
Sound Probabilistic Numerical Error Analysis

Debasmita Lohar1[0000−0001−8639−4116]?, Milos Prokop2, and Eva Darulova1

1 MPI-SWS, Saarland Informatics Campus, dlohar@mpi-sws.org, eva@mpi-sws.org
2 University of Edinburgh, m.prokop@sms.ed.ac.uk

Abstract. Numerical software uses floating-point arithmetic to imple-
ment real-valued algorithms which inevitably introduces roundoff errors.
Additionally, in an effort to reduce energy consumption, approximate
hardware introduces further errors. As errors are propagated through
a computation, the result of the approximated floating-point program
can be vastly different from the real-valued ideal one. Previous work on
soundly bounding (roundoff) errors has focused on worst-case absolute
error analysis. However, not all inputs and not all errors are equally likely
such that these methods can lead to overly pessimistic error bounds.
In this paper, we present a sound probabilistic static analysis which
takes into account the probability distributions of inputs and propa-
gates roundoff and approximation errors probabilistically through the
program. We observe that the computed probability distributions of er-
rors are hard to interpret, and propose an alternative metric and com-
putation of refined error bounds which are valid with some probability.

Keywords: Probabilistic Analysis, Floating-point, Approximate Computing

1 Introduction

Many programs compute only approximate results; sometimes because exact so-
lutions do not exist, or because resource constraints mandate using a cheaper and
inexact algorithm or hardware. Approximations can thus increase the efficiency
of a program, but they also introduce errors. Many applications are designed
to be robust to some noise and tolerate errors—as long as they remain within
some acceptable bounds. However, automatically determining how individual
approximation errors influence overall program accuracy remains a challenge.

Finite precision, which efficiently approximates real-valued arithmetic, is
widely used across a variety of domains from embedded systems to machine
learning applications. Verification of the roundoff errors that finite-precision in-
troduces has thus attracted significant interest in the recent past [8,15,31,19,11].
These tools compute worst-case absolute error bounds fully automatically. Such
bounds, however, may often be pessimistic. They may not be achieved in prac-
tice and furthermore many applications are tolerant to somewhat larger, but

? The author is supported by DFG grant DA 1898/2-1.



2 D. Lohar et al.

infrequent, errors (e.g. control systems, where one feedback iteration compen-
sates for a larger error of a previous one). In order to capture such differentiated
behaviour, we need to compute the probability of certain error bounds.

Such an analysis is even more relevant with advances in approximate comput-
ing [33], which introduces approximate architectures and storage. These hard-
ware components are more resource efficient but often have probabilistic error
behaviours: operations return a large error with a certain probability.

While techniques [5,28,21,25,6,20,26] exist which track or compute probabil-
ity distributions, they do not consider and support reasoning about errors due
to finite-precision arithmetic or approximate computing, or they only compute
coarse-grained error estimates, instead of error probability distributions [22].

In this paper, we present a sound probabilistic error analysis for numerical
kernels which computes uncertain distributions of errors, which soundly overap-
proximate all possible distributions. Our analysis extends the abstract domain
of probabilistic affine forms [4] for error analysis, and combines it with a novel
probabilistic version of interval subdivision to obtain both an efficient analysis,
as well as useful accuracy.

We instantiate our analysis to track two kinds of errors. First, we consider
standard floating-point arithmetic, where inputs are distributed according to a
user-given distribution. Since roundoff errors depend on the values’ magnitudes,
we effectively obtain a probability distribution of errors, even though the error of
each individual operation is still specified as worst-case. Secondly, inspired by ap-
proximate hardware specifications, in addition to probabilistic input ranges, we
consider errors which themselves have probabilistic specifications. That is, with
a certain probability the error for each operation can be larger than usual [22,27].

We observe that the computed (discretized) probability distributions of errors
are hard to interpret and use by a programmer. We thus propose a new metric
which states that with probability p, the error is at most Cp, where Cp should
be smaller than the overall worst-case error. We show how to compute Cp from
the probability distributions of errors, given a particular p by the user.

We have implemented this analysis in the prototype tool called PrAn and
evaluated it on several benchmarks from literature. The results show that the
proposed probabilistic error analysis refines worst-case errors and soundly com-
putes a smaller error which holds with a predefined probability. For the standard
floating-point error specification, PrAn computes refined error bounds which are
on average 17% and 16.2% and up to 49.8% and 45.1% lower than worst-case
errors for gaussian and uniform input distributions, respectively. These error
bounds hold with at least probability 0.85. For an approximate error specifica-
tion which assumes individual operations to commit an error of larger magnitude
with probability 0.1, the refined errors are, again with probability 0.85, on av-
erage even 30.6% and up to 73.1% smaller than worst-case.

Contributions In summary, in this paper we present:
– the first static analysis for probability distributions of numerical errors,
– an instantiation of this analysis for worst-case floating-point and probabilistic

approximate error specifications,



Sound Probabilistic Numerical Error Analysis 3

– a procedure to extract useful and human-readable refined error specifications,
– an experimental evaluation demonstrating the effectiveness of our analysis,
– an implementation, which we will release as open source.

2 Background

Floating-point Arithmetic is a widely used representation of real numbers on
digital computers. Due to optimized hardware or software support, it is efficient,
but due to its finite nature, every operation introduces roundoff errors. These
errors are individually small, but can potentially accumulate over the course of
a computation. To ensure the correctness of systems using floating-point arith-
metic, we have to bound roundoff errors at the program’s output.

An exact formalization of floating-point arithmetic is too complex for rea-
soning about larger programs, such that most automated tools for bounding
roundoff errors use the following abstraction which is based on the specification
of the IEEE 754 standard [1]:

x ◦fl y = (x ◦ y)(1 + e) + d , |e| ≤ εm, |d| ≤ δm (1)

where ◦ ∈ {+,−, ∗, /} and ◦fl denotes the respective floating-point version.
Square root follows similarly and unary minus does not introduce roundoff errors.
The machine epsilon εm bounds the maximum relative error for normal values
and for subnormal values the round-off error is expressed as δm. The values of
εm and δm for single and double precision are 2−24, 2−150 and 2−53 and 2−1075

respectively. Equation 1 assumes rounding-to-nearest rounding mode, which is
the usual default, and no overflow (the analyses prove that this cannot occur).

Worst-case Error Analysis Existing work on bounding roundoff errors com-
putes worst-case absolute errors:

max
x∈[a,b]

| f(x)− f̃(x̃) |

where f and x denote the real-valued function and input and f̃ and x̃ their
floating-point counterparts. Floating-point roundoffs depend on the magnitude
of inputs (see Equation 1), such that tools compute worst-case errors for some
bounded, user-provided input domain. There are two different approaches to
bounding roundoff errors: dataflow analysis [15,9,8,7,11], and global optimiza-
tion [31,19,24].

Dataflow analysis, which is relevant to our approach, tracks real-valued ranges
and finite-precision errors at each abstract syntax tree (AST) node using the do-
mains of interval arithmetic (IA) [23] or affine arithmetic (AA) [14]. Interval
arithmetic computes a bounding interval for each basic operation as x ◦ y =
[min(x ◦ y),max(x ◦ y)] where ◦ ∈ {+,−, ∗, /} and analogously for square root.
It is widely used and efficient to bound ranges of variables, but results in over-
approximations, because it does not track correlations between variables.



4 D. Lohar et al.

Affine arithmetic represents a range of possible values by an affine form:
x̂ = x0 +

∑n
i=1 xiηi where ηi ∈ [−1, 1], x0 is the mid-point of the range and

each noise term xiηi represents a deviation from this mid-point. The interval of
values represented by an affine form is given by [x̂] = [x0 − rad(x̂), x0 + rad(x̂)],
rad(x̂) =

∑n
i=1 |xi|. The symbolic variables ηi track linear correlations between

variables, allowing AA to often compute tighter ranges than IA. In AA, linear
arithmetic operations are computed term-wise, while nonlinear operations are
approximated and thus result in a certain imprecision of the analysis.

IA and AA can be combined with interval subdivision, which subdivides
input domains into subintervals of usually equal width and runs the analysis
separately on each. The overall error is computed as the maximum error over
all subintervals. Interval subdivision is, for instance, implemented in the tools
Fluctuat [15] and Daisy [8]. It provides tighter error bounds as smaller input
domains usually result in smaller over-approximations.

Probabilistic Affine Arithmetic The worst-case error can be pessimistic as
it takes into account only the ranges of the input variables. However, inputs
may be distributed according to different distributions. To get a more nuanced
view, we need to track probability distributions through the program. One possi-
ble approach to track real-valued probability distributions is probabilistic affine
arithmetic [4]. Here, we provide a high-level idea of probabilistic AA needed to
understand our probabilistic error analysis. For details, we refer the reader to [4].

In standard AA, the symbolic noise terms ηi nondeterministically take a
value in the interval [−1, 1]. Probabilistic AA extends each noise term ηi to
carry a probability distribution dηi with support [−1, 1]. Thus, a probabilistic
affine form represents a probability distribution which is computed by summing
the weighted distributions from each noise term:

x0 +

n∑
i=1

xidηi (2)

For representing the probability distributions, probabilistic AA uses Interval
Dempster-Shafer structures [30,13] (DSI). DSIs discretize a distribution and rep-
resent it as a finite list of focal elements: d = {〈x1, w1〉, 〈x2, w2〉, · · · , 〈xn, wn〉}
where xi is a closed non-empty interval and wi ∈ ]0, 1] is the associated probabil-
ity and

∑n
k=1 wk = 1. That is, the value of a variable x is (nondeterministically)

within the interval x1 with probability w1, in interval x2 with probability w2,
and so on. For example, the DSI

d={〈[−1,0.25],0.1〉,〈[−0.5,0.5],0.2〉,〈[0.25,1],0.3〉,〈[0.5,1],0.1〉,〈[0.5,2],0.1〉,〈[1,2],0.2〉}

represents the distribution where the probability of selecting a value in the in-
terval [-1, 0.25] is 0.1, in the interval [-0.5, 0.5] is 0.2 and so on. Graphically, this
DSI looks as follows:



Sound Probabilistic Numerical Error Analysis 5

−1 −0.5 0.250.5 1 2

1

cu
m
.p

ro
b.

DSIs represent uncertain distributions, that is, the set of focal elements in
general represents not a single exact distribution, but a set of distributions. Thus
DSIs allow us to efficiently and soundly represent the continuous distribution
such that the true distribution(s) are guaranteed to be inside the computed
DSI. Naturally, the abstraction comes at a cost of certain over-approximations.

To propagate probabilistic affine forms through the program, we note that
the affine portion remains the same as standard AA. However, the noise symbols
now carry a distribution in the form of a DSI so that we need to define arithmetic
operations over DSIs.

The affine form tracks (unknown) dependencies between variables and thus
also between DSIs. When two DSIs are independent of each other, arithmetic
operations can be computed using standard interval arithmetic. For example,
given two independent DSIs, dX = {〈xi, wi〉 | i ∈ [1, n]} and dY = {〈yj, vj〉 | j ∈
[1,m]}, the resultant DSI structure is: dZ = {〈zi,j, ri,j〉 | i ∈ [1, n], j ∈ [1,m]}
with zi,j = xi � yj where � ∈ {+,−, ∗, /} and ri,j = wi × vj .

If dX and dY are dependent with some unknown dependency, probabilistic
AA computes the intervals (zi,j) of dZ as for the independent case. To compute
the corresponding weights, we need to take into account all possible dependencies
to obtain a sound over-approximation of the probability distribution. Formally,
this means that we need to compute an upper and a lower bound on the cumu-
lative distribution function at every point in the domain. Practically, since our
DSIs are discretized, we need to do this computation at every ‘step’, i.e. for each
lower and upper bound in dZ . For each such ‘step’, we need to solve an opti-
mization problem, which encodes constraints due to the unknown dependency,
effectively encoding all possible dependencies. The resulting linear programming
problems can be solved using a Simplex solver.

Probabilistic AA [4] thus propagates discretized uncertain probability dis-
tributions through arithmetic computations and provides a sound enclosure on
the real-valued probability distribution. So far, probabilistic AA has not been
extended to support error propagation.

3 Tracking Probabilistic Errors

In this work we propose to track roundoff and other approximation errors prob-
abilistically, in order to provide less pessimistic error bounds than only a worst-
case analysis. Our probabilistic analysis takes into account the distributions of
input variables, tracks errors probabilistically throughout the program for a spec-
ified uniform floating-point precision, and computes a sound over-approximation



6 D. Lohar et al.

Algorithm 1 Tracking Probabilistic Round-off Errors
1: procedure probabilisticError(fnc, E, inDist, L, prec, p)
2: subDoms = subdivide(E, inDist, L)
3: errDist = φ
4: for (domi, ρi)← subDoms do
5: absErri = evalProbRoundoff(fnc, domi, prec) . see Algorithm 2
6: absErri = normalizeProb(absErri, ρi)
7: errDist = merge(errDist, absErri)
8: (err, prob) = extractErrorMetric(errDist, p)
9: return (err, prob) . returns the refined error with probability

of the error distribution at the output. We observe that the resulting distribu-
tions can be hard to interpret and use. Hence, we further propose and show
how to extract an error metric from the output distribution. The user of our
approach provides a threshold probability p, and our technique extracts a tighter
refined error bound Cp, which holds with probability p.

We focus here on straight-line arithmetic expressions. Previous techniques
for worst-case error bounds reduce reasoning about errors in loops via loop un-
rolling [7] and loop invariants [9,15,24], and in conditionals by a path-by-path
analysis [24,9] to straight-line code. These techniques can also be combined with
our probabilistic analysis. We furthermore compute absolute errors. While ap-
proaches exist to compute relative errors directly [16], they only compute a result
if the output range does not include zero, which however happens often in prac-
tice. Whenever the final range does not include zero, our method can compute
relative errors from the absolute ones.

Running Example We will use the following program, which computes a third-
order approximation of sine, as a running example for this section:

x := gaussian(-2.0, 2.0)

0.954929658551372 * x - 0.12900613773279798 * (x * x * x)

The user specifies the distribution of input variables: here ‘x’ is normally dis-
tributed in [-2, 2]. Suppose the user has further set the threshold probability to
p = 0.85. The worst-case error for this program in single precision is 4.62e-7.
PrAn computes the output distribution and extracts the following error metric:
a smaller error of Cp = 2.67e-7 occurs with at least probability 0.85. ut

Algorithm 1 shows the high-level overview of our analysis. It takes as input
the following parameters: a program given as an arithmetic expression (fnc),
ranges of the input variables (E), the probability distribution of the variables
(inDist), a limit on the number of total subdivisions (L), a uniform floating-
point precision (prec), and a threshold probability (p). Our analysis currently
considers the same probability distribution for all variables as well as uniform
floating-point precision, but it is straight-forward to extend to consider different
distributions and mixed precision.



Sound Probabilistic Numerical Error Analysis 7

Algorithm 1 first discretizes each input range distribution into subdomains
(line 2). For each subdomain it runs the probabilistic error analysis for the
specified floating-point precision prec (line 5). The computed error distribution
is then normalized by multiplying the probability of the subdomain occurring
(line 6) and merge it with errDist (line 7) that accumulates error distributions
for each subdomain to generate the complete error distribution of the output
error. Finally from errDist we extract the error metric (line 8) and its actual
probability, which may be larger than the requested p and return it (line 9).

In Section 3.1 we first describe a simplified version of Algorithm 1, which
performs probabilistic interval subdivision but computes errors for each subdo-
main with standard worst-case roundoff analysis. While interval subdivision is
standardly used to decrease overapproximations, to the best of our knowledge,
it has not been used previously to compute probabilistic error bounds. Then,
we extend this analysis with our novel probabilistic error analysis (Section 3.2).
Finally we show how our probabilistic error analysis can be further extended to
take into account approximate error specifications common in today’s approxi-
mate hardware (Section 3.3).

3.1 Probabilistic Interval Subdivision

First, we consider a relatively simple extension of worst-case error analysis which
takes into account the distributions of input variables: for now, we let the func-
tion evalProbRoundoff compute a worst-case error, instead of a probability distri-
bution, and focus on the interval subdivision where the intervals are subdivided
probabilistically (line 2 in Algorithm 1).

Our algorithm first subdivides each input interval equally and for multivariate
functions takes their Cartesian product to generate subdomains. The probability
of each subdomain is computed by taking the product of the probabilities of the
corresponding subintervals. In this way the algorithm generates a set of tuples
(domi, ρi) where a value is in subdomain domi with probability ρi. On each of
these subdomains, we can run the standard worst-case dataflow error analysis
from Section 2 to compute an error bound absErri (here, we use AA for the
errors, but IA for the ranges, because it tends to have less over-approximations
for nonlinear expressions than standard AA). Hence, the algorithm computes
for each subdomain i an error tuple (absErri, ρi), i.e. with probability ρi, the
worst-case error is absErri. From these error tuples (errDist), PrAn extracts
the error metric.

Extracting the Error Metric We want to extract an error Cp (smaller than
the worst-case error), which is satisfied with threshold probability p provided by
the user. The function extractErrorMetric in Algorithm 1 repeatedly removes
tuples with the largest error and subtracts their corresponding probability while
the total probability of the remaining tuples remains at least p. Finally, we return
the refined error and its probability, which is at least p but may be higher.



8 D. Lohar et al.

Algorithm 2 Probabilistic range and roundoff error analysis
1: procedure evalProbRoundoff(node, dom, prec)
2: if (node = lhs op rhs) then . Binary operation
3: realRange = evalRange(lhs, rhs, op, dom)
4: errorLhs = evalProbRoundoff(lhs, realRange, prec)
5: errorRhs = evalProbRoundoff(rhs, realRange, prec)
6: propagatedErr = propagate(errorLhs, errorRhs, op)
7: newRange = toDSI(realRange+ propagatedErr)
8: else . node is a variable
9: newRange = toDSI(dom)
10: for (x,w)← newRange do
11: roundoff = maxRoundoff(x, prec)
12: errDist.append(roundoff , w)
13: return addNoise(propagatedErr, normalize(errDist))

Example Recall our running example, which has a worst-case error of 4.62e-7 in
single precision. Using probabilistic subdivision PrAn subdivides the input do-
main into 100 subdomains and computes a reduced error bound of 2.97e-7 which
holds with at least probability 0.85 (the worst-case error remains unchanged).
If the program is immune to big errors with probability 0.15, the relevant error
bound is thus reduced substantially by 35%. ut

3.2 Probabilistic Roundoff Error Analysis

The error computed using only probabilistic interval subdivision is pessimistic
as the actual error computation still computes worst-case errors. To compute a
tighter distribution of errors at the output we propose to track roundoff errors
probabilistically throughout the program. To the best of our knowledge, this
is the first sound probabilistic analysis of roundoff errors. We first consider an
exact error specification, by which we mean that the roundoff error introduced
at each individual arithmetic operation is still the worst-case error, following the
IEEE754 standard specification (Equation 1). Even with an exact error spec-
ification we obtain an error distribution as the error depends on the ranges,
and thus not all values, and not all errors, are equally likely. In this section
we first present probabilistic roundoff error analysis and then combine it with
probabilistic interval subdivision in order to get tighter error bounds.

The function evalProbRoundoff shown in Algorithm 2 extends probabilistic
AA to propagate error distributions through the program, by performing a for-
ward dataflow analysis recursively over the program abstract syntax tree (AST).
For each AST node (node), an input subdomain (dom), and a precision (prec),
it computes the distribution of accumulated roundoff errors. This error distri-
bution is a sound over-approximation, i.e. the true distribution lies within the
computed upper and lower bounds. The soundness of our technique follows from
the soundness of the underlying probabilistic AA.



Sound Probabilistic Numerical Error Analysis 9

For each binary arithmetic operation (op), our analysis first computes the
real-valued range (line 3) using probabilistic AA as described in Section 2. Com-
puting the accumulated errors is more involved and constitutes our extension
over probabilistic AA and one of our main contributions. To compute the accu-
mulated errors, the algorithm first computes the errors of its operands (line 4-5)
and from these computes the propagated error (propagatedErr) (line 6). Our
probabilistic error propagation extends rules from standard AA to probabilis-
tic AA. The propagated errors are added to the real-valued range distribution
to obtain the finite-precision distribution (line 7), from which we can compute
roundoff errors. Before doing so, we convert the probabilistic affine form to the
DSI representation (toDSI), which is more amenable for roundoff error compu-
tation.

Each focal element of the finite-precision range DSI assigns a probability w to
an interval x. Hence, we can compute the roundoff error for each focal element
following the floating-point abstraction in Equation 1, and assign the weight
w to that error (line 10-12). That is, our procedure computes roundoff errors
separately for each focal element, and appends them to generate a new error
DSI (line 12). The newly committed error DSI is then normalized to [-1, 1] and
added as a fresh noise term to the probabilistic affine form of the propagated
errors (line 13).

Probabilistic Error Analysis with Interval Subdivision This probabilistic
analysis computes the distribution of the roundoff error at the output, but we
observed that it introduces large over-approximations as intervals of the focal
elements of the DSI tend to be wide and almost fully overlap with each other. To
reduce the over-approximation, we combine the probabilistic error analysis with
our probabilistic interval subdivision from Section 3.1. Since each subdomain is
smaller, this reduces over-approximations in each, and thus also overall.

Extracting the Error Metric To extract the error metric, we first transform
the probabilistic affine form of the error to a DSI structure. To extract the
error metric we sort the focal elements, and then remove the elements with
largest error magnitude from the error DSI similarly to Section 3.1, until the
total weight of the resultant DSI sums up to the threshold p. PrAn returns the
maximum absolute value of the remaining focal elements as the refined error.
This extraction effectively tries to find as small error bound as possible which
will fall within the probability p.

Example Recall the running sine example. Using only the probabilistic error
analysis without subdivision, PrAn first discretizes the input distribution into
100 subdomains as shown in Figure 1. From this, PrAn computes the probability
distribution of the error shown in Figure 2 a). As the figure shows, the intervals
of the DSI are wide and they almost fully overlap with each other. As a result,
PrAn cannot refine the error.



10 D. Lohar et al.

range
cu

m
ul

at
iv

e 
pr

ob
ab

ilit
y

Fig. 1. Input distribution of our example

For the full analysis with probabilistic error analysis and subdivision, we
choose 2 initial DSI discretizations and 50 outer interval subdivisions (to keep
a fair comparison with 100 overall initial subdivisions). Note that during the
computation, the number of DSI discretizations grows and is limited by 100,
which we observed to be a good compromise between accuracy and efficiency.

Figure 2 b) shows the resulting error distribution. It is not a step function,
because while for each of the subdomain, PrAn does compute the error DSI as
a step function, due to the merging at the end, the overall distribution does not
have this shape. With our full analysis, PrAn computes a refined error of 2.67e-7
(with threshold probability 0.85). This refined error is smaller than the 2.97e-7,
which PrAn computed using only probabilistic interval subdivision. ut

Alternatively, we could also compute the probability of the largest errors
occurring. To extract this information, the error distribution is conceptually
subdivided vertically first as shown in Figure 3. In this way we can compute the
probability of the large error which will be between the outermost extension and
the next subdivision. For this, we need to sum all the weights which intersect
with the specified interval. We observed this alternative error specification to be
less useful in practice due to large overlaps between the focal elements. We thus
focus in the remainder on the first type of error metric.

range

(a)

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

(b)

range

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y 

Fig. 2. Error distribution with (a) probabilistic analysis only and (b) full analysis



Sound Probabilistic Numerical Error Analysis 11

range

(a)

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Fig. 3. Alternative vertical subdiv.

3.3 Probabilistic Analysis with Approximate Error Specification

Approximate computing is an emerging design paradigm which exploits approx-
imations to enable better performance in terms of energy or resource utilization.
Approximate hardware may, for instance, introduce big, but infrequent, errors
in a computation [22,27]. Such approximate error specifications are themselves
probabilistic: with a certain probability, the error produced by an operation is
larger than the usual worst-case error bound. For such specifications, worst-case
analysis considers the large error for all computations, even if it occurs only
infrequently, and computes thus highly pessimistic error bounds. With our pro-
posed probabilistic error analysis, we can incorporate such an approximate error
specification when the larger errors are bounded with a known upper bound.

To compute a sound probabilistic error bound with approximate specifica-
tions we extend the function maxRoundoff in Algorithm 2. Previously, we com-
puted one error for each focal element, now we compute multiple errors, depend-
ing on the error specification. For example, for a specification where a larger
error can occur with a certain probability, we compute two errors and thus two
focal elements at line 11 in Algorithm 2: one focal element that keeps track of
the big error (with a usually small probability ρ), and one focal element which
tracks the regular error (with probability 1− ρ).

Example We consider an approximate error specification for our running sine
example where an error of size twice the usual machine epsilon (2 × εm) oc-
curs with probability ρ = 0.1 and the regular roundoff error (εm) appears with
probability 0.9. Our tool PrAn computes 7.34e-7 as the worst-case error with 2
DSI discretizations and 50 outer interval subdivisions. As expected, the abso-
lute error computed with this approximate error specification is larger than the
error computed using the exact error specification (4.62e-7) where at each step
only an error of εm appears. Using only probabilistic interval subdivision, PrAn
computes a bound of 5.02e-07 with threshold probability 0.85. However, this
analysis cannot take advantage of the approximate error specification. Using our
full analysis (as described in Section 3.2), PrAn computes a refined error bound
of 3.86e-7 with threshold probability 0.85. ut



12 D. Lohar et al.

3.4 Implementation

We have implemented our proposed probabilistic error analysis technique(s) in
the prototype tool PrAn which is implemented on top of the tool Daisy. The anal-
ysis itself is implemented using intervals with arbitrary-precision outer bounds
(with outwards rounding) using the GNU MPFR library. This ensures sound-
ness in addition to an efficient implementation. We use GLPK [2] as our simplex
solver, which uses floating-point arithmetic internally, and may thus introduce
roundoff errors into the analysis. A fully satisfactory solution would use a guar-
anteed LP-solver as Lurupa [17] or LPex [12], but it is unclear whether the
analysis performance would suffer.

4 Experimental Evaluation

Benchmarks We have used various benchmarks from the domains of scientific
computing, embedded systems and machine learning. 3. Most of the benchmarks
are widely used in finite-precision roundoff error estimation [31,9,8]: sine, sine-
Order3 and sqroot are polynomial approximations of functions, bsplines are used
in embedded image applications, train and rigidBody are linear and nonlinear
controller respectively. We also have benchmarks where probabilistic AA has
been used previously to compute ranges probabilistically [18]: filter is a 2nd
order filter unrolled to specified iterations, cubic is obtained from the GNU li-
brary, classIDXs are extracted from a linear support vector classifier, neuron is
a simplified version of the DNN that learns ‘AND’ operator. We have further
extracted polyIDXs using sklearn-porter [3] from a polynomial support vector
classifier trained on the Iris standard data from Python sklearn library.

Experimental Setup The experiments were performed on a Debian desktop
computer with a 3.3 GHz i5 processor and 16GB RAM. We use 32 bit single pre-
cision as the target precision. We consider a threshold probability of 0.85. We
have evaluated PrAn with eight different settings denoted by the letters A-H.
Settings (A, B) use only the probabilistic interval subdivision from Section 3.1
and settings (C, D) use our complete probabilistic analysis with subdivision
from Section 3.2, assuming an exact error specification. Settings (E, F, G) per-
form full probabilistic analysis considering an approximate error specification
(as in Section 3.3), where with probability 0.9 the error is small (εm) and with
probability 0.1 the error has magnitude 2 × εm (settings E, F) or magnitude
4× εm (setting G).

For a fair comparison, in settings A-G, we limit the total number of input sub-
domains from DSI and input interval subdivision to 100. I.e. when probabilistic
AA is used (in C-G), each input DSI is subdivided into 2, and the input interval
subdivisions are determined such that the overall number of subdomains remains
3 All benchmarks are available at https://people.mpi-sws.org/~dlohar/assets/code/

Benchmarks.txt

https://people.mpi-sws.org/~dlohar/assets/code/Benchmarks.txt
https://people.mpi-sws.org/~dlohar/assets/code/Benchmarks.txt


Sound Probabilistic Numerical Error Analysis 13

worst-case error refined error
A C E A C E

sine 2.40e-7 2.41e-7 4.76e-7 1.56e-7 1.68e-7 2.66e-7
sineOrder3 4.62e-7 4.62e-7 7.34e-7 2.97e-7 2.67e-7 3.86e-7
sqroot 1.50e-4 1.54e-4 2.42e-4 8.38e-5 8.89e-5 1.31e-4
bspline0 8.69e-8 8.69e-8 1.44e-7 4.36e-8 4.44e-8 5.51e-8
bspline1 2.09e-7 2.10e-7 3.86e-7 1.96e-7 1.97e-7 2.67e-7
bspline2 2.16e-7 2.12e-7 4.21e-7 1.87e-7 1.89e-7 2.91e-7
bspline3 5.71e-8 5.71e-8 8.44e-8 3.33e-8 3.39e-8 3.72e-8
rigidBody1 1.58e-4 1.73e-4 3.01e-4 9.99e-5 1.57e-4 1.98e-4
rigidBody2 1.94e-2 9.70e-3 1.38e-2 1.06e-2 8.50e-3 1.05e-2
train1 1.99e-3 2.00e-3 2.94e-3 1.84e-3 1.67e-3 2.52e-3
train2 1.37e-3 1.37e-3 2.06e-3 1.32e-3 1.19e-3 1.83e-3
train3 2.29e-2 2.29e-2 3.85e-2 2.29e-2* 2.26e-2 3.46e-2
train4 2.30e-1 2.30e-1 4.13e-1 2.30e-1* 2.30e-1* 3.75e-1
filter2 1.04e-6 1.04e-6 1.72e-6 8.64e-7 7.57e-7 1.13e-6
filter3 2.99e-6 2.87e-6 4.99e-6 2.62e-6 2.58e-6 4.52e-6
filter4 6.51e-6 5.20e-6 9.16e-6 6.09e-6 4.96e-6 8.69e-6
cubic 1.83e-5 2.02e-5 3.35e-5 1.73e-5 1.90e-5 2.80e-5
classIDX0 8.77e-6 9.10e-6 1.45e-5 7.95e-6 7.92e-6 1.20e-5
classIDX1 4.63e-6 4.76e-6 7.70e-6 4.28e-6 4.38e-6 6.70e-6
classIDX2 7.32e-6 7.60e-6 1.25e-5 6.35e-6 6.55e-6 1.02e-5
polyIDX0 5.56e-3 5.80e-3 9.29e-3 2.96e-3 5.32e-3 7.94e-3
polyIDX1 6.81e-4 7.56e-4 1.23e-3 4.51e-4 7.08e-4 1.12e-3
polyIDX2 5.05e-3 5.40e-3 8.73-3 2.84e-3 5.08e-3 7.55e-3
neuron 3.22e-5 7.02e-5 9.87e-5 3.20e-5 5.25e-05 7.47e-5

Table 1. Worst-case and refined error in different settings with gaussian inputs

below 100. Note that during the computation, the number of DSI subdivisions
is limited by 100 (not 2).

Setting (H) considers an approximate error specification as in (G), but per-
forms only probabilistic interval subdivision (Section 3.1). We additionally in-
crease the input interval subdomains to 200. With this setting, we evaluate
whether probabilistic AA is helpful for approximate error specifications, or sim-
ply using more interval subdivisions (which are relatively cheap) is sufficient.

Settings (B, D, F) consider uniformly distributed inputs and the other set-
tings consider gaussian inputs where all inputs are independent. Note that our
approach handles any discretized input distribution provided as a DSI, as well as
inputs with (unknown) correlations. Our choice of input distribution is arbitrary,
as the ‘right’ distribution is application specific.

Results Table 1 shows the absolute worst-case and refined error values for
setting A, C, and E with gaussian inputs. Settings A and C were able to refine the



14 D. Lohar et al.

worst-case error refined error
B D F B D F

sine 2.72e-7 2.41e-7 4.76e-07 2.18e-7 1.83e-7 2.66e-7
sineOrder3 4.62e-7 4.62e-7 7.34e-7 3.29e-7 2.84e-7 4.04e-7
sqroot 1.50e-4 1.54e-4 2.42e-4 9.02e-5 9.33e-5 1.39e-4
bspline0 8.69e-8 8.69e-8 1.44e-7 4.60e-8 4.77e-8 5.80e-8
bspline1 2.12e-7 2.10e-7 3.86e-7 2.00e-7 2.00e-7 2.81e-7
bspline2 2.18e-7 2.12e-7 4.21e-7 2.08e-7 1.93e-7 2.93e-7
bspline3 5.71e-8 5.71e-8 8.44e-8 3.50e-8 3.50e-8 3.99e-8
rigidBody1 1.58e-4 1.73e-4 3.01e-4 1.50e-4 1.57e-4 1.98e-4
rigidBody2 1.94e-2 9.70e-3 1.38e-2 1.71e-2 8.55e-3 1.13e-2
train1 2.00e-3 2.00e-3 2.94e-3 1.91e-3 1.67e-3 2.48e-3
train2 1.37e-3 1.37e-3 2.06e-3 1.32e-3 1.19e-3 1.80e-03
train3 2.29e-2 2.29e-2 3.85e-2 2.29e-2* 2.26e-2 3.46e-2
train4 2.30e-1 2.30e-1 4.13e-1 2.30e-1* 2.30e-1* 3.75e-1
filter1 2.03e-7 2.03e-7 2.62e-7 1.96e-7 1.86e-7 1.93e-7
filter2 1.04e-6 1.04e-6 1.72e-6 9.08e-7 7.74e-7 1.17e-6
filter3 3.07e-6 2.87e-6 4.99e-6 2.96e-6 2.58e-6 4.26e-6
filter4 8.23e-6 5.20e-6 9.16e-6 8.17e-6 4.95e-6 8.69e-6
cubic 1.85e-5 2.02e-5 3.35e-5 1.74e-5 1.90e-5 2.80e-5
classIDX0 9.10e-6 9.10e-6 1.45e-5 8.52e-6 7.79e-6 1.20e-05
classIDX1 4.76e-6 4.76e-6 7.70e-6 4.66e-6 4.35e-6 6.79e-6
classIDX2 7.60e-6 7.60e-6 1.25e-5 7.44e-6 6.36e-6 1.01e-05
polyIDX0 5.80e-3 5.19e-3 9.29e-3 4.17e-3 4.78e-3 7.94e-3
polyIDX1 7.55e-4 5.71e-4 1.23e-3 7.00e-4 5.04e-4 5.04e-4
polyIDX2 5.40e-3 5.19e-3 8.38e-3 3.94e-3 4.78e-3 7.04e-3
neuron 6.40e-5 7.02e-5 9.87e-5 3.94e-5 4.86e-5 6.86e-5

Table 2. Worst case and refined error in different settings with uniform inputs

error bounds considering an exact error specification in almost all cases, except
those marked with ‘*’. The train4 benchmark has 9 input variables, which means
that with our total limit of subdivisions each input is divided too few times to
refine the error. For train3, PrAn could refine the worst-case error only with
setting C, i.e. using our full analysis. Using an approximate error specification,
PrAn was always able to refine the errors.

For some benchmarks, the full probabilistic error analysis outperforms prob-
abilistic interval subdivision, but for others it is the other way around. When
probabilistic error analysis (setting C) is better, it tends to be more significantly
better than vice-versa.

We show results with uniform input distributions (settings B, D, F) in Ta-
ble 2. Settings B and D were also able to reduce the error bounds except the
train4 benchmark with uniform inputs. Also with uniform inputs setting B could
not reduce the error bound of train3.



Sound Probabilistic Numerical Error Analysis 15

A C D E G H A C D E G H

sine 34.9 30.3 24.1 44.1 52.2 39.6 train4 0.0 0.0 0.0 9.2 8.3 0.0
sineOrder3 35.7 42.1 38.5 47.4 52.9 34.0 filter2 16.9 27.5 25.9 34.5 13.9 29.7
sqroot 44.3 42.4 39.5 45.6 56.6 45.8 filter3 12.4 10.0 10.0 9.6 23.0 23.8
bspline0 49.8 48.9 45.1 61.7 73.1 56.6 filter4 6.5 4.6 4.9 5.1 47.5 10.4
bspline1 6.2 6.0 4.7 30.8 40.2 9.7 cubic 5.8 5.8 5.9 16.2 41.9 9.3
bspline2 13.5 11.0 9.4 31.0 40.6 17.4 classIDX0 9.3 13.0 1.5 17.6 18.7 13.6
bspline3 41.6 40.7 38.7 56.0 67.0 48.6 classIDX1 7.5 8.0 8.6 12.9 5.3 10.1
rigidBody1 36.9 8.8 8.8 34.2 34.8 38.6 classIDX2 13.3 13.8 16.3 18.3 22.2 14.8
rigidBody2 45.4 12.4 11.8 24.1 13.5 49.2 polyIDX0 46.8 8.2 8.0 14.5 14.6 50.1
train1 7.5 16.4 16.4 14.4 20.2 7.2 polyIDX1 33.8 6.3 11.7 8.7 10.6 37.3
train2 3.3 12.6 12.7 11.3 13.6 1.9 polyIDX2 43.9 5.9 8.0 13.6 19.6 49.2
train3 0.0 1.3 1.3 10.1 11.2 2.2 neuron 0.9 25.3 30.8 24.3 41.7 13.9

Table 3. Reductions in % in errors w.r.t. the standard worst-case in different settings

In general, which analysis is better is application specific: this depends on
the over-approximations committed, which in turn depend on the operations and
ranges of an application. A user should consider both variants and use the best
result in a portfolio-like approach. Note, however, that for approximate error
specifications, a probabilistic error analysis is necessary in order to adequately
capture the probabilistic error specification.

We show the error reduction between the refined and the corresponding
worst-case errors in Table 3. The reductions for the exact error specifications
are on average 20.9%, 17% and 16.2% with settings A, C and D, respectively.
The reduction with gaussian inputs in setting C is in most cases higher than
for uniform inputs. We also see that reductions are application specific, and for
many benchmarks more substantial than the averages suggest. In some cases
our probabilistic analysis even with exact specifications allows to report refined
errors with nearly half the magnitude as the worst-case (up to 49.8%), but still
with guaranteed probability of at least 0.85.

Our probabilistic analysis achieves even higher reductions with the approx-
imate error specification (settings E and G) with on average 24.9% and 30.6%
smaller refined errors than worst-case, respectively. Even if we double the num-
ber of total subdivisions (setting H) probabilistic interval subdivision can only
reduce the error on average by 25.4%, compared to 30.6% using our full proba-
bilistic analysis. While for a few cases setting H outperforms setting G (because
of overapproximations in the probabilistic analysis), overall probabilistic analysis
is successful at capturing the fact that large errors only occur infrequently.

Finally, Table 4 shows the running times of our analysis for settings A, C and
E (averaged over 3 runs). The probabilistic error analysis takes more time than
the non-probabilistic analysis (i.e. one with only a probabilistic interval subdi-
vision), as expected. We note, however, that the analysis times are nonetheless
acceptable for a static analysis which is run only once.



16 D. Lohar et al.

A C E A C E

sine 9s 6m 1s 109m 11s train4 0.1s 22s 36s
sineOrder3 5s 3m 7s 6m 46s filter2 0.9s 1m 47s 3m 2s
sqroot 1s 1m 29s 33m 56s filter3 0.9s 4m 19s 11m 16s
bspline0 0.4s 22s 12m 2s filter4 16s 10m 54s 28m 39s
bspline1 0.6s 42s 13m 37s cubic 16s 3m 11s 14m 24s
bspline2 0.8s 50s 16m 6s classIDX0 23s 3m 39s 7m 44s
bspline3 0.4s 18s 1m 20s classIDX1 2s 3m 56s 7m 53s
rigidBody1 0.1s 35s 1m 16s classIDX2 0.1s 3m 39s 7m 1s
rigidBody2 0.4s 1m 14s 10m 59s polyIDX0 0.5s 32m 52s 181m 45s
train1 0.3s 1m 15s 3m 55s polyIDX1 0.8s 33m 26s 193m 19s
train2 0.3s 6m 29s 11m 22s polyIDX2 3s 38m 29s 177m 38s
train3 0.1s 12s 25s neuron 0.5s 1m 11s 4m 17s

Table 4. Analysis time (averaged over 3 runs) in different settings

5 Related Work

Probabilistic affine arithmetic with Dempster-Shafer Interval structures provide
an efficient approach for soundly propagating probability distributions, but it
incurs huge over-approximation of the probabilities. An alternative would be
exact probabilistic inference [21], however its scalability is very limited [18].
Most probabilistic inference algorithms rely on sampling [25,6,20,26] and thus
do not provide guaranteed bounds. Probabilistic affine arithmetic has been also
augmented by concentration of measure inequalities [5], which may reduce the
amount of over-approximations. It has been used for tracking real-valued ranges
in a program (but not errors). This could potentially also help improve the
accuracy of our approach, but since the implementation is not available, we
leave this to future work.

Sankaranarayanan et al. [28] verify probabilistic properties of programs with
many paths with a combination of symbolic execution and volume computation,
but do not consider (finite-precision) errors and non-linear programs.

Chisel [22] considers and bounds the probability of errors occurring due to
approximate hardware, and is thus in spirit similar to our approach. Chisel,
however, only tracks the probability of a large error occurring, whereas our ap-
proach provides a more nuanced probability distribution, and furthermore tracks
the variable ranges probabilistically as well.

Several tools exist for soundly bounding roundoff errors, some are based on
affine arithmetic [9,8,15,11,7], and others on a global optimization
approach [31,19,24]. The tools only compute worst-case roundoff errors, however.

Daumas et al. [10] compute bounds on the probability that accumulated
floating-point roundoff errors exceed a given threshold, using known inequalities
on sums of probability distributions, and distributions on the individual errors.
This approach requires manual proofs and does not consider input distributions.



Sound Probabilistic Numerical Error Analysis 17

Statistical error analyses have also been proposed. For instance, the CADNA
approach [29] computes a confidence interval on the number of exact digits using
repeated simulation with random rounding modes. An approach similar in spirit
is to perturb the low-order bits, or rewrite expressions based on real-valued
identities to uncover instabilities of programs [32]. The approaches, however, do
not provide sound error guarantees.

6 Conclusion

We have presented a probabilistic analysis for tracking errors due to finite-
precision arithmetic in straight-line code. Instead of worst-case errors, as usual
analyses compute, our analysis computes probability distributions and extracts
refined error metrics which determine that a potentially smaller error than the
worst-case is satisfied with some probability. We believe that this analysis can
be useful for applications which can tolerate larger errors, as long as their proba-
bility is bounded. We observe that our refinement is even more useful in the case
of probabilistic error specifications common in today’s approximate hardware.

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008)
2. GLPK. https://www.gnu.org/software/glpk/ (2012)
3. Project Sklearn-porter. https://github.com/nok/sklearn-porter (2018)
4. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A Generalization of

P-boxes to Affine Arithmetic. Computing 94(2-4), 189–201 (2012)
5. Bouissou, O., Goubault, E., Putot, S., Chakarov, A., Sankaranarayanan, S.: Uncer-

tainty Propagation using Probabilistic Affine Forms and Concentration of Measure
Inequalities. In: TACAS (2016)

6. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A Probabilistic Programming
Language. Journal of Statistical Software, Articles 76(1), 1–32 (2017)

7. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. International Journal on Software Tools
for Technology Transfer 19(4), 427–448 (2017)

8. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- Framework for Analysis and Optimization of Numerical Programs. In: TACAS
(2018)

9. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. TOPLAS 39(2) (2017)
10. Daumas, M., Lester, D., Martin-Dorel, E., Truffert, A.: Improved bound for

stochastic formal correctness of numerical algorithms. Innovations in Systems and
Software Engineering 6(3), 173–179 (2010)

11. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted Verification of Elementary
Functions using Gappa. In: ACM Symposium on Applied Computing (2006)

12. Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schömer, E.,
Schulte, R., Weber, D.: Certifying and Repairing Solutions to Large LPs. How
Good are LP-Solvers? In: SODA. pp. 255–256 (2003)

https://www.gnu.org/software/glpk/
https://github.com/nok/sklearn-porter


18 D. Lohar et al.

13. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing
Probability Boxes and Dempster-Shafer Structures. Tech. rep., Sandia National
Laboratories (2003)

14. de Figueiredo, L.H., Stolfi, J.: Affine Arithmetic: Concepts and Applications. Nu-
merical Algorithms 37(1-4) (2004)

15. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
VMCAI (2011)

16. Izycheva, A., Darulova, E.: On sound relative error bounds for floating-point arith-
metic. In: FMCAD (2017)

17. Keil, C.: Lurupa - Rigorous Error Bounds in Linear Programming. In: Algebraic
and Numerical Algorithms and Computer-assisted Proofs. No. 05391 in Dagstuhl
Seminar Proceedings (2006), http://drops.dagstuhl.de/opus/volltexte/2006/445

18. Lohar, D., Darulova, E., Putot, S., Goubault, E.: Discrete Choice in the Presence
of Numerical Uncertainties. EMSOFT (2018)

19. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Trans. Math. Softw. 43(4) (2017)

20. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A.,
Bronskill, J.: Infer.NET 2.6. http://research.microsoft.com/infernet (2014)

21. Misailovic, S., Vechev, M., Gehr, T.: PSI: Exact Symbolic Inference for Probabilis-
tic Programs . In: CAV (2016)

22. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.C.: Chisel: Reliability- and
accuracy-aware optimization of approximate computational kernels. In: OOPSLA
(2014)

23. Moore, R.: Interval Analysis. Prentice-Hall (1966)
24. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic Estimation of Verified

Floating-Point Round-Off Errors via Static Analysis. In: SAFECOMP (2017)
25. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An Efficient MCMC Sam-

pler for Probabilistic Programs. In: AAAI (2014)
26. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,

L.: Expressing and Verifying Probabilistic Assertions. In: PLDI (2014)
27. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:

Enerj: Approximate data types for safe and general low-power computation. In:
PLDI (2011)

28. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static Analysis for Probabilistic
Programs: Inferring Whole Program Properties from Finitely Many Paths. In:
PLDI (2013)

29. Scott, N.S., Jézéquel, F., Denis, C., Chesneaux, J.M.: Numerical ’health check’
for scientific codes: the CADNA approach. Computer Physics Communications
176(8), 507–521 (2007)

30. Shafer, G.: A Mathematical Theory of Evidence. Princeton university press (1976)
31. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous Estima-

tion of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In: FM
(2015)

32. Tang, E., Barr, E., Li, X., Su, Z.: Perturbing numerical calculations for statistical
analysis of floating-point program (in)stability. In: ISSTA (2010)

33. Xu, Q., Mytkowicz, T., Kim, N.S.: Approximate computing: A survey. IEEE Design
Test 33(1), 8–22 (Feb 2016)

http://drops.dagstuhl.de/opus/volltexte/2006/445
http://research.microsoft.com/infernet

	Sound Probabilistic Numerical Error Analysis

