
SecurePtrs: Proving Secure Compilation with
Data-Flow Back-Translation and Turn-Taking Simulation

Akram El-Korashy1 Roberto Blanco2 Jérémy Thibault2 Adrien Durier2 Deepak Garg1 Cătălin Hrit,cu2

1Max Planck Institute for Software Systems (MPI-SWS) 2Max Planck Institute for Security and Privacy (MPI-SP)

Abstract—Proving secure compilation of partial programs
typically requires back-translating a target attack against the
compiled program to an attack against the source program. To
prove this back-translation step, one can syntactically translate
the target attacker to a source one—i.e., syntax-directed back-
translation—or show that the interaction traces of the target
attacker can also be produced by source attackers—i.e., trace-
directed back-translation.

Syntax-directed back-translation is not suitable when the
target attacker uses unstructured control flow that the source lan-
guage cannot directly represent. Trace-directed back-translation
works with such syntactic dissimilarity because only the external
interactions of the target attacker have to be mimicked in the
source, not its internal control flow. Revealing only external
interactions is, however, inconvenient when sharing memory via
unforgeable pointers, since information about stashed pointers to
shared memory gets lost. This made prior proofs complex, since
the generated attacker had to stash all reachable pointers.

In this work, we introduce more informative data-flow traces,
which allow us to combine the best of syntax-directed and
trace-directed back-translation. Our data-flow back-translation is
simple, handles both syntactic dissimilarity and memory sharing
well, and we have proved it correct in Coq.

We, moreover, develop a novel turn-taking simulation relation
and use it to prove a recomposition lemma, which is key to
reusing compiler correctness in such secure compilation proofs.
We are the first to mechanize such a recomposition lemma in a
proof assistant in the presence of memory sharing.

We put these two key innovations to use in a secure compilation
proof for a code generation compiler pass between a safe source
language with pointers and components, and a target language
with unstructured control flow.

1 Introduction
Compiler correctness or semantics preservation is the current
gold standard for formally verified compilers [24, 27, 30, 41].
However, compiler correctness alone is insufficient for reason-
ing about security of compiled partial programs linked with
arbitrary target contexts (e.g., components such as libraries)
because compiler correctness shows that the compiled program
simulates the source program only under the assumption that
the target context obeys all restrictions of the source language
semantics, i.e., it does not perform any low-level attacks
that the source language would disallow. This assumption
is usually false in practice: compiled programs are routinely
linked with arbitrary, unverified target-language code that may
be buggy, compromised, or outright malicious in contravention
of source semantics. In these cases, compiler correctness (even
in its “compositional” form [23, 35, 47, 49]), establishes no
security guarantees for compiled partial programs.

This problem can be addressed by secure compilation [4,
40], wherein one shows that any violation of a security
property of a compiled program in some target context also
appears for the source program in some source context.
Formally, this requires proving the existence of a property-
violating source context given a target-level violation and
the corresponding violating target context. This proof step,
often called back-translation, is crucial for establishing that
a vulnerable compiled program only arises from a vulnerable
source program, thus preserving the security of partial source
programs even against adversarial target contexts. Although
there is a long line of work on proving secure compilation
for prototype compilation chains that differ in the specific se-
curity properties preserved and the way security is practically
enforced [3, 4, 6, 7, 13, 15, 16, 18, 36, 39, 40, 40, 46, 51, 53],
back-translation is a common, large element of such secure
compilation proofs.

Back-translation can be done in two different ways: syntax-
directed and trace-based. Syntax-directed back-translation de-
fines a function from the violating target context (a piece of
syntax) to a source context. While this approach is easy to use
in some situations [6, 7, 15, 16, 36, 40, 46, 51, 53], it has a
significant limitation: it cannot be used if some constructs of
the target language cannot be easily mimicked in the source
language. For example, it is not well suited when the source
language only has structured control flow, while the target
language has unstructured control flow (goto or jump), as
representing unstructured control flow in the source would
require complex transformations or rely on heuristics that
may not always work [32, 59]. Yet this kind of a difference
between source and target languages is commonplace, e.g.,
when compiling any block-structured language to assembly.

In contrast, trace-based back-translation works by defining a
target-language interaction trace semantics that represents all
the interactions between the compiled program and its context
(e.g., cross-component calls and returns) and constructing the
violating source context from the violating target trace instead
of the violating target context [3, 18, 37, 39]. This has the
advantage of not having to mimic the internal behavior of
the target context in the source language. So in contrast to the
syntax-directed method, this trace-directed method works well
even when some target language construct cannot be easily
mimicked in the source language, as long as the construct’s
effect does not cross linking (program-context) boundaries.

Although very powerful in principle, trace-based back-

translation is rather understudied for settings where the pro-
gram and its context can share memory by passing pointers or
references to each other, something that is common in practical
languages like C, Java, and ML. There is a good reason for
this relative paucity of work: memory sharing is a source of
interesting interaction between the program and its context, so
allowing it makes the definition of traces [18, 26], the back-
translation, and the proof of secure compilation significantly
more complex. Moreover, as we explain below, memory
sharing changes parts of the proof conceptually and needs
fundamentally new techniques. This is precisely the gap that
this paper fills: it significantly advances secure compilation
proofs in the presence of memory sharing by introducing two
new proof techniques: (1) data-flow back-translation, which
is a simpler form of back-translation, and (2) turn-taking
simulation, which simplifies the remaining secure compilation
proof. Next, we briefly describe why these new techniques are
needed and what they do.

Data-flow back-translation To understand the need for this
technique, consider a situation where source language has
memory safety and prevents pointer forging (as in Java, Rust or
ML). Suppose the compiled program has shared some pointer
to its private memory with the co-linked target context in the
past, and the context has stored this pointer somewhere in
its private memory. At some later point in the execution, the
context may use a chain of memory dereferences within its pri-
vate memory to recover this pointer and write to the memory
to which it points. Since this write changes shared memory,
it must be recorded on the trace and must be mimicked by
the source context constructed by back-translation. To mimic
this write in the source language, the back-translated source
context cannot just forge a pointer to the memory. Instead, it
must follow a similar chain of dereferences (to the one used
by the target context) in the source. However, the chain of
memory dereferences leading to this pointer is in the target
context’s private memory and interaction traces omit these
private dereferences by design!

Consequently, information needed to reconstruct how to
access the shared pointer is missing from interaction traces,
which makes the back-translation extremely difficult. Prior
work that has even considered this situation [18, 38] relied on
extensive bookkeeping to reconstruct this missing information,
which is unwieldy and complex. For instance, the source
context generated by El-Korashy et al. [18] had to fetch all
reachable pointers every time it got control and store them in
its internal state. This required complex simulation invariants,
on top of the usual invariants between the states of the target
and source contexts.

This is where our new idea of data-flow back-translation
comes in. To perform the back-translation, we first enrich
the standard interaction traces with information about data-
flows within the context. This considerably simplifies the back-
translation definition by providing precisely the missing chain
of private memory dereferences in the trace itself. We see
data-flow back-translation as a sweet spot between standard

trace-based back-translation, which abstracts away all internal
behavior of the context, and syntax-directed back-translation,
which mimics the internal behavior of the context in detail.

Turn-taking simulations Our turn-taking simulations are
useful when one tries to reuse compiler correctness as a
lemma in the secure compilation proof to avoid duplicating
large amounts of work. Specifically, after (trace-based) back-
translation has been defined, one still has to prove that the
source program and the back-translated source context actually
reproduce the given (property-violating) trace of the compiled
program and the target context. This is a difficult simulation
proof over reduction steps, but many of the source and target
steps are executed by the source program and its compilation
and these two are already related by the statement of the com-
piler correctness theorem. Having to reprove the simulation for
these steps would be tantamount to duplicating an involved
proof [27]. This duplication can in fact be avoided by proving
a simpler recomposition lemma in the target language [3].
Intuitively, recomposition says that if a program P1 linked
with a context C1, and a program P2 linked with a context
C2 both produce the same trace, then one may recompose—
link P1 with C2—to obtain again the same trace.

The proof of recomposition is a ternary simulation between
the runs of P1 ∪ C1, P2 ∪ C2, and the recomposed program
P1 ∪ C2. The question that becomes nuanced with memory
sharing is how the memory of the recomposed program should
be related to those of the given programs in this simulation. In
the absence of memory sharing, this is straightforward: at any
point in the simulation, the projection of P1’s memory in the
recomposed run of P1 ∪ C2 will equal the projection of P1’s
memory from the run P1 ∪C1 (and dually for C2’s memory).
However, with memory sharing, this simplistic relation does
not work because C2 may change parts of P1’s shared memory
in ways that C1 does not. Specifically, while control is not
in P1, the projections of P1’s memories in the two runs
mentioned above will not match.

This is where our turn-taking simulations come in. They
relate the memory of P1 from the run of P1 ∪ C2 to that
from the run of P1 ∪ C1 only while control is in P1. When
control shifts to the contexts (C2 or C1), this relation is
limited to P1’s private memory (which is not shared with the
context). The picture for C2’s memory is exactly dual. Overall,
the relation takes “turns”, alternating between two memory
relations depending on where the control is. This non-trivial
replacement for the juxtaposition-based relation allows us to
prove recomposition and therefore reuse a standard compiler
correctness proof even with memory sharing.

Concrete setting We illustrate our two new proof techniques
by extending an existing mechanized secure compilation proof
by Abate et al. [3] to cover dynamic memory sharing. The
original proof was done for a compilation pass from an imper-
ative source language with structured control flow (e.g., calls
and returns, if-then-else) to an assembly-like target language
with unstructured jumps. Both languages had components and
pointers, and for the purpose of this compilation pass, pointers

in both languages were assumed to be safe—i.e., out of bound
accesses are errors that stop execution.1 In both languages, the
program and the context had their own private memories, and
pointers to these memories could not be shared with other
components. The program and the context interacted only
by calling each other’s functions, and passing only primitive
values via call arguments and return values.

We extend both languages by allowing safe pointers to
be passed to and dereferenced by other components, thus
introducing dynamic memory sharing. We then prove again
that this extended compilation step is secure with respect to a
criterion called “robust safety preservation” [4, 5, 37]. For this,
we apply our two new techniques, data-flow back-translation
and turn-taking simulations. Since the parts of the proof using
these new techniques are fairly involved and non-trivial, we
also mechanize them in the Coq proof assistant.

Summary of contributions:
• We introduce data-flow back-translation and turn-taking

simulations, two new techniques for scaling secure com-
pilation proofs to both syntactic dissimilarity between
the source and target languages and (dynamic) memory
sharing.

• We apply these conceptual techniques to prove secure
compilation for a code generation pass between a source
language with structured control flow and a target lan-
guage with unstructured control flow. In both languages,
memory can be dynamically shared by passing safe
pointers between components.

• We mechanize the parts of our proofs centered around
these two key proof techniques in the Coq proof assistant.

Structure The rest of the paper is organized as follows:
In §2 we motivate robust safety preservation and outline a
previous proof [3] that did not support memory sharing. In §3
we explain the challenges of memory sharing, introduce data-
flow back-translation and turn-taking simulation, and show
how they fit into the existing proof outline. In §4 we show
the source and target languages to which we apply these
techniques. §5 provides additional details of applying data-
flow back-translation to our setting (and §B in the appendix
does the same for turn-taking simulation). Finally, we discuss
related (§6) and future (§7) work.

Mechanized proofs in Coq The Coq proofs of back-
translation and recomposition for the compilation pass
outlined above are available at
https://github.com/secure-compilation/
when-good-components-go-bad/tree/memory-sharing
The size of these two proof steps is 2.4k lines of specifications
and 23k lines of proof. For comparison, in the Coq
development without memory sharing on which we are
building, these two proof steps were 2.7k lines in total [3], so
an order of magnitude smaller. We believe that a significant

1While this is orthogonal to our current work on proof techniques, such
safe pointers can be efficiently implemented using, for instance, hardware
capabilities [55, 58] or programmable tagged architectures [14, 17].

part of this increase in proof size can be attributed to the
increase in the conceptual difficulty of the two proofs in the
presence of shared memory.

Our mechanized proofs currently assume not only standard
axioms (excluded middle, functional extensionality, etc.) but
also some low-level specifications about the data structure we
use for memory maps, as well as about allocation, reachability,
and well-formedness of trace events (these are all documented
in the included README.md). We believe that with a bit of extra
effort these low-level specifications used transitively in our
proofs can be proved as well. Even in the current state though,
our proofs are done in much greater detail than previous paper
proofs of secure compilation with memory sharing [18, 37],
which gives us much higher confidence. We found that the use
of a proof assistant was vital in getting the invariants right and
checking the thousands of lines of proof of all the relevant
simulation lemmas, some of which appear later in this paper.

2 Background
We start by giving some background: a motivating example
explaining the broad setting we work in, the formal secure
compilation property we prove (called robust safety preserva-
tion) and a proof strategy from prior work on which we build.

2.1 Motivating Example and Setting

We are interested in the common scenario where a part of a
program is written in a safe source language, compiled to a
target language and then linked against other target-language
program parts, possibly untrusted or prone to be compromised,
to finally obtain an executable target program. By “program
part”, we mean a collection of components (modules), each of
which contains a set of functions. These functions may call
other functions, both within this part and those in other parts.
We use the terms “program” and “program part” to refer to the
program part we wrote and compiled, and “context” to refer
to the remaining, co-linked program part that we didn’t write.

As an example, consider the following source program
part, a single component, which implements a server-
side function set_ads_image that prepares a page to be
shown to the end-user. The function calls a helper function
populate_partner_ads which is implemented by a third-party
library from an advertising company.

extern int populate_partner_ads(char* img);
static char ads_image[65536];
static long long int user_balance_usd;

void set_ads_image () {
populate_partner_ads(ads_image);

}

Suppose that the source language is memory safe and
that the program part above is compiled using a correct
compiler to some lower-level language, then linked to a
context that implements populate_partner_ads, and the re-
sulting program is executed. Our goal is to ensure a safety

https://github.com/secure-compilation/when-good-components-go-bad/tree/memory-sharing
https://github.com/secure-compilation/when-good-components-go-bad/tree/memory-sharing

property nowrite—that populate_partner_ads never modi-
fies the variable user_balance_usd (which is high integrity).
Note that it is okay for populate_partner_ads to mod-
ify the array ads_image, which is passed as a parameter.
The concern really is that a low-enough implementation of
populate_partner_ads may overflow the array ads_image to
overwrite user_balance_usd.

The invariant nowrite can be attained in at least two differ-
ent ways, which we call Setting 1 and Setting 2. In Setting 1,
we allow the compilation of the program part above to be
linked only to target-language contexts that were obtained by
compiling program parts written in the same source language.
Since the source language is safe, there is no way for any
source function to cause a buffer overflow and a correct
compiler will transfer this restriction to the target language so,
in particular, the compilation of populate_partner_ads cannot
overwrite user_balance_usd, thus ensuring nowrite. This kind
of restriction on linking—and the verification of compilers
under such restrictions—has been studied extensively in so-
called compositional compiler correctness [23, 35, 47, 49].
Although useful, this offers no guarantees when the context
containing populate_partner_ads is arbitrary target code.

This restriction on linking is lifted in Setting 2, where the
context is arbitrary target code (written directly in the target
language, or maybe compiled from another less safe language).
Now, nowrite does not follow from source memory safety
and the correctness of the compiler. Instead, we must rely on
the compilation chain satisfying a secure compilation criterion
that defends against malicious target-level contexts. It is this
second setting that interests us here and, more broadly, a large
part of the literature on secure compilation.

2.2 Robust Safety Preservation (RSP∼)
The next question is what security criterion the compilation
chain must satisfy to ensure that nowrite or, more generally,
any property of interest, holds in Setting 2. The literature on
secure compilation has proposed many such criteria (see Abate
et al. [4], Patrignani et al. [40]). Here we describe and adopt
one of the simplest criteria that ensures nowrite, namely,
robust safety preservation or RSP∼ [5]:

Definition 2.1 (Compilation chain has RSP∼ [5]).

RSP∼ def
= ∀P2 Ct t.

(Ct ∪ P↓) ∗ t =⇒
∃Cs t

′. (Cs ∪ P) ∗ t′ ∧ t′ ∼ t

This definition states the following: Consider any source
program part3 P and its compilation P↓. If P↓ linked with
some (arbitrarily chosen) target context Ct emits a finite trace

2As a notational convention, we use different fonts and colors for
source language elements and target language elements. Common
elements are written in normal black font. We also use the symbol ↓ for
the compiler’s translation function.

3We use the notation uppercase P for a program, partial or whole. But only
whole programs can execute. Whole-program execution is denoted P ∗ t

or P t−→ s where s is a state reached after emitting a trace prefix t.

(Ct ∪ P↓)
 ∗ t1

(Cs↓ ∪ P′↓) ∗ t2

t1 ↑ = (Cs ∪ P′) ∗ tbacktr

(Cs↓ ∪ P↓) ∗ t1,2

(Cs ∪ P) ∗ tQED

I. Back-
translation

II. Forward
Compiler
Correctness

III. Recomposition

IV. Backward
Compiler
Correctness

Fig. 2.1: Generic proof technique [3] for RSP∼. The traces t1,
tbackr, t2, t1,2, and tQED are pairwaise related by relation ∼.

prefix t, then there must exist a source context Cs that when
linked P is able to cause P to emit a related trace prefix t′.

To understand why this definition captures secure compila-
tion in Setting 2, consider the case where t is a trace witness-
ing the violation of a safety property of interest. Then, if the
compiler has RSP∼, there must be a source context, which
causes a similar violation entirely in the source language. In
other words, an attack from some target-level context can only
arise if the source program is vulnerable to a similar attack
from some source-level context. In our particular example,
since there clearly is no source context violating nowrite, no
target context can violate nowrite either.

Practically, a compilation chain attains RSP∼ (or any
other criterion for secure compilation of partial programs)
by enforcing source language abstractions like memory safety
against arbitrary target contexts. For this, the compiler and its
associated runtime may rely on hardware support for memory
isolation [50], or bounds checking (e.g., hardware capabili-
ties [55, 58]), or programmable tagged architectures [14, 17],
or it may combine control-flow integrity [2], software fault
isolation [54], and software bounds checking [33].

Our goal in this paper is to explain that proving RSP∼ in
the presence of memory sharing is difficult and to develop
proof techniques for doing this. The specific target language
we use is memory safe, which simplifies the compilation
chain’s enforcement aspect substantially.4 However, even in
this setting, the difficulties in proving RSP∼ with memory
sharing show up prominently.

Finally, the definition of RSP∼ is indexed by a relation ∼
between source and target traces. The concrete instantiation
of this relation determines how safety properties transform
from source to target [5]. In our setting, ∼ is a bijective
renaming relation on memory addresses, which we describe
later (Definition 3.10).

2.3 A Proof Strategy for Robust Safety Preservation
RSP∼ can be proved in various ways [3, 4, 38]. Here, we adapt
a proof strategy by Abate et al. [3], since it reuses the proof
of compiler correctness, thus avoiding duplication of work.
Figure 2.1 summarizes the proof strategy.5

4Note that our source and target languages differ significantly in their
control flow constructs, so the compiler itself is nontrivial; only its security
enforcement aspect is rather straightforward.

5Abate et al. [3] instantiate the strategy mostly for ∼ set to equality, while
we use a nontrivial ∼ everywhere, but this difference is less important here.

Overall, Abate et al. [3]’s proof of RSP∼ consists of four
steps, two of which are immediate from compiler correctness.
RSP∼ requires starting from (Ct ∪ P↓) ∗ t1 to demonstrate
the existence of a Cs such that (Cs ∪ P) ∗ tQED. The
first proof step uses back-translation (Lemma 2.2) to show
from (Ct ∪ P↓) ∗ t1 that there exist Cs and P′ such that
(Cs ∪ P′) ∗ tbacktr with t1 ∼ tbacktr. Note that the back-
translation produces both a new context and a new program
part, and that P′ may be completely different from P. The
second step directly uses a form of compiler correctness called
forward compiler correctness (Assumption 2.3), to conclude
that the compilation of this new source program, (Cs ∪ P′)↓ =
Cs↓∪P′↓, produces t2, related to t1. At this point, we have two
target programs – Ct∪P↓ and Cs↓∪P′↓ – that produce related
traces t1 and t2. The third step uses an innovative target-
language lemma, recomposition (Lemma 2.4), to show that a
third program Cs↓∪P↓, which takes P↓ from the first program
and Cs↓ from the second, also produces a related trace t1,2. The
final, fourth step uses another form of compiler correctness,
called backward compiler correctness (Assumption 2.5), to
conclude from this that the corresponding source, Cs ∪ P
produces a related trace tQED. This concludes the proof.

Lemma 2.2 (Whole-Program Back-translation [3]).

∀P t. P ∗ t =⇒ ∃P t′. P ∗ t′ ∧ t′ ∼ t

Assumption 2.3 (Whole-Program Forward Compiler Correct-
ness).

∀P t. P ∗ t =⇒ ∃t′. P↓ ∗ t′ ∧ t′ ∼ t

Lemma 2.4 (Recomposition [3]).

∀P1 C1 P2 C2 t1t2.

(P1 ∪C1)
∗ t1 =⇒ (P2 ∪C2)

∗ t2 =⇒
t1 ∼ t2 =⇒ ∃t1,2. (P1 ∪C2)

∗ t1,2 ∧ t1,2 ∼ t1

Assumption 2.5 (Whole-Program Backward Compiler Cor-
rectness).

∀P t. P↓ ∗ t =⇒ ∃t′. P ∗ t′ ∧ t′ ∼ t

By following this proof strategy, Abate et al. [3] are able
to reuse compiler correctness and reduce the entire proof of
RSP∼ to two key lemmas: back-translation (Lemma 2.2) and
recomposition (Lemma 2.4). However, Abate et al. execute this
strategy for languages without any memory sharing between
components. Their components—both source and target—
communicate only through function call arguments and return
values. As such, our earlier example cannot even be expressed
in their setting. In the rest of this paper, we adapt their proof
strategy for RSP∼ to the setting where memory sharing is
allowed. We show that memory sharing significantly compli-
cates the proofs of both back-translation and recomposition,
and requires new proof techniques. However, before explaining
these, we briefly show what traces actually look like.

Interaction traces A trace or, more precisely, an interaction
trace, is a modeling and proof artifact that arises from an
augmented reduction semantics of a language, wherein certain
steps are labeled with descriptors called events. The sequence
of events along a reduction sequence forms a trace, denoted
t. In prior work on secure compilation, only steps involv-
ing cross-component interactions or external communication
(input-output) have been labeled with events. In contrast,
internal steps within a component have not been labeled with
events. For example, in Abate et al. [3]’s setting without
shared memory, cross-component interaction happens through
cross-component calls and returns only (information crosses
components via function arguments and return values only).
Hence, their events are only cross-component calls and returns.
We denote these events eno_shr where the subscript no_shr
stands for “no memory sharing”.

eno_shr ::= Call ccaller ccallee.f (v) | Ret cprev cnext v

The event Call ccaller ccallee.f (v) represents a call from com-
ponent ccaller to the function f of component ccallee with
argument v. The dual event Ret cprev cnext v represents a return
from component cprev to component cnext with return value v.
Along a trace, calls and returns are always well-bracketed (the
semantics of both the source and target languages enforce this
well bracketing).

In our setting, memory shared between components is an-
other medium of interaction, so reads and writes to it must be
represented on interaction traces. However, our languages are
sequential (only one component executes at a time), so writes
to shared memory made by a component become visible to
another component only when the writing component transfers
control to the other component. As such, to capture interac-
tions between components, it suffices to record the state of the
shared memory when control transfers from one component to
another, i.e., at cross-component calls and returns. For this, we
modify call and return events to also record the state of the
memory shared up to the time of the event (the shared part of
memory grows along an execution as more pointers are passed
across components). The new events, denoted e, are defined
below. The shared memory on each event, written Mem, is
underlined for emphasis only. Technically, Mem is a just a
partial map from locations l to values v, which themselves
can be pointers to locations.

Definition 2.6 (Interaction-trace events e with memory shar-
ing).

e ::= Call Mem ccaller ccallee.f (v) | Ret Mem cprev cnext v

Interaction traces serve two broad purposes. First, they
are used to express safety properties of interest, such as the
nowrite property in our earlier example. (Appendix A shows
how nowrite can be expressed as a predicate on interaction
traces.) Second, as we explain in §3, interaction traces are
essential to the proof of back-translation, Lemma 2.2. One
of our key insights is that, with memory sharing, enriching
interaction traces with selective information about data flows

within a component can simplify the proof of back-translation
considerably.

3 Key Technical Ideas
Next, we describe why the proofs of Lemma 2.2 and
Lemma 2.4 become substantially more complex in the pres-
ence of memory sharing, and our new techniques—data-
flow back-translations and turn-taking simulations—that offset
some of the extra complexity.

3.1 Data-Flow Back-translation
In proving Lemma 2.2, we are given a target language whole
program P and an interaction trace t that it produces, and
we have to construct a source language whole program P
that produces a related interaction trace t′. This process
of constructing the source program P is often called back-
translation (hence, the name of the lemma). Obviously, we
can construct P from either P or t. Prior work has considered
both approaches.

Construction of P from P, which we call syntax-directed
back-translation, typically works by simulating P in the
source language [6, 7, 15, 16, 36, 40, 46, 51, 53]. This is
tractable when every construct of the target language can be
simulated easily in the source. However, for many pairs of
languages, including our source and target languages (§4), this
is not the case.

The alternative then is to construct P from the given target
trace t [3, 18, 37, 39]. This alternative, which we call trace-
directed back-translation, should be easier in principle since
the interaction trace only records cross-component interac-
tions, so there is no need to simulate every language construct
in the source; instead, only constructs that can influence cross-
component interactions need to be simulated.

Indeed, trace-directed back-translation is fairly straightfor-
ward when there is no memory sharing [3, 39] or when mem-
ory references (pointers) can be constructed from primitive
data like integers in the source language (the latter is true
in unsafe languages like C). However, with memory sharing
and unforgeable memory references in the source—something
that is common in safe source languages like Java, Rust, Go
and ML—trace-directed back-translation is really difficult. To
understand this, consider the following simple example.

Example 3.1. Suppose we want to back-translate the follow-
ing interaction trace with four events:

Call Mem c1 c2.f (l1) :: Ret Mem c2 c1 0

:: Call Mem′ c1 c2.g() :: Ret Mem′ c2 c1 l2

where l1 and l2 are distinct memory locations, Mem = [l1 7→
l2, l2 7→ 0] and Mem′ = [l1 7→ 100, l2 7→ 0].6

In this example, the module c1 calls c2 twice – first it calls
c2.f() and then it calls c2.g(). Assume that prior to these calls,

6Technically, in our languages, function calls and returns and, hence, inter-
action traces carry pointers to locations, not locations themselves. However,
in this section, we blur this distinction.

c1 dynamically allocated locations l1 and l2. In the first call,
c1 passes the location l1 to c2 as the function call argument.
At this point l1 happens to contain l2. As a result, the first call
shares both l1 and l2 with c2 – it shares l1 directly, and shares
l2 indirectly via l1. c2.f() returns 0 to c1 without changing
the shared memory. Later, c1 overwrites l1’s contents with
the value 100 (to get a new shared memory Mem′), and calls
c2.g(). This time c2 returns l2 to c1.

Note that at the time of second call, l2 is actually not
reachable from the shared memory Mem′. However, c2 could
have stashed l2 somewhere in its private memory during the
first call and retrieved it from there during the second call to
return it.

The question is how we can back-translate this sequence of
interactions into a source program. If pointers were forgeable
in the source language, this would be quite easy: l2, being
forgeable, could simply be hardcoded in the body of the
simulating source function c2.g().

However, when locations cannot be forged in the source
language, this is not straightforward. Now, we cannot hardcode
l2 into the back-translated c2.g()’s body since l2 is dynam-
ically allocated by c1 during execution! Consequently, the
back-translated component c2 must store l2 in an indexed data
structure during the first call (to c2.f()), and then somehow
retrieve it from that data structure in the second call.

The problem is actually more difficult than this example
shows: The back-translated context must fetch and store in
its indexed data structure all pointers that become accessible
to it, directly or indirectly, since these pointers may show up
on the trace later. Although some prior work has used such
a bookkeeping data structure, this is an immensely difficult
construction [18, 37], because additional, complex invariants
about this data structure must be proved.

The new idea This is where our new idea of data-flow back-
translation comes in. We enrich interaction traces of the target
language – only for the purposes of the back-translation proof
– with information about all data-flows, even those within
a single component (within its private state). We call these
enriched traces data-flow traces. From the target language’s
reduction semantics, we can easily prove that every interaction
trace as described above can be enriched to a data-flow trace
(Lemma 3.4 below). And, given such a data-flow trace, we can
easily back-translate to a simulating source program, since we
know exactly how pointers flow. In the example above, the
enriched trace would tell us exactly what c2.f() did to store
l2 and how c2.g() retrieved it later. We can then mimic this
in the constructed source program (see Example 3.3 below).

Concretely, we define a new class of data-flow traces,
denoted T , whose events, E , extend those of interaction traces
to capture all possible data flows in the target language. In the
following, we show the events for our target language (§4),
which is a memory-safe assembly-like language with registers
and memory. The events dfCall and dfRet are just the Call

and Ret events of interaction traces (Definition 2.6). The
remaining events correspond to target language instructions

that cause data flows: loading a constant to a register (Const),
copying from a register to another (Mov), binary operations
(BinOp), copying from a register to memory or vice-versa
(Store, Load) and allocating a fresh location (Alloc). Impor-
tantly, in a data-flow trace, every event records the entire state
– both shared state and state private to individual components.
Accordingly, in the events below, Mem also includes locations
that are private to a component, and Reg is the state of the
register file.

Definition 3.2 (Events of data-flow traces).

E ::= dfCall Mem Reg ccaller ccallee.proc(v)

| dfRet Mem Reg cprev cnext v

| Const Mem Reg ccur v rdest

| Mov Mem Reg ccur rsrc rdest

| BinOp Mem Reg ccur op rsrc1 rsrc2 rdest

| Load Mem Reg ccur raddr rdest

| Store Mem Reg ccur raddr rsrc

| Alloc Mem Reg ccur rptr rsize

Example 3.3. Consider the following data-flow trace, which
enriches a part of Example 3.1’s interaction trace – the part
that covers the call and return to c2.f() only. Here, l is a fixed,
hardcodable location that can always be accessed by c2, rCOM

is a special register used to pass arguments and return values,
and Mem1 and Reg1 are some initial states of memory and
registers, respectively.

dfCall Mem1 (Reg1[rCOM 7→ l1]) c1 c2.f (l1)

:: Const Mem1 (Reg1[rCOM 7→ l1, r1 7→ l]) c2 l r1

:: Load Mem1 (Reg1[rCOM 7→ l1, r1 7→ l, r2 7→ l2]) rCOM r2

:: Store (Mem1[l 7→ l2]) (Reg1[rCOM 7→ l1, . . .]) r1 r2

:: dfRet (Mem1[l 7→ l2]) (Reg1[rCOM 7→ 0, . . .]) c2 c1 0

This data-flow trace shows clearly how c2.f() stashed away
l2: It copied l2 to the register r2 and then to the location l. The
rest of the data-flow trace (not shown) will also show precisely
how c2.g() later retrieved l2. It is not difficult to construct a
source program that mimics these data flows step-by-step, by
using source memory locations to mimic the target’s register
file and memory (see §5 for further details).

Outline of data-flow back-translation proof Data-flow
traces simplify the proof of back-translation (Lemma 2.2) by
splitting it into two key lemmas: Enriching interaction traces
to data-flow traces (Lemma 3.4) and back-translation of data-
flow traces (Lemma 3.5), both of which are shown below and
are much easier to prove that standard trace-based backtrans-
lation. Recall that T denotes a data-flow trace. remove_df(T)
denotes the interaction trace obtained by removing all internal
data-flow events from T , i.e., by retaining only Call and
Return events.

Lemma 3.4 (Enrichment).

∀P t. P ∗ t =⇒ ∃T. P ∗ T ∧ t = remove_df(T)

Proof. Immediate from the definition of the target-language
semantics.

Lemma 3.5 (Data-flow back-translation).

∀P T. P ∗ T =⇒ ∃P t. P ∗ t ∧ t ∼ remove_df(T)

Proof sketch. By constructing a P that simulates the data flows
in T , thus keeping its state in lock-step with the state in T ’s
events. See §5 for further details.

Composing these 2 lemmas immediately yields Lemma 2.2.

3.2 Turn-Taking Simulation for Recomposition
Next, we turn to recomposition (Lemma 2.4). This lemma
states that if two programs P1 ∪C1 and P2 ∪C2 produce
two related interaction traces, then the program P1 ∪C2 can
also produce an interaction trace related to both those traces.7

We refer to P1 ∪C1 and P2 ∪C2 as base programs, and to
P1 ∪C2 as the recomposed program. We say that the partial
programs P1 and C2 are retained by the recomposition, and
that P2 and C1 are discarded.

The proof of recomposition is a ternary simulation over
executions of the three programs. For this, we need a ternary
relation between a pair of states s1 and s2 of the base programs
and a state s1,2 of the recomposed program. The question is
how we can relate the memories in s1 and s2 to that in s1,2.

In the absence of memory sharing, as in Abate et al. [3],
this is fairly straightfoward: We simply project P1’s memory
from s1, C2’s memory from s2, put them together (take a
disjoint union), and this yields the memory of s1,2 (up to
location renaming, which we capture with a relation ∼ren that
is formally defined later).

Definition 3.6 (Memory relation of Abate et al. [3]).

mem_rel(s1, s2, s1,2)
def
=

s1,2.Mem ∼ren projP1
(s1.Mem)] projC2

(s2.Mem)

However, with memory sharing, this definition no longer
works.

Example 3.7. Consider the following three target-language
components C1, C2 and P1, represented in C-like syntax
for simplicity. The fourth component P2 is irrelevant for this
explanation, hence not shown.

component C1 {
int* ptr_to_P1 = malloc();
void store(int* arg) {
ptr_to_P1 = arg;
int val_to_revert = *ptr_to_P1;

*ptr_to_P1 = 42;
...

*ptr_to_P1 = val_to_revert;
}

}

7Note. Traces in this section refer to the interaction traces of Definition 2.6.
Data-flow traces are used only for back-translation, not for recomposition.

component C2 {
int* ptr_to_P1_or_P2 = malloc();
void store(int* arg) {
ptr_to_P1_or_P2 = arg;

}
}

component P1 {
int* priv_ptr = malloc();
int* shared_ptr = malloc();
void call_store() {
store(shared_ptr);

}
}

In the base program P1 ∪C1, P1 shares shared_ptr with
the function C1.store(). This function temporarily updates
shared_ptr but reverts it to its original value before returning.
Somewhat differently, in the recomposed program P1 ∪C2,
C2.store() does not modify shared_ptr at all. Thus, even
though the end-to-end interaction behavior of store() in both
the runs is exactly the same, shared_ptr (which is actually in
P1’s memory) has been temporarily modified in C1.store()
but not in C2.store(). Consequently, during the execution
of the context’s function store(), the memory relation of
Definition 3.6 does not hold.

More abstractly, the problem here is that P1’s shared
memory in the recomposed program P1 ∪C2 can be related to
that in the base program P1 ∪C1 only while control is in P1.
When control is in C2, the contents of P1’s shared memory
can change unrelated to the base runs. This naturally leads to
the following program counter-aware memory relation.

Definition 3.8 (Our memory relation (first attempt)).

mem_rel_pc(s1, s2, s1,2)
def
=

if s1,2 is executing in P1 then:

projP1
(s1,2.Mem) ∼ren projP1

(s1.Mem)

else: (i.e., , s1,2 is executing in C2)

projC2
(s1,2.Mem) ∼ren projC2

(s2.Mem)

Although this definition relates shared memory correctly, it
is inadequate for P1’s private memory – the memory P1 has
not shared with the context in the past, such as the pointer
priv_ptr in Example 3.7. This private memory must remain
related in the base program P1 ∪C1 and the recomposed
program P1 ∪C2 independent of where the execution is.
However, Definition 3.8 does not say this.

Accordingly, we revise our definition again. To determine
which locations have been shared and which are still private,
we rely on the interaction trace prefixes t1, t2 and t1,2 that are
emitted before reaching the states s1, s2 and s1,2, respectively.
For a memory mem and a trace t, we write shared(mem, t)
for the projection of mem on addresses that are shared on
the trace t and private(mem, t) for the projection of mem

s
2
.Mem

s
1
.Mem

s
1,2

.Mem

mem_rel_exec

mem_rel_not_exec

s
1,2

 is executing in P
1

s
1,2

 is executing in C
2

s
2
.Mem

s
1
.Mem

s
1,2

.Mem

mem_rel_exec

mem_rel_not_exec

Fig. 3.1: The turn-taking memory relation, mem_rel_tt.

on all the other addresses. With this, we can finally define a
turn-taking relation mem_rel_tt that accurately describes the
memory s1,2.Mem of the recomposed program in terms of the
memories s1.Mem and s2.Mem of the two base programs:

Definition 3.9 (Turn-Taking Memory Relation).

mem_rel_tt(s1,2, s1, s2, t1,2, t1, t2)
def
=

if s1,2 is executing in P1 then:

mem_rel_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem) ∧
mem_rel_not_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem)

else: (i.e., , s1,2 is executing in C2)

mem_rel_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem) ∧
mem_rel_not_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem)

where

mem_rel_exec(part, t, t1,2,mbase,mrecomp)
def
=

projpart(mrecomp) ∼ren projpart(mbase) ∧
shared(mrecomp, t1,2) ∼ren shared(mbase, t)

and

mem_rel_not_exec(part, t, t1,2,mbase,mrecomp)
def
=

projpart(mrecomp) ∩ private(mrecomp, t1,2)

∼ren projpart(mbase) ∩ private(mbase, t)

Intuitively, Definition 3.9 says the following about P1’s
memory: (a) While P1 executes, P1’s entire memory – both
private and shared – relates in the runs of the base program
P1 ∪C1 and the recomposed program P1 ∪C2. (b) While
the contexts (C1 and C2) execute, only the private memory
of P1 in these two runs is related. For the context’s memory,
the dual relation holds. Figure 3.1 depicts this visually.

The memory relation∼ren. We explain the memory relation
∼ren that appears in the above definitions. This relation simply
allows for a consistent renaming of memory locations up to
a partial bijection. The need for this renaming arises because
corresponding program parts may differ in the layouts of their

(Ct ∪ P↓)
 ∗ t1

(Cs↓ ∪ P′↓) ∗ t2

(Ct ∪ P↓) ∗ T1

T1 ↑ = (Cs ∪ P′) ∗ tbacktr

(Cs↓ ∪ P↓) ∗ t1,2

(Cs ∪ P) ∗ tQED

Ib. Back-
translation

Ia. Enrichm.

II. Forward
Compiler
Correctness

III. Recomposition

IV. Backward
Compiler

Correctness

Fig. 3.2: Our proof technique for RSP∼ with memory sharing.
The interaction traces t1, remove_df(T1), tbackr, t2, t1,2, and
tQED are pairwise related by the trace relation ∼.

private memories. In the example above, consider the case
where the module P2, which we didn’t show until now, is
the same as P1, just without the private pointer priv_ptr
and the corresponding malloc. In this case, the exact value of
shared_ptr could differ across the base run P2 ∪C2 and the
recomposed run P1 ∪C2.

Formally, ren denotes a partial bijection that may depend
on P1, P2, C1 and C2, and ∼ren is renaming of memories
(both locations and their contents) up to ren.

Proof of recomposition. In our Coq proof we show that the
turn-taking memory relation of Definition 3.9 is an invariant
(for the languages and compiler of §4). Using this, we are
able to prove recomposition (Lemma 2.4). A key additional
idea we use is strengthening, which allows us to strengthen
mem_rel_not_exec, which relates only the private memory
of a component, to mem_rel_exec, which relates private and
shared memories of the same component, at cross-component
calls and returns. Strengthening follows from the assumption
that the two base runs produce related interaction traces. §B
provides additional details.

3.3 Applying our ideas to an RSP∼ proof
Figure 3.2 summarizes our overall proof technique for proving
RSP∼ with dynamic memory sharing. ↑ denotes the data-
flow back-translation function. Relative to Abate et al.’s [3]
proof technique shown in Figure 2.1, the two key changes
are that: (1) Step I (back-translation) has now been factored
into two steps Ia and Ib to use data-flow traces. Steps Ia and
Ib correspond to Lemma 3.4 and Lemma 3.5, respectively.
(2) The proof of step III (recomposition) now relies on
turn-taking simulations. Steps II and IV, which simply reuse
compiler correctness, remain unchanged.

Trace relation ∼ We also define the trace relation ∼, which
we referred to in §2 and §3. The relation says that two traces
are related if corresponding events have the same kind (both
call or both return, and between the same components), and
there is a bijective renaming of locations ren such that the
memories mentioned in corresponding events of the traces are
related by ∼ren (§3.2), and so are the arguments of calls and
returns.

Definition 3.10 (Relation on interaction traces). For address
renaming relations ren, suppose ∼ren is the memory renaming
relation described in §3.2.

t1 ∼ t2
def
= ∃ren. ∀i.

t1[i].Mem ∼ren t2[i].Mem

∧ match_events(t1[i], t2[i])

∧ valrenren(t1[i].arg, t2[i].arg)

match_events says that the kind of the two events t1[i] and
t2[i] and the component ids (e.g., caller and callee) appearing
on them are the same.
valrenren is a value renaming relation that just lifts the

memory renaming relation ren to pointers.

4 Concrete Languages and Compiler Pass
Next, we describe specific source and target languages – SafeP
and Mach, respectively – and a specific compiler from the
source to the target language. This specific setup is the testbed
on which we have instantiated our new ideas from §3.

In both our languages, a program P consists of an interface,
a set of named functions and a set of statically allocated data
buffers. The interface divides the program into components
(denoted c) and assigns every function to a component. It also
defines which functions are imported and exported by each
component.

Both languages are memory safe and share the same mem-
ory model, which is adapted from CompCert’s block-memory
model [28]. Briefly, memory consists of an unbounded number
of finite and isolated blocks of values. A value v may be
an integer, an (unforgeable) pointer, or a special undefined
value. The memory can be seen as a collection of individual
component memories because each memory block is initially
accessible to only the allocating component. A pointer is a
tuple (perm, c, b, o) consisting of a permission perm (used to
distinguish code and data pointers), the allocating component
c, a unique block identifier b, and an integer offset o within
the block. A location, which we denoted by l so far, is a triple
of a component, block and an offset, (c, b, o). A memory maps
locations to values.

Pointers can be incremented or decremented (pointer arith-
metic), but this only changes the offset o. The block identifier
b cannot be changed by any language operation. Additional
metadata not shown here tracks the size of each allocated
block. Any dereference of a data pointer with an offset beyond
the allocated size or any call/jump to a code pointer with a non-
zero offset causes the program to get stuck. This immediately
enforces memory safety.

Although these languages are strongly inspired by those
of Abate et al. [3], unlike them, we allow a component to
pass pointers to blocks it allocates to other components. The
receiving components can dereference these pointers, possibly
after changing offsets. However, no component can access a
block which it did not allocate and to which it did not receive
a pointer. Hence, our languages provide selective memory
sharing at block granularity.

exp ::= v values
| arg function argument
| local local static buffer
| exp1 ⊗ exp2 binary operations
| exp1; exp2 sequence
| if exp1 then exp2 else exp3 conditional
| alloc exp memory allocation
| !exp dereferencing
| exp1 := exp2 assignment
| c.func(exp) function call
| ∗[exp1](exp2) call pointer
| &func function pointer
| exit terminate

Fig. 4.1: Syntax of source language expressions

The operational semantics of both languages produce inter-
action traces of events from Definition 2.6, recording cross-
component calls and returns. Calls and returns are necessarily
well-bracketed in the semantics. Despite these commonalities,
the two languages differ significantly in the constructs allowed
within the bodies of functions.

The source language The body of a SafeP function consists
of a single expression, exp, whose syntax is shown in Fig-
ure 4.1 and is inspired from the source language of Abate et al.
[3]. The construct arg evaluates to the argument of the current
function, which is a value (which may be a pointer). There
are constructs for if-then-else, dereferencing a pointer (!exp),
assigning value to a pointer (exp1 := exp2), calling a function
func in component c with argument exp (c.func(exp)), calling
a function pointer exp1 (∗[exp1](exp2)), and taking the address
of a function (&func). Additionally, every component has
access to a separate statically allocated memory block, whose
pointer is returned by the construct local.

Importantly, the source language has only structured control
flow: Calls and returns are well-bracketed by the semantics, the
only explicit branching construct is if-then-else, and indirect
function calls with non-zero offsets beyond function entry
points are stopped by the semantics.

In fact, we added function pointers in SafeP, not only
because they are a natural feature, but also to make specific
steps of the back-translation construction a little more con-
venient. Function pointers allow us e.g., to easily mimic a
store of the program counter to memory, an operation that a
target-language program routinely performs. Without function
pointers in the source, our cross-language value relation may
have needed to be a bit complex—complexity that would
propagate to the trace relation (Definition 3.10) and to the
top-level theorem (Definition 2.1).

The target language Mach is an assembly-like language
inspired by RISC architectures, with two high-level features:
the block-based memory model shared with SafeP and the
component structure provided by interfaces. Its instructions
are shown in Figure 4.2. Its state comprises a register file

instr ::= Const i -> r | Bnz r L
| Mov rs -> rd | Jump r
| BinOp r1 ⊗ r2 -> rd | JumpFunPtr r
| Label L | Jal L
| PtrOfLabel L -> rd | Call c func
| Load ∗ rp -> rd | Return
| Store ∗ rp <- rs | Nop
| Alloc r1 r2 | Halt

Fig. 4.2: Instructions of the target language

with a separate program counter and an abstract (protected)
call stack for cross-component calls, which enforces well-
bracketed cross-component Calls and Returns. A designated
register rCOM is used for passing arguments and return values.
At every cross-component call or return, all registers except
rCOM are set to the undefined value.

Importantly, the target language has unstructured control
flow: One may label statements (instruction Label L), jump
to labeled statements (Jump L, Bnz r L), and call labeled
statements (Jal L). Such unstructured jumps are limited to
a single component; cross-component jumps are forbidden
by the semantics. Nonetheless, the presence of unstructured
control flow in the target language means that a syntax-
directed back-translation to the source language, which has
only structured control flow, is infeasible.

Like the source language, the target language has an inter-
action trace semantics with events of Definition 2.6. Following
the idea in §3.1, we additionally equip the target language with
enriched data-flow traces with events of Definition 3.2.

Compiler from SafeP to Mach Our compiler from
SafeP to Mach is single-pass and quite simple. It imple-
ments SafeP’s structured control flow with labels and di-
rect jumps, intra-component calls using jump-and-link (Jal),
and function pointer calls using indirect jumps (Jump and
JumpFunPtr). Even this simple compiler suffices to bring
out the difficulties in proving compiler security in the presence
of memory sharing (as mentioned in §1, our proofs of back-
translation and recomposition span 23k lines of Coq code).
Using the ideas developed in §3, we can prove that this
compiler provides RSP∼ security.

Theorem 4.1. Our SafeP to Mach compiler is RSP∼ (i.e.,
it satisfies Definition 2.1).

5 Some Details of Mach’s Data-Flow
Back-Translation

We provide some details of how we back-translate Mach’s
data-flow traces to SafeP, i.e., how we prove Lemma 3.5.
The back-translation function, written ↑, takes as input a
data-flow trace T and outputs a SafeP whole program P

…

ctr … r1 rcom raux …

…

r1 rcom raux …

0

1

2

3

0

1

2

3

metadata

simulated registers

Fig. 5.1: Memory layout of a back-translated component (left)
compared to a target component (right)

that produces the (standard) trace remove_df(T) in SafeP.8

Similar to Abate et al. [3], each component in P maintains an
event counter to keep track of which event of the trace P is
currently mimicking. This counter, as well as a small amount
of other metadata used by the back-translation, is stored inside
the statically allocated buffers of each component of P, which
are accessed using the local construct.

Mimicking register operations A technical difficulty in
the back-translation is that, unlike Mach, SafeP does not
have registers. In order to mimic data-flow events involving
registers, P simulates these registers and operations on them
within the static buffer of the active component. For instance, a
Mov Mem Reg ccur rsrc rdest event (which copies a value from
register rsrc to register rdest) is simulated by the expression
(local+ OFFSET(rdest)) := !(local+ OFFSET(rsrc)), where
OFFSET(r) is statically expanded to the offset corresponding
of register r in the simulated register file.

Mimicking memory operations Because the source and
target memory models coincide, we are able to back-translate
memory events quite easily. That is, a Store event is back-
translated using assignment (:=) and a Load event is back-
translated using dereferencing (!). Since the static buffer
(whose block number is 0 in our semantics) is already used by
the back-translation to store metadata and simulated registers,
the back-translated program’s memory shifts by one block
relative to the memory in the target: for each component, block
b in the target corresponds to block b + 1 in the source. The
layout of the memory of the back-translated relative to the
Mach program is shown in Figure 5.1.
P maintains the invariant that, after simulating an event

in T , P’s memory and its current component’s simulated
registers are synchronized with the target memory Mem and
the target register file Reg mentioned in the simulated event
(This is defined as part of a mimicking_state invariant —
see Lemma 5.1).

8↑ also takes as input the interface of the given target-language program to
be able to mimic the same interface in the source program, but we elide the
details as they are not very insightful, and largely similar to those in Abate
et al. [3]. P can then be split into a context CS and a program part P′ by
cutting it along this interface.

Mimicking calls and returns Mach’s semantics enforce
a calling convention: calls and returns store the argument
or return value in rCOM, and set all other registers to the
undefined value. Therefore, calls and returns in P need extra
administrative steps to mimic this convention. For example,
mimicking a call event requires two administrative steps: (1)
In the caller, dereference the content of the location simulating
rCOM to get the argument and pass it to the function, and (2)
In the callee, assign the function argument arg to the location
simulating rCOM, and set all other registers to the undefined
value. Similar administrative steps are needed for mimicking
a return event.

Proof of back-translation To prove back-translation
(Lemma 3.5), we use a simulation lemma that en-
sures a relation mimicking_state holds between the
state of P and the prefix mimicked so far. Intuitively,
“mimicking_state Tpref Tsuff s” means that s is the state
reached after mimicking all the data-flow events in Tpref , and
that the starting state of the remaining trace Tsuff matches s.

Lemma 5.1 (Trace-prefix mimicking).

∀P T Tpref Tsuff . P ∗ T =⇒
T = Tpref ++ Tsuff =⇒

∃s t′pref . T ↑
t′pref−→
∗

s ∧
t′pref ∼ remove_df(Tpref) ∧
mimicking_state Tpref Tsuff s

Because Lemma 5.1 ensures the relation mimicking_state
holds for every prefix, it effectively states that the memory of
the back-translation is in lock-step with the Mem and Reg ap-
pearing in each data-flow event E from T . mimicking_state
is also strong enough to ensure that the trace relation
holds between the projection of the prefix mimicked so far
remove_df(Tpref) and the corresponding prefix t′pref that the
back-translation emits.

6 Related Work
Memory relations similar to turn-taking simulations
(mem_rel_tt) El-Korashy et al. [18] and Stewart et al.
[48] use memory relations that are similar to mem_rel_tt
in that the shared memories of two related executions may
mismatch and the memory relation guarantees that the con-
text does not modify the private memory of the compiled
program. However, there are notable differences. First, their
relations are binary—between two runs that differ only in
one component, not both—unlike ours, which is “ternary”.
This allows their relations to be strengthened whenever the
compiled program is executing, while our relation can be
strengthened (Definition A.2) only for single steps right after
interaction events. Second, the applications are quite different.
Stewart et al. [48]’s relation is used in a non-security proof
about compositional compiler correctness where guarantees
come from undischarged assumptions about the target context,
while our guarantees come from runtime safety features of

Mach. El-Korashy et al. [18]’s memory relation is used to
establish a different security criterion, full abstraction [1, 40].

Reuse of standard compiler correctness for secure compila-
tion We are aware of only two prior work that reuse compiler
correctness lemmas in a secure compilation proof. Abate et al.
[3], which we directly build on, have goals similar to ours,
but without memory sharing, which is really the focus of
our paper. El-Korashy et al. [18] support memory sharing and
proof reuse using a different proof technique they call TrICL.
As explained in the paragraph on memory relations above,
their memory relation (which is part of TrICL) is technically
very different from our turn-taking simulations. Additionally,
unlike our technique, their proof is not mechanically verified.

Other kinds of informative traces Using inspiration from
fully abstract trace semantics [26], Patrignani and Garg [38]
perform back-translation (with shared memory) for a compiler
pass using traces that record the whole memory but still only
emit it at just interaction events. Although more informative
than traces that record only shared memory at interaction
events [18, 26], these traces still do not eliminate the need
for bookkeeping—unlike our data-flow traces that selectively
expose non-interaction events to simplify back-translation.

Handling memory sharing as message passing Patrignani
et al. [39] describe a completely different secure compilation
of programs with memory sharing: Their compiled code im-
plements shared memory in a trusted third party (realized as a
hardware-protected module), and all reads and writes become
explicit RPCs to this third party. Under the hood, the third
party relies on dynamic sealing to hide memory addresses [31].
This effectively reduces memory sharing to message passing
and elides most of the complications in proofs with true
memory sharing, but also results in extremely inefficient code
that requires heavyweight calls at every read/write to shared
memory, thus largely defeating the purpose of sharing memory
in the first place.

Secure linking To ensure safe interaction with low-level
code, typed assembly languages [19] and multi-language se-
mantics [29] have been used by Patterson et al. [42]. Their
technique restricts the low-level language not with runtime en-
forcement of memory isolation like in some architectures [17,
50, 55, 56, 57, 58] and in our Mach model, but instead with
a static type system. The type system and the accompanying
logical relation allow reasoning about the equivalence of a
“mixed-language” setting, which is what we called Setting 2 in
§2.1, but sometimes requires exposing low-level abstractions
to high-level code. The secure compilation approach we follow
has a chance of avoiding that. For example, by avoiding
the need for directly reasoning in Setting 2, our secure
compilation result beneficially hides from the programmer the
fact that a Mach function can jump to non-entry points of
other functions in the same component.

Robust safety preservation Robust safety preservation
(RSP), the secure compilation criterion we use, was first

described by Abate et al. [3, 4], Patrignani and Garg [38].
However, this initial work uses a trivial relation (equality)
between source and target traces. With a general relation, as
in our setting, RSP was first examined by Abate et al. [5].
RSP further traces lineage to the robust (context-independent)
verification of safety properties of a given program (not a
given compiler), which is often called “robust satisfaction of
safety properties” [25]. Robust satisfaction is a well-developed
concept, used in model checking [21], type systems [20], and
program logics [22, 43, 52].

Secure compilation of information-flow guarantees A
long line of work [8, 9, 10, 11, 12, 34, 44, 45] develops proof
techniques and verified compilers to ensure that information
flow properties like non-interference, the constant-time policy,
or side-channel resistance are preserved by compilation. These
techniques, however, are all concerned with whole-programs,
unlike our work that starts with the premise that partial
programs will interact with untrusted code.

7 Conclusion and Future Work
In this paper we introduced data-flow back-translation and
turn-taking simulation, two new techniques for scaling secure
compilation proofs to both syntactic dissimilarity between the
source and target languages and dynamic memory sharing. In
the future, we would like to apply these techniques to more
realistic compilers and enforcement mechanisms, for instance
based on capability machines [55, 58] or programmable tagged
architectures [14, 17]. We also think our techniques can
be extended to stronger secure compilation criteria, building
on work by Abate et al. [4], who illustrate that the robust
preservation of a large class of relational safety properties
can be proved by trace-based back-translation. This is stronger
than both RSP and a variant of full abstraction, but their
multi-trace back-translation technique does not yet cope with
mutable state.

Acknowledgements This work was in part supported by the
European Research Council under ERC Starting Grant SECOMP
(715753), and by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) as part of the Excellence Strategy of
the German Federal and State Governments – EXC 2092 CASA -
390781972.

Appendix
A Expressing nowrite using traces
The safety property nowrite can be defined formally as a
predicate on traces (Definition 2.6) as follows.

Example A.1 (The safety spec nowrite). Suppose
lbalance is the memory location allocated for the variable
user_balance_usd, and suppose cmain denotes the component
that calls the function set_ads_image, which is implemented
by csetter.

nowrite(t) def
=

∀t1 ecall t2 Mem1 Mem2 l.

https://erc.europa.eu

t = t1 ++ [ecall] ++ t2 =⇒
ecall = Call Mem1 cmain csetter.set_ads_image() =⇒
find_matching_ret(t2, ecall) =

Ret Mem2 csetter cmain.void =⇒
Mem1(lbalance) = Mem2(lbalance)

The spec above makes sure that the value of the
variable user_balance_usd before the call to the function
set_ads_image is the same as its value at the point when the
function returns.

B Proof of Recomposition for Mach

We use the turn-taking memory relation from §3.2
to prove recomposition (Lemma 2.4). To do that,
we prove that Definition 3.9 of mem_rel_tt is an
invariant. Definition 3.9 is part of a bigger invariant
state_rel_tt on execution states that we elide here
for space reasons. The Coq proof of Lemma 2.4 is,
however, available in Intermediate/RecombinationRel.v,
which in turn uses all of RecombinationRelCommon.v,
RecombinatioRelOptionSim.v,
RecombinationRelLockStepSim.v and
RecombinationRelStrengthening.v9.

A key insight of this proof is the need for a strengthening
lemma that recovers a stronger invariant, state_rel_border,
that holds at states that emit interaction events We show the
memory part of state_rel_border:

Definition A.2 (Memory Relation At Interaction Events).

mem_rel_border(s1,2, s1, s2, t1,2, t1, t2)
def
=

mem_rel_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem) ∧
mem_rel_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem)

where mem_rel_exec is exactly as in Definition 3.9.

Among other things, mem_rel_border ensures that the
shared memories of the three states (of the recomposed
program and the two base programs) are all in sync. We
are able to this strong invariant only at interaction events,
because at these points we can use the assumption that the
traces of the two base programs are related (last assumption
of Lemma A.3), which implies that the shared memories of the
base programs are related. This assumption can be combined
with mem_rel_tt (which holds universally for every triple of
corresponding states) to obtain mem_rel_border.

Lemma A.3 (Strengthening at interaction events).

∀s1,2 s1 s2 t1,2 t1 t2 s′1 s′2 e1 e2.

state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s1
[e1]−→ s′1 =⇒

s2
[e2]−→ s′2 =⇒

t1 ++ [e1] ∼ t2 ++ [e2] =⇒

9for a total of 850 lines of specification and 12.6k lines of proof

∃s′1,2 e1,2. s1,2
[e1,2]−→ s′1,2 ∧

state_rel_border(s′1,2, s′1, s′2,

t1,2 ++ [e1,2], t1 ++ [e1], t2 ++ [e2])

The relation state_rel_tt is a turn-taking simulation
invariant. It ensures that the memory relation mem_rel_tt
holds of the memories of the three related states. Similarly,
the stronger state relation state_rel_border ensures that
the memory relation mem_rel_border holds of the memories
of the three related states.

The exact definition of the relation state_rel_tt is in
RecombinationRelCommon.v. We show here two key lemmas:

Lemma A.4 (Option simulation w.r.t. the non-executing
part).

∀s1,2 s1 s2 t1,2 t1 t2 s′1.

s1,2 is executing in C2 (i.e., not in P1) =⇒
state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s1
[]−→
∗

s′1 =⇒
state_rel_tt(s1,2, s′1, s2, t1,2, t1, t2)

The last assumption (s1
[]−→
∗

s′1) of the option simula-
tion (Lemma A.4) says that state s1 of the base program
P1 ∪C1 takes some non-interaction steps. This base program
contributes just P1 to the recomposed program (P1 ∪C2),
and we know by assumption “s1,2 is executing inC2” that
the recomposed state s1,2 is not executing in P1. The invariant
state_rel_tt ensures that s1,2 executes in P1 whenever s1
executes in P1. Thus, the steps that s1 has made must be taken
by the discarded part C1, not the retained part P1. As shown
in Example 3.7, we know that steps taken by C1 can cause
a mismatch between the memory of the recomposed program
and the memory of the base program P1 ∪C1. The option
simulation lemma ensures that this mismatch is tolerated by
the state_rel_tt invariant.

Lemma A.5 (Lock-step simulation w.r.t. the executing part).

∀s1,2 s1 s2 t1,2 t1 t2 s′1.

s1,2 is executing in C2 (i.e., not in P1) =⇒
state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s2
[]−→ s′2 =⇒

∃s′1,2. s1,2
[]−→ s′1,2 ∧

state_rel_tt(s′1,2, s1, s′2, t1,2, t1, t2)

Lock-step simulation (Lemma A.5) ensures that the in-
variant state_rel_tt is strong enough to keep every non-
interaction step of a retained part in sync between the recom-
posed program and the corresponding base program.

Although both Lemmas A.4 and A.5 hold only for the
scenario when “s1,2 is executing in C2 (i.e., not in P1)”,

they are still general enough because we can apply symme-
try lemmas to our invariant state_rel_tt to reduce the
other scenario “s1,2 is executing in P1” to the former
scenario—thus avoiding lots of duplicate proof. The sym-
metry lemmas are proved in RecombinationRelCommon.v.
In RecombinationRel.v, the reader can find the top-level
proof of recomposition (Lemma 2.4) that uses these symmetry
lemmas in addition to strengthening (Lemma A.3), option sim-
ulation (Lemma A.4), and lock-step simulation (Lemma A.5).

To summarize, the new idea of turn-taking simulations
helped us complete the recomposition proof with memory
sharing. Although we have elided many low-level details of
the recomposition proof here, they are fully resolved in our
Coq mechanization.

References
[1] M. Abadi. Protection in programming-language transla-

tions. In International Colloquium on Automata, Lan-
guages, and Programming. Springer, 1998.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Trans. Inf. Syst. Secur., 13(1), 2009.

[3] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N.
Evans, G. Fachini, C. Hritcu, T. Laurent, B. C. Pierce,
M. Stronati, and A. Tolmach. When good components
go bad: Formally secure compilation despite dynamic
compromise. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security.
2018.

[4] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani,
and J. Thibault. Journey beyond full abstraction: Explor-
ing robust property preservation for secure compilation.
In 32nd IEEE Computer Security Foundations Sympo-
sium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019,
2019.

[5] C. Abate, R. Blanco, Ş. Ciobâcă, A. Durier, D. Garg,
C. Hritcu, M. Patrignani, É. Tanter, and J. Thibault.
Trace-relating compiler correctness and secure compila-
tion. In P. Müller, editor, 29th European Symposium on
Programming, ESOP. 2020.

[6] A. Ahmed and M. Blume. Typed closure conversion
preserves observational equivalence. SIGPLAN Not., 43
(9), 2008.

[7] A. Ahmed and M. Blume. An equivalence-preserving
CPS translation via multi-language semantics. SIGPLAN
Not., 46(9), 2011.

[8] G. Barthe, A. Basu, and T. Rezk. Security types pre-
serving compilation. In B. Steffen and G. Levi, editors,
Verification, Model Checking, and Abstract Interpreta-
tion. 2004.

[9] G. Barthe, B. Grégoire, and V. Laporte. Secure compila-
tion of side-channel countermeasures: the case of cryp-
tographic “constant-time”. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF). IEEE, 2018.

[10] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,

D. Pichardie, and A. Trieu. Formal verification of a
constant-time preserving c compiler. Proc. ACM Pro-
gram. Lang., 4(POPL), 2019.

[11] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie. Secure
compilation of constant-resource programs. In 2021 2021
IEEE 34th Computer Security Foundations Symposium
(CSF). 2021.

[12] F. Besson, A. Dang, and T. Jensen. Securing compilation
against memory probing. In Proceedings of the 13th
Workshop on Programming Languages and Analysis for
Security. ACM, 2018.

[13] M. Busi, J. Noorman, J. Van Bulck, L. Galletta,
P. Degano, J. T. Mühlberg, and F. Piessens. Provably
secure isolation for interruptible enclaved execution on
small microprocessors. In 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF). IEEE, 2020.

[14] A. A. De Amorim, M. Dénes, N. Giannarakis, C. Hritcu,
B. C. Pierce, A. Spector-Zabusky, and A. Tolmach.
Micro-policies: Formally verified, tag-based security
monitors. In Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015.

[15] D. Devriese, M. Patrignani, and F. Piessens. Fully-
abstract compilation by approximate back-translation. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, 2016.

[16] D. Devriese, M. Patrignani, F. Piessens, and S. Keuchel.
Modular, fully-abstract compilation by approximate
back-translation. Log. Methods Comput. Sci., 13(4),
2017.

[17] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis,
S. Chiricescu, J. M. Smith, T. F. Knight, Jr., B. C. Pierce,
and A. DeHon. Architectural support for software-
defined metadata processing. SIGARCH Comput. Archit.
News, 43(1), 2015.

[18] A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese,
D. Garg, and F. Piessens. Capableptrs: Securely com-
piling partial programs using the pointers-as-capabilities
principle. In 2021 IEEE 34th Computer Security Foun-
dations Symposium (CSF), 2021.

[19] N. Glew and G. Morrisett. Type-safe linking and mod-
ular assembly language. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 1999.

[20] A. D. Gordon and A. Jeffrey. Authenticity by typing for
security protocols 1. Journal of computer security, 11
(4), 2003.

[21] O. Grumberg and D. E. Long. Model checking and
modular verification. In International Conference on
Concurrency Theory. Springer, 1991.

[22] L. Jia, S. Sen, D. Garg, and A. Datta. A logic of
programs with interface-confined code. In 2015 IEEE
28th Computer Security Foundations Symposium, 2015.

[23] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis.
Lightweight verification of separate compilation. SIG-

http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1145/3243734.3243745
http://dx.doi.org/10.1145/3243734.3243745
http://dx.doi.org/10.1145/3243734.3243745
http://dx.doi.org/10.1145/1411203.1411227
http://dx.doi.org/10.1145/1411203.1411227
http://dx.doi.org/10.1145/2034574.2034830
http://dx.doi.org/10.1145/2034574.2034830
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1109/CSF51468.2021.00020
http://dx.doi.org/10.1109/CSF51468.2021.00020
http://dx.doi.org/10.1145/2837614.2837618
http://dx.doi.org/10.1145/2837614.2837618
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.1145/2786763.2694383
http://dx.doi.org/10.1145/2786763.2694383
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1145/292540.292563
http://dx.doi.org/10.1145/292540.292563
http://dx.doi.org/10.1109/CSF.2015.38
http://dx.doi.org/10.1109/CSF.2015.38
http://dx.doi.org/10.1145/2914770.2837642

PLAN Not., 51(1), 2016.
[24] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens.

CakeML: a verified implementation of ML. POPL. 2014.
[25] O. Kupferman and M. Y. Vardi. Robust satisfaction.

In J. C. M. Baeten and S. Mauw, editors, CONCUR’99
Concurrency Theory. 1999.

[26] J. Laird. A fully abstract trace semantics for general
references, pages 667–679. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics).
Springer Verlag, 2007.

[27] X. Leroy. A formally verified compiler back-end. Journal
of Automated Reasoning, 43(4), 2009.

[28] X. Leroy and S. Blazy. Formal verification of a c-
like memory model and its uses for verifying program
transformations. J. Autom. Reason., 41(1), 2008.

[29] J. Matthews and R. B. Findler. Operational semantics
for multi-language programs. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 2007.

[30] R. Milner and R. Weyhrauch. Proving compiler correct-
ness in a mechanized logic. Machine Intelligence, 7(3),
1972.

[31] J. H. Morris, Jr. Protection in programming languages.
Commun. ACM, 16(1), 1973.

[32] M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-
code verification for multiple architectures: An applica-
tion of decompilation into logic. In Proceedings of the
2008 International Conference on Formal Methods in
Computer-Aided Design. 2008.

[33] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
Softbound: Highly compatible and complete spatial
memory safety for c. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2009.

[34] K. S. Namjoshi and L. M. Tabajara. Witnessing secure
compilation. In D. Beyer and D. Zufferey, editors, Ver-
ification, Model Checking, and Abstract Interpretation.
2020.

[35] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin,
D. Dreyer, and V. Vafeiadis. Pilsner: A compositionally
verified compiler for a higher-order imperative language.
In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming. 2015.

[36] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract
compilation via universal embedding. In Proceedings
of the 21st ACM SIGPLAN International Conference on
Functional Programming. 2016.

[37] M. Patrignani and D. Garg. Robustly safe compilation.
In L. Caires, editor, 28th European Symposium on Pro-
gramming, ESOP. 2019.

[38] M. Patrignani and D. Garg. Robustly safe compilation,
an efficient form of secure compilation. ACM Trans.
Program. Lang. Syst., 43(1), 2021.

[39] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke,
and F. Piessens. Secure compilation to protected mod-

ule architectures. ACM Transactions on Programming
Languages and Systems (TOPLAS), 37(2), 2015.

[40] M. Patrignani, A. Ahmed, and D. Clarke. Formal ap-
proaches to secure compilation: A survey of fully abstract
compilation and related work. ACM Comput. Surv., 51
(6), 2019.

[41] D. Patterson and A. Ahmed. The next 700 compiler
correctness theorems (functional pearl). Proc. ACM
Program. Lang., 3(ICFP), 2019.

[42] D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed.
Funtal: Reasonably mixing a functional language with
assembly. SIGPLAN Not., 52(6), 2017.

[43] M. Sammler, D. Garg, D. Dreyer, and T. Litak. The
high-level benefits of low-level sandboxing. Proc. ACM
Program. Lang., 4(POPL), 2019.

[44] R. Sison and T. Murray. Verifying That a Compiler Pre-
serves Concurrent Value-Dependent Information-Flow
Security. In J. Harrison, J. O’Leary, and A. Tolmach,
editors, 10th International Conference on Interactive
Theorem Proving (ITP 2019). 2019.

[45] R. SISON and T. MURRAY. Verified secure compilation
for mixed-sensitivity concurrent programs. Journal of
Functional Programming, 31, 2021.

[46] L. Skorstengaard, D. Devriese, and L. Birkedal. Stk-
tokens: Enforcing well-bracketed control flow and stack
encapsulation using linear capabilities. Proc. ACM Pro-
gram. Lang., 3(POPL), 2019.

[47] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C.-K.
Hur. Compcertm: Compcert with c-assembly linking and
lightweight modular verification. Proc. ACM Program.
Lang., 4(POPL), 2019.

[48] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel.
Compositional compcert. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 2015.

[49] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel.
Compositional compcert. SIGPLAN Not., 50(1), 2015.

[50] R. Strackx, J. Noorman, I. Verbauwhede, B. Preneel, and
F. Piessens. Protected software module architectures. In
ISSE 2013 Securing Electronic Business Processes, pages
241–251. Springer, 2013.

[51] T. V. Strydonck, F. Piessens, and D. Devriese. Linear
capabilities for fully abstract compilation of separation-
logic-verified code. Proc. ACM Program. Lang., 3(ICFP),
2019.

[52] D. Swasey, D. Garg, and D. Dreyer. Robust and compo-
sitional verification of object capability patterns. Proc.
ACM Program. Lang., 1(OOPSLA), 2017.

[53] S. Tsampas, D. Devriese, and F. Piessens. Temporal
safety for stack allocated memory on capability ma-
chines. In 2019 IEEE 32nd Computer Security Foun-
dations Symposium (CSF), 2019.

[54] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. SOSP, 1993.

[55] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka,

http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-540-73420-8_58
http://dx.doi.org/10.1007/978-3-540-73420-8_58
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/361932.361937
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1145/3436809
http://dx.doi.org/10.1145/3436809
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.1145/3140587.3062347
http://dx.doi.org/10.1145/3140587.3062347
http://dx.doi.org/10.1145/3371100
http://dx.doi.org/10.1145/3371100
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.1017/S0956796821000162
http://dx.doi.org/10.1017/S0956796821000162
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3371091
http://dx.doi.org/10.1145/3371091
http://dx.doi.org/10.1145/2676726.2676985
http://dx.doi.org/10.1145/2775051.2676985
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1109/CSF.2019.00024
http://dx.doi.org/10.1109/CSF.2019.00024
http://dx.doi.org/10.1109/CSF.2019.00024
http://www.eecs.harvard.edu/~greg/cs255sp2004/wahbe93efficient.pdf

B. Laurie, et al. CHERI: A hybrid capability-system
architecture for scalable software compartmentalization.
In Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015.

[56] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W.
Moore, P. G. Neumann, J. Anderson, D. Chisnall,
B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka,
A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch,
C. Rothwell, S. D. Son, and M. Vadera. Fast protection-
domain crossing in the cheri capability-system architec-
ture. IEEE Micro, 36(5), 2016.

[57] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe,
H. Almatary, J. Anderson, J. Baldwin, D. Chisnall,
B. Davis, N. W. Filardo, A. Joannou, B. Laurie, A. T.
Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis,
R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son,
and H. Xia. Capability Hardware Enhanced RISC In-
structions: CHERI Instruction-Set Architecture (Version
7). Technical Report UCAM-CL-TR-927, University of
Cambridge, Computer Laboratory, 2019.

[58] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann,
R. Norton, and M. Roe. The CHERI Capability Model:
Revisiting RISC in an Age of Risk. SIGARCH Comput.
Archit. News, 42(3), 2014.

[59] F. Zhang and E. D’Hollander. Using hammock graphs
to structure programs. IEEE Transactions on Software
Engineering, 30(4), 2004.

http://dx.doi.org/10.1109/MM.2016.84
http://dx.doi.org/10.1109/MM.2016.84
http://dx.doi.org/10.1109/MM.2016.84
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
http://dx.doi.org/10.1145/2678373.2665740
http://dx.doi.org/10.1145/2678373.2665740
http://dx.doi.org/10.1109/TSE.2004.1274043
http://dx.doi.org/10.1109/TSE.2004.1274043

	Introduction
	Background
	Motivating Example and Setting
	Robust Safety Preservation (RSP)
	A Proof Strategy for Robust Safety Preservation

	Key Technical Ideas
	Data-Flow Back-translation
	Turn-Taking Simulation for Recomposition
	Applying our ideas to an RSP proof

	Concrete Languages and Compiler Pass
	Some Details of RedOrangeMach's Data-Flow Back-Translation
	Related Work
	Conclusion and Future Work
	Appendix
	Expressing nowrite using traces
	Proof of Recomposition for RedOrangeMach

