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Abstract. We present an automated procedure for synthesizing sound
inductive invariants for floating-point numerical loops. Our procedure
generates invariants of the form of a convex polynomial inequality that
tightly bounds the values of loop variables. Such invariants are a prereq-
uisite for reasoning about the safety and roundoff errors of floating-point
programs. Unlike previous approaches that rely on policy iteration, linear
algebra or semi-definite programming, we propose a heuristic procedure
based on simulation and counterexample-guided refinement. We observe
that this combination is remarkably effective and general and can han-
dle both linear and nonlinear loop bodies, nondeterministic values as
well as conditional statements. Our evaluation shows that our approach
can efficiently synthesize loop invariants for existing benchmarks from
literature, but that it is also able to find invariants for nonlinear loops
that today’s tools cannot handle.
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1 Introduction

Finding and proving inductive loop invariants is one of the fundamental tasks
in program verification, allowing to prove a property for all program executions
even in the presence of unbounded loops. Proving (or disproving) that a given
loop invariant is inductive is generally an easier task and can in many cases be
straight-forwardly automated using off-the-shelf SMT solvers [31,6]. Finding a
loop invariant, however, is in general difficult to do manually, and automating
this process remains an important challenge [7,14,16,19].

In this paper, we focus on numerical loops over floating-point variables, which
are found across domains such as embedded control systems and scientific com-
puting. Reasoning about floating-point arithmetic is additionally complex due
to its unintuitive nature: every arithmetic operation introduces a roundoff error
w.r.t. the ideal real-valued execution and overflow or invalid operations introduce
the special values ±infinity and Not-a-Number. For floating-point computations,
it is thus of utmost importance to bound the values of variables as accurately as
possible. This information is required for proving safety, absence of floating-point
special values, and bounds of roundoff errors [13].
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Some previous techniques for loop invariant synthesis for numerical programs
require a target property to be given [40,38,29,19,43]; in most cases this is a set
of unsafe states that should be proven to be unreachable. However, for floating-
point loops where the goal is to compute as tight invariants as possible, specifying
unsafe states essentially amounts to finding the invariant itself.

Abstract interpretation-based techniques [9] do not require a target property.
Nonetheless, existing efficient linear abstract domains that rely on widening are
often not strong enough to find non-trivial inductive invariants, i.e. where the
bounds are not ±infinity. As our evaluation shows, even conjunctions of linear
inequalities as provided by convex polyhedra [10,4] are often insufficient.

We thus require nonlinear loop invariants expressed as polynomial inequal-
ities to handle many numerical loops. However, existing techniques each have
limitations, as they require templates to be given by the user [1]; are limited to
linear loops only [36]; do not always produce invariants that satisfy the precon-
dition [33]; or require a target range in order to produce tight invariants [29].

Here, we propose a rather pragmatic approach. We use concrete executions
and polynomial approximation in order to obtain candidate invariants which,
when combined with counterexample-guided refinement, allows us to synthe-
size invariants for floating-point loops. Our approach does not require a target
bound, efficiently produces tight polynomial inequality invariants, handles linear
as well as nonlinear loops, and soundly takes into account floating-point roundoff
errors. Our algorithm thus generates exactly the invariants we are looking for.
This generality, naturally, comes at a certain cost. While previous approaches
provide certain completeness guarantees [36,33,29] at the expense of the above
listed limitations, our algorithm effectively trades completeness for a wider ap-
plicability. Nevertheless, we empirically observe that our proposed algorithm,
despite being based on a heuristic search, is remarkably effective.

Our algorithm performs a form of iterative counterexample-guided invariant
generation: it proposes a candidate invariant, checks it using an off-the-shelf
SMT solver, and if the solver returns a counterexample, uses it to adjust the
next candidate invariant. We cannot query the SMT solver for the polynomial
coefficients directly, as such a query would require quantifiers, which neither the
real-valued nor the floating-point SMT theories support well. Instead, candidate
invariants are generated based on simulation, i.e. concrete executions of the loop,
and polynomial approximation which guesses the shape of the invariant based
on the convex hull of seen program values. Concrete executions (instead of ab-
stractions) starting from a given precondition allow our algorithm to accurately
capture the behavior of linear as well as nonlinear loop bodies, and thus to
generate tight invariants. Our algorithm abstracts the floating-point semantics
of the loop body by a sound roundoff error bound, adds it as nondeterminis-
tic noise, and then uses a real-valued decision procedure to verify the proposed
candidate invariants. This approach is more efficient than using the currently
limited floating-point decision procedures, but at the same time accurate, as the
error bound is computed based on a concrete candidate invariant, and thus adds
only as much noise as is necessary.
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x ∈ [0.0, 0.1]

y ∈ [0.0, 0.1]

while (true) {

x := x + 0.01 * (-2*x - 3*y + x*x)

y := y + 0.01 * (x + y)

}

(a) Example benchmark

−0.03x−0.1y+0.44x2+xy+0.86y2 ≤ 0.02

x ∈ [−0.5, 0.3]
y ∈ [−0.2, 0.4]

(b) Generated invariant

Fig. 1: Running example

Our approach is motivated by the fact that the numerical invariants we are
looking for are robust to some noise [36], and the loops of interest do not have a
single inductive invariant, but they admit many similar invariants. The robust-
ness to noise is important; few developers program with the exact floating-point
semantics in mind, rather they treat it as a noisy version of real arithmetic. If a
loop was not robust to noise, even small changes in roundoff errors e.g. due to
non-associativity, would lead to large changes in the overall loop behavior. This
robustness allows us to use a heuristic search to find one of these invariants.

We implement our algorithm as a Python library in a tool called Pine. Pine
can fully automatically handle non-nested loops with linear and nonlinear as-
signments, nondeterministic noise and conditional statements. In this paper, we
focus on convex invariants that consist of a single polynomial inequality of de-
gree two, and note that an extension to more complex bounded invariant shapes
(non-convex shapes, disjunctive invariants, higher degrees) requires mainly engi-
neering work to find a suitable way to fit the polynomial(s) from the convex hull.
We evaluate Pine on a number of existing benchmarks from literature and show
that it computes invariants that are on average 12.4x smaller than those com-
puted by existing tools. Furthermore, we show that Pine computes invariants
for nonlinear loops, which are out of reach for state-of-the-art tools.

Contributions To summarize, our paper makes the following contributions:

– a novel algorithm for polynomial inequality invariant synthesis for linear and
nonlinear floating-point loops,

– an open-source prototype implementation Pine3, and
– a detailed evaluation on existing and new benchmarks.

2 Overview

Before explaining our invariant synthesis algorithm in detail, we illustrate it
at a high-level on an example. Figure 1a shows our example loop that simulates
a dynamical system together with the precondition on the loop variables.
3 https://github.com/izycheva/pine

https://github.com/izycheva/pine
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(a) First candidate invariant

0.3 0.2 0.1 0.0 0.1 0.2
0.2

0.1

0.0

0.1

0.2

0.3

(b) Counterexample and symmetric points
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(d) Multiple possible invariants

Fig. 2: Nonlinear benchmark candidate invariants

Pine starts by simulating the loop to collect a set of concrete points that
an inductive invariant definitely has to include. For this, Pine samples m = 100
random values from the input ranges x ∈ [0, 0.1] and y ∈ [0, 0.1], and executes
the loop n = 1000 times for each point. Sampled points are shown in light
blue in Figure 2a-2c. Since we are looking for a convex invariant, Pine next
computes the convex hull of the sampled points. This reduces the number of
points to consider and gives us an initial estimate of the shape of the invariant.

We consider invariants that include variable ranges and a shape enclosing
all values expressed as an ellipsoid, i.e. a second degree polynomial inequality.
We obtain the polynomial coefficients by computing the minimum volume ellip-
soid enclosing the convex hull, and the variable bounds from the minimum and
maximum values seen in the sampled points:

−0.0009x− 0.004y + 0.0103x2 + 0.021xy + 0.0298y2 ≤ 5.4 · 10−5 ∧

x ∈ [−0.2098, 0.0976], y ∈ [−0.0159, 0.1723]
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The computed ellipsoid is depicted in Figure 2a by blue dashed ellipse. We
observe that this candidate invariant is noisy. To remove (a part of) this noise, we
scale and round the (normalized) polynomial coefficients and the range bounds
(the latter is rounded outwards). Obtained ellipsoid and ranges form the first
candidate invariant (marked green in Figure 2a):

−0.03x− 0.13y + 0.35x2 + 0.7xy + y2 ≤ 0.01 ∧ x ∈ [−0.3, 0.1], y ∈ [−0.1, 0.2]

Pine uses an off-the-shelf SMT solver (Z3) to check whether this candidate
invariant is inductive. For our candidate invariant the check fails and the solver
returns a counterexample C1 : (x = 0.0, y = −0.0542) (red dot in Figure 2b).
By counterexample, we mean a point that itself satisfies the candidate invariant,
but after one loop iteration results in a point for which the invariant no longer
holds. In our example C1 satisfies the candidate invariant, but after one iteration
we obtain C ′1 : (x = 0.001626, y = −0.054742) that violates the invariant.

Pine uses this counterexample to refine the candidate invariant. However,
instead of recomputing the convex hull and ellipsoid shape immediately, we
generate additional counterexamples in order to not bias the shape in a sin-
gle direction that is (randomly) determined by the solver’s counterexample. In
particular, Pine computes counterexamples that are symmetric to C1 along the
symmetry axes of the ellipsoid and satisfy the candidate invariant. Figure 2b
shows the counterexamples generated for our running example (purple dots).

Pine then uses another round of simulation, starting from the set of coun-
terexamples, to obtain a new set of points that need to be included in an invariant
(by transitivity, if a counterexample point is included after one loop iteration,
then the points after additional iterations also have to be included). The new
set of points is then used to generate the next candidate invariant. Figure 2c
shows simulated points in red, and the new candidate invariant in green. Note
that Figure 2c contains three simulation traces - one for each counterexample,
and the traces originated from the bottom left counterexample and C1 coincide.

Pine repeats this iterative process until either an invariant is found, or a
maximum number of refinement iterations is reached. For our example, Pine
finds an inductive invariant (shown green in Figure 2d) after 6 iterations.

The invariant so found holds for a real-valued loop, i.e. when the loop body
is evaluated under real arithmetic. The last step of Pine’s algorithm is to ver-
ify that the invariant also holds under a floating-point loop semantics. To do
this, Pine uses an off-the-shelf analysis tool to get the worst-case roundoff error
bound for each expression in the loop body. The errors are then added as nonde-
terministic noise terms to the loop, and the invariant is re-checked by the SMT
solver. For our running example, this check succeeds, and the following invariant
is confirmed:

−0.03x− 0.1y + 0.44x2 + xy + 0.86y2 ≤ 0.02 ∧ x ∈ [−0.5, 0.3], y ∈ [−0.2, 0.4]

Figure 2d shows several invariants generated by Pine for our example, for
different parameters of its algorithm. Note that these invariants are similar, but
differ slightly in shape and volume. The range component of the invariant is
shown by the green and blue boxes; the red box denotes the input ranges.
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3 Problem Definition

The input to our algorithm is a loop body together with a precondition. We
consider simple non-nested loops given by the following grammar:

L ::= while(true){ B }

B ::= if (G) S else S | S

S ::= ε | xi := p(x1, ..., xn) + uj; S

G ::= * | p ≤ 0

In each iteration, the loop updates a set of variables xi ∈ X . The right-hand-side
of each assignment consists of polynomial expressions p in the loop variables
together with an (optional) nondeterministic noise term uj , which is bounded in
magnitude and that denotes any additional noise, e.g. input error from sensor
values. The loop body can include a top-level conditional statement, which can
also be used to express the loop exit condition. The conditions of the if-statement
can either be nondeterministic choice or a polynomial inequality. We note that
adding support for more complex conditions as well as nested and chained if-
statements would only affect the way we parse the loop and encode it in the
SMT query and is not a fundamental limitation of our algorithm.

The precondition specifies the initial ranges for all variables xi, as well as
bounds on the nondeterministic noise variables: xi ∈ [ai, bi], uj ∈ [cj , dj ]. The
loop and noise variables take values in the set F of floating-point values. Then
the semantics of a loop body b is given by [[b]] :: (X → F) → 2(X→F), which is
defined by

[[ε]] ρ = {ρ}
[[xi := p+ uj ; s]] ρ =

⋃
{[[s]](ρ⊕ {xi 7→ p(ρ) + u}) | u ∈ [cj , dj ]}

[[if (∗) s1 else s2]] ρ = [[s1]] ρ ∪ [[s2]] ρ
[[if (p ≤ 0) s1 else s2]] ρ = {ρ1 ∈ [[s1]] ρ | p(ρ) ≤ 0} ∪

{ρ2 ∈ [[s2]] ρ | p(ρ) > 0}

Here, p(ρ) denotes the value of the polynomial p for the variable assignment ρ
under the floating-point arithmetic semantics specified by the IEEE 754 stan-
dard [22]. The set of initial program states is given by

Init = {ρ : X → R | ∀xi ∈ X . ρ(xi) ∈ [ai, bi]}

Our goal is to find an inductive invariant I such that

Init ⊆ I ∧ ∀ρ ∈ I. [[b]] ρ ⊆ I (1)

i.e., I subsumes the initial states and is preserved by each iteration of the loop.
We consider convex invariants given by a polynomial inequality together with
ranges for variables:

I = {ρ | P(ρ) ≤ 0, ρ(xi) ∈ Ri = [li, hi]}
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The goal is thus to find the coefficients of the polynomial P and the lower and
upper bounds (li, hi) for the variables of the loop. In this paper, we consider
polynomials P of degree two, although our algorithm generalizes to higher de-
grees. We observe that second degree polynomials are already sufficient for a
large class of loops.

Additionally, we are interested in finding as small an invariant as possible,
where we measure size by the volume enclosed by an invariant. We note that the
ellipsoid (the polynomial inequality), is not only needed to prove the inductive-
ness of many invariants, but it can also enable more accurate verification based
on our inductive invariants, for instance by techniques relying on SMT solving.
For this reason, we do not only measure the volume as the size of the box de-
scribed by R, but rather as the intersection between the box and the ellipsoid
shape, which can be substantially smaller.

4 Algorithm

Figure 3 shows a high-level view of our invariant synthesis algorithm. The
input to the algorithm is a loop together with a precondition on the loop vari-
ables, and the output is a polynomial P and a set of ranges R, a range Ri for
each program variable xi, that define the synthesized invariant:

P(x1, ..., xn) ≤ 0 ∧ x1 ∈ R1 ∧ . . . ∧ xn ∈ Rn (2)

The key component of our algorithm is the invariant synthesis, which infers
the shape of the bounding polynomial and the variable ranges (lines 1-21). The
algorithm first synthesizes an invariant assuming a real-valued semantics for the
loop body (withRoundoff == False).

The synthesis starts by simulating the loop on a number of random inputs
from the precondition, keeping track of all the seen points, i.e. tuples (x1, ..., xn).
From the obtained points, the algorithm next guesses the shape of a candidate
invariant, i.e. a polynomial P and a set of ranges R (line 5-7). We check this
candidate invariant using an off-the-shelf SMT solver (line 12). If the candidate
is not an invariant or is not inductive, the solver returns a counterexample.
The algorithm generalizes from the counterexample (line 16-20) and uses the
newly obtained points to refine the candidate invariant. We repeat the process
until either an invariant is found, or we reach a maximum number of iterations
(empirically, all benchmarks required less than 100 iterations).

After the real-valued invariant is generated, the algorithm checks whether
it also holds for the floating-point implementation of the loop (line 29). Should
this not be the case, invariant synthesis is repeated taking floating-point roundoff
errors into account in every refinement iteration. Since roundoff errors are usually
relatively small, this recomputation is seldom necessary, so that Pine first runs
real-valued invariant synthesis for performance reasons.
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1 def get_real_invariant(loop, init, withRoundoff):

2 pts = simulate(loop, random.sample(init, m), n)
3 // update pts iteratively

4 for i in range(0, max_iters):

5 pts = convexHull(pts)

6 ranges = round(min(pts), max(pts), precrange)

7 coefficients = getShape(pts, precpoly)
8 inv = (coefficients, ranges)

9

10 if withRoundoff:

11 loop = addRoundoff(loop, ranges)

12 cex = checkInvariant(loop, inv)

13 if cex is None:

14 return inv

15 else:

16 addCex = getAdditionalCex(loop, inv, cex, cex_num, d)
17 symPts = getSymmetricPts(cex, inv)

18 nearbyPts = getNearbyPts(cex, d, inv)

19 pts = pts ∪ cex ∪ addCex ∪ symPts ∪ nearbyPts

20 pts = simulate(loop, pts, k)
21 return None

22

23 def get_fp_invariant(loop, init):

24 inv = get_real_invariant(loop, init, withRoundoff=False)

25 if inv is None:

26 return None

27 else:

28 loopFP = addRoundoff(loop, inv.ranges)

29 cex = checkInvariant(loopFP, inv)

30 if cex is None:

31 return inv

32 else:

33 return get_real_invariant(loop, init, withRoundoff=True)

Fig. 3: High-level invariant synthesis algorithm (parameters are in cursive)

4.1 Simulation

The synthesis starts by simulating the loop execution. For this, Pine samples m
values from the variables’ input ranges Init uniformly at random, and concretely
executes the loop n times for every sample. As a result, we obtain m×n points,
i.e. combinations of variable values, that appear in the concrete semantics of the
loop and thus have to be included in an invariant. The sampled points provide
a starting point for the invariant search.
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4.2 Candidate Invariant Conjecture

The invariant we are looking for has two parts: variable ranges R and a polyno-
mial shape P(x) enclosing all variable values. To obtain R and P(x), Pine first
reduces the number of samples by computing the convex hull of the sampled
points. We consider invariant shapes that are convex, therefore the values inside
the shape can be safely discarded. Extending our algorithm to non-convex shapes
is a matter of finding an appropriate way to reduce the number of samples.

The minimum and maximum values of each loop variable xi in the convex
hull vertices determine the range Ri.

Pine infers the shape P(x) enclosing the convex hull vertices using two op-
timization methods: minimum volume enclosing ellipsoid (MVEE), and least
squares curve fitting. The minimum volume enclosing ellipsoid method computes
a bounding ellipsoid such that all points are inside the shape. Pine utilizes a
library that computes MVEE by solving the following optimization problem:

minimize log(det(E))

s.t.(xi − c)TE (xi − c) ≤ 1

where xi are the individual points, c is a vector containing the center of the
ellipsoid and E contains the information about the ellipsoid shape [30].

While MVEE computes the desired shape, the library that we use supports
only two dimensions, and it is furthermore possible that it diverges. To support
higher-dimensional loops, or when MVEE fails, we resort to using least squares.
With the method of least squares, we find coefficients such that the sum of the
squares of the errors w.r.t. to the given points is minimized. For a degree 2
polynomial in variables x and y, Pine transforms the points into the matrix A
with entries having the values of [1, x, y, x2, xy], and a vector b which consists of
the values of y2. By solving the system of equations Az = b for z, we obtain the
coefficients of the polynomial. By setting b = y2, we set the last coefficient to 1
in order to avoid the trivial (zero) solution. Least squares computes a tight fit,
but will, in general, not include all of the points inside the polynomial shape, so
that we additionally have to enlarge the ‘radius’ such that it includes all points.
While we do not explore this further in this work, we note that the above sketched
least-squares approach also generalizes to fit polynomials of higher degree than
2, using suitable constraints to ensure convex shapes [27].

In this paper, we only consider convex shapes described by a single poly-
nomial inequality (and ranges). However, with a suitable fitting method it is
possible to include more complex shapes. For instance, for disjunctive invariants
one can first perform clustering, and then fit the polynomials using MVEE or
the least squares method.

4.3 Reducing the Noise

Both methods used to infer a shape are approximate, i.e. they find a polyno-
mial that is close to the actual shape up to a tolerance bound. Furthermore,
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they fit a set of points that is incomplete in that it only captures a (random)
subset of all of the possible concrete executions. This makes the inferred poly-
nomial shapes inherently noisy and unlikely to be an invariant. We reduce the
noise by first normalizing and then rounding the polynomial coefficients to a
predefined precision precpoly, i.e. to a given (relatively small) number of digits
after the decimal point. This effectively discards coefficients (rounds to zero)
whose magnitude is significantly smaller than the largest coefficient found. For
the remaining coefficients, it removes the—likely noisy—least significant digits.

Similarly, the lower and upper bounds of the computed ranges R capture
only the values seen in simulation and are thus likely to be under-approximating
the true ranges. We round the lower and upper bounds outwards to a predefined
precision precrange, thus including additional values.

The precisions (number of decimal digits) chosen for rounding the polynomial
coefficients and the ranges should be high enough to not lead to too large over-
approximations, but nonetheless small enough to discard most of the noise. We
have empirically observed that the polynomial coefficients should be more precise
than the range bounds by one digit, and that precpoly = 2 and precrange = 1
seems to be a good default choice.

4.4 Checking a Candidate Invariant

The obtained polynomial and variables ranges form a candidate invariant, which
we check for inductiveness using an off-the-shelf SMT solver by encoding the
(standard) constraint (Init → I(x)) ∧ (I(x) ∧ L → I(x′)), where I(x) = P(x) ≤
0
∧

i xi ∈ Ri, L is the loop body relating the variables x before the execution of
the loop body to the variables x′ after.

We translate conditional statements using the SMT command ite. Non-
deterministic terms receive fresh values from the user-defined range at every
loop iteration. Since the ranges do not change we add constraints on the ranges
of non-deterministic terms only to I and Init. We encode the above constraint in
SMT-LIB using the real-valued theory [24]. The SMT solver evaluates the query
and returns a counterexample if it exists. If no counterexample is returned, a
candidate invariant is confirmed to be inductive and returned.

4.5 Generalizing from Counterexamples

The counterexample returned by the SMT solver is added to the existing set of
points that the invariant has to cover. However, this additional point is arbitrary,
depending on the internal heuristics of the solver. In order to speed up invariant
synthesis, and to avoid biasing the search in a single direction and thus skewing
the invariant shape, we generate additional points that also have to be covered
by the next invariant candidate. We consider three different generalizations:
additional counterexamples, symmetric points and nearby points.

Pine obtains additional counterexamples from the solver by extending the
SMT query such that the initial counterexample is blocked and the new coun-
terexample has to be a minimum distance d away from it. Pine will iteratively
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generate up to cex_num additional counterexamples, as long as the solver re-
turns them within a (small) timeout (cex_num is a parameter of the algorithm).

Our second generalization strategy leverages the fact that the candidate in-
variant is an ellipsoid and thus has several axes of symmetry. Pine computes
points that are symmetric to the counterexample with respect to all axes of
symmetry of the ellipsoid, and adds them as additional points if they satisfy I
or Init (i.e. they are also valid counterexamples).

Nearby points are the points that are at a distance d to the counterexample.
Pine computes these points in all directions, i.e. xi ± d, and adds them to
the set of points, if they are valid counterexamples. The rationale behind this
generalization is that points in the vicinity of a counterexample are often also
likely counterexamples. Adding the nearby points allows us to explore an entire
area, instead of just a single point.

Pine then performs a second simulation of the loop starting from the newly
added set of counterexamples for k iterations. All obtained points are added to
the original sampled values and we proceed to synthesize the next candidate
invariant.

4.6 Floating-Point Invariant

We encode the SMT queries to check the inductiveness of our candidate in-
variants using the real-valued theory. We note that it is in principle possible
to encode the queries using the floating-point theory, and thus to encode the
semantics of the loop body, including roundoff errors, exactly. However, despite
the recent advances in floating-point decision procedures [8], we have observed
that their performance is still prohibitively slow for our purpose (CVC4’s state-
of-the-art floating-point procedure [8] was several orders of magnitude slower
than Z3’s real-valued procedure [24]).

We thus use a real-valued SMT encoding and soundly over-approximate
the roundoff errors in the loop body. We compute a worst-case roundoff error
bound rnd for each expression in the loop body using an off-the-shelf round-
off analysis tool. Static analyses for bounding roundoff errors [12,42] assume
the following abstraction of floating-point arithmetic operations: (x ◦fl y) =
(x ◦ y)(1 + e) + d |e| ≤ ε, |d| ≤ η, where ◦ ∈ {+,−, ∗, /} and ◦fl is the floating-
point counter-part. The so-called machine epsilon ε bounds the relative error for
arithmetic operations on normal numbers and η bounds the absolute error on the
so-called subnormal numbers (very small numbers close to zero that have a spe-
cial representation). The static analyses use interval abstract domains to bound
the ranges of all intermediate arithmetic expressions, and from those compute
the new roundoff errors committed by each arithmetic operation, as well as their
propagation through the rest of the program. These techniques compute round-
off error bounds for loop-free code, which is sufficient for our purpose, since we
only need to verify that I(x) ∧ L → I(x′), i.e. the executions of the (loop-free)
loop body remain within the bounds given by I.

The computed roundoff error bound is added to the expression as a non-
deterministic noise term bounded by [−rnd, rnd]. Note that unlike in existing
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work [36] that derives one general error bound for all programs assuming a
large enough number of arithmetic operations, our roundoff error is computed
on-demand for each particular candidate invariant. The magnitude of roundoff
errors depends on ranges of inputs, and so by computing the roundoff error only
for the invariant’s ranges, we are able to add only as little noise as is necessary.

Our algorithm first finds a real-valued invariant and then verifies whether it
also holds under a floating-point loop semantics. If not, we restart the invariant
synthesis and take roundoff errors into account for each candidate invariant, re-
computing a new tight roundoff error in each iteration of our algorithm (line 11).
We do not include roundoff errors in the first run of the synthesis for better per-
formance, since in practice, we rarely need to recompute the invariant.

Except for the roundoff error analysis, our algorithm is agnostic to the fi-
nite precision used for the implementation of the loop. By choosing to compute
roundoff errors w.r.t. different precisions, it thus supports in particular both
single and double floating-point precision, but also fixed-point arithmetic of dif-
ferent bit lengths [12], which is particular relevant for embedded platforms that
do not have a floating-point unit.

4.7 Implementation

We have implemented the algorithm from Figure 3 in the tool Pine as a Python
library in roughly 1600 lines of code, relying on the following main libraries
and tools: the Qhull library for computing the convex hull4, a library for com-
puting the minimum volume ellipsoid5, the least-squares function from scipy
(scipy.linalg.lstsq), the Python API for the Z3 SMT solver version 4.8.7, and
the Daisy tool [12] for computing roundoff errors. Simulations of the loop are
performed in 64-bit floating-point arithmetic.

5 Experimental Evaluation

We evaluate Pine on a set of benchmarks from scientific computing and control
theory domains. We aim to answer the following research questions:

RQ1: How does Pine compare with state-of-the-art tools?
RQ2: How quickly does Pine generate invariants?
RQ3: How sensitive is Pine’s algorithm to parameter changes?

5.1 State-of-the-Art Techniques

We compare the invariants synthesized by Pine to those generated by two state-
of-the-art tools: Pilat [33] and SMT-AI [36]. These two tools are the only ones
that compute polynomial inequality invariants for floating-point loops without
requiring a target condition to be given.
4 www.qhull.org
5 https://github.com/minillinim/ellipsoid

www.qhull.org
https://github.com/minillinim/ellipsoid
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Pilat reduces the generation of invariants of a loop body f to computing the
eigenvector φ of f that is associated to the eigenvalue 1, i.e. f(φ) = φ and φ
is thus an invariant. Pilat can, in principle, handle nonlinear loops by introduc-
ing a new variable for each nonlinear term and thus effectively linearizing it.
This transformation is similar to how we use least-squares to fit a polynomial
(Section 4.2). Pilat handles floating-point roundoff errors by (manually) includ-
ing nondeterministic noise for each floating-point operation that captures the
roundoff error: (x ◦ y) · δ, where ◦ ∈ {+,−,×, /} and |δ| ≤ ε is bounded by the
machine epsilon. For simplicity, we ignore errors due to subnormal numbers.

SMT-AI [36] and Adje et al. [1] implement policy iteration using the ellip-
soid abstract domain. The approach by Adje et al. requires the ellipsoid template
to be provided, while SMT-AI generates templates automatically. For our com-
parison we therefore consider the more general approach of SMT-AI. SMT-AI
generates the ellipsoid templates from Lyapunov functions [3], which are func-
tions known from control theory for proving that equilibrium points of dynamical
systems are stable. These functions prove that a loop is bounded and thus the
shape effectively serves as an invariant. It is known that for linear loops one can
generate the polynomial shapes automatically using semi-definite programming.
Since such an automated method does not exist for nonlinear functions, SMT-
AI is limited to linear loops. Semi-definite programming can compute different
polynomial shapes, and SMT-AI selects shapes to be tight using a binary search.
SMT-AI first computes a real-valued invariant, like Pine, and then verifies that
it also satisfies a floating-point loop. Unlike Pine, SMT-AI derives one generic
roundoff error bound for all (reasonably-sized) loops, and does not recompute the
invariant if the floating-point verification fails. We were unfortunately not able
to install SMT-AI, so that we perform our comparison on the benchmarks used
by SMT-AI, comparing to the (detailed) results reported in the paper [35,36].

Interproc [18] is a static analyzer based on abstract interpretation. It infers
numerical invariants using boxes, octagons, linear congruences and convex poly-
hedra. A user can choose between two libraries that implement these domains:
APRON [23] and Parma Polyhedra Library [4]. We tried Interproc on our set of
benchmarks, and on 2 benchmarks it produced some bounds for a subset of the
program variables. However, the invariants were not convex, and we could not
compute their volume. We therefore exclude Interproc from the comparison.

Another potential competitor is an approach by Mine et al.[29] that combines
interval and octagon abstract domains with constraint solving. The invariants
discovered are effectively ellipsoids, i.e. second-degree polynomial inequalities.
However, their approach fundamentally requires target bounds. Since the goal
of Pine is to find such tight bounds, and not only prove that they are inductive,
we do not compare with Mine et al.[29].

5.2 Experimental Setup

Our set of benchmarks contains both linear and nonlinear loops. Each benchmark
consists of a loop body which iterates an infinite number of times. The linear
benchmarks filter_goubault, filter_mine*, arrow_hurwicz, harmonic, symplectic
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are taken from related work [1,29] and implement linear filters and oscillators.
Benchmarks ex* are taken from the evaluation of SMT-AI [35] and comprise
linear controllers, found for instance in embedded systems.

We additionally include the nonlinear benchmark pendulum*, that simulates
a simple pendulum and rotation*, which repeatedly rotates a 2D vector by an
(small) angle that is nondeterministically picked in each iteration. Both bench-
marks use the sine function, which we approximate using a Taylor approxi-
mation. The nonlin_example* are nonlinear dynamical systems collected from
textbook examples on Lyapunov functions.

Three of our benchmarks contain operations on nondeterministic noise terms.
Most benchmarks are 2-dimensional, except for ex4*, which has 3 variables, ex2*
and ex5*, which have 4 variables, and ex6* that has 5 variables.

We run our evaluation on a MacBook Pro with an 3.1 GHz Intel Core i5
CPU, 16 GB RAM, and macOS Catalina 10.15.3.

5.3 Comparison with State-of-the-Art

Each tool generates an invariant with an elliptic shape, and Pine and SMT-AI
provide additionally ranges for variables. We compare the inductive invariants
generated by each tool based on their volume. The volume of an invariant is given
by the set of points satisfying P(x) ≤ 0 ∧

∧
i xi ∈ Ri, where the variable ranges

may intersect with the ellipsoid. We compute this intersection (approximately)
using a Monte-Carlo simulation with 3 · 106 samples, by comparing how many
samples are within the invariant to how many are inside the variable ranges (for
the latter we know the volume exactly). Our volume estimates are accurate to
two decimal digits.

We run Pine with a default set of parameters, that we determined empirically
(see Section 5.5). In order to compare with other tools that only support single
floating-point precision, Pine computes roundoff errors (and invariants) for 32-
bit floating-point precision.

Columns 2-4 in Table 1 show the volumes of the invariants generated by
SMT-AI, Pilat, and Pine. ‘-’ denotes the cases where a tool did not generate an
invariant. Benchmarks for which we did not have data for SMT-AI are marked
as ‘undef’. ‘PF’ denotes cases where an invariant was generated, but it did not
satisfy the given precondition. ‘TO’ marks cases when a tool took longer than
20 minutes to generate an invariant. Here, smaller volume is better, the best
volumes are marked bold.

Due to the inherent randomness in its algorithm, we run Pine 4 times and
compute the average volume and running time across the runs. The last column
shows variations in volume with respect to the average (i.e. (max - min)/average).

We observe that Pine produces the tightest invariants on 17/24 (70%) of
the linear benchmarks. Additionally, Pine generates invariants for all nonlinear
benchmarks in our set, whereas Pilat was not able to generate invariants for any
of them. Pine produces invariants that are in the best case on average 20x tighter
than the ones by SMT-AI, and 2.7x tighter than the ones by Pilat (compared
on the 6 benchmarks, for which it was able to generate an invariant). In the
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Benchmark SMT-AI Pilat Pine
Pine

avg time, s
Volume
variation

N
on

-l
in
ea
r

pendulum-approx undef - 12.92 21.09 30.03%
rot.nondet-small undef - 5.97 30.13 16.25%
rot.nondet-large undef - 6.67 33.78 10.87%
nonlin-ex1 undef - 0.23 14.43 18.51%
nonlin-ex2 undef - 0.56 7.32 5.23%
nonlin-ex3 undef - 7.07 12.45 3.35%

L
in
ea
r

arrow-hurwitz undef - 4.40 4.75 7.00%
harmonic undef 18.41 3.52 10.81 9.70%
symplectic undef PF 2.32 7.71 12.11%
filter-goubault undef PF 1.84 4.94 1.31%
filter-mine1 undef PF 6.32 7.18 1.58%
filter-mine2 undef 1.16 0.49 4.48 71.92%
filter-mine2-nondet undef 4.92 4.45 10.70 66.38%
pendulum-small undef 12.53 9.10 7.11 7.51%
ex1- filter 475.06 498.37 - 43.61 -
ex1-reset-filter 475.98 - - 45.95 -
ex2-2order 17.37 1.07 4.92 7.45 46.73%
ex2-reset-2order 17.36 - 3.08 6.28 6.65%
ex3-leadlag - - - 46.68 -
ex3-reset-leadlag - - - 44.56 -
ex4-gaussian 0.61 - 0.22 16.93 46.16%
ex4-reset-gaussian 17.05 - 1.45 23.10 137.47%
ex5-coupled-mass 5,538.47 TO 100.61 8.63 9.48%
ex5-reset-coupled-mass 5,538.34 - 81.02 8.44 27.54%
ex6-butterworth 65.25 - 25.43 16.34 272.89%
ex6-reset-butterworth 700.06 - 10.30 219.34 0.00%
ex7-dampened 12.17 - 18.68 19.96 15.71%
ex7-reset-dampened 12.17 - - 39.70 -
ex8-harmonic 5.75 - 2.32 6.99 9.77%
ex8-reset-harmonic 5.75 - 2.85 7.15 28.08%
ex5+6 6,927.12 TO TO TO -

Table 1: Volumes of invariants generated by Pine, Pilat and SMT-AI, Pine’s average
running time and variation in invariant volumes across 4 runs

worst case (observed over our 4 runs), the factors decrease to 13.8x and 1.8x
respectively. Only for the benchmarks ex6-butterworth and filter-mine2-nondet,
the worst-case volumes computed by Pine become 1.9x and 1.6x larger than the
ones computed by SMT-AI and Pilat, respectively, and are thus still of the same
order of magnitude.

5.4 Efficiency

Pine generates invariants in on average 25, and at most 220 seconds; the largest
running time is also the benchmark with the largest number of variables. Pine
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m n cex_num d k symPts nearbyPts volume

100 1000 0 0.5 500 X 2.283
100 1000 0 0.5 100 X 2.297
100 10000 5 0.25 100 X 2.311
100 1000 2 0.25 100 X 2.314
100 10000 1 0.5 500 X 2.335

Table 2: Top-5 minimum volume configurations

was able to confirm the real-valued invariant also for the floating-point seman-
tics for all but two rotation* benchmarks, for which it had to recompute the
invariants two out of four times. We consider the running times to be acceptably
low such that it is feasible to re-run Pine several times for an input loop, in
order to obtain a smaller invariant, if needed.

5.5 Parameter Sensitivity

We now evaluate the influence of different parameter settings on the perfor-
mance of our proposed algorithm in terms of its ability to find tight inductive
invariants. For this, we explored the parameter space of our algorithm on 13 of
our benchmarks that include (non-)linear infinite loops without branching. We
evaluate the different combinations of varying the following parameters:

– whether or not symmetric points are used
– whether or not nearby points are used
– number of random inputs and loop iterations for initial simulation (algorithm

parameter m-n): 100-1k, 1k-1k, 100-10k
– number of loop iterations for counterexamples simulation (k): 0, 100, 500
– number of additional counterexamples (cex_num): 0, 1, 2, 5 (when cex_num =

0, no additional counterexample is generated)
– distance to nearby points (in % of the range) (d): 10%, 25%, 50%
– three different precisions for rounding: (precpoly = 1, precrange = 0), (precpoly =

2, precrange = 1), (precpoly = 3, precrange = 2), where precpoly, precrange
give the number of decimal digits for the polynomial coefficients and the
variable ranges, respectively.

In total, we obtain 1296 configurations. We run Pine with each of them once.

Default Configuration 185 parameter configurations were successful on all of the
13 benchmarks. From these, we select the configuration that generates invariants
with the smallest average volume across the benchmarks as our default config-
uration: precpoly = 2, precrange = 1,m = 100, n = 1000, k = 500. To generalize
from counterexamples the default configuration uses only symmetric points.

Table 2 shows the 5 best configurations, according to average volume (we
normalized the volume across benchmarks). We note that the differences between
volumes for successful configurations are small, so that we could have chosen any
of these configurations as the default.
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Fig. 4: Proportion of parameters ap-
pearing in successful configurations

Benchmark min avg max

pendulum-approx 9.88 12.03 20.21
rot.nondet-small 4.76 5.78 8.07
rot.nondet-large 6.27 6.92 11.43
nonlin-ex1 0.06 0.20 0.83
nonlin-ex2 0.55 0.56 0.59
nonlin-ex3 6.84 7.04 7.27
harmonic 3.28 3.84 4.46
symplectic 2.12 2.21 2.68
filter-goubault 1.82 1.83 1.85
filter-mine1 6.29 6.40 8.72
filter-mine2 0.28 1.03 3.83
filter-mine2-nondet 1.74 2.44 11.37
pendulum-small 8.61 10.14 24.55

Fig. 5: Volumes of invariants with suc-
cessful configurations

Successful Configurations We study the 185 successful configurations to see
which parameter values appear the most frequently, and thus seem most suc-
cessful in finding invariants. Figure 4 shows the distribution of the different
parameters in the set of successful configurations. For instance, the precisions
(precpoly = 1, precrange = 0) and (precpoly = 3, precrange = 2) do not appear
at all in the successful configurations, i.e. only (precpoly = 2, precrange = 1) was
able to find invariants for all benchmarks. On the other hand, nearby points are
included in the generalization in roughly half of the configurations.

From Figure 4, we conclude that simulating the loop starting from coun-
terexamples (line 21 in Figure 3) is crucial in finding an invariant - none of the
configurations without this additional simulation worked on all benchmarks. On
the other hand, whether this simulation runs 100 or 500 loop iterations seems
to make less of a difference.

For the remaining parameters, we do not observe a strong significance; they
are roughly equally distributed among the successful configurations. From this
we conclude that our algorithm is not sensitive to particular parameter settings,
and will find invariants successfully for many different parameter configurations.

The choice of parameters does, however, influence the size of the invariants
generated, at least for certain benchmarks. Figure 5 shows the minimum, maxi-
mum and average volumes for each benchmark across successful configurations.
While for some benchmarks, the variation is small, for others the best configu-
ration produces invariants that are half the size from the worst one.

Across the 1296 configurations, we observe that if a real-valued invariant is
found, it is also confirmed in 89% of cases, and thus has to be re-computed
in only 11% of cases. The only outlier that needs recomputation more often is
rotation-nondet-large, which rotates a vector by a larger angle, and therefore is
understandably more sensitive to enlarging the coordinates with some noise.

Last but not least, we used Pine’s default configuration to generate invariants
for fixed-point precision with uniform 16 bit length for all our 30 benchmarks
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(including ex* ). The smaller bit length results in larger roundoff errors, so that
Pine had to recompute an invariant for 5 additional benchmarks (i.e. where
the real-valued invariant was not confirmed), but was able to find an inductive
invariant for as many loops as with floating-point implementation.

6 Related Work

Many tools and libraries [23] infer invariants over program variables using ab-
stract interpretation. The abstract domains range from efficient and imprecise
intervals [11], over octagons [28], to more expensive and expressive polyhe-
dra [41,4]. For programs with elliptic invariants most linear abstract domains
are insufficient to express an invariant [36].

Ellipsoid domains have been defined that work for specific types of programs,
e.g. digital filters [17] and programs where variables grow linearly with respect
to the enclosing loop counters [34]. Performing abstract interpretation using
policy iterations instead of widening allows the use of the ellipsoid abstract
domain more generally [1,20]. This approach requires templates of the ellipsoids
to be given, however. Recent works [36,33] are able to discover ellipsoid inductive
loop invariants without the need for templates, but being based on semidefinite
programming and linear algebra, respectively, are fundamentally limited to linear
loops only. Alternatively, Bagnara et.al. [5] have explored an abstract domain
that approximates polynomial inequalities by convex polyhedra and leverages
the operations, including widening, of polyhedra. Sankaranarayanan et.al. [37]
show how to generate polynomial equality invariants by reducing the problem
to a constraint satisfaction problem.

Our algorithm builds on several ideas that have been explored in loop invari-
ant synthesis previously, including the use of concrete executions to derive poly-
nomial templates and counter-example based refinement. Floating-point loops
and in particular the uncertainties introduced due to roundoff errors pose unique
challenges that existing techniques cannot handle, as we discuss next.

Several works have explored the use of machine-learning in teacher-learner
frameworks [19,43]: the learner guesses a candidate invariant from a set of exam-
ples, and the teacher checks whether the invariant is inductive. If it is not, the
teacher provides feedback to the learner in form of additional (counter)examples.
These approaches rely on a target property to be given (to provide negative ex-
amples) and are thus not immediately applicable to synthesizing floating-point
inequality invariants. The framework C2I [38] employs a learner-teacher frame-
work, but where the learner uses a randomized search to generate candidate
invariants. While surprisingly effective, the approach is, however, limited to a
a fixed search, e.g. linear inequalities with a finite set of given constants as
coefficients. Sharma et.al. [40] present a learning based algorithm to generate
invariants that are arbitrary boolean combinations of polynomial inequalities,
but require a set of good and bad states and thus an assertion to be given.

The tool InvGen [21] generates integer linear invariants from linear templates,
using concrete program executions to derive constraints on the template param-
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eters. The tool NumInv [32] and the Guess-And-Check algorithm [39] generate
polynomial equality invariants using a similar approach. For integer programs
and in particular equality constraints, this approach is exact. In our setting
with floating-point programs and inequalities such constraints cannot be solved
exactly and thus require a different, approximate, approach. NumInv and Guess-
And-Check furthermore employ counterexamples returned by the solver for re-
finement of the invariant. These counterexamples are program inputs, however,
due to the complexity of the floating-point or real-arithmetic decision proce-
dures, this technique does not scale to our target numerical programs. We are
thus restricted to counterexamples to the invariant property.

Abductive inference in the tool Hola [14] and enumerative synthesis in Fre-
qHorn [15] are two further techniques that have been used to generate invariants
for numerical programs, but are unfortunately not applicable to generate the in-
variants we are looking for. Hola relies on quantifier elimination which solvers do
not support (well) for floating-points and reals; FreqHorn generates the invariant
grammar from the program’s source code, but for our invariants the terms do
not appear in the program itself.

Allamigeon et. al. [2] extend ellipsoidal analyses to generate disjunctive and
non-convex invariants for switched linear systems. We do not consider disjunctive
invariants in this work and leave their exploration to future work.

Recurrence-based techniques [25,26] generate loop invariants that exactly
capture the behavior of a numerical integer loop. While these techniques work for
arbitrary conditional branches, imperative code and nested loops, they generate
invariants of a different form, i.e. in general not polynomial inequalities and are
thus orthogonal to our approach.

7 Conclusion

We propose a novel algorithm for synthesizing polynomial inequality invariants
for floating-point loops. For this, we show how to extend the well-know technique
of counterexample-guided invariant synthesis to handle the uncertainties arising
from finite-precision arithmetic. The key insight to make our iterative refinement
work is that a single counterexample is not sufficient and the algorithm has
to explore the space of counterexamples more evenly in order to successfully
generalize. While the resulting algorithm is heuristic in nature, it proved to be
remarkably effective on existing benchmarks as well as on handling benchmarks
out of reach of existing tools.
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