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Abstract. When compared to idealized, real-valued arithmetic, finite
precision arithmetic introduces unavoidable errors, for which numerous
tools compute sound upper bounds. To ensure soundness, providing for-
mal guarantees on these complex tools is highly valuable.
In this paper we extend one such formally verified tool, FloVer. First, we
extend FloVer with an SMT-based domain using results from an exter-
nal SMT solver as an oracle. Second, we implement interval subdivision
on top of the existing analyses. Our evaluation shows that these exten-
sions allow FloVer to efficiently certify more precise bounds for nonlinear
expressions.
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1 Introduction

Floating-point or fixed-point arithmetic are commonly used representations of
the reals in today’s computers. They necessarily only provide a discrete approx-
imation of infinite-precision reals, resulting in roundoff errors. These errors are
introduced by arithmetic operations and are individually small, but can accu-
mulate during the course of a computation. For safety-critical systems, it is thus
imperative to soundly bound the overall roundoff error of a program.

A number of automated static analysis tools have been developed in the past
for computing roundoff error bounds [14,13,10,9,4,6]. However, their analyses
and implementations are complex, raising questions of correctness. Most of these
tools thus generate certificates which can be independently and formally verified
by a theorem prover such as Coq [1], PVS [12] or HOL4 [2].

One tool to check certificates is FloVer [3], an open source certificate checker
for roundoff errors computed using a dataflow static analysis. FloVer’s checker
functions are formally verified in Coq and HOL4 and check roundoff error bounds
computed by external tools for floating-point as well as fixed-point arithmetic.
The current version of FloVer uses the interval [11] and affine arithmetic (AA) [8]
abstract domains, which are efficient and accurate for linear expressions, but
which suffer from over-approximations for nonlinear arithmetic programs.

In this paper, we describe two new approaches to certify tighter error bounds
and implement them in FloVer’s Coq formalization. First, we implement an
SMT-based range estimation [5] (Section 2) which computes tighter enclosures
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Fig. 1. Overview of FloVer’s infrastructure

for expressions using a trusted SMT solver as an oracle. Second, interval subdivi-
sion [9,4] (Section 2) further increases analysis precision by splitting input ranges
into disjoint subintervals and by analyzing them separately. These techniques are
employed by unverified state-of-the-art tools [9,4] but were beyond the scope of
formally verified checkers. Our extensions presented in this paper thus close the
gap between the errors computed from state-of-the-art tools and what can be
certified. Our experimental evaluation (Section 3) shows that our extensions in-
crease FloVer’s accuracy on a standard benchmark set of nonlinear expressions,
while maintaining a reasonable certificate checking time. Our implementation is
available online at https://gitlab.mpi-sws.org/AVA/FloVer/tree/SMT_Subdiv.

Related Work PRECiSA [14], FPTaylor [13], and real2float [10] provide certifi-
cate checkers like FloVer, verifying roundoff error bounds encoded by an un-
trusted static analysis. Certificates of PRECiSA are written in PVS, FPTaylor’s
in HOL-Light, and real2float’s and FloVer’s in Coq. Unlike FloVer, their round-
off error verification is based on global optimization. This approach can often
verify tighter error bounds than a dataflow analysis, but is currently only appli-
cable to floating-point arithmetic computations and not fixed-point arithmetic.
PRECiSA in addition handles loops by widening, and conditional branches by
path-by-path error analysis, which are orthogonal to the error estimation of
straight-line code which we focus on in this paper.

Gappa [6] is a general purpose finite-precision analysis tool inferring roundoff
error bounds, but is not limited to only those. It bounds roundoff errors with a
dataflow analysis like FloVer’s using intervals as the abstract domain. A certifi-
cate in Gappa is encoded as a chain of lemmas proven at checking time, whereas
FloVer encodes certificates as a call to a function proven sound once and forall.
Gappa already supports subdivisions and, as it emits Coq proofs, we believe that
the SMT extension in this paper can also improve its computed error bounds.

2 Extensions to FloVer

Figure 1 illustrates FloVer’s modular checker structure. Each checker function
is first proven correct individually and the separate proofs are then combined

https://gitlab.mpi-sws.org/AVA/FloVer/tree/SMT_Subdiv
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into an overall soundness theorem which states that if all checker functions are
successful, the roundoff error bound encoded in the certificate is sound. This
design facilitates relatively easy extensions, and allows for efficient certificate
checking; verifying a certificate does not require any formal proofs at certificate
checking time, or formal proof expertise by the user.

FloVer supports arithmetic expressions (+,−, ∗, /), a fused-multiply-add op-
eration and let-bindings. As other dataflow analysis based tools, FloVer splits
checking of roundoff error bounds into checking of real-valued range bounds (Real
Range Checker in Figure 1) and checking of error bounds (Roundoff Error Checker).
Roundoff error bounds are checked for mixed-precision programs with 16, 32 and
64 bit floating-points, or arbitrary fixed-point precisions. The type checker (Type
Inference) verifies that all mixed-precision type assignments are valid. Compo-
nent Machine Range Checker checks that evaluation results can be represented in
their inferred type, i.e. no overflow occurs.

A certificate checked by FloVer encodes only the minimum necessary infor-
mation: the analyzed expression f , range (ΦR) and roundoff error bounds (ΦE)
inferred by a static analysis tool, the precondition constraining input variables
(P ), a type assignment Γ , the queries to the SMT solver (Q) and the interval
subdivisions (S). Our extensions are marked in Figure 1 by dashed lines. We im-
plement SMT-based range estimation as a real-valued range analysis (Real Range

Checker). Interval subdivision is implemented on top of the existing components
(Subdivision Checker) and reuses FloVer’s existing checker functions internally.

Extension 1: Tighter Ranges using SMT Oracles. Our first extension to FloVer
introduces an abstract domain for computing tighter range bounds based on
the existing analysis implemented in the static analyzer Daisy [5]. This analysis
tracks ranges as plain intervals and achieves better accuracy by using a nonlinear
decision procedure provided by an SMT solver to track nonlinear correlations,
which cannot be captured by the existing interval and AA-based domains.

Given an expression e, a range bound [elo, ehi] is first computed using interval
arithmetic. Next, the analysis attempts to tighten elo and ehi separately. For the
lower bound, it queries an SMT solver whether e, constrained by the precondi-
tion, can take a value which is smaller than some e′lo with elo < e′lo If the query
is unsatisfiable, the tighter bound [e′lo, ehi] is sound, and tightenting repeats a
predetermined number of times using a binary search. Tightening of the upper
bound is analogous. If the solver times out, the bound is not tightened.

The SMT-based analysis in Daisy makes multiple queries to the SMT solver
for tightening a single range. Of these queries, only the last unsatisfiable one
for each lower and upper bound is relevant for correctness. We thus instrument
Daisy such that these last queries are saved and encoded in a certificate. We do
not otherwise modify Daisy.

During certificate checking, we treat the results of SMT queries as oracles.
Verifying the query results themselves would require proof reconstruction which
current SMT solvers do not support due to the complexity of nonlinear arith-
metic. Instead, we trust the SMT solver, but keep the amount of queries that
must be trusted to a minimum by storing only the last queries.
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We implemented the SMT component of the Real Range Checker from Figure 1
in the checker function validSMTBounds (f, P, ΦR, Q) by structural recursion on
the AST of the analyzed expression f. For each subexpression of f, a sound
interval enclosure is computed first using existing FloVer infrastructure. If Q

contains SMT queries which were used to improve the lower or upper bound,
validSMTBounds checks first that the queries were correctly encoded by Daisy (we
check that the expression and precondition encoded in the query match the
currently analyzed expression and the precondition given in the certificate). If
this check succeeds, the function checks that the range bound can be tightened
to the new bound encoded in the query. Finally, FloVer checks that the inferred
range bound is contained in the interval enclosure encoded in the analysis result
ΦR. The soundness proof of validSMTBounds shows that if the checker succeeds, the
range bound encoded in ΦR is valid.

Extension 2: Interval Subdivision. The second analysis we implement in FloVer
is interval subdivision, which splits the input domain into equally-sized sub-
domains. The range and roundoff error analyses are then run on each subdo-
main separately and joined together into a global analysis result. The over-
approximations on each subdomain tend to be smaller, which increases the over-
all tightness of range and error bounds.

Checker function validSubdivs (f, P, ΦR, ΦE, S) implements checking of in-
terval subdivisions, where S is a list of subdomains, represented as quadruples
(PS, ΦSR, Φ

S
E, Q

S). The checker function checks correctness for each subdomain in S

by calling the existing certificate checker on f, PS, ΦSR, ΦSE, and QS. validSubdivs
checks that the global analysis results ΦR and ΦE are upper bounds for the current
subdivision results ΦSR and ΦSE for each subexpression of f . Performing this check
on every element of S proves correctness of the global analysis results ΦR and ΦE.

Finally, validSubdivs checks that the subdomains (PS) cover the overall input
domain (encoded in P), to ensure that Daisy did not forget a subdomain in
the roundoff error computation. The check iterates over the free variables of
f. For each free variable x and subinterval [xlo, xhi] we check that there exist
subdomains where PS maps x to [xlo, xhi] and the union of these subdomains
covers the full global range constraint for all other free variables. This essentially
checks for each free variable that Daisy computed the correct cartesian product.

The soundness theorem for both our extensions is:
Theorem 1. Let f, P, ΦR, ΦE, and S be as before. If for all (PS, ΦSR, ΦSE, QS) in
S the queries encoded in QS are unsatisfiable, and validSubdivs(f, P, ΦR, ΦE, S)
succeeds, there exists an idealized real-value vR, a finite-precision value vF and a
precision m, such that f evaluates to vR under an idealized real-valued seman-
tics, vF has precision m, and f evaluates to vF under finite-precision semantics.
Furthermore, ΦE(f) is an upper bound to the roundoff error |vR − vF|.

3 Experiments

We have evaluated our extension of FloVer to check whether it can verify more
precise error bounds with reasonable certificate checking times. As neither SMT-
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Benchmark Interval Affine SMT Subdiv SMT &
Subdiv Cmp. FPTaylor

Bspline0 2.41e-16 2.41e-16 2.41e-16 2.41e-16 2.41e-16 1.00 1.39e-16
Bspline1 1.52e-15 1.60e-15 1.35e-15 1.28e-15 1.19e-15 0.79 5.15e-16
Bspline2 1.41e-15 1.45e-15 1.19e-15 1.26e-15 1.16e-15 0.83 5.43e-16
Bspline3 1.30e-16 1.30e-16 1.30e-16 1.30e-16 1.30e-16 1.00 8.33e-17
Doppler 6.53e-13 5.61e-12 6.12e-13 3.03e-13 3.03e-13 0.46 1.22e-13
DopplerFMA 6.41e-13 5.51e-12 6.00e-13 2.99e-13 2.99e-13 0.47 1.21e-13
Floudas26 1.05e-12 1.07e-12 8.13e-13 1.04e-12 ⊥% 0.77 7.74e-13
Floudas33 7.29e-13 7.29e-13 4.93e-13 7.29e-13 ⊥% 0.68 6.20e-13
Floudas34 3.11e-15 3.11e-15 3.11e-15 3.11e-15 ⊥% 1.00 2.22e-15
Floudas46 1.55e-15 1.55e-15 1.55e-15 1.55e-15 ⊥% 1.00 1.55e-15
Floudas47 2.80e-14 2.85e-14 2.30e-14 2.73e-14 ⊥% 0.82 1.67e-14
Floudas1 7.29e-13 7.29e-13 4.93e-13 7.29e-13 ⊥% 0.68 5.76e-13
Himmilbeau 3.42e-12 3.42e-12 1.50e-12 1.50e-12 1.50e-12 0.44 1.00e-12
InvPendulum 5.37e-14 5.37e-14 5.37e-14 5.37e-14 5.37e-14 1.00 3.84e-14
JetEngine ⊥0 ⊥0 1.67e-08 ⊥0 1.87e-10 — 1.72e-11
Kepler0 1.85e-13 1.77e-13 1.77e-13 1.70e-13 1.65e-13 0.93 7.71e-14
Kepler1 8.97e-13 8.21e-13 8.47e-13 7.07e-13 6.63e-13 0.81 3.04e-13
Kepler2 4.13e-12 3.81e-12 3.77e-12 3.75e-12 3.52e-12 0.93 1.60e-12
RigidBody1 5.58e-13 5.58e-13 5.58e-13 5.58e-13 5.58e-13 1.00 2.95e-13
RigidBody2 6.57e-11 6.57e-11 6.57e-11 6.57e-11 6.57e-11 1.00 3.61e-11
Verhulst 8.34e-16 8.34e-16 8.34e-16 7.01e-16 7.01e-16 0.84 3.24e-16
PredatorPrey 3.40e-16 3.47e-16 3.40e-16 3.20e-16 3.20e-16 0.94 1.84e-16
CarbonGas 5.69e-08 5.67e-08 5.49e-08 2.07e-08 2.03e-08 0.36 9.13e-09
Turbine1 1.59e-13 1.59e-13 1.50e-13 6.49e-14 6.32e-14 0.40 1.67e-14
Turbine2 2.21e-13 2.23e-13 2.09e-13 5.89e-14 5.64e-14 0.26 2.00e-14
Turbine3 1.11e-13 1.11e-13 1.04e-13 2.47e-14 2.43e-14 0.22 8.69e-15

Table 1. Roundoff errors verified by FloVer and FPTaylor

based techniques nor interval subdivisions improve precision for linear bench-
marks our evaluation focuses on nonlinear ones. For our experiments we used a
Debian 9 machine with a 3.3GHz four-core Intel i5-6600 processor and 16 GB of
main memory. Daisy uses Z3 [7] for the SMT-based analysis. When using interval
subdivision we split at most 3 input ranges into 5 subintervals each, resulting in
at most 125 subdomains.

Precision Improvements. Table 1 compares the roundoff errors verified by the ex-
isting version of FloVer [3] (columns ‘Interval’ and ‘Affine’) with those verified by
our extensions (columns ‘SMT’ and ‘Subdiv’) and those computed by FPTaylor,
a state-of-the-art optimization-based analyzer. Column ‘SMT & Subdiv’ shows
roundoff errors computed using both interval subdivision and SMT-based range
estimation. All errors are computed for uniform 64-bit floating-point precision.

Column ‘Cmp.’ shows the ratio by which our new analyses improve over the
roundoff error that could be verified by FloVer before (best new analysis / best
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Benchmark Interval Affine SMT Subdiv SMT & Subdiv
Daisy Coq Daisy Coq Daisy Coq Daisy Coq Daisy Coq

Bsplines 3.00 3.51 2.95 3.55 7.77 3.83 3.71 12.57 10.63 12.82
Doppler 6.04 6.70 2.71 7.36 5.22 4.95 6.1 237.25 86.54 237.86
DopplerFMA 2.57 4.20 2.72 6.99 5.46 4.05 5.29 167.01 86.08 172.64
Floudas 3.93 5.58 4.24 5.68 58.1 11.26 13.04 672.86 ⊥% ⊥%

Himmilbeau 2.83 3.21 2.91 3.63 5.96 3.46 3.85 23.77 31.3 25.33
InvPendulum 2.68 3.14 2.71 3.48 4.89 3.46 4.28 50.82 67.65 50.86
JetEngine ⊥0 ⊥0 ⊥0 ⊥0 34.28 47.07 ⊥0 ⊥0 120.99 1158.97
Kepler 3.21 12.53 3.2 13.44 55.99 13.15 12.38 1326.32 1840.17 1427.25
RigidBody 2.68 3.92 2.74 3.57 11.25 4.07 5.79 138.86 275.19 155.98
Science 2.89 6.87 2.89 420.50 7.73 6.88 3.8 25.99 12.86 26.69
Turbine 3.56 12.98 3.79 19.77 12.89 13.25 14.04 1476.35 331.98 1507.11

Table 2. Running times for Daisy and FloVer in seconds

previous analysis), values < 1.0 mean that a tighter roundoff error bound can
be proven. We highlight the smallest roundoff error among all verifiers in bold.

While FPTaylor usually computes the best roundoff error, the errors verified
by our extension bring FloVer closer to the state-of-the-art. FloVer further sup-
ports fixed-point arithmetic which FPTaylor does not (which is why we perform
the comparison in floating-points). For none of our benchmarks the roundoff
error has become worse and we further achieve significant improvements where
the new roundoff error is up to 4.5 times smaller than the old roundoff error
(Turbine3). Verifying SMT-based results also allowed us to compute and verify
a roundoff error for the JetEngine benchmark, for which interval and affine arith-
metic report a spurious division by zero error (denoted by ⊥0). For the Floudas
benchmarks, Daisy does not compute any roundoff error when using both SMT
and subdivision due to a missing check for empty subdomains (denoted by ⊥%).

Running Times. We give the overall certificate checking times of FloVer for each
benchmark in Table 2. For each of the analyses supported by FloVer, we give the
end-to-end running times for both Daisy and FloVer’s Coq implementation on
the full benchmark file (one file may include multiple functions and thus multiple
calls to the certificate checker). The certificate checking times for our extension
are higher than those of the baseline as expected, but remain reasonable (below
2 hours for the most complex benchmark). FPTaylor’s checking times are in the
same order of magnitude as those for SMT with subdivisions.

Summary. Our evaluation has shown that checking certificates with our ex-
tension of FloVer is feasible and improves its accuracy. Given the implemented
analyses, FloVer now supports the same analyses as the state-of-the-art dataflow-
analysis based tool Daisy. FloVers Coq formalization makes it reusable for other
tools like Gappa to increase their precision using SMT-based range estimation
and interval subdivision.
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