
Lassie: HOL4 Tactics by Example
Heiko Becker

MPI-SWS,
Saarland Informatics Campus (SIC)

Germany
hbecker@mpi-sws.org

Nathaniel Bos∗
McGill University

Canada
nathaniel.bos@mail.mcgill.ca

Ivan Gavran
MPI-SWS
Germany

gavran@mpi-sws.org

Eva Darulova
MPI-SWS
Germany

eva@mpi-sws.org

Rupak Majumdar
MPI-SWS
Germany

rupak@mpi-sws.org

Abstract
Proof engineering efforts using interactive theorem proving
have yielded several impressive projects in software systems
andmathematics. A key obstacle to such efforts is the require-
ment that the domain expert is also an expert in the low-level
details in constructing the proof in a theorem prover. In par-
ticular, the user needs to select a sequence of tactics that lead
to a successful proof, a task that in general requires knowl-
edge of the exact names and use of a large set of tactics.

We present Lassie, a tactic framework for the HOL4 theo-
rem prover that allows individual users to define their own
tactic language by example and give frequently used tac-
tics or tactic combinations easier-to-remember names. The
core of Lassie is an extensible semantic parser, which allows
the user to interactively extend the tactic language through
a process of definitional generalization. Defining tactics in
Lassie thus does not require any knowledge in implementing
custom tactics, while proofs written in Lassie retain the cor-
rectness guarantees provided by the HOL4 system. We show
through case studies how Lassie can be used in small and
larger proofs by novice and more experienced interactive
theorem prover users, and how we envision it to ease the
learning curve in a HOL4 tutorial.

CCS Concepts: • Software and its engineering → For-
mal software verification; Programming by example;
Macro languages.

Keywords: Interactive Theorem Proving, HOL4, Semantic
Parsing, Tactic Programming

∗Nathaniel Bos was supported by a DAAD RISE Internship.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8299-1/21/01.
https://doi.org/10.1145/3437992.3439925

ACM Reference Format:
Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Ru-
pak Majumdar. 2021. Lassie: HOL4 Tactics by Example. In Proceed-
ings of the 10th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’21), January 18–19, 2021, Virtual, Den-
mark. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3437992.3439925

1 Introduction
Interactive theorem proving is increasingly replacing “pen-
and-paper” correctness proofs in domains such as compil-
ers [22, 24], operating system kernels [23], and formalized
mathematics [14, 16]. Interactive theorem provers (ITPs) pro-
vide strong guarantees: all proof steps are formalized and
machine-checked by a kernel using only a small set of gen-
erally accepted proof rules.

These guarantees come at a cost. Writing proofs in an ITP
requires both domain expertise in the target research area as
well as in the particulars of the interactive theorem prover.
Formally proving a theorem requires an expert to manually
translate the general high-level proof idea from a pen-and-
paper proof into detailed, low-level kernel proof steps, which
makes writing formal proofs tedious and time-consuming.
Theorem provers thus provide tactic languages that allow to
programmatically combine low-level proof steps [10, 15, 26,
37]. While this makes proofs less tedious, users need to build
up a vocabulary of appropriate tactics, which constitutes a
steep learning curve for novice ITP users.
Controlled natural language interfaces [1, 11] have been

explored as an alternative, more intuitive interface to an ITP.
However, these systems do not allow a combination with a
general tactic language and are thus constrained to a specific
subset of proofs.

In this paper, we present the tactic framework Lassie that
allows HOL4 users to define their own tactic language on
top of the existing ones by example, effectively providing
an individualized interface. Each example consists of the
to-be-defined tactic (a natural language expression, called
utterance) and its definition using existing HOL4 tactics with
concrete arguments.

https://doi.org/10.1145/3437992.3439925
https://doi.org/10.1145/3437992.3439925
https://doi.org/10.1145/3437992.3439925

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

For instance, we can define

instantiate 'x' with '⊤'

as

qpat_x_assum 'x' (qspec_then '⊤' assume_tac)

Newly defined Lassie tactics map directly and transparently
to the underlying HOL4 tactics, and can be freely combined.

The main novelty to existing tactic languages is that Lassie
allows to define tactics by example and thus does not require
knowledge in tactic programming. A tactic defined by ex-
ample is automatically generalized into a parametric tactic
by Lassie to make the tactic applicable in different contexts,
making Lassie go beyond a simple macro system.

Our key technical contribution is that Lassie realizes this
definition-by-example using an extensible semantic parser [4,
35]. Lassie tactics are defined as grammar rules that map to
HOL4 tactics. Lassie starts with an initial core grammar that
is gradually extended through user-provided examples. For
each example, the semantic parser finds matchings between
the utterance and its definition. These matchings are used to
create new rules for the grammar. Effectively, the semantic
parser identifies the parameters of the newly given com-
mand, and thus generalizes from the given example. In our
illustrative example, Lassie will identify 'x' and ⊤ as argu-
ments and add a rule that will work with arbitrary terms in
place of 'x' and ⊤.
Typically, extending a grammar through examples leads

to ambiguity—for a single uterance-definition pair, there
may be different possible matchings and thus several new
parsing rules introduced. In previous work [35], this ambi-
guity was resolved through user interaction, e.g. showing
the user a visualization of different parses and letting them
choose the parse with the intended effect. However, it is non-
trivial to visualize intermediate steps in a general-purpose
programming language. Our core insight is that ITPs offer
an ideal setting to resolve this ambiguity. We show that by
carefully designing the core grammar and by making use
of type information, the ambiguity can be resolved auto-
matically. Furthermore, ITPs “visualize” individual steps by
showing the intermediate proof state, and rule out wrong
tactic definitions by forcing proofs to be checked by the ITP
systems kernel.

Lassie’s target audience are trained ITP users who imple-
ment decision procedures and simple tactic descriptions in
Lassie. Lassie allows them to define their own individualized
language by defining easy-to-remember names for individ-
ual tactics, or (frequently used) combinations of tactics. A
tactic language implemented in Lassie can then used by non-
expert users with prior programming experience but without
necessarily in-depth experience with an ITP.
Compared to general tactic languages like ssreflect [15],

Ltac [10], and Eisbach [26], Lassie requires less expert knowl-
edge, at the expense of expressiveness. Similar to Lassie,

structured tactic languages like Isar [36] have an extended
parser. Extending a language like Isar requires editing the
source code, while Lassie supports different tactic languages
that can be defined simply by example. While Lassie can be
used to define a tactic language that is closer to a natural
language, by not requiring the interface to be entirely nat-
ural, Lassie is more general and flexible than systems like
Mizar [1] and Naproche-SAD [11].
We implement Lassie as a library for the HOL4 [32] ITP

system, but our technique is applicable to other theorem
provers as well. Lassie is fully compatible with standard
HOL4 proofs. Since all Lassie tactics map to standard HOL4
tactics, Lassie allows exporting a Lassie proof into standard
HOL4 to maintain portability of proofs. On the other hand,
the learned grammar can be ported as well and can be used,
for example, by a teacher to predefine a domain-specific
(tactic) language with Lassie, which is used by learners to
ease proofs in a particular area.

We demonstrate Lassie on a number of case studies prov-
ing theorems involving logic, and natural and real numbers.
In particular, we show the generality of the naturalized tac-
tics by reusing them across different proofs, and we show
that Lassie can be incrementally used for proofs inside larger
code bases. Finally, by predefining a tactic language with
Lassie, we develop a tutorial for the HOL4 theorem prover.

Contributions. In summary, this paper presents:
• an interactive, extensible framework called Lassie for
defining tactics in an ITP by example;

• an implementation of this approach inside HOL4 (avail-
able at https://github.com/HeikoBecker/Lassie);

• a number of case studies and a HOL4 tutorial (available
at https://github.com/HeikoBecker/HOL4-Tutorial)
showing the effectiveness of Lassie.

2 Lassie by Example
We start by demonstrating Lassie on a small example, before
explaining our approach in detail in Section 3.

For our initial example we choose to prove that the inverse
function (𝑥−1) on real numbers is inverse monotonic for ≤.
Figure 2 shows the formal statement of this theorem, together
with an (informal) proof that one may find in a textbook (the
proof uses a previously proven theorem about <).

Proofs inHOL4. Figure 1a shows the correspondingHOL4
theorem statement and proof. We can be sure that this proof
is correct, because it ismachine-checked byHOL4. HOL4 [32]
is an ITP system from the HOL-family. It is based on higher-
order logic and all proofs are justified by inference rules
from a small, trusted kernel. Its implementation language
is Standard ML (SML), and similar to other HOL provers
like HOL-Light [18], and Isabelle/HOL [27], proof steps are
described using so-called tactics that manipulate a goal state
until the goal has been derived from true.

https://github.com/HeikoBecker/Lassie
https://github.com/HeikoBecker/HOL4-Tutorial

Lassie: HOL4 Tactics by Example CPP ’21, January 18–19, 2021, Virtual, Denmark

Theorem REAL_INV_LE_AMONO:

∀ x y.

0 < x ∧ 0 < y ⇒
x−1 ≤ y−1 ⇔ y ≤ x

Proof

rpt strip_tac

\\ `x−1 < y−1 ⇔ y < x`
by (MATCH_MP_TAC REAL_INV_LT_ANTIMONO \\ fs [])

\\ EQ_TAC

\\ fs [REAL_LE_LT]

\\ STRIP_TAC

\\ fs [REAL_INV_INJ]

QED

(a) HOL4 proof

Theorem REAL_INV_LE_AMONO:

∀ x y.

0 < x ∧ 0 < y ⇒
x−1 ≤ y−1 ⇔ y ≤ x

Proof

nltac `
introduce assumptions.

show 'inv x < inv y <=> y < x'

using (use REAL_INV_LT_ANTIMONO

THEN follows trivially).

case split.

simplify with [REAL_LE_LT].

introduce assumptions.

simplify with [REAL_INV_INJ]. trivial.`
QED

(b) Lassie proof

Figure 1. HOL4 proof (left) and Lassie proof (right) for theorem REAL_INV_LE_AMONO

Theorem 1. ∀𝑥 𝑦, 0 < 𝑥 ∧ 0 < 𝑦 ⇒ 𝑥−1 ≤ 𝑦−1 ⇔ 𝑦 ≤ 𝑥

Proof 1. We show both sides of the implication separately.
To show (𝑥−1 ≤ 𝑦−1 ⇒ 𝑦 ≤ 𝑥), we do a case split on whether
𝑥−1 < 𝑦−1 or 𝑥−1 = 𝑦−1. If 𝑥−1 < 𝑦−1, the claim follows
because the inverse function is inverse monotonic for <. If
𝑥−1 = 𝑦−1, the claim follows from injectivity of the inverse.
To show the case (𝑦 ≤ 𝑥 ⇒ 𝑥−1 ≤ 𝑦−1), we do a case split on
whether 𝑦 < 𝑥 or 𝑦 = 𝑥 . If 𝑦 < 𝑥 the claim follows because the
inverse function is inverse monotonic for <. If 𝑦 = 𝑥 , the claim
follows trivially.

Figure 2. Textbook proof that the inverse function is inverse
monotonic for ≤

When doing a HOL4 proof, one first states the theorem to
be proven and starts an interactive proof. Figure 3 shows the
example proof statement from Figure 1a on the left and the
interactive session on the right. To show that the theorem
holds, the user would write a tactic proof at the place marked
with (*Proof *), startingwith the initial tactic rpt strip_tac,
sending each tactic to the interactive session on the right.

A HOL4 tactic implements e.g. a single kernel step, such as
assume_tac thm which introduces thm as a new assumption,
but a tactic can also implement more elaborate steps, like fs,
which implements a stateful simplification algorithm, and
imp_res_tac thm, resolving thm with the current assumptions
to derive new facts. In our example, rpt strip_tac repeatedly
introduces universally quantified variables and introduces
left-hand sides of implications as assumptions.

After each tactic application, the HOL4 session prints the
goal state that the user still needs to show, keeping track of

Theorem REAL_INV_LE_AMONO:

∀ x y.

0 < x ∧ 0 < y ⇒
(inv x ≤ inv y ⇔ y ≤ x)

Proof

rpt strip_tac

(* Proof *)

QED

1 subgoal:

val it =

0. 0 < x

1. 0 < y

x−1 ≤ y−1 ⇔ y ≤ x

: proof

>

Figure 3. HOL4 theorem (left) and interactive proof session
(right)

the state of the proof. Once the HOL4 session prints Initial
goal proved, the proof is finished. To make sure that the
proof can be checked by HOL4 when run non-interactively,
the separate tactics used in each step are chained together
using the infix-operator \\. As this operator returns a tactic
after taking some additional inputs, it is called a tactical.

Proofs in Lassie. Figure 1b shows the proof of our theo-
rem using Lassie. This proof follows the same steps as the
standard HOL4 proof, but each tactic is called using a name
that we have previously defined in Lassie by example. We
chose the Lassie tactics to be more descriptive (for us at least),
and while they make the proof slightly more verbose, they
also make it easier to follow for (non-)experts. Each of our
Lassie tactics maps to corresponding formal HOL4 tactics,
so that the proof is machine-checked by HOL4 as before,
retaining all correctness guarantees.
Unlike existing tactic languages, Lassie allows to define

custom tactics by example and thus does not require any

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

Theorem REAL_INV_LE_AMONO:

∀ x y. 0 < x ∧ 0 < y ⇒
(inv x ≤ inv y ⇔ y ≤ x)

Proof

nlexplain()

introduce assumptions.

we show 'inv x < inv y <=> y < x'

using (use REAL_INV_LT_ANTIMONO

THEN follows trivially).

case split.

simplify with [REAL_LE_LT].

introduce assumptions.

simplify with [REAL_INV_INJ]. trivial.

QED

rpt strip_tac \\

` inv x < inv y ⇔ y < x `
by (irule REAL_INV_LT_ANTIMONO THEN fs [])

0. 0 < x

1. 0 < x

2. x−1 < y−1 ⇔ y < x

x−1 ≤ y−1 ⇔ y ≤ x

|>

Figure 4. Intermediate proof state using goalTree’s and nlexplain

knowledge in tactic programming. For instance, for our ex-
ample proof, we defined a new tactic by
def `simplify with [REAL_LE_LT]` `fs [REAL_LE_LT]`;

Lassie automatically generalizes from this example so that
we can later use this tactic with a different argument:
simplify with [REAL_INV_INJ]

To achieve this automated generalization, Lassie internally
uses an extensible semantic parser [4]. That is, Lassie tactics
are defined as grammar rules. Lassie initially comes with a
relatively small core grammar, supporting commonly used
HOL4 tactics. This grammar is gradually and interactively
extended with additional tactic descriptions by giving exam-
ple mappings. For instance our definition above would add
the following rule to the grammar:
simplify with [THM1, THM2, ...] → fs [THM1, THM2, ...]

Note that this rule allows simplify with to be called with a
list of theorems, not just a single theorem as in the example
given. This generalization happens completely automatically
in the semantic parser and does not require any program-
ming by the user.
The Lassie-defined tactics can be used in a proof using

the function nltac, that sends tactic descriptions to the se-
mantic parser, which returns the corresponding HOL4 tactic.
Because nltac has the same return type as all other stan-
dard HOL4 tactics, it can be used as a drop-in replacement
for standard HOL4 tactics, and can be freely combined with
other HOL4 tactics in a proof.

Explaining Proofs with Lassie. Lassie also comes with
a function nlexplain. Instead of being a drop-in replacement,
like nltac, nlexplain decorates the proof state with the HOL4
tactic that is internally used to perform the current proof step.
Figure 4 shows an intermediate state when using nlexplain

to prove our example theorem. All Lassie tactics inside the
red dashed box on the left-hand side have been passed to

nlexplain. The goal state on the right-hand side shows the
current state of the proof as well as the HOL4 tactic script
that has the same effect as the Lassie tactics.

We envision nlexplain to be used for example in a HOL4
tutorial to ease the learning curve when learning interactive
theorem proving. Lassie allows a teacher to first define a
custom tactic language that follows the same structure as
the HOL4 proof, but that uses descriptive names and may be
thus easier to follow for a novice. In a second step, one can
use nlexplain to teach the actual underlying HOL4 tactics.
Function nlexplain can furthermore be used for sharing

Lassie proofs without introducing additional dependencies
on the semantic parser. While sharing Lassie proof scripts
directly is possible, it requires sharing the state of the se-
mantic parser as well. Alternatively, one can send the Lassie
proof to nlexplain and obtain a HOL4 tactic script that can
then be shared without depending on the semantic parser.

More Complex Tactics. While the target user that we
had in mind when developing Lassie is not an ITP expert,
experts may nonetheless find Lassie useful to, e.g., group
commonly used combinations of tactics. For example, to
make the proofs of simple subgoals easier, an expert can
define a tactic that uses different simplification algorithms
and an automated decision procedure to attempt to solve a
goal automatically:

def `prove with [ADD_ASSOC]`
`all_tac THEN (fs [ADD_ASSOC] THEN NO_TAC)

ORELSE (rw [ADD_ASSOC] THEN NO_TAC)

ORELSE metis_tac [ADD_ASSOC]`

The HOL4 tactic will first attempt to solve the goal using
the simplification algorithms implemented in tactics fs and
rw, and if both fail, it will call into the automated decision
procedure metis_tac, based on first-order resolution. (Tac-
tical t1 ORELSE t2 applies first tactic t1, and if t1 fails, t2 is

Lassie: HOL4 Tactics by Example CPP ’21, January 18–19, 2021, Virtual, Denmark

$ROOT → $tactic (_𝑥.𝑥)
$tactic → $TOKEN (_𝑥.lookup "tactic" 𝑥)
$tactic → $thm->tactic $thm (_𝑥 𝑦.𝑥 𝑦)
$thm->tactic → $TOKEN (_𝑥.lookup "thm list->tactic" 𝑥)
$thm → $TOKEN (_𝑥.𝑥)

gen_tac : tactic

all_tac : tactic

strip_tac: tactic

fs : thm list->tactic

simp : thm list->tactic

Figure 5. Excerpt from Lassie grammar (left) and the database (right), parsing tactics and thm list tactics

applied. THEN NO_TAC makes the simplification fail if it does
not solve the goal.)
The resulting tactic description prove with [THM1, THM2,

...] is parametric in the used list of theorems making it
applicable in different contexts.

Defined tactic descriptions are added to the grammar and
are as such part of the generalization algorithm. Thus we
can reuse the just defined tactic description to define an even
more elaborate version:
def `'T' from [CONJ_COMM] `
`'T' by (prove with [CONJ_COMM])`;

This tactic description, once generalized by the semantic
parser, completely hides the fact that we may need to call
into three different algorithms to prove a subgoal, while
allowing us to enrich our assumptions with arbitrary goals,
as long as they are provable by the underlying HOL4 tactics.

3 Defining Tactics in Lassie
Existing approaches to tactic languages, like Eisbach [26] and
ssreflect [15] are implemented as domain-specific languages
(DSL), usually within the theorem prover’s implementation
language. In these approaches, defining a new tactic is the
same as defining a function in the implemented DSL. If a
tactic should be generalized over e.g. a list of theorems, this
generalization must be performed manually by the user of
the tactic language.

In contrast, Lassie’s tactics are defined in a grammar that is
extended interactively by example using a semantic parser [4]
that performs parameter generalization automatically. We
define an initial core grammar (Section 3.1) that users can ex-
tend by example (Section 3.2). Each such defined description
(Lassie tactic), maps a description to a (sequence of) HOL4
tactics, which is then applied to the proof state and checked
by the HOL4 kernel. Note that a Lassie user does not di-
rectly modify the underlying (core) grammar—the extension
happens by example.

3.1 The Core Grammar
The left-hand side of Figure 5 shows a subset of Lassie’s core
grammar. $ROOT is the symbol for the root node in the gram-
mar and must always be a valid tactic. The core grammar is
used to parse theorems, tactics, tacticals (of type thm list

-> tactic) and to look up functions of these types.
Each rule has the form $left → $right (_𝑥). While

$left → $right works just as in a standard context free

grammar, the _-abstraction, called logical form, is applied to
the result of parsing $right using the grammar. The logical
form allows us to manipulate parsing results after they have
been parsed by the grammar, essentially interpreting them
within the parser. In Lassie we use it to implement function
applications when combining tactics, and to lookup names
in a database.

We have built a core grammar for Lassie that supports the
most common tactics and tacticals of HOL4. For instance the
core grammar will parse fs [REAL_INV_INJ] unambiguously
into the equivalent SML code as its logical form. We think
of this core grammar as the starting point for users to define
Lassie tactics on top of the HOL4 tactics.
Adding every HOL4 tactic and tactical as a separate ter-

minal to the grammar would clutter it unnecessarily and
make it hard to maintain. That is why the grammar allows
so-called lookup rules that check a dictionary for elements
of predefined sets. The right-hand side of Figure 5 shows a
subset of the database used for the lookups. In the grammar
in Figure 5, a tactic can then either be looked up from the
database (second rule), or a tactic can be a combination of
a function of type thm -> tactic and a theorem (third rule).
We refer to functions of type thm -> tactic as theorem tac-
tics, as they take a theorem as input, and return a HOL4
tactic. Theorem tactics are again looked up from the data-
base, whereas theorems can be any possible string denoted
in the grammar by $TOKEN. In addition to HOL4 tactics and
theorem tactics, our core grammar also uses a combination
of rules (not shown in Figure 5) to support functions that
return a tactic of type

• thm list -> tactic

• tactic -> tactic

• term quotation -> tactic

• (thm -> tactic)-> tactic

• tactic -> tactic -> tactic

• term quotation -> (thm -> tactic) -> thm -> tactic

• term quotation list -> (thm -> tactic) ->

thm -> tactic

These types capture most of the tactics implemented in
HOL4, and we add a subset of 53 commonly used tactics
into the database.

Non-Ambiguity. A common issue in semantic parsing is
grammar ambiguity. In Lassie, having an ambiguous gram-
mar is not desirable as it would require users to disambiguate

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

each ambiguous Lassie tactic while proving theorems. We
thus aim to have an unambiguous grammar and achieve this
by a careful design of our core grammar. By encoding the
types of the tactics as non-terminals, our core grammar acts
as a type-checker for our supported subset of HOL4 tactics.
Even after defining custom tactics, the semantic parser will
always parse Lassie tactics into the subset it can type check
thus keeping the grammar unambiguous. During our ex-
periments we have not found a case where extending the
grammar introduced any ambiguity, which reassures this
design choice.

3.2 Extending Lassie with New Definitions
With our core grammar, Lassie can parse the HOL4 tactics
we have added to the grammar into their (equivalent) SML
code. We now explain how this grammar can be interactively
extended by example in order to provide custom names for
(sequences of) tactics.

Lassie’s tactic learning mechanism relies on a semantic
parser. A semantic parser converts a natural language utter-
ance into a corresponding (executable) logical form or—due
to ambiguity—a ranked list of candidates. Semantic parsers
can be implemented in many ways, e.g., they can be rule-
based or learned from data [25]. SEMPRE [4], which we
use, is a toolkit for developing semantic parsers for different
tasks. It provides commonly used natural language process-
ing methods, and different ways of encoding logical forms.
Lassie’s semantic parser is implemented on top of the in-

teractive version of SEMPRE [35]. It starts with a core formal
grammar, which can be expanded through interactions with
the user. Users can add new concepts to the grammar by
example using Lassie’s library function def, which invokes
the semantic parser. Each example consists of a (utterance,
definition) pair, where the utterance is the new tactic to be
defined and the definition is an expression that is already
part of the grammar. For instance, we can give as example:

def `simplify with REAL_ADD_ASSOC` (*utterance*)

`fs [REAL_ADD_ASSOC]` (*definition*)

Note that the command demonstrates the new tactic (simplify
with) with a particular argument (REAL_ADD_ASSOC), but does
not explicitly state what the argument is.

The definition has to already be part of the grammar and
thus fully parsable, otherwise the parser will reject the pair,
whereas only some parts of the utterance may be parsable.
That is, the definition needs to be already understood by the
semantic parser, either because it is part of the core grammar
or because it was previously already defined by the user.

The function def first obtains a logical form for the defini-
tion (which exists since the definition is part of the grammar).
The semantic parser then induces one or more grammar rules
from the utterance-definition pair and attaches the logical
form of the definition to those rules.

The induction of new grammar rules relies on finding
correspondences between parsable parts of the utterance
and its definition. As an example, observe our simplify

with command. Because REAL_ADD_ASSOC can be parsed into
a category $thm, the two new production rules added to the
grammar are:
$tactic →
simplify with REAL_ADD_ASSOC (_ x.fs [REAL_ADD_ASSOC])

$tactic →
simplify with $thm (_ thm. fs [thm])

Based on the second added rule, we can now use the
Lassie tactic simplify with connected to any other descrip-
tion that is parsed as a $thm, because the parser identified
REAL_ADD_ASSOC as an argument and generalized from our
example by learning the _-abstraction over the variable thm.

Next time the user calls, for instance,
nltac `simplify with REAL_ADD_COMM`

Lassie’s semantic parser will parse this command into the
tactic fs [REAL_ADD_COMM] using the second added rule.

4 Lassie Design
Lassie is implemented as a HOL4 library, which can be loaded
into a running HOL4 session with open LassieLib;. This will
start a SEMPRE process and the library captures its input and
output as SML streams.Whenever nltac or nlexplain are run,
the input is send to SEMPRE over the input stream, and if it
can be parsed with the currently learned grammar, SEMPRE
writes the resulting HOL4 tactic to the output stream as a
string. If parsing fails, i.e. SEMPRE does not recognize the
description, LassieLib raises an exception, such that an end-
user can define the tactic with a call to def.
We want nltac to act as a drop-in replacement for HOL4

tactics. Therefore, nltacmust not only be able to parse single
tactics, but must also be able to parse full tactic scripts, per-
forming a proof from start to finish. During our case-studies,
we noticed that SEMPRE was not built for parsing large
strings of text, but rather for smaller examples. To speed up
parsing, we have defined a global constant, LassieSep which
is used to split input strings of nltac. For example, calling
nltac `case split. simplify with [REAL_LE_LT].`

will lead to two separate calls to the semantic parser: one
for case split and one for simplify with [REAL_LE_LT]. The
resulting HOL4 tactics are joined together using the THEN_LT

tactical, which is a more general version of the tactical \\,
as it has an additional argument for selecting the subgoal
to which the given tactic is applied. When proving a goal
interactively, some tactics, like induction, and case splitting,
can lead to multiple subgoals being generated. We use the
THEN_LT tactical to implement selecting subgoals in nltac.

There are some differences in how nltac and nlexplain are
used. Function nltac can be used as a drop-in replacement
for HOL4 tactics, and thus supports selection of subgoals.

Lassie: HOL4 Tactics by Example CPP ’21, January 18–19, 2021, Virtual, Denmark

In contrast, nlexplain is meant to be used interactively, and
therefore parses Lassie tactics, but does not support selec-
tion of subgoals. Instead, subgoals are proven in order of
appearance. The main purpose of nlexplain is to show how
Lassie tactics are translated back into HOL4 tactics. To do so,
it modifies HOL4’s interactive read-eval-print loop (REPL),
and thus can only be used interactively, but not to replace
plain HOL4 tactics in proof scripts like nltac.
To differentiate between SML expressions and HOL4 ex-

pressions, HOL4 requires HOL4 expressions to be wrapped
in quotes (`), but quotes are also a way of allowing multiline
strings in HOL4 proofscripts. Therefore we choose quotes
to denote the start and end of a Lassie proofscript, and use
apostrophes (') to denote the start and the end of a HOL4
expression in a Lassie proof script.
Lassie currently does not support debugging tactic ap-

plications. While an end-user can easily define new tactics
by example using the semantic parser, figuring out the tac-
tics’ exact behavior, and fixing bugs still requires the user
to manually step through the corresponding HOL4 tactic in
an interactive proof and manually inspecting steps. We see
extending Lassie with debugging support as future work.

4.1 Extending Lassie with New Tactics
Our initial core grammar supports only a fixed set of the
most commonly used HOL4 tactics. However, it is common
in ITPs to develop custom tactics on a per-project basis,
possibly including fully blown decision procedures [33]. To
make sure that users can add their own HOL4 tactics as
well as custom decision procedures to Lassie, the library
provides the functions addCustomTactic, addCustomThmTactic,
and addCustomThmlistTactic.
The difference between def and addCustom[*]Tactic is in

where the elements are added to the semantic parser’s gram-
mar. Function def uses SEMPRE’s generalization algorithm
and adds rules to the grammar thatmay contain non-terminals
(e.g. follows from [$thms]). Function addCustomTactic al-
ways adds a new terminal to the grammar.

We explain addCustomTactic by example. Suppose a user
wants to reuse an existing linear decision procedure for real
numbers (REAL_ASM_ARITH_TAC) to close simple proof goals.
Running addCustomTactic REAL_ASM_ARITH_TAC adds the new
production rule $tactic → REAL_ASM_ARITH_TAC to the SEM-
PRE grammar. Tactic REAL_ASM_ARITH_TAC can then be used in
subsequent calls to def to provide Lassie-based descriptions,
or immediately in nltac and nlexplain.
Now that SEMPRE accepts the decision procedure as a

valid tactic, we extend our expert automation tactic from
before to try to solve a goal with this decision procedure too:
def `prove with [ADD_ASSOC]`
`all_tac THEN (fs [ADD_ASSOC] THEN NO_TAC)

ORELSE (rw [ADD_ASSOC] THEN NO_TAC)

ORELSE REAL_ASM_ARITH_TAC

ORELSE metis_tac [ADD_ASSOC]`

Functions addCustomThmTactic, and addCustomThmlistTactic
work similarly, adding grammar rules for $thm->tactic and
$thm list->tactic.

4.2 Defining and Loading Libraries
Users can define libraries with their own defined Lassie tac-
tics using the function registerLibrary which takes as first
input a string, giving the libraries a unique name, and as
second input a function of type :unit -> unit, where the
function should call def on the definitions to be added, fol-
lowing Section 3.2. The defined libraries can then be shared
and loaded simply by calling the function loadLibraries.
We defined libraries for proofs using logic, natural num-

bers, and real numbers from our case studies and used these
in our HOL4 tutorial (Section 5)

5 Case Studies
We evaluate Lassie on three case studies and show how it
can be used for developing a HOL4 tutorial. In the paper, we
show only the main theorems for the case studies, but the
full developments can be found in the Lassie repository.

5.1 Case Study: Proving Euclid’s Theorem
First, we prove Euclid’s theorem from the HOL4 tutorial [32]
that is distributed with the HOL4 theorem prover documen-
tation. Euclid’s theorem states that the prime numbers form
an infinite sequence. Its HOL equivalent states that for any
natural number 𝑛, there exists a natural number 𝑝 which is
greater than 𝑛 and a prime number.
To prove the final theorem, shown in Figure 6, we have

proven 19 theorems in total. To prove these theorems, we
defined a total of 22 new tactics using LassieLib.def. Some
tactics have been used only once, but for example the tactic
[...] solves the goal, was reused 16 times.
Another example is the tactic thus PRIME_FACTOR for '

FACT n + 1' which introduces a specialized version of the
theorem PRIME_FACTOR, proving the existence of a prime fac-
tor for every natural number. Note how the tactic description
can freely mix text descriptions with the parameters for the
underlying tactic. Similarly, the first step of the HOL4 proof
reads CCONTR_TAC, which initiates a proof by contradiction.
For an untrained user, figuring out and remembering this
name can be cumbersome, even though the user might know
the high-level proof step. Instead, in Lassie we have used
the—for us—more intuitive name suppose not.
Finally, each sub-step of the HOL4 proof is closed using

the tactic metis_tac. For an expert user, it is obvious that
metis_tac can be used, because the expert knows that it per-
forms first order resolution to prove the goal. In the Lassie
proof, we hide metis_tac [] in combination with the sim-
plification tactics fs [] and rw[] under the description []

solves the goal.

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

Theorem EUCLID:

∀ n . ∃ p . n < p ∧ prime p

Proof

CCONTR_TAC \\ fs[]

\\ `FACT n + 1 ≠ 1`
by rw[FACT_LESS, neq_zero]

\\ qspec_then `FACT n + 1` assume_tac PRIME_FACTOR

\\ `∃ q. prime q ∧ q divides (FACT n + 1)` by fs[]

\\ `q ≤ n` by metis_tac[NOT_LESS_EQUAL]

\\ `0 < q` by metis_tac[PRIME_POS]

\\ `q divides FACT n`
by metis_tac [DIVIDES_FACT]

\\ `q = 1` by metis_tac[DIVIDES_ADDL, DIVIDES_ONE]

\\ `prime 1` by fs[]

\\ fs[NOT_PRIME_1]

QED

Theorem EUCLID: (* Lassie *)

∀ n . ∃ p . n < p ∧ prime p

Proof

nltac`
suppose not. simplify.

we can derive 'FACT n + 1 <> 1'

from [FACT_LESS, neq_zero].

thus PRIME_FACTOR for 'FACT n + 1'.

we further know

'∃ q. prime q and q divides (FACT n + 1)'.

show 'q <= n' using [NOT_LESS_EQUAL].

show '0 < q' using [PRIME_POS] .

show 'q divides FACT n' using [DIVIDES_FACT].

show 'q=1' using [DIVIDES_ADDL, DIVIDES_ONE].

show 'prime 1' using (simplify).

[NOT_PRIME_1] solves the goal.`
QED

Figure 6. HOL4 proof (left) and Lassie proof (right) of euclids theorem

To further automate proving simple subgoals, we combine
the tactic [] solves the goal with our Lassie tactic for prov-
ing subgoals (show 'T' using (gen_tac)) by defining show '

T' using [...] as
show 'T' using ([...] solves the goal).

5.2 Case Study: Real and Natural Number Theorems
Next, we will show how Lassie can be used in more involved
proofs about both real and natural numbers. As an example,
we prove that for any natural number 𝑛, the sum of the cubes
of the first 𝑛 natural numbers is the same as the square of
the sum. The Lassie proof of the final theorem is in Figure 7.

We have proven a total of 5 theorems: two (real-numbered)
binomial laws, the closed form for summing the first 𝑛 natu-
ral numbers, a side lemma on exponentiation, and the main
result about cubing the first 𝑛 numbers. All our proofs in
this case study have been performed using the HOL4 theory
of real numbers simply for convenience, as we found real
number arithmetic easier for proving theorems that involve
subtractions, powers, and divisions. We defined a total of
42 tactics by example using LassieLib.def and added 3 cus-
tom tactics using LassieLib.addCustomTactic and LassieLib

.addCustomThmTactic. Again, some of the tactics were used
only once or twice but our Lassie tactics for rewriting with
a theorem (two calls to LassieLib.def to support rewriting
from left to right, and right to left) are reused 13 times within
the proofs.

This Lassie proof shows how it can be extended with cus-
tom tactics. Our restricted core grammar of Lassie does not
include HOL4’s decision procedure for reals. Nevertheless, a
user may want to provide this tactic as part of some automa-
tion. Because Lassie supports on-the-fly grammar extensions
we add the decision procedure for reals (REAL_ASM_ARITH_TAC)

to the grammar: addCustomTactic REAL_ASM_ARITH_TAC. Hav-
ing added this tactic, it can be used just like the HOL4 tactics
we support in the base grammar. Thus we define a Lassie
tactic using the decision procedure:

def `we know 'T'`
`'T' by (REAL_ASM_ARITH_TAC ORELSE DECIDE_TAC)`

The semantic parser now automatically generalizes the gram-
mar rule for this tactic, learning the rule

$tactic →
we know '$term'(_ t.

't' by (REAL_ASM_ARITH_TAC ORELSE DECIDE_TAC))

With this, we can use more complicated tactics like we know

'2 * &n * (1 + &n)* inv 2 = 2 * inv 2 * &n * (1 = &n)'.
In general, combining the extensibility of Lassie and the

generalization of SEMPRE allows us to support arbitrary set-
tings where trained experts can implement domain-specific
decision procedures and provide simple tactic descriptions
to novice users that want to use them in a HOL4 proof, essen-
tially decoupling the automation from its implementation.
Equally, any user can define personalized and more intuitive
names for often-used tactics.

5.3 Case Study: Naturalizing a Library Proof
In our final example, we show how Lassie can be integrated
into larger developments, by proving a soundness theorem
from a library of FloVer [3]. FloVer is a verified checker for
finite-precision roundoff error bounds implemented in HOL4.
Its HOL4 definitions and proofs span approximately 10000
lines of code and the interval library is one of the critical
components which is used in most of the soundness proofs.
As the FloVer proofs are performed over real numbers, we

Lassie: HOL4 Tactics by Example CPP ’21, January 18–19, 2021, Virtual, Denmark

Theorem sum_of_cubes_is_squared_sum:

∀ n. sum_of_cubes n = (sum n) pow 2

Proof

nltac `
induction on 'n'.

simplify conclusion with [sum_of_cubes_def, sum_def].

rewrite with [POW_2, REAL_LDISTRIB, REAL_RDISTRIB,

REAL_ADD_ASSOC].

showing

'&SUC n pow 3 =

&SUC n * &SUC n + &SUC n * sum n + sum n * &SUC n'

closes the proof

because (simplify conclusion with [REAL_EQ_LADD]).

we know '& SUC n * sum n + sum n * &SUC n =

2 * (sum n * & SUC n)'.

rewrite once [<- REAL_ADD_ASSOC].

rewrite last assumption.

rewrite with [pow_3, closed_form_sum, real_div,

REAL_MUL_ASSOC].

we know '2 * &n * (1 + &n) * inv 2 =

2 * inv 2 * & n * (1 + &n)'.

rewrite last assumption.

simplify conclusion with [REAL_MUL_RINV].

we show 'n + 1 = SUC n' using (simplify conclusion).

rewrite last assumption. simplify conclusion.

we show '2 = (SUC (SUC 0))'

using (simplify conclusion).

rewrite last assumption. rewrite last assumption.

rewrite with [EXP].

we show 'SUC n = n + 1' using (simplify conclusion).

rewrite last assumption.

rewrite with [GSYM REAL_OF_NUM_ADD, pow_3].

rewrite with [REAL_OF_NUM_ADD, REAL_OF_NUM_MUL,

MULT_RIGHT_1, RIGHT_ADD_DISTRIB,

LEFT_ADD_DISTRIB, MULT_LEFT_1].

simplify.`
QED

Figure 7. Lassie proof that the sum of the natural numbers
from 1 to 𝑛 cubed is the same as the square of their sum

reuse the tactic descriptions from our previous example and
do not need to add additional definitions. In Figure 8 we
show that if we have an interval 𝑖𝑣 , and a real number 𝑎 ∈ 𝑖𝑣 ,
then the inverse of 𝑎 is contained in the inverse of 𝑖𝑣 .
This example shows that Lassie’s tactic definitions are

expressive enough to build libraries of common tactic de-
scriptions that can be shared between projects.

5.4 HOL4 Tutorial
We have used Lassie to write a new tutorial for HOL4 with
the goal of decoupling the learning of the basic structure of
formal proofs from the particular syntax and tactic names

Theorem interval_inversion_valid:

∀ iv a.

(SND iv < 0 \/ 0 < FST iv) /\ contained a iv ==>

contained (inv a) (invertInterval iv)

Proof

nltac `
introduce variables.

case split for 'iv'.

simplify with [contained_def, invertInterval_def].

introduce assumptions.

rewrite once [<- REAL_INV_1OVER].

Next Goal.

rewrite once [<- REAL_LE_NEG].

we know 'a < 0'. thus 'a <> 0'.

we know 'r < 0'. thus 'r <> 0'.

'inv(-a) <= inv (-r) <=> (- r) <= -a' using

(use REAL_INV_LE_AMONO THEN simplify).

resolve with REAL_NEG_INV.

rewrite assumptions.

follows trivially.

Next Goal.

rewrite once [<- REAL_LE_NEG].

we know 'a < 0'. thus 'a <> 0'. we know 'q <> 0'.

resolve with REAL_NEG_INV.

'inv (-q) <= inv (-a) <=> (-a) <= (-q)' using

(use REAL_INV_LE_AMONO THEN simplify

THEN trivial).

rewrite assumptions. follows trivially.

Next Goal.

rewrite with [<- REAL_INV_1OVER].

'inv r <= inv a <=> a <= r' using

(use REAL_INV_LE_AMONO THEN trivial).

follows trivially.

Next Goal.

rewrite with [<- REAL_INV_1OVER].

'inv a <= inv q <=> q <= a' using

(use REAL_INV_LE_AMONO THEN trivial).

follows trivially.`
QED

Figure 8. Soundness of FloVer’s interval inversion in Lassie

of HOL4, and by this easing the learning curve. Our tutorial
is based on the existing HOL4 tutorial [32] and the HOL4
emacs interaction guide.

First, the new HOL4 user uses nltac and the Lassie tactics
that we defined for our three case studies (i.e. loads them
as libraries) to do the proofs. He or she can thus learn the
syntax of theorems and definitions, as well as structure of
proofs without having to also learn the often unintuitive
tactic names of the proofs. For example, we show the proof of
the closed form for summing the first𝑛 natural numbers from
our tutorial in Figure 10. The example proof shows Lassie

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

Definition sum_def:

sum (n:num) = if n = 0 then 0 else sum (n-1) + n

End

Theorem closed_form_sum:

∀ n. sumEq n = n * (n + 1) DIV 2

Proof

nlexplain()

Induction on 'n'.

simplify with [sumEq_def].`
simplify with [sumEq_def, GSYM ADD_DIV_ADD_DIV].

'2 * SUC n + n * (n + 1) = SUC n * (SUC n + 1)'

suffices to show the goal.

show 'SUC n * (SUC n + 1) =

(SUC n + 1) + n * (SUC n + 1)'

using (simplify with [MULT_CLAUSES]).

simplify.

show 'n * (n + 1) = SUC n * n'

using (trivial using [MULT_CLAUSES,MULT_SYM]).

rewrite assumptions. simplify.

QED

Induct on ` n `
>- (fs [sum_def])

>- (fs [sum_def, GSYM ADD_DIV_ADD_DIV] \\

`2 * SUC n + n * (n + 1) = SUC n * (SUC n + 1)`
suffices_by (fs []) \\

0. sum n = n * (n + 1 DIV 2)

2 * SUC n + n * (n + 1) = SUC n * (SUC n + 1)

|>

Figure 9. Intermediate state of nlexplain in our tutorial

tactics that abstract from the tactic, but not the theorem
names. Lassie has limited support for defining descriptions
of theorems similar to how Lassie tactics are defined which
could be used when developing individual languages.
In the second step, the new HOL4 user is introduced to

the HOL4 tactics using nlexplain. For instance, they can step
through the proof and see the HOL4 tactics underlying each
Lassie tactic. We show an example in Figure 9. The left-hand
side shows the HOL4 proof state obtained by applying Lassie
tactics with nlexplain, and the right-hand side the modified
HOL4 REPL with the current proof goal and a partial HOL4
tactic script. The red dashed box on the left-hand side marks
all Lassie tactics that have been passed to nlexplain.
Our tutorial is split into six separate parts. We start by

explaining how HOL4 (and Lassie) are installed and config-
ured on a computer such that the tutorial can be followed
interactively. Next, we explain how one interacts with HOL4
in an interactive session. The first technical section uses
the proof from Figure 10 as a first example of an interactive
HOL4 proof, using only nltac to perform proofs. Having
introduced the reader to the basics of interactive proofs in
HOL4, we show how a simple library of proofs can be de-
veloped. The library is a re-implementation of our first case
study, and hence follows the structure of the original HOL4
tutorial. It spans a total of two definitions, and 13 theorems.
For each of the theorems we show a proof using nltac. Only
after these introductory sections, where a user will have
already gained an intuition both about how one interacts
with the HOL4 REPL, and how proofs are stored in reusable
theories, the next section introduces nlexplain and explains

how HOL4 proofs are performed with plain HOL4 tactics.
Finally, the tutorial concludes with some helpful tips and
tricks that we have collected.
We defined the tutorial using definitions that we person-

ally found intuitive. However, Lassie’s ability to define tactics
by example allows each teacher to define their own individ-
ual language in a straightforward way.

6 Related Work
In this section, we review approaches designed to ease the
user burden when writing proofs in an ITP.

Hammers. So-called “hammers” use automated theorem
provers (ATP) to discharge proof obligations by translating
a proof goal into the logic of an ATP and a proof back into
the logic of the interactive prover. Examples are Sledgeham-
mer [28] for Isabelle, HolyHammer [21] for HOL4, and a
hammer for Coq [8]. A general overview is given in the sur-
vey paper by Blanchette et al. [5]. Some of these use learning
to predict which premises are needed to be sent to the ATP,
in order not to overwhelm the prover. In contrast to Lassie,
the main focus of such hammers is not to make the proofs
more accessible but to solve simple proof obligations using
a push-button method. As Lassie is open to adding custom
decision procedures we think that integrating a hammer
with Lassie could provide for even richer and easier to define
tactic languages by automating simple proofs.

Learning-based. While hammers try to automate the
proof with the help automated theorem provers, other sys-
tems use statistical methods to recommend tactics to the end

Lassie: HOL4 Tactics by Example CPP ’21, January 18–19, 2021, Virtual, Denmark

Theorem closed_form_sum:

∀ n. sum n = (n * (n + 1)) DIV 2

Proof

nltac`
Induction on 'n'.

Goal 'sum 0 = 0 * (0 + 1) DIV 2'.

simplify.

End.

Goal 'sum (SUC n) = SUC n * (SUC n + 1) DIV 2'.

use [sum_def, GSYM ADD_DIV_ADD_DIV] to simplify.

'2 * SUC n + n * (n + 1) = SUC n * (SUC n + 1)'

suffices to show the goal.

show 'SUC n * (SUC n + 1) =

(SUC n + 1) + n * (SUC n + 1)'

using (simplify with [MULT_CLAUSES]).

simplify.

show 'n * (n + 1) = SUC n * n'

using (trivial using [MULT_CLAUSES, MULT_SYM]).

'2 * SUC n = SUC n + SUC n' follows trivially.

'n * (SUC n + 1) = SUC n * n + n' follows trivially.

rewrite assumptions. simplify.

End.`
QED

Figure 10. Example proof of the closed form for summing 𝑛
numbers using Lassie in our HOL4 tutorial

user to finish a proof. DeepHOL [2] learns a neural network
that, given a proof goal, predicts a potential next tactic in
HOL Light. GamePad [19] and the work by Yang et al. [38]
similarly use machine learning to predict tactics for Coq. Tac-
ticToe [13] uses A* search, guided by previous tactic-level
proofs, to predict tactics in HOL4.

Programming Language-based. Languages like Eis-
bach [26], Ltac [10], Ltac2 [29] and Mtac2 [20] use rigorous
programming language foundations to give more control
to expert users when writing tactics. Eisbach and Ltac are
tactic languages similar to the one of HOL4. Mtac2 formal-
izes “Coq in Coq” allowing to define tactics as Coq programs,
whereas Ltac2 is a strongly typed language for writing Coq
tactics. The tactic language of the Lean theorem prover [9]
additionally implements equational reasoning on top of its
tactics, which allows for more textbook-like proofs. Recently,
the Lean theorem prover has also been extended with a hy-
gienic macro system [34]. A core contribution of their work
is excluding unintentional capturing in tactic programming,
thus making tactic programming more robust. In Lassie we
did not experience any hygiene issues as the definition by
example relies on the semantic parser to do the generaliza-
tion and as such keeps variable levels separate. Using any
of the languages above requires all the desired generality to
be stated explicit in the tactic definition, usually in the form

of function definitions. In contrast, Lassie’s definition by ex-
ample makes it easier to define new tactics and generalizes
automatically.

Natural Language Interfaces. Several systems provide
an interface to a theorem prover that is as close as possible to
natural language. Languages like Isar [36], Mizar [1], and the
work by Corbineau [6] follow a similar approach as Lassie
by having an extended parser. Their supported naturalized
proof descriptions are fixed to the authors style of declara-
tive proofs and extending or changing these would required
editing the tool code. In contrast, Lassie is extensible enough
to support different tactic languages that can coexist without
interferring if not loaded simultaneously.
The Naproche system [11] provides a controlled natu-

ral language, which maps natural language utterances into
first-order logic proof obligations, to be checked by an (auto-
mated) theorem prover (e.g. E Prover [31]). The extensions to
Alfa by Hallgren et al. [17] also use natural language process-
ing technology to extend the Alfa proof editor with a more
natural language. The book by Ganesalingam [12] gives a
comprehensive explanation of the relation between natu-
ral language and mathematics. Similarly, Ranta et al. [30]
provide more sophisticated linguistic techniques to translate
between natural language and predicate logic. An orthogonal
approach to the above is presented in the work by Coscoy et
al. [7]. Instead of translating from natural language to tactics,
they provide a translation from Coq proof terms to natural
language. The main goal of these systems is to provide an
interface that supports as much natural language as possible.
A major limitation, however, is that their grammars are fixed,
i.e. only the naturalized tactics implemented by the authors
is available. Our work does not strive to be a full natural lan-
guage interface, and in turn provides an extensible grammar,
which adapts to different users and proofs.

7 Conclusion
We have presented the Lassie tactic language framework for
the HOL4 theorem prover. Using a semantic parser with an
extensible grammar, Lassie learns individualized tactics from
user-provided examples. Our example case studies show that
these learned tactics can be easily reused across different
proofs and can ease both the writing and reading of HOL4
proofs by providing a more intuitive, personalized interface
to HOL4’s tactics.

Acknowledgments
The authors would like to thank Magnus Myreen, Zachary
Tatlock, and the anonymous reviewers of ITP 2020 and CPP
2021 for providing feedback on Lassie and (initial) drafts of
the paper. Gavran and Majumdar were supported in part by
the DFG project 389792660 TRR 248–CPEC and by the Euro-
pean Research Council under the Grant Agreement 610150
(ERC Synergy Grant ImPACT).

CPP ’21, January 18–19, 2021, Virtual, Denmark Heiko Becker, Nathaniel Bos, Ivan Gavran, Eva Darulova, and Rupak Majumdar

References
[1] Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Ko-

rnilowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and
Josef Urban. 2015. Mizar: State-of-the-art and Beyond. In Interna-
tional Conference on Intelligent Computer Mathematics (CICM). https:
//doi.org/10.1007/978-3-319-20615-8_17

[2] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stew-
art Wilcox. 2019. HOList: An Environment for Machine Learning of
Higher Order Logic Theorem Proving. In International Conference on
Machine Learning (ICML).

[3] Heiko Becker, Nikita Zyuzin, Raphaël Monat, Eva Darulova, Magnus O
Myreen, and Anthony Fox. 2018. A Verified Certificate Checker for
Finite-Precision Error Bounds in Coq and HOL4. In FMCAD (Formal
Methods in Computer Aided Design). https://doi.org/10.23919/FMCAD.
2018.8603019

[4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013.
Semantic Parsing on Freebase from Question-Answer Pairs. In Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP).

[5] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson,
and Josef Urban. 2016. Hammering towards QED. Journal of Formalized
Reasoning 9, 1 (2016). https://doi.org/10.6092/issn.1972-5787/4593

[6] Pierre Corbineau. 2007. A Declarative Language for the Coq Proof
Assistant. In International Workshop on Types for Proofs and Programs
(TYPES). https://doi.org/10.1007/978-3-540-68103-8_5

[7] Yann Coscoy, Gilles Kahn, and Laurent Théry. 1995. Extracting Text
from Proofs. In International Conference on Typed Lambda Calculi and
Applications (TLCA). https://doi.org/10.1007/BFb0014048

[8] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for dependent type theory. Journal of Automated Reasoning 61,
1-4 (2018). https://doi.org/10.1007/s10817-018-9458-4

[9] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris
van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover
(System Description). In International Conference on Automated Deduc-
tion (CADE). https://doi.org/10.1007/978-3-319-21401-6_26

[10] David Delahaye. 2000. A Tactic Language for the System Coq. In
International Conference on Logic for Programming Artificial Intelligence
and Reasoning (LPAR). https://doi.org/10.1007/3-540-44404-1_7

[11] Steffen Frerix and Peter Koepke. 2019. Making Set Theory Great Again:
The Naproche-SAD Project. Conference on Artificial Intelligence and
Theorem Proving (AITP) (2019).

[12] Mohan Ganesalingam. 2013. The Language of Mathematics - A Linguis-
tic and Philosophical Investigation. Lecture Notes in Computer Science,
Vol. 7805. Springer. https://doi.org/10.1007/978-3-642-37012-0

[13] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and
Michael Norrish. 2020. TacticToe: Learning to Prove with Tactics.
Journal of Automated Reasoning (2020).

[14] Georges Gonthier. 2008. Formal proof–the four-color theorem. Notices
of the AMS 55, 11 (2008).

[15] Georges Gonthier and Assia Mahboubi. 2010. An introduction to small
scale reflection in Coq. Journal of Formalized Reasoning 3, 2 (2010).
https://doi.org/10.6092/issn.1972-5787/1979

[16] Thomas C. Hales. 2006. Introduction to the Flyspeck Project. In Math-
ematics, Algorithms, Proofs.

[17] Thomas Hallgren and Aarne Ranta. 2000. An Extensible Proof Text
Editor. In International Conference on Logic for Programming and Auto-
mated Reasoning (LPAR). https://doi.org/10.1007/3-540-44404-1_6

[18] John Harrison. 2009. HOL light: An overview. In International Confer-
ence on Theorem Proving in Higher Order Logics (TPHOL).

[19] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever.
2019. GamePad: A Learning Environment for Theorem Proving. In
International Conference on Learning Representations (ICLR).

[20] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,
and Derek Dreyer. 2018. Mtac2: typed tactics for backward reasoning
in Coq. Proc. ACM Program. Lang. 2, ICFP (2018), 78:1–78:31. https:

//doi.org/10.1145/3236773
[21] Cezary Kaliszyk and Josef Urban. 2014. Learning-Assisted Automated

Reasoning with Flyspeck. Journal of Automated Reasoning 53, 2 (2014).
https://doi.org/10.1007/s10817-014-9303-3

[22] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. 2019. The verified CakeML
compiler backend. Journal of Functional Programming 29 (2019).
https://doi.org/10.1017/S0956796818000229

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an
OS kernel. In ACM Symposium on Operating Systems Principles (SOSP).
https://doi.org/10.1145/1629575.1629596

[24] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (2009). https://doi.org/10.1145/1538788.1538814

[25] Percy Liang. 2016. Learning executable semantic parsers for natural
language understanding. Commun. ACM 59, 9 (2016). https://doi.org/
10.1145/2866568

[26] Daniel Matichuk, Toby C.Murray, andMakariusWenzel. 2016. Eisbach:
A Proof Method Language for Isabelle. Journal of Automated Reasoning
56, 3 (2016). https://doi.org/10.1007/s10817-015-9360-2

[27] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Lecture Notes in
Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-
45949-9

[28] Lawrence C. Paulson and Kong Woei Susanto. 2007. Source-Level
Proof Reconstruction for Interactive Theorem Proving. In International
Conference on Theorem Proving in Higher Order Logics (TPHOL). https:
//doi.org/10.1007/978-3-540-74591-4_18

[29] Pierre-Marie Pédrot. 2019. Ltac2: Tactical Warfare. CoqPL 2019 (2019).
[30] Aarne Ranta. 2011. Translating between Language and Logic: What Is

Easy and What Is Difficult. In International Conference on Automated
Deduction (CADE). https://doi.org/10.1007/978-3-642-22438-6_3

[31] Stephan Schulz. 2013. System Description: E 1.8. In International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR). https://doi.org/10.1007/978-3-642-45221-5_49

[32] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4.
In International Conference on Theorem Proving in Higher Order Logics
(TPHOL). https://doi.org/10.1007/978-3-540-71067-7_6

[33] Alexey Solovyev and Thomas C. Hales. 2013. Formal Verification of
Nonlinear Inequalities with Taylor Interval Approximations. In NASA
Formal Methods Symposium (NFM). https://doi.org/10.1007/978-3-642-
38088-4_26

[34] Sebastian Ullrich and Leonardo de Moura. 2020. Beyond Nota-
tions: Hygienic Macro Expansion for Theorem Proving Languages.
In International Joint Conference on Automated Reasoning (IJCAR).
https://doi.org/10.1007/978-3-030-51054-1_10

[35] Sida I. Wang, Samuel Ginn, Percy Liang, and Christopher D. Manning.
2017. Naturalizing a Programming Language via Interactive Learn-
ing. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL. https://doi.org/10.18653/v1/P17-1086

[36] Markus Wenzel. 1999. Isar - A Generic Interpretative Approach to
Readable Formal Proof Documents. In International Conference on
Theorem Proving in Higher Order Logics (TPHOL). https://doi.org/10.
1007/3-540-48256-3_12

[37] Markus Wenzel and Lawrence C. Paulson. 2006. Isabelle/Isar. In The
Seventeen Provers of the World. Lecture Notes in Computer Science,
Vol. 3600. Springer, 41–49. https://doi.org/10.1007/11542384_8

[38] Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via Inter-
acting with Proof Assistants. In International Conference on Machine
Learning (ICML).

https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/978-3-540-68103-8_5
https://doi.org/10.1007/BFb0014048
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/978-3-642-37012-0
https://doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.1007/3-540-44404-1_6
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2866568
https://doi.org/10.1145/2866568
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-74591-4_18
https://doi.org/10.1007/978-3-540-74591-4_18
https://doi.org/10.1007/978-3-642-22438-6_3
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-642-38088-4_26
https://doi.org/10.1007/978-3-642-38088-4_26
https://doi.org/10.1007/978-3-030-51054-1_10
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/11542384_8

	Abstract
	1 Introduction
	2 Lassie by Example
	3 Defining Tactics in Lassie
	3.1 The Core Grammar
	3.2 Extending Lassie with New Definitions

	4 Lassie Design
	4.1 Extending Lassie with New Tactics
	4.2 Defining and Loading Libraries

	5 Case Studies
	5.1 Case Study: Proving Euclid's Theorem
	5.2 Case Study: Real and Natural Number Theorems
	5.3 Case Study: Naturalizing a Library Proof
	5.4 HOL4 Tutorial

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

