
Combining Tools for Optimization and Analysis
of Floating-Point Computations

Heiko Becker1, Pavel Panchekha2, Eva Darulova1, and Zachary Tatlock2

1 MPI-SWS {hbecker,eva}@mpi-sws.org
2 University of Washington {pavpan,ztatlock}@cs.washington.edu

Abstract. Recent renewed interest in optimizing and analyzing floating-
point programs has lead to a diverse array of new tools for numerical
programs. These tools are often complementary, each focusing on a dis-
tinct aspect of numerical programming. Building reliable floating point
applications typically requires addressing several of these aspects, which
makes easy composition essential. This paper describes the composition
of two recent floating-point tools: Herbie, which performs accuracy opti-
mization, and Daisy, which performs accuracy verification. We find that
the combination provides numerous benefits to users, such as being able
to use Daisy to check whether Herbie’s unsound optimizations improved
the worst-case roundoff error, as well as benefits to tool authors, includ-
ing uncovering a number of bugs in both tools. The combination also
allowed us to compare the different program rewriting techniques imple-
mented by these tools for the first time. The paper lays out a road map
for combining other floating-point tools and for surmounting common
challenges.

1 Introduction

Across many domains, numerical computations specified over the reals are ac-
tually implemented using floating-point arithmetic. Due to their finite nature,
operations on floating-point numbers cannot be calculated exactly and accumu-
late roundoff errors. In addition, real-valued identities such as associativity no
longer hold, making manual reasoning and optimization challenging. To address
these challenges, new automated tools have recently been developed which build
on advances in program rewriting and verification techniques to enable even
non-experts to analyze and optimize their floating point code.

Some of these tools use sound techniques to statically bound roundoff errors
of straight-line floating-point programs [9,12,22,15,16,8] and partially automate
complex analysis tasks [18,10]. Other such tools use dynamic techniques to find
inputs that suffer from large rounding errors [4,23]. Yet other tools perform
rewriting-based optimization [5,17,20,8] and mixed-precision tuning [3,7] to im-
prove the accuracy and performance of floating-point programs.

Since these tools are typically complementary, each focusing on a distinct
aspect of numerical reliability, users will need to compose several to meet their
development needs. This makes ease of composition essential, and some first

mailto:hbecker@mpi-sws.org
mailto:eva@mpi-sws.org
mailto:pavpan@cs.washington.edu
mailto:ztatlock@cs.washington.edu


steps in this regard have been taken by the FPBench project [6], which provides a
common specification language for inputs to floating-point analysis tools similar
to the one provided by the SMT-LIB standard [1]. However, no literature yet
exists on the actual use of FPBench to compose tools and on the challenges that
stand in the way of combining different floating-point tools, such as differing
notions of error and different sets of supported functions.

In this paper we report on our experience implementing the first combination
of two complementary floating-point analysis tools using FPBench: Herbie [17]
and Daisy [8]. Herbie optimizes the accuracy of straight-line floating-point ex-
pressions, but employs a dynamic roundoff error analysis and thus cannot pro-
vide sound guarantees on the results. In contrast, Daisy performs static analysis
of straight-line expressions, which is sound w.r.t. IEEE754 floating-point seman-
tics [13]. Our combination of the tools is implemented as a script in the FPBench
repository (https://github.com/FPBench/FPBench).

We see this combination of a heuristic and a sound technique as particularly
interesting; Daisy can act as a backend for validating Herbie’s optimizations.
Daisy computes improved worst-case roundoff error bounds for many (but not
all) expressions optimized by Herbie. On others it raises an alarm, discovering
division-by-zero errors introduced by Herbie. We also improved the precision of
Daisy’s analysis of special functions as we found that some were sound but not
accurate enough. Thus, the combination was also useful in uncovering limitations
of both tools.

Daisy additionally implements a sound genetic programming-based accuracy
optimization procedure. Our combination of Daisy and Herbie allows us to com-
pare it to Herbie’s unsound procedure based on greedy search. We discover im-
portant differences between the two procedures, suggesting that the techniques
are not competitive but in fact complementary and best used in combination.

Some of the challenges we encountered, such as differing supported functions
and different error measures, are likely to be encountered by other researchers
or even end users combining floating-point tools, and our experience shows how
these challenges can be surmounted. Our evaluation on benchmarks from the
FPBench suite also shows that tool composition can provide end-to-end results
not achievable by either tool in isolation and suggests that further connections
with other tools should be investigated.

2 Implementation

The high-level goal of our combination is to use Daisy as a verification backend
to Herbie to obtain a sound upper bound on the roundoff error of the expression
returned by Herbie. By also evaluating the roundoff error of Herbie’s output and
of the input expression, we can obtain additional validation of the improvement.
It should be noted, however, that Daisy cannot verify whether the actual worst-
case or average roundoff error has decreased—a decrease in the computed upper
bound can be due to an actual decrease or simply due to a stronger static bound.

https://github.com/FPBench/FPBench


fres = Herbie(fsrc)

errsrc = min{ Daisy(A, FPCore2Scala(fsrc)) | A <- AnalysisTypes }

errres = min{ Daisy(A, FPCore2Scala(fres)) | A <- AnalysisTypes }

Fig. 1. Pseudocode of the script used to compose Herbie and Daisy into a single tool;
AnalysisTypes contains different modes Daisy can be run in.

In many cases, however, such as in safety-critical systems, just proving a smaller
static bound is already useful.

We have implemented the combination in a script, which we sketch in Fig-
ure 1. For each straight-line input program fsrc, we first run Herbie to compute
an optimized version fres. Both the optimized and unoptimized version are trans-
lated into Daisy’s input format (using FPCore2Scala), and Daisy is run on both
versions to compute error bounds.

Daisy supports several different types of error analysis, and we run Daisy in
a portfolio style, where the tightest bound computed by any of the analyses is
used. In particular, we use the interval analysis with subdivisions mode and the
SMT solver mode (with Z3 [11] as the solver).3 Since each analysis is sound, this
provides the tightest error bound that Daisy can prove.

When implementing the script that runs Herbie and Daisy together we had
to address two major differences between the two tools: Herbie and Daisy use
different input (and output) formats, and Daisy requires domain bounds on
all input variables, whereas Herbie allows unbounded inputs. While the imple-
mented script is simple, it took several iterations to implement. The most time
consuming part was the improvements that only became apparent after running
the tools together. We will first explain how we solved the two differences be-
tween Daisy and Herbie and then give an overview on the improvements in both
tools.

Formats To avoid having to add new frontends, we implemented a transla-
tor from FPBench’s FPCore format to Daisy’s Scala-based input language. As
Herbie produces optimized expressions in FPCore, this translator allows us to
run Daisy on both the benchmarks and on Herbie’s optimized expressions. This
translator is now part of the FPBench toolchain and can be used by other re-
searchers and by users to integrate Daisy with other tools developed as part of
the FPBench project.

Preconditions Both Daisy and Herbie allow preconditions for restricting the valid
inputs to a floating-point computation. For Herbie, these preconditions are op-
tional. In contrast, Daisy requires input ranges for performing a forward dataflow
analysis to compute sound absolute roundoff error bounds. Several of the bench-
marks in FPBench did not have a specified precondition. For our experiments,
3 We found that neither interval analysis without subdivision nor alternate SMT
solvers provided tighter bounds.



we manually added a meaningful precondition to these programs, with precondi-
tions chosen to focus on input values with significant rounding errors. To avoid
biasing the results, the preconditions were simple order-of magnitude ranges for
each variable, with the endpoints of these ranges chosen from 1, 1010, or 1020

and their inverses and negations.

Improvements in Daisy and Herbie Connecting Daisy and Herbie and running
each on several previously unseen benchmarks uncovered numerous possibilities
for improvements in Herbie and Daisy.

In Herbie, several bugs were discovered by our efforts: an incorrect type-
checking rule for let statements (which would reject some valid programs); incor-
rect handling of duplicate fields (which allowed one field to improperly override
another); and an infinite loop in the sampling code (triggered by some precondi-
tions). Real users running older versions of Herbie have since also reported these
bugs, suggesting that issues addressed during tool composition helped improve
user experience generally.

In Daisy, we discovered that the analysis of elementary functions was un-
necessarily conservative and improved the rational approximations used. Error
handling in both tools was also improved such that issues like (potential) divi-
sions by zero or timeouts are now accurately reported. This more precise feedback
significantly improves user friendliness and reduces debugging time.

3 Experimental Results

We perform two evaluations of our combination of Daisy and Herbie: we first
use Daisy as a verification backend for Herbie and then we compare Daisy’s and
Herbie’s rewriting algorithms. Both experiments use all supported benchmarks
from the FPBench suite. We give the full table with all the evaluation data in our
technical report [2]. The experiments were run on a machine with an i7-4790K
CPU and 32GB of memory. For each benchmark we give both Daisy and Herbie
a timeout of 10 minutes.

Composing Daisy and Herbie Our first experiment considers Daisy solely as a
tool for computing floating-point error bounds. Herbie is then used to attempt
to improve the benchmark’s accuracy.

Of the 103 benchmarks, Herbie times out on 31 of them. Of the remaining 72
benchmarks, Daisy raises an alarm4 on 24 and can prove a bound on 48. Of the
48 benchmarks where Daisy can prove an error bound, Daisy’s roundoff error
analysis can prove a tighter worst-case error bound for 22 of Herbie’s outputs,
an equal bound for 18, and a looser bound for 8. These results are summarized
in the left-most graph in Figure 2.

Of the 24 benchmarks where Daisy raises an alarm, for 13 Daisy raises an
alarm on the original input program and for 16 the alarm is raised on the output
4 Indicating that it could not prove the absence of invalid operations, such as divisions
by zero.



-3
0. . .

-2
0

-1
9

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0-9-8-7-6-5-4-3-2-1012

H
er
bi
e

D
ai
sy

B
ot
h

F
ig

.2
.
T
he

or
de

rs
of

m
ag
ni
tu
de

ch
an

ge
in

D
ai
sy
’s

w
or
st

ca
se

er
ro
r
es
ti
m
at
e
af
te
r
re
w
ri
ti
ng

w
it
h
H
er
bi
e,

D
ai
sy
,
an

d
bo

th
H
er
bi
e
an

d
D
ai
sy

(l
ef
t
to

ri
gh

t)
.
N
ot
e
th
at

co
m
bi
ni
ng

bo
th

re
w
ri
ti
ng

al
go
ri
th
m
s
ke
ep

s
th
e
la
rg
e
be

ne
fic
ia
l
ch
an

ge
s
in
tr
od

uc
ed

by
H
er
bi
e
bu

t
av
oi
ds

it
s
de

tr
im

en
ta
lc

ha
ng

es
.



program Herbie produced. Some of these alarms are true positives while others
are spurious. For example, in some benchmarks Herbie had introduced a possible
division by 0, which Daisy was able to detect. In others, the output contained
expressions like 1/(x(1 + x)), with 1010 < x < 1020, where Daisy is unable to
prove that no division by zero occurs.

We see this as good evidence that Daisy can be used as a verification back-
end for Herbie. One challenge is that Daisy’s error analysis can only show that
Herbie’s output has a smaller error bound, not that it is more accurate at any
particular point on the original program. Additionally, it is difficult to determine
which of Daisy’s alarms are spurious. Despite these challenges, the combination
of Daisy and Herbie was able to produce large, verified improvements in rounding
error in many benchmarks.

Comparing Daisy’s and Herbie’s Error Measures One topic of particular interest
in combining Daisy and Herbie is their different measures of floating-point error.
Herbie measures the error in terms units in the last place, or ULPs. To compute
this error, Herbie randomly samples input values and takes the average of error
across those inputs. It thus provides a dynamic, unsound measure of average
ULPs of error. Daisy, meanwhile, uses a mathematical abstraction based on
the definition of rounding and IEEE754 operator semantics to provide static,
sound bounds on the maximum absolute error. The relationship between these
two measures of error is central to using Herbie and Daisy together.

Despite these stark differences between Herbie’s and Daisy’s error measures,
our evaluation data shows that Daisy and Herbie can be fruitfully used together:
Daisy verifies that Herbie’s improved program is no less accurate for 40/48 of
the benchmarks. This suggests that, though Daisy and Herbie use very different
means to measure error, both are successfully measuring the same underlying
notion of error. The fact that Daisy’s and Herbie’s error measures are suited to
their particular approaches (static analysis and program search) suggests that
future tools should focus not on measuring error “correctly” but on finding an
error measure well suited to their technical approach.

Comparing Daisy and Herbie Our second experiment compares Daisy’s and Her-
bie’s rewriting algorithms. Daisy uses genetic programming to search for a pro-
gram with a tighter bound. Herbie, by contrast, uses a greedy search over a suite
of different rewriting steps. We compare Herbie’s rewriting algorithm, Daisy’s
rewriting algorithm, and Daisy’s rewriting algorithm applied to the results of
Herbie’s rewriting algorithm. Figure 2 summarizes the accuracy improvements.

Of the 103 benchmarks, at least one of the rewriting algorithms succeeds
on 71. Of the 71, Daisy’s rewriting algorithm tightens the worst-case bound for
42 benchmarks; Herbie’s for 22 benchmarks; and the combination for 34 bench-
marks. Furthermore, Herbie’s rewriting algorithm loosens the worst-case bound
for 8 benchmarks, a consequence of its unsound error measurement technique or
differing notion of error, while the combination does so for only 2.

Not only the number but also size of the error improvement matters. Daisy’s
rewriting algorithm was able to reduce the error bound by a factor of 1.39 (0.14



orders of magnitude) on average; Herbie’s by a factor of 13.07 (1.12 orders of
magnitude); and the combination by a factor of 15.3 (1.18 orders of magnitude).
The combination clearly provided the greatest reduction in error bounds; fur-
thermore, Daisy’s algorithm provides larger benefits when applied to Herbie’s
optimized program than when applied to the benchmark directly.

It seems that Daisy’s rewriting algorithm provides a fairly consistent but
small tightening of error bounds, while Herbie’s algorithm can suggest dramatic
and unexpected changes in the expression. However, these large changes some-
times have significantly looser error bounds. In those cases, combining Herbie’s
and Daisy’s rewriting algorithms provides a tighter error bound, reaping the ben-
efits of Herbie’s rewriting algorithm without the large increases in error bounds
that it sometimes causes.

4 Discussion

This paper reports on the combination of Daisy and Herbie and illustrates the
benefits of composing complementary floating-point tools to achieve results nei-
ther tool provides in isolation. This case study serves as a representative exam-
ple: similar combinations could be constructed for other tools using this paper’s
approach. Combinations of Gappa [10], Fluctuat [12], FPTaylor [22], or other
verification tools [9,15,16] with Herbie could also allow validating Herbie’s opti-
mizations. Verification tools could also be used to validate the output of other
unsound tools, such as Precimonious [19] and STOKE [21]. Comparisons with
sound optimization tools such as Salsa [5] and FPTuner [3] could also be ex-
plored.

Ultimately, we envision using the combination of Daisy and Herbie within
larger developments such as VCFloat [18]. VCFloat provides partial automation
for reasoning about floating-point computations in CompCert C-light [14] pro-
grams. In this context, our toolchain could provide an optimization tactic, that
could be applied to (provably) increase accuracy for floating-point segments of
C-light programs.

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK) (2010)

2. Becker, H., Panchekha, P., Darulova, E., Tatlock, Z.: Combining tools for optimiza-
tion and analysis of floating-point computations. arXiv preprint arXiv:1805.02436
(2018)

3. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous Floating-Point Mixed-Precision Tuning. In: Symposium on
Principles of Programming Languages (POPL). pp. 300–315. ACM (2017)

4. Chiang, W.F., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient Search
for Inputs Causing High Floating-point Errors. In: Symposium on Principles and
Practice of Parallel Programming (PPoPP). vol. 49, pp. 43–52. ACM (2014)



5. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of the
numerical accuracy of programs. In: Formal Methods for Industrial Critical Sys-
tems. pp. 31–46. Springer (2015)

6. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock, Z.:
Toward a Standard Benchmark Format and Suite for Floating-Point Analysis. In:
International Workshop on Numerical Software Verification. pp. 63–77. Springer
(2016)

7. Darulova, E., Horn, E., Sharma, S.: Sound Mixed-Precision Optimization with
Rewriting. In: International Conference on Cyber-Physical Systems (ICCPS)
(2018)

8. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- Framework for Analysis and Optimization of Numerical Programs. In: Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (2018)

9. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. ACM Transactions on
Programming Languages and Systems (TOPLAS) 39(2), 8 (2017)

10. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted Verification of Elementary
Functions using Gappa. In: ACM Symposium on Applied Computing. pp. 1318–
1322. ACM (2006)

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. TACAS’08/ETAPS’08
(2008), http://dl.acm.org/citation.cfm?id=1792734.1792766

12. Goubault, E., Putot, S.: Robustness Analysis of Finite Precision Implementations.
In: Asian Symposium on Programming Languages and Systems (APLAS). pp. 50–
57. Springer (2013)

13. IEEE, C.S.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008
(2008)

14. Leroy, X.: Formal Verification of a Realistic Compiler. Communications of the
ACM 52(7) (2009)

15. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Transactions on Mathematical Software
43(4), 1–34 (2017)

16. Moscato, M., Titolo, L., Dutle, A., Munoz, C.A.: Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis. In: International Conference
on Computer Safety, Reliability, and Security. pp. 213–229. Springer (2017)

17. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Im-
proving Accuracy for Floating Point Expressions. In: Conference on Programming
Language Design and Implementation (PLDI) (2015)

18. Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A Unified Coq Frame-
work for Verifying C Programs with Floating-Point Computations. In: Certified
Programs and Proofs (CPP). pp. 15–26. ACM (2016)

19. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: Tuning assistant for floating-
point precision. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 27:1–27:12. SC ’13, ACM
(2013)

20. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding Root Causes of
Floating Point Error with Herbgrind. arXiv preprint arXiv:1705.10416 (2017)

21. Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point pro-
grams with tunable precision. In: Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 53–64. PLDI
’14, ACM (2014)

http://dl.acm.org/citation.cfm?id=1792734.1792766


22. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous Esti-
mation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In:
International Symposium on Formal Methods (FM). pp. 532–550. Springer (2015)

23. Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A Genetic Algorithm for
Detecting Significant Floating-point Inaccuracies. In: IEEE International Confer-
ence on Software Engineering (ICSE). vol. 1, pp. 529–539. IEEE (2015)


	Combining Tools for Optimization and Analysis of Floating-Point Computations

