance i and look it up.

The rule for calling closures looks at its type tn1 → tm2 to
determine how many operands n to pop off the stack as arguments.
It creates a new local block, which is another auxiliary form similar
to label but representing a call frame. The frame holds a reference
i to the instance of the invoked closure and a list of values as the
state of the function’s local variables. This list is initialized with the
call arguments vn followed by the zero-initialized locals with types
tk. The signature of the block is the return type tm2 of the function.

Like a label block, a local block can be exited by either reduc-
ing to a sequence of result values, a trap, or by a branch targeting
it. In all cases, the construct – and thereby the call that created it –
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is reduced to its result values. In addition, it can also be targeted by
a return, which is just a branch to the nested block.

Variables The values of local variables are part of the configura-
tion, and simply accessed there. In the case of set local, the re-
spective variable is updated with the new value.

Global variables are stored in the instance, so get global and
set global use their instance’s address i to access it; set global
mutates the store by updating the global with the new value.

Memory Load instructions look up the current instance’s memory
and extract a slice of raw bytes of the appropriate length from it. We
write |t| or |tp| for the byte width of value types or packed types.
They then apply the suitable reinterpretation function to create
a constant value from it. Inversely, stores convert values into a
sequence of raw bytes and write them into the appropriate memory.
In either case, if the access is out of bounds, a trap is generated.

Finally, current memory measures the size of its memory in
page units (i.e., dividing by 64Ki) and pushes it. grow memory
grows the respective memory by appending the correct amount of
zero bytes to it. We assume here that this can fail as an out-of-
memory condition, in which case the instruction returns −1.

4. Validation
On the web, code is usually fetched from untrusted sources. Be-
fore any code can be executed safely, it must be validated. Valida-
tion rules for WebAssembly are defined succinctly as a type sys-
tem. This type system is, by design, embarrassingly simple. It is
designed to be efficiently checkable in a single linear pass, possi-
bly interleaved with binary decoding and compilation.

Type-correctness not only guarantees the absence of certain
safety violations and other undefined behavior, such as invalid calls
or illegal accesses to locals, it also establishes various invariants
that are central to efficient compilation of WebAssembly. For ex-
ample, the typing rules statically determine the operand stack, such
that the data flow between all instructions is known at compile time.

4.1 Typing Rules
Figure 4 defines the WebAssembly type system declaratively

via the usual system of deduction rules [32]. The upper part of
the figure defines a judgement C ` e∗ : tf assigning a function
type to every instruction sequence that is valid under a context C.
The lower part gives specialized rules defining validity of complete
modules.

Contexts A context C records lists of all declared entities acces-
sible at a given point in a program and their respective types. When
spelling out a context record we omit components that are empty.
Similar to Section 3, we write Cfunc to access the func component
ofC andCfunc(i) to access the i-th function in it; similarly for other
components. In the case of Clabel(i) we make a special case and de-
fine this to mean indexing from the end of the list, because labels
are referenced relatively, with the last being referenced as 0 (a form
of de Bruijn indexing [11]). For extension, C, local t∗ denotes the
same context as C, but with the sequence t∗ appended to the list of
locals. In the case of C, label (t∗) the parentheses indicate that C’s
labels are extended with a single entry that is itself a list.

Instructions The function type tf = t∗1 → t∗2 assigned to in-
structions specifies their required input stack t∗1 and the provided
output stack t∗2. Most of the typing rules for individual instructions
are straightforward. We focus on specific points of interest.

The rules for control constructs require that their type matches
the explicit annotation tf , and they extend the context with a local
label. As explained in Section 2, the label’s operand types are the
instruction’s output types for forward labels (block, if) and the

instruction’s input types for backward labels (loop). Label types
are used in the typing of branch instructions, which require suitable
operands on the stack to match the stack at the join point.

The side condition Ctable = n in the rule for call indirect en-
sures that this instruction can only be used when a table is present.
Similar side conditions exist for all memory-related instructions,
that ensure that a memory has been declared. The other side con-
ditions for load and store instructions make sure that alignment is
no larger than the type’s width, which we call the natural align-
ment, and that packed access happens only with a packed type tp
narrower than the computation type t.

When typing sequences of expressions, the rules require that
the input stack t∗2 of the last instruction e2 matches the output
stack of the preceding instruction sequence. However, most rules
describe only the top of the stack as far as they affect it. Com-
posing instructions may require extending these types to deeper
stacks so that they match up, which is achieved by the last rule.
It allows weakening the type of any instruction by assuming ad-
ditional values of types t∗ further down the stack which are un-
touched between input and output. For example, when typing the
sequence (i32.const 1) (i32.const 2) i32.add, this rule is invoked
to weaken the type of the middle instruction from ε → i32 to
i32→ i32 i32, as needed to compose with the other two.

Polymorphism Some instructions are polymorphic in one of two
ways. The simple case is in the rules for drop and select, that can
pick an arbitrary operand type t locally. In most circumstances, the
choice will be determined by program context, i.e., preceding or
succeeding instructions and the constraints imposed by the rule for
instruction sequences. In the few remaining cases the choice does
not matter and a compiler could pick any type.

A second degree of polymorphism extends to the entire stack. It
occurs with all instructions that perform an unconditional control
transfer (unreachable, br, br table, return). Since control never
proceeds to the instructions following these (they are dead code)
no requirements exist for the stack “afterwards”. That is, the rules
can assume whatever fits the next instruction. That is expressed
by allowing arbitrary excess input type t∗1 and arbitrary output
types t∗2 in the types of these instructions; the former are virtually
consumed, the latter are virtually produced, leaving any possible
stack.

The outcome of this is that producers do not need to worry
about reachability of code and about manually adjusting the
stack before a control transfer. For example, a simple compiler
can compositionally compile an expression like “a + b“ into
“compile(a) compile(b) i32.add” regardless of whether the re-
cursive compilations of a or b produced code that ends in a branch
or an unconditional runtime error. It also ensures that various pro-
gram transformations are always valid, e.g. inlining and other forms
of partial evaluation.

Modules A module is a closed definition, so no context is re-
quired for validation. It is valid when all the individual definitions
are valid and all export names are different. Note that the premises
are recursive with respect toC; in particular, all functions are mutu-
ally recursive. Globals on the other hand are not recursive, and the
incremental contexts Ci used for checking individual global dec-
larations do only contain references to previous globals, nor any
other declarations, because they may not be used in the initializer.

A function definition is valid when its body is a block of suit-
able type. Similarly, for globals, the initialization expression needs
to have the right type; moreover, it may only be exported if im-
mutable. A table definition is valid if it lists the right number of
(valid) functions. Imports are only supplied at instantiation time,
so no static constraints apply to their declarations, except that im-
ported globals may not be mutable.
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(contexts) C ::= {func tf ∗, global tg∗, table n?, memory n?, local t∗, label (t∗)∗}

Typing Instructions C ` e∗ : tf
C ` t.const c : ε→ t C ` t.unop : t→ t C ` t.binop : t t→ t

C ` t.testop : t→ i32 C ` t.relop : t t→ i32

t1 6= t2 sx ? = ε⇔ (|t1| > |t2| ∧ t1 = in)

C ` t1.convert t2 sx ? : t2 → t1

t1 6= t2 |t1| = |t2|
C ` t1.reinterpret t2 : t2 → t1

C ` unreachable : t∗1 → t∗2 C ` nop : ε→ ε C ` drop : t→ ε C ` select : t t i32→ t

tf = tn1 → tm2 C, label (tm2 ) ` e∗ : tf
C ` block tf e∗ end : tf

tf = tn1 → tm2 C, label (tn1 ) ` e∗ : tf
C ` loop tf e∗ end : tf

tf = tn1 → tm2 C, label (tm2 ) ` e∗1 : tf C, label (tm2 ) ` e∗2 : tf

C ` if tf e∗1 else e∗2 end : tn1 i32→ tm2

Clabel(i) = t∗

C ` br i : t∗1 t
∗ → t∗2

Clabel(i) = t∗

C ` br if i : t∗ i32→ t∗
(Clabel(i) = t∗)+

C ` br table i+ : t∗1 t
∗ i32→ t∗2

Clabel(|Clabel| − 1) = t∗

C ` return : t∗1 t
∗ → t∗2

Cfunc(i) = tf

C ` call i : tf

tf = t∗1 → t∗2 Ctable = n

C ` call indirect tf : t∗1 i32→ t∗2

Clocal(i) = t

C ` get local i : ε→ t

Clocal(i) = t

C ` set local i : t→ ε

Clocal(i) = t

C ` tee local i : t→ t

Cglobal(i) = mut? t

C ` get global i : ε→ t

Cglobal(i) = mut t

C ` set global i : t→ ε

Cmemory = n 2a ≤ (|tp| <)?|t| (tp sz )? = ε ∨ t = in

C ` t.load (tp sz )? a o : i32→ t

Cmemory = n 2a ≤ (|tp| <)?|t| tp? = ε ∨ t = in

C ` t.store tp? a o : i32 t→ ε

Cmemory = n

C ` current memory : ε→ i32

Cmemory = n

C ` grow memory : i32→ i32

C ` ε : ε→ ε

C ` e∗1 : t∗1 → t∗2 C ` e2 : t∗2 → t∗3
C ` e∗1 e2 : t∗1 → t∗3

C ` e : t∗1 → t∗2
C ` e : t∗ t∗1 → t∗ t∗2

Typing Modules
tf = t∗1 → t∗2 C, local t∗1 t

∗, label (t∗2) ` e∗ : ε→ t∗2
C ` ex∗ func tf local t∗ e∗ : ex∗ tf

tg = mut? t C ` e∗ : ε→ t ex∗ = ε ∨ tg = t

C ` ex∗ global tg e∗ : ex∗ tg

(Cfunc(i) = tf )n

C ` ex∗ table n in : ex∗ n C ` ex∗ memory n : ex∗ n

C ` ex∗ func tf im : ex∗ tf

tg = t

C ` ex∗ global tg im : ex∗ tg C ` ex∗ table n im : ex∗ n C ` ex∗ memory n im : ex∗ n

(C ` f : ex∗f tf )∗ (Ci ` globi : ex
∗
g tg i)

∗
i (C ` tab : ex∗t n)? (C ` mem : ex∗m n)?

(Ci = {global tg i−1
j })∗i C = {func tf ∗, global tg∗, tablen?,memoryn?} ex∗f

∗ ex∗g
∗ ex∗t

? ex∗m
? distinct

` module f∗ glob∗i tab? mem?

Figure 4. Typing rules

4.2 Soundness
Typing WebAssembly enjoys standard soundness properties [38].
Soundness proves that the reduction rules from Section 3 actually
cover all execution states that can arise for valid programs. In other
words, it proves that Figure 3 specifies a complete execution se-
mantics for WebAssembly and leaves no room for undefined be-
havior, assuming the auxiliary numeric primitives are well-defined.

Store Typing Before we can state the soundness theorems con-
cretely, we must extend typing to stores and configurations as de-
fined in Figure 3. These rules, shown in Figure 5 are not required
for validation, but for generalizing to dynamic computations. They
use an additional store context S to classify the store. The typing

judgement for instructions in Figure 4 is extended to S;C ` e∗ : tf
by implicitly adding S to all rules – it is never modified or used by
those rules, but is accessed by the new rules for call cl and local.

Theorems With the help of these auxiliary judgements we can
now formulate the relevant properties:

PROPOSITION 4.1 (Preservation). If `i s; v∗; e∗ : t∗ and s; v∗; e∗

↪→i s
′; v′
∗
; e′
∗, then `i s′; v′∗; e′∗ : t∗.

PROPOSITION 4.2 (Progress). If `i s; v∗; e∗ : t∗, then either
e∗ = v′

∗, or e∗ = trap, or s; v∗; e∗ ↪→i s
′; v′
∗
; e′
∗.

These properties ensure that all valid programs either diverge, trap,
or terminate with values of the correct types.
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(store context) S ::= {inst C∗, tab n∗, mem n∗}

S = {inst C∗, tab n∗, mem m∗} (S ` inst : C)∗ ((S ` cl : tf )∗)∗ (n ≤ |cl∗|)∗ (m ≤ |b∗|)∗

` {inst inst∗, tab (cl∗)∗, mem (b∗)∗} : S

Sinst(i) ` f : tf

S ` {inst i, code f} : tf
(S ` cl : tf )∗ (` v : t)∗ (Stab(i) = n)? (Smem(j) = m)?

S ` {func cl∗, glob v∗, tab i?, mem j?} : {func tf ∗, global t∗, table n?, memory m?}

` s : S S `i v∗; e∗ : t∗

`i s; v∗; e∗ : t∗
(` v : tv)

∗ S;Sinst(i), local t∗v ` e∗ : ε→ t∗

S `i v∗; e∗ : t∗ ` t.const c : t

C ` trap : tf

C ` e∗0 : t∗ → t∗2 C, label (t∗) ` e∗ : ε→ t∗2
C ` label{t∗ ; e∗0} e∗ end : ε→ t∗2

S ` cl : tf

S;C ` call cl : tf

S `i v∗; e∗ : t∗

S;C ` local{i; v∗} e∗ end : ε→ t∗

Figure 5. Store and configuration typing and rules for administrative instructions

4.3 Lazy Validation
While the rules in Figure 4 define when a WebAssembly module is
valid, and producers are required to generate code according to this
semantics, engines are not required to fully check it in all cases.

To minimize start-up latency and accommodate for different im-
plementation strategies, such as just-in-time lazy compilation, val-
idation requirements are more lenient: it is not required that a com-
plete module is validated upfront. Instead, validation of individual
functions may be deferred to the point when they are first called (if
at all).

5. Binary Format
The actual format in which WebAssembly is transmitted over the
wire is a binary encoding of the abstract syntax presented in Fig-
ure 1. This encoding has been designed to minimize both size and
decoding time. For space reasons, and because much of the format
is rather straightforward, we only give a brief summary here.

A binary represents a single module and is divided into sections
according to the different kinds of entities declared in it, plus a few
auxiliary sections. Function types tf are collected in their own sec-
tion to allow sharing. Code for function bodies is deferred to a sepa-
rate section that is placed after all declarations. This way, a browser
engine can minimize page-load latency by starting streaming com-
pilation as soon as the first function body has been received over
the wire. It can also parallelize compilation of consecutive function
bodies. To aid this further, each body is preceded by its size, so that
a decoder can skip ahead and parallelize even its decoding.

Instructions are represented with simple byte codes as one
would expect; in the future, sentinel opcodes may support vari-
able lengths. All integral numbers, including opcode immediates,
are encoded in LEB128 format [6]. The binary format strives for
overall simplicity and is regular enough that it can be expressed
(and theoretically, parsed) by a simple grammar.

The format also allows user-defined sections that may be ig-
nored by an engine. For example, this is used to store optional de-
bug annotations such as source names in binaries.

6. Embedding and Interoperability
WebAssembly is similar to a virtual ISA in that it does not de-
fine how programs are loaded into the execution engine or how
they perform input and output. This intentional design separation
is captured in the notion of embedding a WebAssembly implemen-
tation into an execution environment. The embedder defines how
modules are loaded, how imports and exports between modules are
resolved, provides foreign functions to accomplish I/O and timers,

and specifies how WebAssembly traps are handled. While the exe-
cution semantics of WebAssembly as presented should be consid-
ered independent of a particular embedding, the primary use case
so far has been the Web and JavaScript embedding.10

JavaScript API In the browser, WebAssembly modules can be
loaded, compiled and invoked through a JavaScript API. The rough
recipe is to (1) acquire a binary module from a given source,
such as network or disk, (2) instantiate it providing the necessary
imports, (3) call the desired export functions. Since compilation
and instantiation may be slow, they are provided as asynchronous
methods whose results are wrapped in promises. This pattern may
be expressed by the following JavaScript code embedded into a web
page:

let imports = {console: {print: (x) => console.log(x)}}
fetch(”fac.wasm”)

.then(response => response.arrayBuffer())

.then(buffer => WebAssembly.instantiate(buffer, imports))

.then(instance => instance.exports.printFac(20)))

This tries to load the module from Figure 2 remotely and instan-
tiates it. As import, it supplies one module ”console” with one
function ”print”, implemented in JavaScript. Once instantiation is
completed, it invokes the function printFac provided by the mod-
ule, which will print the result to the browser console.

Linking An embedder can instantiate multiple modules and use
exports from one as imports to the other. That allows instances to
call each other’s functions, share memory, or share function tables.
Imported globals can serve as configuration parameters for linking.
In the browser, the JavaScript API also allows creating and initializ-
ing memories or tables externally, or accessing exported memories
and tables. They are represented as objects of dedicated JavaScript
classes, and each memory is backed by a standard ArrayBuffer.

Interoperability It is possible to link multiple modules that have
been created by different producers. However, as a low-level lan-
guage, WebAssembly does not provide any built-in object model;
modules can only communicate through numbers, which may rep-
resent addresses in a common memory. It is up to producers to
map other data types to number or memory. This design is fully
intentional. It provides maximum flexibility to producers, and un-
like previous VMs, does not privilege any specific programming or
object model while penalizing others. WebAssembly is an abstrac-
tion over hardware, not over a programming language.

10 Members of the community group are also developing independent stand-
alone implementations that run in other environments.
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However interested producers can define a common ABI on
top of WebAssembly such that modules can interoperate more
closely in heterogeneous applications, and particularly, use a com-
mon memory. This separation of concerns is vital for making Web-
Assembly universal as a code format.

7. Implementation
A major design goal of WebAssembly has been high performance
execution without sacrificing safety or portability. Throughout the
collaborative design process of WebAssembly, representatives of
major browser vendors have developed parallel and independent
implementations of WebAssembly to validate and inform the de-
sign decisions. This section describes some points of interest of
those implementations. While the goal of this paper is not a thor-
ough comparison of different implementation techniques for Web-
Assembly, the different design choices in four different implemen-
tations is worth mentioning.11

V8 (the JavaScript engine in Google’s Chrome), SpiderMon-
key (the JavaScript engine in Mozilla’s Firefox) and JavaScript-
Core (the JavaScript engine in WebKit) reuse their optimizing JIT
compilers to compile WebAssembly modules ahead-of-time before
instantiation. This achieves predictable and high peak performance
and avoids the unpredictability of warmup time which has often
been a problem for JavaScript.

However, other implementation strategies also make sense.
Chakra (the JavaScript engine in Microsoft Edge) instead lazily
translates WebAssembly functions to an internal bytecode upon
first execution, first interpreting them and then JIT compiling the
hottest functions. The main advantage of this approach is faster
startup and potentially lower memory consumption.

Validation A key design goal of WebAssembly has been fast val-
idation of code. In the three implementations developed indepen-
dently for V8, SpiderMonkey, and Chakra, the same basic strategy
is taken where an abstract control stack, an abstract operand stack
with types, and a forward program counter are maintained. Vali-
dation proceeds by in-place abstract interpretation of the incoming
bytecodes, with no intermediate representation being constructed.12

While the main point of this paper is not a thorough performance
evaluation, we measured single-threaded validation speed at be-
tween 75 MiB/s and 150 MiB/s on a suite of representative bench-
marks on a modern workstation. This is approximately fast enough
to perform validation at full network speed of 1 Gib/s.

Baseline JIT Compiler The implementation of WebAssembly in
Mozilla’s SpiderMonkey JavaScript engine includes two compila-
tion tiers. The first is a WebAssembly-specific fast baseline JIT that
emits machine code in a single pass that is combined with valida-
tion. The baseline JIT creates no internal IR during compilation but
does track register state and attempts to do simple greedy register
allocation in the forward pass. The baseline JIT is designed only for
fast startup while the Ion optimizing JIT is compiling the module
in parallel in the background. The Ion JIT is also used by Spider-
Monkey as its top tier for JavaScript.

Optimizing JIT Compiler V8, SpiderMonkey, JavaScriptCore,
and Chakra all include optimizing JITs for their top tier execution
of JavaScript and reuse them for maximum peak performance of
WebAssembly. Both V8 and SpiderMonkey top-tier JITs use SSA-
based intermediate representations. As such, it was important to

11 Chrome and FireFox are already poised to activate their WebAssembly
implementations by default in early 2017.
12 A linear validation algorithm is sketched at docs.google.com/
document/d/1E9zNSnATBeETbIAcrwblDrEKKaR5enjNNk4PhlN0a4c/

validate that WebAssembly could be decoded to SSA form in a sin-
gle linear pass to be fed to these JITs. Although details13 are beyond
the scope of this paper, both V8 and SpiderMonkey implement
direct-to-SSA translation in a single pass during validation of Web-
Assembly bytecode, while Chakra implements a WebAssembly-to-
internal-bytecode translation to be fed through their adaptive op-
timization system. This is greatly helped by the structured control
flow constructs of WebAssembly, making the decoding algorithm
far simpler and more efficient and avoiding the limitation that many
JITs have in that they do not support irreducible control flow14. In
the case of V8, decoding targets the TurboFan compiler’s sea of
nodes [9] graph-based IR, producing a loosely-ordered graph that
is suitable for subsequent optimization and scheduling. Once de-
coded to an intermediate representation, compilation is then a mat-
ter of running the existing compiler backend, including instruction
selection, register allocation, and code generation. Because some
WebAssembly operations may not be available on all platforms,
such as 64 bit integers on 32 bit architectures, IR rewriting and
lowering might be performed before feeding to the backend of the
compiler. Our experience reusing the advanced JITs from 4 differ-
ent JavaScript engines has been a resounding success, allowing all
engines to achieve high performance in a short time.15

Reference interpreter In addition to production-quality imple-
mentations for three major browsers, we implemented a reference
interpreter for the entire WebAssembly language. For this we used
OCaml [23] due to the ability to write in a high-level stylized
way that closely matches the formalization, approximating an “ex-
ecutable specification”. The reference interpreter includes a full bi-
nary encoder and decoder, validator, and interpreter, as well as an
extensive test suite. It is used to test both production implementa-
tions and the formal specification and to prototype new features.

7.1 Bounds checks
By design, all memory accesses in WebAssembly can be guaran-
teed safe with a single dynamic bounds check. Each instruction
t.load a o k with type t, alignment a, static offset o and dynamic
address k represents a read of the memory at smem(i, k + o, |t|).
That means bytes k + o to k + o + |t| − 1 will be accessed by
the instruction, and must be in bounds. That amounts to checking
k+o+|t| ≤ memsize. In a WebAssembly engine, the memory for
an instance will be allocated in a large contiguous range beginning
at some (possibly nondeterministic) base in the engine’s process,
so the above access amounts to an access of base[k + n].

Machine code specialization While base can be stored in a ded-
icated machine register for quick access, a JIT for WebAssembly
can be even more aggressive and actually specialize the machine
code generated for a module to a specific memory base, embed-
ding the base address as a constant directly into the code, free-
ing a register. First, the JIT can reduce the cost of the bounds
check by reorganizing the expression k + o + |t| ≤ memsize to
k ≤ memsize−o−|t| and then constant-fold the right hand side.16

Although memsize is not necessarily a constant (since memory
can be grown dynamically) it changes so infrequently that the JIT
can embed it in the generated machine code, later patching the ma-

13 Reference omitted for double-blind review.
14 Which is also the case for many JVMs, because irreducible control flow
never results from Java-source-generated bytecode.
15 A comparative and absolute performance study is beyond the scope of
the paper, but for the final version we will include preliminary numbers to
support this statement (they are available to reviewers).
16 This identity holds because we very carefully defined that effective ad-
dress calculations do not wrap around.
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chine code if the memory size changes.17 Unlike other speculation
techniques, the change of a constant value is controlled enough that
deoptimization [19] of the code is not necessary.

Virtual memory techniques. On 64 bit platforms, the Web-
Assembly engine can make use of virtual memory techniques to
eliminate the need to insert bounds checks for memory accesses
altogether. The engine simply reserves 8 GiB of virtual address
space and marks as inaccessible all pages except the valid portion
of memory near the beginning. Since WebAssembly memory ad-
dresses are 32 bit integers, by definition an access of base[n + k]
cannot be larger than 8 GiB from the beginning of base. Since most
64 bit CPU architectures offer 32 bit arithmetic on general purpose
registers that clears the upper 32 bits of the output register, the JIT
can simply emit accesses to (base+n)[k] and rely on the hardware
protection mechanism to catch out-of-bounds accesses. Moreover,
since the memory size is no longer embedded in the generated
machine code, no patching is necessary if memory is grown.

7.2 Improving compile time
Parallel compilation Since both V8 and SpiderMonkey imple-
ment ahead-of-time compilation, it is a clear performance win to
parallelize compilation of WebAssembly modules, dispatching in-
dividual functions to different threads. Both V8 and SpiderMonkey
achieve a 5-6× improvement in compilation speed with 8 compila-
tion threads.

Caching code While implementors have spent a lot of resources
improving compilation speed of JITs to reduce cold startup time
of WebAssembly, we expect that warm startup time will become
important as users will likely visit the same webpages repeatedly.
The JavaScript API for IndexedDB [5] now allows JavaScript to
manipulate and compile WebAssembly modules and store their
compiled representation as an opaque blob in IndexedDB. This
allows a JavaScript application to first query IndexedDB for a
cached version of their WebAssembly module before downloading
and compiling it. This mechanism has already been implemented
in V8 and SpiderMonkey and accounts for a massive startup time
improvement.

8. Related Work
The most direct precursors of WebAssembly are (P)NaCl [39, 8,
15] and asm.js [4], which we discussed in Section 1.1.

Efficient memory safety is a hard design constraint of Web-
Assembly. Previous systems such as CCured [31] and Cyclone [20]
have tried to impose safety at the C language level, which gener-
ally requires program changes. Other attempts have been to try to
enforce safety at the C abstract machine level using combinations
of static checks and runtime checks [7, 17, 28], sometimes assisted
by hardware [13, 27]. For example, the Secure Virtual Architec-
ture [10] introduced an abstract machine based on LLVM bitcode
that enforces the SAFECode [14] properties.

Typed intermediate languages carry type information through-
out the compilation process from source to target code. For exam-
ple TIL [25] and FLINT [34] pioneered typed ILs for functional
languages, allowing higher confidence in compiler correctness and
allowing more type-based optimizations late in compilation. How-
ever typed ILs have a somewhat different purpose than a compi-
lation target. Since typed ILs are usually only expressed as data
structures in a compiler, they are typically compiler-specific and
exist only as an intermediate stage of compilation, not as a storage
or execution format. Typed Assembly languages [26] do serve as

17 A concept of “pseudo constant” in the compiler allows embedding con-
stants in the machine code without other optimizations trying to infer in-
variants about the current value the pseudo constant has at compile time.

a compilation target, typically taking the form of a complex type
system imposed on top of an existing assembly language. Com-
pilers that target typed assembly languages must produce well-
typed (or proof-carrying [29]) code by preserving and transform-
ing types throughout compilation. The modeling of complex types
imposes a severe burden on existing compilers, requiring them to
be rearchitected to not only preserve and transform quantified types
throughout compilation, but avoid any optimizations that break the
type system. In comparison to typed intermediate languages, typed
assembly languages, and safe “C” machines, the insight of We-
bAssembly is to radically reduce the scope of responsibility for the
virtual machine: it is not required to enforce the type system of the
original program at the granularity of individual objects; instead it
must only enforce memory safety at the much coarser granularity
of a module’s memory. This can be done efficiently with simple
bounds checks or virtual memory techniques.

Mu [37] is a low-level “micro virtual machine” designed to be
a minimalist set of abstractions over hardware, memory manage-
ment, and concurrency. It offers an object model complete with
typed pointers and automatic memory management, concurrency
abstractions such as threads and stacks, as well as an intermedi-
ate representation based on LLVM. However, Mu does not enforce
memory safety, since it is meant more as a substrate for language
implementors to build upon. The safety mechanisms are left up to
higher layers of the stack, such as a trusted client language VM on
top of Mu. Since the client language VM is trusted, the lack of or a
bug in that layer could allow an incorrect program to read or write
memory arbitrarily or exhibit other undefined behavior.

For managed language systems where bytecode is the distri-
bution format, the speed and simplicity of validation is key to
good performance and high assurance. Our work was directly in-
formed by experience with stack machines such as the JVM [24]
and CIL [30] and their validation algorithms. Because we designed
WebAssembly in lock-step with a formalization, we managed to
make its semantics drastically simpler. For example, JVM bytecode
verification takes more than 150 pages to describe precisely in the
current JVM specification, while for WebAssembly it fits on one
page (Figure 4). It took a decade of research to hash out the de-
tails of correct JVM verification [22], including the discovery of
inherent vulnerabilities [12, 16] – such as a potential O(n3) worst-
case of the iterative dataflow approach that is a consequence of the
JVM’s unrestricted gotos and other idiosyncracies [36] that had to
be fixed with the addition of stack maps to class files. Both the JVM
and the CIL, as well as Android Dalvik [3], allow bytecode to create
irreducible loops and unbalanced locking structures, features which
are typically not supported by optimizing JITs, normally relegating
methods containing those constructs to run in an interpreter. In con-
trast, the structured control flow of WebAssembly makes validation
and compilation fast and simple and paves the way for structured
locking and exception constructs in the future.

9. Future Directions
The initial version of WebAssembly presented here focuses on sup-
porting low-level code, specifically compiled C/C++. A few impor-
tant features are still missing for fully comprehensive support of
this domain and will be added in future versions, such as excep-
tions, threads, and SIMD instructions. Some of these features are
already being prototyped in implementations of WebAssembly.

Beyond that, we intend to evolve WebAssembly further into a
more attractive target for high-level languages by including relevant
primitives like tail calls and stack switching. A highly important
goal is to provide access to the advanced garbage collectors built
into all browsers, thus eliminating one main reason for compilation
to JavaScript.
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The OCaml system. INRIA, 2016.

[24] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual
Machine Specification (Java SE 8 Edition). Technical report, Oracle,
2015.

[25] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, P. Cheng, P. Lee,
C. Stone, R. Harper, and P. Lee. The TIL/ML compiler: Performance
and safety through types. In In Workshop on Compiler Support for
Systems Software, 1996.

[26] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to Typed Assembly Language. ACM TOPLAS, 21(3):527–568, May
1999.

[27] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. WatchdogLite:
Hardware-accelerated compiler-based pointer checking. In Proceed-
ings of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’14, pages 175:175–175:184, New York,
NY, USA, 2014. ACM.

[28] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound:
Highly compatible and complete spatial memory safety for C. SIG-
PLAN Not., 44(6):245–258, June 2009.

[29] G. C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’97, pages 106–119, New York, NY, USA, 1997.
ACM.

[30] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C
programs. In Proceedings of the 11th International Conference on
Compiler Construction, CC ’02, pages 213–228, London, UK, UK,
2002.

[31] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. SIGPLAN Not., 37(1):128–139, Jan. 2002.

[32] B. Pierce. Types and Programming Languages. The MIT Press,
Cambridge, Massachusetts, USA, 2002.

[33] G. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60-61:17–139, 2004.

[34] Z. Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM
SIGPLAN Workshop on Types in Compilation (TIC’97), Amsterdam,
The Netherlands, June 1997.

[35] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. Virtual machine show-
down: Stack versus registers. ACM Transactions on Architecture and
Code Optimizations, 4(4):2:1–2:36, Jan. 2008.

[36] R. F. Strk and J. Schmid. Java bytecode verification is not possible
(extended abstract). In Formal Methods and Tools for Computer
Science (Proceedings of Eurocast 2001, pages 232–234, 2001.

[37] K. Wang, Y. Lin, S. M. Blackburn, M. Norrish, and A. L. Hosking.
Draining the Swamp: Micro virtual machines as a solid foundation
for language development. In T. Ball, R. Bodik, S. Krishnamurthi,
B. S. Lerner, and G. Morrisett, editors, 1st Summit on Advances in
Programming Languages, volume 32 of SNAPL ’15, pages 321–336,
Dagstuhl, Germany, 2015.

[38] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115, 1994.

[39] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. In IEEE Symposium on Security and Pri-
vacy, Oakload’09, IEEE, 3 Park Avenue, 17th Floor, New York, NY
10016, 2009.

[40] A. Zakai. Emscripten: An LLVM-to-JavaScript compiler. In Pro-
ceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11,
pages 301–312, New York, NY, USA, 2011. ACM.

13 2017/2/16


