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process(iobuffer, secret);

return 0;

}
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...
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be set up ahead of time. 
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run-time.

Can use process-based 
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void init_secret(char* s);

void process(char* b, char* s);

static char secret[256];

char iobuffer[1024];

int main(void) {

init_secret(secret);

receive(iobuffer);
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Novel proof technique 
(called TrICL "/ˈtrɪk(ə)l/")

Trace-directed 
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example

Summary: In CapablePtrs, we present a proof 
of compiler full abstraction that achieves

reuse of the compiler correctness lemmas
while allowing

memory sharing through pointer passing.


