
Using the Pointers-as-Capabilities Principle

Akram El-Korashy (MPI-SWS), Stelios Tsampas (KU Leuven), 
Marco Patrignani (CISPA), Dominique Devriese (VUB), 
Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven)

CapablePtrs

Securely Compiling Partial Programs

1

elkorashy@mpi-sws.org



Why ?

2

source 
program
part

Securely Compiling Partial Programs



3

compiler

source 
program
part

compiled 
program 
part

Why ?Securely Compiling Partial Programs



4

source 
program
part

compiled 
program 
part

untrusted 
third-party 
library

compiler

Why ?Securely Compiling Partial Programs



5

could be orbuggy malicious

source 
program
part

compiled 
program 
part

untrusted 
third-party 
library

compiler

Why ?Securely Compiling Partial Programs



6

source 
program
part

security 
property 
of the 
source
program 
part

could be orbuggy malicious

compiled 
program 
part

untrusted 
third-party 
library

compiler

Why ?Securely Compiling Partial Programs



could be or

7

buggy malicious

untrusted 
third-party 
library

source 
program
part

compiled 
program 
part

security 
property 
of the 
source
program 
part

security 
property 
of the 
compiled
program 
part

compiler

Why ?Securely Compiling Partial Programs



untrusted 
third-party 
library

source 
program
part

compiled 
program 
part

8

could be orbuggy malicious

security 
property 
of the 
source
program 
part

security 
property 
of the 
compiled
program 
part

compiler

Why ?Securely Compiling Partial Programs



Let be confidentiality

could be or

9

buggy malicious

compiler



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}
10

could be orbuggy malicious

compiler



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}
11

could be orbuggy malicious



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

owns in memory

12

could be orbuggy malicious



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

owns in memory

could 
read

from the 
memory of

13

could be orbuggy malicious



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

14

could be orbuggy malicious

malicious



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

15

could be orbuggy malicious

buggy



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

16

could be orbuggy malicious

buggy

iobuffer[1024]



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 17

could be orbuggy malicious

buggy



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 18

could be orbuggy malicious

buggy



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 19

could be orbuggy malicious

buggy



Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 20

could be orbuggy malicious

buggy



could be orbuggy malicious

buggy

Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 21



could be orbuggy malicious

buggy

Let be confidentiality

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 22



could be orbuggy malicious

buggy

Let be confidentiality

#include "networking.h"

void read_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

read_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 23

Can use process-based 
isolation.



could be orbuggy malicious

buggy

Let be confidentiality

#include "networking.h"

void read_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

read_secret(secret);

receive(iobuffer);

process(iobuffer, secret);

return 0;

}

could 
read

from the 
memory of

int receive (char* buffer) {

...

int checksum = 0;

for (int i=0; i<=1024; i++)

checksum += buffer[i];

send_checksum(checksum);

} 24

Shared memory needs 
be set up ahead of time. 
No pointer passing at 
run-time.

Can use process-based 
isolation.



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

25



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

In the program:

we will need to isolate the memory
of from the memory of

26

#include "networking.h"

void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

27



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

NN

Compiler correctness is a 
more standard verification 
criterion. 
Goal: avoid repeating years-
worth of proof effort.

28



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

Hardware capabilities

29



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

Hardware capabilities

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

30



Compiler 
security

Prior work on

31



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

32



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether. 33



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

34

CapablePtrs



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

35

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

36

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/") C-to-C 

source 

transform
that adds 

CHERI 

annotations 
automatically



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

37

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/") C-to-C 

source 

transform
that adds 

CHERI 

annotations 
automatically

libpng
LibYAML

zlib
GNU-barcode



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

38

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

libpng
LibYAML

zlib
GNU-barcode

C-to-C 
source 

transform
that adds 

CHERI 

annotations 
automatically

0.15%
0.89%

1.15% 
3.5%



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

39

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/") C-to-C 

source 

transform
that adds 

CHERI 

annotations 
automatically

libpng
LibYAML

zlib
GNU-barcode

0.15%
0.89%

1.15% 
3.5%



Compiler 
security

Prior work on

Reproved 
correctness 
implicitly as part 
of the security 
proof.

Achieved 
isolation by 
preventing 
memory sharing 
altogether.

C-to-C 
source 

transform
that adds 

CHERI 

annotations 
automatically

libpng
LibYAML

zlib
GNU-barcode

0.15%
0.89%

1.15% 
3.5%

40

First compiler security proof that achieves

reuse of the compiler correctness proof

while allowing
memory sharing through pointer passing

CapablePtrs

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem instead of implicitly 
re-prove it.

Hardware capabilities

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

41



Hardware capabilities

Virtual 
memory

42

capability



Hardware capabilities

Virtual 
memory

No program part can forge 
capabilities.

Every memory access instruction 
expects a capability as an argument.

43

capability



Hardware capabilities

Virtual 
memory

No program part can forge 
capabilities.

Every memory access instruction 
expects a capability as an argument.

44

capability



capability

Hardware capabilities

Virtual 
memory

The compiler implements pointer passing as 
capability passing.

No program part can forge 
capabilities.

Every memory access instruction 
expects a capability as an argument.

45



capability

Hardware capabilities

Virtual 
memory

46

could be orbuggy malicious

i
o
b
u
f
f
e
r
[
1
0
2
4
]



capability

Hardware capabilities

Virtual 
memory

47

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]



capability

Hardware capabilities

Virtual 
memory

48

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious



Hardware capabilities

Virtual 
memory

49

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious



Hardware capabilities

Virtual 
memory

50

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious



Hardware capabilities

Virtual 
memory

51

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious



Hardware capabilities

Virtual 
memory

52

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious



Hardware capabilities

Virtual 
memory

53

could be orbuggy malicious

Register file

i
o
b
u
f
f
e
r
[
1
0
2
4
]

char *secret_ptr = 

(char*)4210756;

leak(*secret_ptr);

malicious

iobuffer[1024]



capability

Hardware capabilities

Virtual 
memory

The compiler implements pointer passing as 
capability passing.

No program part can forge 
capabilities.

Every memory access instruction 
expects a capability as an argument.

54



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

Hardware capabilities

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

55



56

compiler securityThe definition of that we use:

Compiler Full Abstraction



57

compiler securityThe definition of that we use:

Compiler Full Abstraction

security 
property 
of the 
source
program 
part

security 
property 
of the 
compiled
program 
part



58

compiler securityThe definition of that we use:

Compiler Full Abstraction

Confidentiality of the secrets of 
the source program part

Confidentiality of the secrets of 
the compiled program part



59

A partial 

program is 

secure

when NO 

library can 

distinguish two 

runs (with two 

different 

secrets) from 

each other.

1

2



60

A partial 

program is 

secure

when NO 

library can 

distinguish two 

runs (with two 

different 

secrets) from 

each other.

1

2

The same definition for 

the target language

too



61

compiler securityThe definition of that we use:

Compiler Full Abstraction

Confidentiality of the secrets of 
the source program part

Confidentiality of the secrets of 
the compiled program part



compiler security

We have two requirements for

Isolate the memory of the different parts 
of the program from each other (with low 
performance overhead) while allowing
pointer passing.

Want a proof technique that allows us to
reuse a whole-program compiler 
correctness theorem.

Hardware capabilities

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

62



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

63

compiled 
program 
part

untrusted 
third-party 
library



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

64

compiled 
program 
part

untrusted 
third-party 
library

source 
program
part

mimicking 
source 
library



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

65

compiled 
program 
part

untrusted 
third-party 
library

source 
program
part

mimicking 
source 
library Trace-directed 

Back-translation



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

66

compiled 
program 
part

untrusted 
third-party 
library

source 
program
part

mimicking 
source 
library Trace-directed 

Back-translation



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

67

compiled 
program 
part

untrusted 
third-party 
library

source 
program
part

mimicking 
source 
library Trace-directed 

Back-translation



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

68

compiled 
program 
part

untrusted 
third-party 
library

source 
program
part

mimicking 
source 
library



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

69



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

70

compiler mediator
execution



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

71

compiler



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

72

compiler



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

73

compiler

weak 
similarity

strong 
similarity



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

74

compiler

strong 
similarity

weak 
similarity



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

75

compiler

strong 
similarity

weak 
similarity



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Reuse the whole-
program compiler 

correctness lemmas

76

compiler

strong 
similarity

weak 
similarity



77

compiler

strong 
similarity

weak 
similarity



iobuffer[1024]

78

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

79

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

80

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

81

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

82

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

83

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



iobuffer[1024]

84

compiler

strong 
similarity

iobuffer[1024]

weak 
similarity



85

compiler

strong 
similarity

weak 
similarity

Strengthening 

lemma



86

compiler

strong 
similarity

weak 
similarity

Weakening 

lemma



Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

87

Reuse the whole-
program compiler 

correctness lemmas

compiler mediator
execution



88

More in the paper

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")



89

More in the paper

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Trace-directed 

Back-translation

example



90

More in the paper

Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Trace-directed 

Back-translation

example

Summary: In CapablePtrs, we present a proof 
of compiler full abstraction that achieves

reuse of the compiler correctness lemmas
while allowing

memory sharing through pointer passing.


