
Towards Automatic Compartmentalization of C
Programs on Capability Machines

Stelios Tsampas1, Akram El-Korashy2, Marco Patrignani2, Dominique Devriese1, Deepak Garg2 and Frank Piessens1
1 imec-Distrinet, KU Leuven, Belgium; email name.surname@cs.kuleuven.be

2 MPI-SWS, Germany; email {elkorashy, marcopat, dg}@mpi-sws.org

Abstract—Capability-based protection mechanisms can offer
fine-grained memory protection (through memory capabilities), as
well as fine-grained protection of general software-defined objects
(through object capabilities). Because of the similarity that capa-
bilities have to the notion of pointer in C, compilers can use the
capability mechanisms offered by the target platform to generate
code that is more resilient to attack. For instance, C arrays can
be compiled to memory capabilities thus providing hardware-
enforced spatial safety guarantees and hence strong resilience
against buffer overflow attacks. State-of-the-art capability-based
systems (like for instance the CHERI system [1]) come with a C
compiler that provides such safety guarantees.

But such safe compilation does not provide security guarantees
for an attacker model where an attacker can compromise part
of the code of an application, for instance by providing a
malicious library, possibly in compiled form. An application is
still executed in a single protection domain. The mechanism of
object capabilities can be used to remedy this: object capabilities
support compartmentalization of an application where different
parts of the application can be executed in different protection
domains, and hence one part of the application can be protected
against malicious behaviour in other parts. However, to the best of
our knowledge, state-of-the-art C compilers provide no automatic
support for such compartmentalization. In CHERI, support for
such compartmentalization is offered as an API [2].

This paper reports on our work-in-progress on the definition,
implementation and evaluation of a compiler that automati-
cally compartmentalizes the programs it compiles, essentially
by executing each C compilation unit in a separate protection
domain. We provide a formal definition of our compiler, and an
implementation on CHERI as a source-to-source compiler that
can detect and insert the necessary invocations to CHERI’s API
for compartmentalization. We illustrate the security properties
of the compiler by means of examples and discuss our work-in-
progress on formalizing and proving these security properties.

This paper uses colours to distinguish elements of different
languages. For a better experience, please print/view it in colour.

I. INTRODUCTION

Hardware and OS level protection primitives like virtual
memory, ASLR, or SGX enclaves play an important role
in protecting against the exploitation of low-level software
vulnerabilities. One interesting application of such protection
primitives is to have a compiler for a higher-level language
use them to enforce abstractions offered by the higher-level
language. Such secure compilers can provide interesting se-
curity guarantees, such as the preservation of certain classes
of security properties of the source program against strong
attacker models where an attacker can interact with the com-
piled program at the hardware or OS level of abstraction.

Over the past decade, several researchers have investigated
techniques for secure compilation based on ASLR [3], [4],
protected module architectures like Intel SGX enclaves [5]–
[7], or general metadata tracking hardware such as the PUMP
machine [8], [9].

Capabilities are a hardware level protection mechanism with
a very rich history in OS security [10]–[13]. Capabilities can
be thought of as hardware protected unforgeable pointers,
either to memory segments (code and data capabilities), or
to software defined objects (object capabilities). Since capa-
bilities can potentially provide very fine-grained protection at
reasonable performance cost, there has recently been renewed
interest in them. A prominent recent example is the CHERI
system [1], [14]. The CHERI processor is a capability-based
variant of the MIPS architecture [15] that offers both virtual
memory as well as instruction-level support for fine-grained
protection within each virtual memory address space. It comes
with a software stack including a capability-aware variant of
FreeBSD and a CHERI-targeted LLVM compiler port. In its
most secure mode, this CHERI compiler represents C pointers
as bounds-checked unforgeable memory capabilities at run-
time, and thus provides strong spatial safety guarantees [2].
The compiler also supports less secure modes that make
interoperability with legacy code easier.

CHERI also supports object capabilities. The key difference
with memory capabilities is that these object capabilities can
also enforce some notion of encapsulation: a code module
can hand out an object capability that provides access to a
data structure defined by that code module, and maintain the
guarantee that the data structure can only be accessed through
functions provided by the code module - thus enabling the
module to enforce invariants or do information hiding.

Object capabilities are a very powerful primitive. CHERI
implements them using a combination of hardware support,
kernel support and a user-space library, and it offers them to
software developers as an API that developers can use to create
protection domains within a single virtual address space. The
CHERI papers outline several interesting design patterns and
use cases of that API for exploit mitigation. However, the
existing CHERI compiler does not use object capabilities for
securing the compiled code itself: source programs must be
modified and/or annotated to benefit from the security offered
by object capabilities.

The main contribution of this paper is a compiler that

provides additional security properties by using the target
platform’s support for object capabilities. For a C program
consisting of several modules where some modules can be
provided by an attacker in binary (compiled) form, our com-
piler protects the integrity and secrecy of the private data
of the other modules (those not provided by the attacker).
We define a module as C code that is compiled together.
(An executable binary is constructed by linking one or more
such compiled units together.) The private data of a module
is all global variables declared using the modifier “static”
within the module. Under C semantics, such variables are
not visible outside the module in which they are defined, but
neither common C compilers nor the existing CHERI compiler
guarantee this property for compiled code.

More specifically, the contributions of this paper are:
• We provide a simple formal model of a target platform

that supports both memory and object capabilities.
• We formally define a compiler from a simple C-like lan-

guage to that target platform that uses object capabilities
to place each C module in a separate protection domain.

• We implement our compiler on the CHERI platform as a
source-to-source compiler that injects the necessary calls
to CHERI’s object capability API.

• We show by means of examples that our compiler pro-
tects against additional attacks that the standard CHERI
compiler (even in its most secure mode) does not address.

• We discuss conjectures about the formal security proper-
ties that our compiler satisfies.

This paper is a work-in-progress paper, and we do not yet have
full proofs for our conjectures, nor do we have an experimental
evaluation of our implementation. However, the work has
progressed sufficiently to have some confidence in the results:
our implementation can compile example C programs that
illustrate the additional security properties offered by the
compiler.

II. THE TARGET LANGUAGE

Our target language models a platform that supports mem-
ory and object capabilities, and is strongly inspired by the
CHERI system [1], [14], a MIPS-based capability-machine
architecture. CHERI offers fine-grained memory capabilities
through hardware support, and it offers object capabilities
through a combination of hardware support, kernel support
and a user-space library (libcheri).

Accordingly, we model in this section a low-level target
language, which we call LLibcheri. This language includes
abstractions that mimic the interfaces offered by libcheri as
well as CHERI’s capabilities. Our model of capabilities draws
heavily from a prior model of a capability machine [16].

A. A target language with capabilities and libcheri

Our target language, LLibcheri, uses unstructured control
flow constructs. Programs in LLibcheri own unforgeable
memory capabilities that mediate memory operations. They
also own object capabilities which are used to invoke func-
tions. A trusted call stack manages such function invocation.

For the sake of readability, we typeset target language terms
in orange, source terms will be typeset in blue.

B. Values, expressions, and commands

Values in LLibcheri are denoted by V = Z ∪ Cap
and range over integers Z and memory capabilities
Cap = {κ, δ} × N× N× Z. Memory capabilities are code or
data capabilities, denoted by κ and δ respectively, where the κ-
labeled elements describe a range of the code memoryMc and
an offset within this range, and the δ-labeled elements describe
the same for the data memory Md. We separate capabilities
from integers to model unforgeability of capabilities, which is
a key design feature in CHERI [1], [14]. Formal arguments
of how this unforgeability is guaranteed by the CHERI archi-
tecture are beyond the scope of this paper, but can be found
in [16].

Definition 1 (Valid code/data capability). We use the judgment
`x (σ, s, e, off) to mean that σ = x and that off ∈ [0, e− s)

Validity of a code/data capability (σ, s, e, off) ensures that
it is of the intended capability type x, and that its offset lies
within the legal range that it prescribes.

Definition 2 (Subset relation and disjoint capabilities).
We also use the judgment (σ, s1, e1, _) ⊆ (σ, s2, e2, _)
to mean [s1, e1) ⊆ [s2, e2) and similarly
(σ, s1, e1, _) ∩ (σ, s2, e2, _) = ∅ to mean that
[s1, e1) ∩ [s2, e2) = ∅.

And we define the function inc: Cap × Z→ Cap as
inc((σ, s, e, off), z)

def
= (σ, s, e, off + z) which increments

the offset of a capability by z.
Memory notation: Code and data memories

(Mc : N→ Cmd and Md : N→ V) are maps from
addresses –that are natural numbers– to commands and values
respectively. Memory values have been described above.
Below we describe expressions and commands. But we first
fix some notation regarding code and data memories:
• We refer to the type N→ Cmd as CodeMemory and to

the type N→ V as DataMemory .
• The operator] is used throughout the paper to refer

to disjoint union of sets or functions. For functions
f and g with dom(f) ∩ dom(g) = ∅, the function
(f] g) has domain dom(f) ∪ dom(g) and is defined as
(f] g)(x) def

= f(x) if x ∈ dom(f), and g(x) otherwise.
We use the notation Mc =

⊎
i

Mci to mean the linking

of several code memories Mci with disjoint mapped
addresses into one code memory Mc, and similarly for
other constructs that are maps or functions.

Commands in LLibcheri: Commands Cmd in LLibcheri
are the following. Figure 1 shows the semantics of these
commands.
• Assign EL ER which evaluates the expression ER to a

value v ∈ V , evaluates the expression EL to a data capa-
bility value c ∈ {δ} × N× N× Z, and stores in the data

Fig. 1. Evaluation of commands Cmd in LLibcheri
(assign)

`κ pcc pcc′ = inc(pcc, 1) Mc(pcc) = Assign EL ER ER,Md, ddc, stc, pcc ⇓ v
EL,Md, ddc, stc, pcc ⇓ c `δ v =⇒ v ∩ stc = ∅ `δ c M′d =Md[c 7→ v]

〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 → 〈Mc,M′d, stk , imp, ddc, stc, pcc′, nfree〉
(jump1)

`κ pcc Mc(pcc) = Jump Econd Ecap Econd ,Md, ddc, stc, pcc ⇓ v v ∈ Z \ {0}
Ecap ,Md, ddc, stc, pcc ⇓ c c ∈ {κ} × N× N× Z pcc′ = c

〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 → 〈Mc,Md, stk , imp, ddc, stc, pcc′, nfree〉
(jump0)

`κ pcc Mc(pcc) = Jump Econd Ecap
Econd ,Md, ddc, stc, pcc ⇓ v v = 0 pcc′ = inc(pcc, 1)

〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 → 〈Mc,Md, stk , imp, ddc, stc, pcc′, nfree〉
(cinvoke)

`κ pcc Mc(pcc) = Cinvoke mid fid e stk ′ = push(stk , (ddc, stc, pcc)) nfree′ = nfree+ φ
e(i),Md, ddc, stc, pcc ⇓ vi ∀i ∈ [0,nArgs) M′d =Md[nfree− nArgs + i 7→ vi ∀i ∈ [0,nArgs)]

stc′ = (δ, nfree− nArgs, nfree′, nfree) (c, d, offs) = imp(mid) ddc′ = d pcc′ = inc(c, offs(fid))

〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 → 〈Mc,M′d, stk ′, imp, ddc′, stc′, pcc′, nfree′〉
(creturn)

`κ pcc Mc(pcc) = Creturn
stk ′, (ddc′, stc′, pcc′) = pop(stk) nfree′ = nfree− φ M′d =Md[n 7→ 0 ∀n ∈ [nfree′, nfree)]

〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 → 〈Mc,M′d, stk ′, imp, ddc′, stc′, pcc′, nfree′〉

memory Md the value v at the address indicated by c
(the address (s+ o) for c = (δ, s, e, o)).

• Jump Econd Ecap is a conditional jump which evalu-
ates the expression Econd to a value v ∈ N, and if
v 6= 0, then it evaluates Ecap to a code capability value
c ∈ {κ} × N× N× Z, and sets pcc to c. Otherwise
(v = 0), nothing is done.

• Cinvoke mid fid e 1 , which is used to invoke an object
capability. Our target platform is configured (in the imp
component of the initial machine state, see below) with
a fixed number of object capabilities identified by mod-
ule identifiers mid , and each object capability supports
invocation of a finite number of functions specified by
function identifiers fid . Each secure call gets access via
stc to a new data stack frame of a fixed constant size φ
(for local use), in addition to a memory region of size
nArgs , which should contain the parameter values that
the caller passes.

• CReturn, which is used to return from a call that has
been performed using Cinvoke. The rules cinvoke and
creturn in fig. 1 specify the exact operations performed
to push and pop the necessary capabilities to/from the
trusted stack.

A state 〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 of a pro-
gram in LLibcheri consists of:
• code and data memories, Mc and Md as defined earlier

(We define Md((δ, s, e, o))
def
=Md(s+ o), and similarly

1We use the notation x to denote that x has a list type. And we also use
the same notation for types (i.e., as a type constructor). For instance, we write
N to denote the type of lists of natural numbers.

for update expressions and for Mc with κ-labeled val-
ues.),

• a trusted call stack stk : Cap3, which is a list of triples
of capabilities that stores the history of the values of
ddc, stc, pcc at the call locations.

• a map of imports imp : N→ CapObj that
for each module identifier, keeps an object
capability (CapObj = ({κ} × N× N× Z)
×({δ} × N× N× Z)× (N→ N)). An object capability
consists of

– a code capability that grants access to the module’s
code region in Mc,

– a data capability that grants access to the module’s
data region in Md,

– and an offsets map, that for each function identifier in
the module, specifies the offset within the module’s
code memory at which the function’s code starts (i.e.,
this map of offsets describes the legitimate entry
points to the module).

• three capability registers/variables:

– ddc : {δ} × N× N× Z, the data capability (which
specifies the region in the data memory Md that is
private to the active module),

– stc : {δ} × N× N× Z, the stack-data capability
(which specifies the region in the data memory Md

that corresponds to the current activation record),
– and pcc : {κ} × N× N× Z, the program counter

capability (which specifies the region in the code
memory Mc in which the currently-executing mod-
ule is defined);

• and a marker nfree : N that holds the first non-allocated
address in Md.

It is worth noting that the map of imports imp is fixed at
load time, and its contents are not modified by any instruction.
But one could imagine an extension to the language enabling
private memory to be allocated at run-time and to be shared
at run-time as well. We leave this for future work.

The syntax of the language enables the use of capabilities
that are expressible in terms of three distinguished names,
“ddc”, “stc”, and “pcc” denoting data capability, stack
capability, and program counter capability, respectively.

Expressions in LLibcheri are denoted by the gram-
mar E ::= Z | ddc | stc | pcc | inc(E ,Z) | deref(E) | E⊕E
where ⊕ ::= + | − | ∗, and Z is the set of integers. ddc, stc
and pcc are the distinguished names for the corresponding
capabilities. inc(E ,Z) increments the offset of a capability
value. deref(E) evaluates to the value at the memory address
pointed to by a capability only if it is a valid capability
according to Definition 1. The evaluation of expressions E to
values V is given by rules of the form E ,Md, ddc, stc, pcc ⇓ V
listed in fig. 2.

C. Target setup, and initial and terminal states

Having defined the program state, we
now define a target setup TargetSetup =
CodeMemory × DataMemory × (N→ CapObj) as
a triple of code memory, data memory, and imports
map. The target setup can be seen as a target module
except that we do not require any well-formedness
conditions on a target setup or on the linking of setups
because we want them to model low-level attackers as
well as legitimate modules. We also define the linking
t1] t2 of two target setups t1 = (Mc1,Md1, imp1),
t2 = (Mc2,Md2, imp2) ∈ TargetSetup to be the component-
wise linking (Mc1]Mc2,Md1]Md2, imp1] imp2),
which is defined only if:

1) the component-wise linking is defined for all three com-
ponents,

2) and ∀c1 ∈ range(imp1), c2 ∈ range(imp2). c1 ∩ c2 = ∅
where for c, c′ ∈ CapObj , c ∩ c′ = ∅ def

= c.1 ∩ c′.1 = ∅
∧ c.2 ∩ c′.2 = ∅ and disjointness of capabilities is as in
Definition 2.

A program state 〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 is
initial for target setup (Mc,Md, imp) if all of the following
hold:

1) stk = nil

2) nfree > the maximum address protected by the data
capabilities of objects c ∈ range(imp)

3) stc ∩ ddc = ∅
4) either ∀c ∈ range(imp). (pcc, ddc, _) ∩ c = ∅ or
∃(cc, dc, _) ∈ range(imp). pcc ⊆ cc ∧ ddc ⊆ dc

An initial state is one where the stack is empty, the free
memory marker captures the correct amount of allocated
memory, the stack data region is disjoint from the module’s
private data region, and the current code and data capabilities

give privilege to at most one imported module (the one that
supposedly started execution). We refer to a state s that is
initial for setup t as t `i s.

A program state 〈Mc,Md, stk , imp, ddc, stc, pcc, nfree〉 is
terminal if

1) `κ pcc
2) Mc(pcc) = Creturn
3) stk = nil

We refer to a state s that is terminal as `t s.
Given two target setups t1, t2 ∈ TargetSetup, we write

t1[t2] ⇓ (convergence) to mean that t1] t2 is defined, and
that ∀ s. t1] t2 `i s =⇒ ∃st. s→∗ st ∧ `t st where→∗
is the reflexive transitive closure of the evaluation relation
defined in fig. 1. Conversely, we write t1[t2] ⇑ (divergence
or getting stuck) to mean that t1] t2 is defined, and that
∃ s. t1] t2 `i s ∧ 6 ∃st. s→∗ st ∧ `t st.

D. Summary of target language features

Our model, LLibcheri, aims to model the essential security
features provided by the CHERI hardware architecture and its
runtime library, libcheri. In particular, call invocations between
mutually distrustful components is a core feature of CHERI,
which can be used to attain compartmentalized execution [16].
Passing parameters of function calls while ensuring non-
retention of access to the stack frame of the callee after the call
has returned is also a core feature of CHERI that we model
in our language using the stack capability, and a restriction
on storing the stack capability in memory (note that the rule
assign categorically prohibits storing the stack capability in
memory). In the actual CHERI architecture, these restrictions
can be implemented using what is called the “permissions
field” on capabilities. Here, we abstract a bit by modeling
specific uses of this field rather than the field itself. Formal
arguments showing that the permissions field can actually be
used to attain our abstractions already exist in prior work [16],
[17].

III. PROBLEM STATEMENT AND OVERVIEW OF OUR
SOLUTION

A. Standard compilation and its security issues

Consider the following C program with two modules.

1 // module 1
2 int f2(void);
3 int g2(void);
4

5 static int gv1 = 0;
6

7 int f1(void)
8 {
9 [..]

10 f2();
11 [..]
12 }

Listing 1. module1.c

13 // module 2
14 int f1(void);
15

16 static int gv2 = 0;
17

18 int f2(void)
19 {
20 [..]
21 }
22 int g2(void)
23 {
24 [..]
25 }

Listing 2. module2.c

The run-time state of the machine at a point where it is
executing within function f1() when this program is compiled
with a standard compiler will look as shown in Figure 3.

Fig. 2. Evaluation of expressions E in LLibcheri
(evalconst)

n ∈ Z
n,Md, ddc, stc, pcc ⇓ n

(evalddc)

ddc,Md, ddc, stc, pcc ⇓ ddc

(evalstc)

stc,Md, ddc, stc, pcc ⇓ stc

(evalpcc)

pcc,Md, ddc, stc, pcc ⇓ pcc
(evalBinOp)

E1,Md, ddc, stc, pcc ⇓ v1 v1 ∈ Z E2,Md, ddc, stc, pcc ⇓ v2 v2 ∈ Z v′ = v1[⊕]v2
E1 ⊕ E2,Md, ddc, stc, pcc ⇓ v′

(evalIncCap)

E ,Md, ddc, stc, pcc ⇓ v v = (σ, s, e, off) ∈ Cap v′ = (σ, s, e, off + z)

inc(E , z),Md, ddc, stc, pcc ⇓ v′
(evalDeref)

E ,Md, ddc, stc, pcc ⇓ v v = (σ, s, e, off) ∈ Cap `δ v v′ =Md(s+ off)

deref(E),Md, ddc, stc, pcc ⇓ v′

The bounds of the program counter capability (pcc) span the
entire code segment, and the offset is pointing to the currently
executing instruction. The default data capability (ddc) spans
the entire data segment, and the stack capability (stc) spans
the entire stack segment, with the offset pointing to the current
top of the stack where the top record is an activation record
for f1().

Code memory Data memory

Code for f1

Code for f2

Code for g2

gv1

gv2

Stack record f1()

pcc ddc stc

…

Capability
(σ,s,e,off)
Is drawn as:

s

e

s+off

Fig. 3. Machine state with standard compilation

The compiled code could benefit from the memory capa-
bility support of the platform to do array bounds checking—
for instance if global variable gv1 would point to an array,
then at run-time the global variable would be represented as a
memory capability whose bounds correspond to those of the
array, thus providing spatial safety. But the compiled code does
not make any use of the object capability mechanism provided
by the platform. The entire program runs in a single protection

domain. The use of memory capabilities can securely isolate
this program from other programs that might be running in
the same address space, but it does not isolate one part of a
program from another part of the same program.

This compilation scheme provides little to no security
against an attacker that can provide binary code for one of the
translation units (for instance, the attacker can compromise a
library that the program links to).

We discuss some examples.

1 // Provided by external library
2 extern void untrusted_function(void);
3

4 static int secret = 0xf100f;
5

6 void fun(void)
7 {
8 untrusted_function();
9 }

Listing 3. ex1.c

The first example (in Listing 3) is about confidentiality.
A global variable qualified as static is not visible outside
its translation unit or module. However, a malicious library
providing untrusted_function() may peek into the process’
data segment to access the value of secret when linked against
ex1.c.

1 // Provided by external library
2 extern void untrusted_function(void);
3

4 static int ton = 1000;
5

6 int ton_mult(int a)
7 {
8 return a ∗ton;
9 }

10

11 int fun(void)
12 {
13 untrusted_function();
14

15 return ton_mult(10);
16 }

Listing 4. ex2.c

The second example shown in Listing 4 deals with integrity.
In a similar fashion to the first example, internal variable ton

should retain its value after calling untrusted_function()

because C code cannot modify it outside of module/translation
unit ex2.c. Much like in the previous example, malicious low-
level code in untrusted_function() can freely modify the
internal variable ton.

1 // Provided by external library
2 extern void untrusted_function(void);
3

4 void fun(void)
5 {
6 untrusted_function();
7

8 if (get_level() ⇐ ACCESS_LEVEL)
9 printf("Low access level");

10 else
11 //Critical code
12 }

Listing 5. ex3.c

Finally, the third example (Listing 5) involves control flow.
Function fun will branch to the critical code only if the
return value of get_level() is higher than a predetermined
value. If compiled in an unsafe manner, a low-level attacker
may jump from untrusted_function() to the critical part of
the program as all executable code is accessible by every
instruction, regardless of previous module boundaries in C.

B. Overview of our solution

The key idea of our proposal is that the compiler should
map translation units of the source program to target platform
objects. Consider the program formed by linking the modules
in Listings 1 and 2. The run-time state of the machine at a
point where it is executing within function f1() when this
program is compiled with our proposed compiler will look
as shown in Figure 4 on the left. Since execution is now in
translation unit 1, the pcc spans only the code of f1(), and
the dcc spans only the global variable gv1. Moreover the stc
provides only access to activation record of this invocation
of f1(). The machine state includes two objects, the green
object for translation unit 1 and the red object for translation
unit 2. When f1() calls f2(), this is compiled to a CInvoke
instruction on the red object, leading to a run-time state shown
in Figure 4 on the right. With this compilation scheme, each
translation unit is running in a separate protection domain,
and even if an attacker can provide malicious binary code for
one of the translation units, the attacker’s power is limited
to calling exported functions from other translation units. In
particular, all the example attacks discussed in the previous
subsection are now prevented, as the attacker cannot directly
access global variables of other modules and cannot jump into
the middle of a function provided by another module.

IV. THE SOURCE LANGUAGE

We formalize a compiler of a simple imperative language
LImpMod that features modules and functions with condi-
tional goto statements. The goal of formalizing this compiler
from LImpMod to LLibcheri is to show that the features of

LLibcheri can be used to design a fully-abstract (source-to-
source) compilation scheme for a C-like imperative language
that features protection for module-private state (i.e., for
translation-unit-static variables, in C terminology).

A. Program and module representation, and well-formedness

A program in the source language LImpMod consists of
a list of modules. Each module consists of a list of function
definitions, and a list of module-private variables. We skip the
syntax of module and function definitions, and we directly
represent them as structures (tuples of lists) that are output by
the parser. We refer to the set of module identifiers as ModID ,
function identifiers as FunID , variable identifiers as VarID ,
and commands as Cmd . We give the syntax for commands and
expressions later. We define the set of functions as FunDef =
ModID × FunID ×VarID ×VarID × Cmd where a func-
tion specifies argument names args, local variable names
localIDs, and a body (list of commands). Modules Mod
= ModID ×VarID × FunDef where a module specifies a
list of module-private variable names, and a list of function
definitions. Programs Prog = Mod are lists of modules subject
to the following well-formedness conditions:

1) Module identifiers are unique across the program, and
modules are sorted by lexicographical order of their
identifiers.

2) Function identifiers are unique across the program, and
function definitions within a module are sorted by lexi-
cographical order of their identifiers.

3) Programs are closed (i.e., the set of all function identifiers
existing in a program contains all the function identifiers
that are called by any command in the program).

4) The last command of every function is a Return and
all jump statements go to destinations inside the same
function.

We refer to the operation of linking two lists of mod-
ules mods1 and mods2 into one well-formed program P as
P = mods1]mods2 where] reorders and concatenates the
two lists of modules only if they form a well-formed program
P , and is not defined otherwise.

B. Commands and expressions

The syntax of commands is given by the grammar
Cmd ::= Assign El Er | Call FunID E | Return | Jump Ec n.

Expressions E ::= addr(VarID) | deref(E) | E ⊕ E |
Z | VarID in LImpMod model a simple notion of C pointers
which admits only storing a reference to or, equivalently, the
name of a variable but does not support pointer arithmetic.
Values V = Z ∪ (VarID × T) are integers and pairs of
variable identifiers and allocation tokens (allocation tokens
are described later). Evaluation of expressions is given by the
rules of the form E ,MVar ,VEnv , pc,Fd ⇓ V .

Even though CHERI supports spatial memory safety [14],
modeling that is not our goal. Consequently, we do not yet
include arrays or pointer arithmetic in LImpMod.

Code memory Data memory

Code for f1

Code for f2

Code for g2

gv1

gv2

Stack record f1()

pcc ddc stc

…

objects = [(cc1,dc1,offs1) , (cc2,dc2,offs2)]

Code memory Data memory

Code for f1

Code for f2

Code for g2

gv1

gv2

Stack record f1()

pcc ddc stc

…

objects = [(cc1,dc1,offs1) , (cc2,dc2,offs2)]

call f2()

Stack record f2()

Fig. 4. Machine state with secure compilation

Fig. 5. Evaluation of expressions E in LImpMod
(Evaluate-expr-const)

z ∈ Z
z,MVar ,VEnv , pc,Fd ⇓ z

(Evaluate-expr-binop)

e1,MVar ,VEnv , pc,Fd ⇓ z1 z1 ∈ Z e2,MVar ,VEnv , pc,Fd ⇓ z2 z2 ∈ Z zr = z1[⊕]z2
e1 ⊕ e2,MVar ,VEnv , pc,Fd ⇓ zr

(Evaluate-expr-addr-local)

(fid , _, t) = pc vid ∈ localIDs(Fd(fid))

addr(vid),MVar ,VEnv , pc,Fd ⇓ (vid , t)
(Evaluate-expr-addr-module)

(fid , _, t) = pc vid /∈ localIDs(Fd(fid)) vid ∈ MVar(moduleID(Fd(fid)))

addr(vid),MVar ,VEnv , pc,Fd ⇓ (vid , 0)
(Evaluate-expr-var)

addr(id),MVar ,VEnv , pc,Fd ⇓ a VEnv(a) = v

id ,MVar ,VEnv , pc,Fd ⇓ v
(Evaluate-expr-deref)

e,MVar ,VEnv , pc,Fd ⇓ (vid , t′) (vid , t′) ∈ VarID × T VEnv((vid , t′)) = v

deref(e),MVar ,VEnv , pc,Fd ⇓ v

C. Program state

A program state 〈MVar ,VEnv , stk ,Fd , pc, t〉 consists of:

• an immutable map MVar : ModID → VarID of module
IDs to module-private variable identifiers,

• an environment VEnv : (VarID × T)→ V represent-
ing the memory, where T is a set of symbols/tokens
that guarantees freshness of allocation across activation
records (this is simply a technical alternative to using a
stack of activation records, but that additionally captures
freshness. Note that all variables in the same activation
record have the same token.),

• a call stack stk : FunID × N× T which is a list of
program counters that record the function calls history
(see pc below),

• an immutable map Fd : FunID → FunDef of function
identifiers to function definitions,

• a program counter pc : FunID × N× T keeping track
of the current activation record’s allocation token, and
the index of the next-to-execute command within the
list of commands of the current function. We define
inc((funId ,n, t))

def
= (funId ,n + 1 , t),

• a token t : T that represents the next free allocation
token. On every allocation of an activation record, t is
incremented. This distinguishes variables in one activa-
tion record from those in another.

Note that knowing the currently executing function and the
token for its activation record’s allocation gives the correct
values of the function-local variables from the environment

Fig. 6. Evaluation of commands Cmd in LImpMod
(Assign)

(fid , n, _) = pc commands(Fd(fid))(n) = Assign el er el,MVar ,VEnv , pc,Fd ⇓ (vid , tel)
er,MVar ,VEnv , pc,Fd ⇓ v v ∈ Z ∨ v ∈ VarID × {0} VEnv ′ = VEnv [(vid , tel) 7→ v]

〈MVar ,VEnv , stk ,Fd , pc, t〉 → 〈MVar ,VEnv ′, stk ,Fd ,inc(pc), t〉
(Call)

(fid , n, _) = pc commands(Fd(fid))(n) = Call fidcall e argNames = args(Fd(fidcall))
nArgs = length(argNames) = length(e) e(i),MVar ,VEnv , pc,Fd ⇓ vi ∀i ∈ [0,nArgs)
vi ∈ Z ∨ vi ∈ VarID × {0} ∀i ∈ [0,nArgs) stk ′ = push(stk , pc) pc′ = (fidcall , 0, t)

VEnv ′ =VEnv [(argNames(i), t) 7→ vi ∀i ∈ [0,nArgs)]

〈MVar ,VEnv , stk ,Fd , pc, t〉 → 〈MVar ,VEnv ′, stk ′,Fd , pc′, t+ 1〉
(Return)

(fid , n, _) = pc commands(Fd(fid))(n) = Return (pc′, stk ′) = pop(stk)

〈MVar ,VEnv , stk ,Fd , pc, t〉 → 〈MVar ,VEnv , stk ′,Fd ,inc(pc′), t〉
(Jump-non-zero)

(fid , n, _) = pc commands(Fd(fid))(n) = Jump ec ndest ec,MVar ,VEnv , pc,Fd ⇓ v v 6= 0

〈MVar ,VEnv , stk ,Fd , pc, t〉 → 〈MVar ,VEnv , stk ,Fd ,inc(pc), t〉
(Jump-zero)

(fid , n, tcur) = pc commands(Fd(fid))(n) = Jump ec ndest ec,MVar ,VEnv , pc,Fd ⇓ v v = 0

〈MVar ,VEnv , stk ,Fd , pc, t〉 → 〈MVar ,VEnv , stk ,Fd ,(fid , ndest , tcur), t〉

VEnv . All module-private variables are associated with a
token value 0 denoting static allocation. The semantics of
expressions and commands are given in fig. 5 and fig. 6.
The necessary condition v ∈ Z ∨ v ∈ VarID × {0} in
Assign ensures that assignable values are either integers or
addresses of module-private variables, but not local variables
of functions.

D. Initial and terminal states

The initial state 〈MVar ,VEnv , nil,Fd , (0, 0, 1), 2〉 of a
program p : Prog , denoted init(p), contains the following
components. The static map MVar of module to module-
private variables is populated in the obvious way from p.
The environment VEnv maps all module-private variable
identifiers v to 0 (i.e., (v, 0) 7→ 0). The call stack is empty
(nil). The function definitions map Fd is populated from p
in the obvious way. The program counter points to the 0th
command of the 0th function (assuming that main will always
have the identifier 0), and the allocation token for the activation
record of main is 1.

A terminal state is any state satisfying the judgment
`t 〈_, _, nil,Fd , (fid , n, _), _〉 def

=
commands(Fd(fid))(n) = Return. For two lists of modules
m1,m2 : Mod , we use the notation m1[m2] ⇓ to mean
that m1]m2 is defined (according to the conditions in
section IV-A), and ∃st. init(m1]m2) →∗ st ∧ `t st,
where →∗ is the evalution relation defined in fig. 6.
We write m1[m2] ⇑ to mean that m1]m2 is defined
but 6 ∃st. init(m1]m2) →∗ st ∧ `t st. The judgment
m1[m2] ⇓ denotes (proper) convergence of the program
m1]m2, while m1[m2] ⇑ denotes divergence and “getting
stuck”.

V. THE COMPILER

In this section, we give a formal specification of the
essential features of our source-to-source compiler, and state
the conjectured security properties, whose proofs we leave for
future work. The compilation scheme is explained bottom-
up, starting from the expression translation all the way up to
program translation.

A. Expression and command translation

The expression translation function *·+µ : E → E is indexed
by a map µ : VarID → E that gives for each variable name
in VarID of LImpMod the corresponding target expression
E from LLibcheri that would evaluate to the address (more
precisely, the capability on the address in Md) in which the
variable lives. Construction of µ is explained in section V-B.

For simplicity, we assume from now on that Z = Z = Z
and N = N = N. Thus, expression translation *·+µ is defined
as follows:
• *z+µ

def
= z for z ∈ Z

• *vid+µ
def
= deref(µ(vid)) for vid ∈ VarID

• *e1 ⊕ e2+µ
def
= *e1+µ ⊕ *e2+µ

• *deref(e)+µ
def
= deref(*e+µ)

• *addr(vid)+µ
def
= µ(vid) for vid ∈ VarID

We also define expression translation for a list of expres-
sions as *e+µ

def
= *e0+µ...*en−1+µ where e ≡ e0...en−1.

The command translation function L·Mµ,i,ρ : Cmd → Cmd
is indexed by the map µ : VarID → E described above,
an index i ∈ N of the command being translated within
the function body Cmd in which the command appears,
and a requirements map ρ : FunID → N2, which for
each function identifier gives the corresponding module and
function identifiers of the compiled program.

The command translation L·Mµ,i,ρ is thus defined as follows:

• LAssign el erMµ,i,ρ
def
= Assign *el+µ *er+µ

• LReturnMµ,i,ρ
def
= Return

• LJump e nMµ,i,ρ
def
= Jump *e+µ inc(pcc, j) where j =

*n +µ −i
• LCall fid eMµ,i,ρ

def
= Cinvoke ρ(fid).1 ρ(fid).2 *e+µ

We note that this simplicity of the expression and command
translation is the consequence of deliberately designing the
expressions and commands of LImpMod and LLibcheri to
be similar. This allows us to focus on security issues, rather
than on translating expressions and commands.

B. Function and module translation

The function translation algorithm T·Uµ,ρ,is : FunDef →
CodeMemory takes a parsed function and returns a code
memory in which the translation of the function is given in
successive addresses starting at the address is. (The construc-
tion of map µ is explained in rules Module-translation and
Function-translation and ρ is as explained in section V-A.)
The function translation algorithm is specified by the inference
rule Function-translation in fig. 7. We assume for simplicity
that the number of arguments to each function is fixed to
nArgs which is known to the Cinvoke command semantics.

Module translation V·Wρ,ic,id : Mod → (CodeMemory ×
DataMemory × ObjCap) produces the translated module’s
code and data memories (in successive addresses starting at ic
and id respectively), along with the object capability protecting
them. Module translation is specified by the inference rule
Module-translation in fig. 7. We note that modules are assumed
to adhere to the well-formedness conditions in section IV-A
that are applicable to individual modules (e.g., the list of
functions fundef is sorted alphabetically by the function
identifiers, which is a step that can be performed by a compiler
pass or the parser [5], [6].

C. A compiler from LImpMod to LLibcheri
Our compilation scheme J·Kρ : Mod → TargetSetup

translates a list of LImpMod modules into a LLibcheri setup
in a way that ensures compartmentalization with respect to
the source modules. The inference rule Module-list-translation
completes the definition of our compilation scheme. The
requirements map ρ : FunID → N2 is assumed to be input
to the compiler for the open parts of the program. (This
models the mapping of headers of functions to symbols that
are resolved at load-time. Here, the symbols are the module
and function identifier pairs.) For the available function def-
initions in a module with identifier mid , function identifiers
FunID are mapped to N sequentially starting from 0 in the
order of appearance of the function definitions in the source
module that has been mapped to the identifier mid . The map
% : ModID → N gives the target module identifiers.

D. Security Properties

To be convinced about the securty of the compiler, we need:
1) properties for compilers that capture security,

2) a statement that our compiler J·Kρ,% has those properties,
3) and a proof of said statement.

In this section we provide the first two and only an informal
proof that the proof of the statement holds; a complete formal
proof is left for future work.

To express compiler security, one de-facto standard exists:
compiler full abstraction [18]. Informally, a compiler is fully
abstract if the compilation from source programs to target
programs preserves and reflects behavioural equivalence. In
other words, a compiler is fully-abstract if for any two source
programs m1 and m2, we have that they are behaviourally
equivalent (m1'ctx m2) if and only if their compiled coun-
terparts are behaviourally equivalent (Jm1K'ctx Jm2K). The
notion of behavioural equivalence used here is the canonical
notion of contextual equivalence: two terms are equivalent if
they behave the same when plugged into any valid context.

In this setting, a source context C for an open program m is
a list of modules c such that c]m is defined. A target context
C : TargetSetup for a compiled program p : TargetSetup is
one for which C] p is defined.

Source and target contextual equivalence can be stated as
follows (we use black to avoid repeating the definition in both
colours), where ⇑ means divergence:

m'ctx m
′ def
=∀C. C[m] ⇑ ⇐⇒ C[m′] ⇑

This definition is standard and used by most papers in the
literature on secure compilation [3]–[7], [19]–[22].

Compiler full abstraction can be stated as follows:

∀m1,m2. m1'ctx m2 ⇐⇒ Jm1K'ctx Jm2K

We denote a compiler J·K being fully-abstract as J·K ∈ FA.
Another crucial property that compilers must have is modu-

larity. A compiler is modular when it operates on components
and compiled modules can be linked together into larger
components (and possibly into whole programs). Supporting
modular compilation and linking of modules is a de-facto
requirement of modern compilers, as it is easier to write and
compile code in separate components.

Modularity is formalised as follows:

∀m1,m2. Jm1]m2Kρ,% 'ctx Jm1Kρ,%] Jm2Kρ,%

We denote a compiler J·K being modular as J·K ∈ MO .
The combination of full abstraction and modularity yields

modular full abstraction [7]. Formally, a compiler is modularly
fully abstract if:

∀m1,m2,m3,m4.

m1] m2 'ctx m3] m4 ⇐⇒
Jm1Kρ,%] Jm2Kρ,% 'ctx Jm3Kρ,%] Jm4Kρ,%

We denote a compiler J·K being modular as J·K ∈ MFA.
Finally, a compiler should be functionally correct, i.e.,

it should preserve the meaning of the program. Here, the
compilation of expressions and commands is straightforward,
so we expect that proving functional correctness will be

Fig. 7. Compilation of functions, modules and module lists

(Function-translation)

|args| = nArgs |localvars| = φ µa =
⊎

i∈[0,nArgs)

args(i) 7→ inc(stc, i)

µl =
⊎

i∈[0,|localvars|)
localvars(i) 7→ inc(stc, i+ nArgs)

µ′ = µ] µa] µl Mc =
⊎

i∈[0,|cmd|)
is + i 7→ Lcmd(i)Mµ′,i,ρ

T(_, _, args, localvars, cmd)U µ,ρ,is = Mc

(Module-translation)

Md =
⊎

i∈[0,|privvars|)
id + i 7→ 0

µ =
⊎

i∈[0,|privvars|)
privvars(i) 7→ inc(ddc, i)

(Mc, offs) = (
⊎

j∈[0,|fundef |)
Mcj ,

⊎
j∈[0,|fundef |)

j 7→ ij) with Mcj = Tfundef (j)Uµ,ρ,ij with ij = ic +
∑

k∈[0 ,j)
|dom(Mck)|

objcap = ((κ, ic, ic + |dom(Mc)|, 0), (δ, id, id + |dom(Md)|, 0), offs)

V(_, privvars, fundef)Wρ,ic,id = (Mc,Md, objcap)

(Module-list-translation)

(Mc,Md, imp) =
⊎

j∈[0,|m|)
(Mcj ,Mdj , impj)

with mj = Vm(j)Wρ,icj ,idj ,Mcj = mj .1,Mdj = mj .2, impj = %(modID(m(j)))7→mj .3,
with icj =

∑
k∈[0,j)

|dom(Mck)|, idj =
∑

k∈[0,j)
|dom(Mdk)|

JmKρ,% = (Mc,Md, imp)

straightforward. Hence, we do not consider this requirement
any further.

We believe that our compiler has the following three prop-
erties:

Theorem 1 (J·K is fully abstract). J·K ∈ FA

Theorem 2 (J·K is modular). J·K ∈ MO

Theorem 3 (J·K is modularly fully abstract). J·K ∈ MFA

The hard theorem is Theorem 1. In fact, formal techniques
for proving compiler full abstraction are an active topic of
research [22], [23]. We leave a proof of this theorem to future
work.

VI. IMPLEMENTATION

In this section we introduce our implementation of the
compilation scheme that was formalized previously.

The compiler is built upon CheriBSD, a port of FreeBSD
for the CHERI processor, and CHERI’s Clang/LLVM com-
piler [2]. In order to describe the details of the source-to-
source compiler, it is necessary to briefly explain CheriBSD’s
programmer-friendly interface to CHERI’s compartmentaliza-
tion features, namely libcheri [24]. Under libcheri, the isolated,
compartmentalized parts of a program are called “sandboxes”
and libcheri is the API for loading sandboxes, setting them
up and invoking them. The interface consists of a number of
functions and macro definitions and is complemented by new
compiler attributes and linker scripts.

The main primitives of CHERI’s in-process compartmental-
ization are classes and objects [24]. Classes represent sand-
boxes, manifest through statically linked executable images,
while objects represent corresponding invokable object capa-
bilities. It is the responsibility of the programmer to group
functions into CHERI classes and to create the invokable ob-
ject capabilities for each class. The programmer may annotate
functions as cheri_ccall so that conventional function calls
are replaced by object capability invocations. Functions that
are meant to be exported by the current sandbox should be
annotated with the cheri_ccallee attribute. At runtime, libcheri
acts as a loader that reads the executable images from the
filesystem and creates the respective object capabilities. It is
critical that when the sandbox loading routines are called the
program is in its initial state where it has control over its entire
address space as well as file system access.

Our compilation scheme maps each C module to a separate
sandbox. This translates to assigning a CHERI class and
creating a CHERI object for each module. Our source-to-
source compiler achieves this by first performing semantic
analysis of all program modules and assembling a mapping
of function identifiers to C modules, which helps resolve
dependencies in the next step. The compiler then traverses
through each module’s AST and annotates every external
function declaration it encounters as either cheri_ccallee or
cheri_ccall, depending on whether the function is defined
in the current translation unit or not. In the second case,
the source-to-source compiler uses the dependency map to

specify the sandbox each external function belongs to. The
compiler will also add libcheri object declarations required
by the annotations. As a performance optimization over the
formal model, intra-module function calls do not translate to
object capability invocations. Instead, they are ordinary MIPS
function calls. This change has no security implications.

One hurdle in using libcheri for our compilation scheme
is initialization. Each sandbox needs the respective object
capabilities to be able to invoke functions exported by other
sandboxes. The question is who creates these capabilities and
where they are stored. Loading of a new sandbox requires
system calls, and CheriBSD prohibits system calls in compart-
mentalized code. While it is possible to allow sandboxes to
invoke system calls by passing the special “system” capability,
doing that would violate the principle of least privilege.

Our solution is to extend libcheri with a new load-
initialization function sandbox_chain_load(). This function is
meant to be called only once by an initialization module,
which is the only privileged part of the program (and hence
can do system calls). sandbox_chain_load() loads the “main”
sandbox from the filesystem and also any modules that “main”
depends on (recursively). It also creates relevant object capa-
bilities for every sandbox and places them at the beginning of
the sandbox’s data segment. As a result, every sandbox has
access to the object capabilities necessary to invoke exported
functions from other sandboxes. Extending libcheri required
considerable additions to the libcheri code base including the
definition of sandbox_chain_load(), new versions of sandbox
creation routines that support sandbox dependencies and low-
level macros that expose relevant sandbox metadata to C.

For reasons of technical convenience, our formal model
of Cinvoke differs from its implementation in libcheri. In
libcheri, Cinvoke is implemented as a combination of libcheri’s
libcheri_cinvoke() function and CHERI’s ccall instruction.
In our formal model, we push ddc, stc and pcc onto the trusted
stack before every call. On the other hand, CHERI/CheriBSD
pushes registers $pcc and $idc, where $idc is a capability
pointing to a memory region that itself contains four capabil-
ities: the stack pointer $sp, the data capability $ddc, the stack
capability $stc and the original $idc from the previous ccall
instruction [2]. The “bundling” and “unbundling” of $idc takes
place outside of ccall and creturn with the help of libcheri.

The compilation procedure is illustrated in Figure 8, List-
ings 6 to 12. The source program has three C modules:
an entry point, main.c, along with libraries lib1.c and lib2.c
that implement the functions f1() and f2(), respectively. The
compiler adds a constructor function to each module, whose
sole responsibility is to fetch the object capabilities from
the module’s data segment. Execution begins at the init()

function of the module init.c, where sandbox_chain_load() is
called before invoking the actual entry point of the prorgam,
main(). Since this function is annotated with the cheri_ccall

attribute, the respective object capability is invoked so that
module main.c is executed in its own sandbox as intended.

Observe that the bodies of all function definitions (across all
modules) are equal before and after compilation. Hence, our

Fig. 8. Function definition mapping after first pass
main → main
f1 → lib1
f2 → lib2

source-to-source compiler only inserts attributes to function
declarations; it does not change the functions themselves.

27 int f1(void);
28 int f2(void);
29

30 int main(void)
31 {
32 f1();
33 f2();
34

35 return 0;
36 }

Listing 6. Input to the source-to-source compiler. main.c

37 int f1(void);
38 int f2(void);
39

40 int f1(void)
41 {
42 f2();
43 }

Listing 7. Input to the source-to-source compiler. lib1.c

45 int f2(void);
46

47 int f2(void)
48 {
49 [..]
50 }

Listing 8. Input to the source-to-source compiler. lib2.c

51 struct cheri_object main_obj;
52 static struct sandbox_object ∗main_objectp;
53

54 __attribute__((cheri_ccall))
55 __attribute__((cheri_method_suffix("_cap")))
56 __attribute__((cheri_method_class(main_obj)))
57 extern int main(int argc, char ∗argv[]);
58

59 int init(int argc, char ∗argv[])
60 {
61 sandbox_chain_load("main", &main_objectp);
62 main_obj = sandbox_object_getobject(main_objectp);
63

64 main(argc, argv);
65 }

Listing 9. Source-to-source compilation output. Initialization module init.c

66 extern struct cheri_object main_obj;
67 struct cheri_object lib1;
68 struct cheri_object lib2;
69

70 __attribute__((cheri_ccall))
71 __attribute__((cheri_method_suffix("_cap")))
72 __attribute__((cheri_method_class(lib1)))
73 int f1(void);
74

75 __attribute__((cheri_ccall))
76 __attribute__((cheri_method_suffix("_cap")))
77 __attribute__((cheri_method_class(lib2)))
78 int f2(void);
79

80 __attribute__((cheri_ccallee))
81 __attribute__((cheri_method_class(main_obj)))
82 int main(void);
83

84 __attribute__ ((constructor)) static void
85 sandboxes_init(void)
86 {
87 struct sandbox_metadata ∗mdata;
88 struct external_dep ∗s_lib1_dep,
89

∗s_lib2_dep;
90

91 mdata = GET_METADATA();
92

93 lib2_dep = sandbox_dep_lookup(mdata→sbm_deps,
94 mdata→sbm_depnum, "lib2");
95 lib2 = lib2_dep→lib;
96

97 lib1_dep = sandbox_dep_lookup(mdata→sbm_deps,
98 mdata→sbm_depnum, "lib1");
99 lib1 = lib1_dep→lib;

100 }
101

102 int main(void)
103 {
104 f1();
105 f2();
106

107 return 0;
108 }

Listing 10. Source-to-source compilation output. Transformed main.c

109

110 extern struct cheri_object lib1;
111 struct cheri_object lib2;
112

113 __attribute__((cheri_ccallee))
114 __attribute__((cheri_method_class(lib1)))
115 int f1(void);
116

117 __attribute__((cheri_ccall))
118 __attribute__((cheri_method_suffix("_cap")))
119 __attribute__((cheri_method_class(lib2)))
120 int f2(void);
121

122 __attribute__ ((constructor)) static void
123 sandboxes_init(void)
124 {
125 struct sandbox_metadata ∗mdata;
126 struct external_dep ∗s_lib2_dep,
127

128 mdata = GET_METADATA();
129

130 lib2_dep = sandbox_dep_lookup(mdata→sbm_deps,
131 mdata→sbm_depnum, "lib2");
132 lib2 = lib2_dep→lib;
133 }
134

135 int f1(void)
136 {
137 f2();
138 }

Listing 11. Source-to-source compilation output. Transformed lib1.c

139 extern struct cheri_object lib2;
140

141 __attribute__((cheri_ccallee))
142 __attribute__((cheri_method_class(lib2)))
143 int f2(void);
144

145 int f2(void)
146 {
147 [..]
148 }

Listing 12. Source-to-source compilation output. Transformed lib2.c

VII. RELATED AND FUTURE WORK

Capabilities are an old notion [10], [25]–[27]. They have
been used to add protection to operating systems [10]–[12],
[28], [29], programming languages [30], [31] and security

architectures [13], [32], [33]. Concerning the latter, few theo-
retical and practical models exist: the M-machine [32], [34],
Capsicum [13] and CHERI [1], [2], [14], [33]. CHERI is
not only the most mature capability machine implementation,
but it has also recently been formalised by El-Korashy [16].
El-Korashy also proves that a number of security properties
such as capability unforgeability, compartmentalisation and
control-flow integrity can be realized through careful use of
CHERI’s ISA. These properties are useful building blocks for
the security proof of a compiler. We expect that a formal proof
of Theorem 1 will rely on these properties.

Secure compilation has been achieved for different secu-
rity architectures: SGX-like enclaves [5]–[7], [35], metadata
tracking architectures (i.e., the Pump machine) [9], [21] and
ASLR [3], [4]. A trivial use of CHERI for secure compilation
would be to use capabilities to mimic enclave-like structures
and reuse work on securely compiling to enclaves. However,
the finer protection granularity in CHERI, as well as its com-
partmentalisation primitives suggest that compiling directly to
CHERI can be more efficient than compiling to enclaves. The
Pump machine is an instance of an architecture that allows for
efficient secure compilation. However, its extensive hardware-
supported metadata tracking seems to be unnecessary for most
security applications. As that metadata tracking can cause
cache misses and thus performance reduction, we believe
CHERI might have better performance. Finally, ASLR only
achieves probabilistic security guarantees. CHERI can provide
absolute guarantees.

The de-facto formal standard for secure compilation is full
abstraction [3]–[7], [18], [19], [22]. Recently, shortcomings
of FA have been pointed out and new alternatives have been
proposed. For example, modular full abstraction [7] forces a
compiler to be both modular and fully abstract, preventing the
development of secure compilers for which full abstraction
fails under composition. Secure compartmentalised compila-
tion also enforces modularity [21], but it also supports source
languages with undefined behaviour. To do so, it requires
compiled components to be fully defined, i.e., if undefined
behaviour arises, then it does not have effects outside the
current component’s boundaries. Instead of going for SCC in
our full development, we eliminate all C undefined behaviours
in the semantics by converting it to an error. While this won’t
let compilers perform undefined behaviour-based optimisation,
it does reduce the surface for attacks and mistakes. Finally,
trace preserving compilation or TPC [36] can be seen as a
form of full abstraction where all failures and checks are
treated uniformly. The main difference with full abstraction
is that TPC has been proven to preserve arbitrary safety
hyperproperties.

All compiler security properties mentioned above are remi-
niscent or based directly on full abstraction so we plan to stay
with full abstraction in our future development. We will likely
consider modularity (which we believe to be fundamental) and
treat all failures uniformly (like TPC) since that is both easy
and proven to preserve safety hyperproperties. For proving
compiler full abstraction, two main approaches exist: equip-

ping the target language with a logical relation [20], [22], [23],
[37], or with a labelled transition system that yields a notion
of bisimilarity or trace equivalence [4]–[7], [21], [38]. So far,
we have not committed to this choice. However, we expect to
commit to this choice soon in order to make progress on our
proofs.

Finally, another important avenue for future work is to
support more features of the C language. Handling dynamic
allocation (malloc()), arrays and structs seems reasonably
straightforward. They are already supported in our imple-
mentation, but not yet included in the formal model. More
challenging is handling function pointers, pointers to local
variables and, more generally, enforcing temporal memory
safety. We plan to address these challenges using CHERI’s
support for local capabilities.

VIII. CONCLUSION

Capabilities are a powerful fine-grained low-level protection
mechanism. Compilers can use this powerful mechanism to
enforce properties of the source language at run-time. In this
paper we have reported on our work-in-progress of building
a compiler that uses the target platform’s support for object
capabilities to automatically compartmentalize the programs
it compiles. Specifically, our compiler creates a separate
protection domain for each C translation unit, thus providing
protection against malicious libraries that the program links
with.

REFERENCES

[1] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI Capability Model: Revisiting RISC in an Age of Risk,”
SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 457–468, Jun.
2014. [Online]. Available: http://doi.acm.org/10.1145/2678373.2665740

[2] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “CHERI:
A hybrid capability-system architecture for scalable software compart-
mentalization,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 20–37.

[3] M. Abadi and G. Plotkin, “On protection by layout randomization,”
in CSF ’10. IEEE, 2010, pp. 337–351. [Online]. Available:
http://dx.doi.org/10.1109/CSF.2010.30

[4] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely, “Local memory via
layout randomization,” in Proceedings of the 2011 IEEE 24th Computer
Security Foundations Symposium, ser. CSF ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 161–174. [Online]. Available:
http://dx.doi.org/10.1109/CSF.2011.18

[5] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure compilation to protected module architectures,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 37, no. 2, p. 6, 2015.

[6] P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation
to modern processors,” in CSF ’12. IEEE, 2012, pp. 171 – 185.
[Online]. Available: http://dx.doi.org/10.1109/CSF.2012.12

[7] M. Patrignani, D. Devriese, and F. Piessens, “On Modular and Fully-
Abstract Compilation,” in Proceedings of the 29th IEEE Computer
Security Foundations Symposium CSF 2016, Lisbon, Portugal, ser. CSF
2016, 2016.

[8] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight, Jr., B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” SIGARCH Comput.
Archit. News, vol. 43, no. 1, pp. 487–502, Mar. 2015. [Online].
Available: http://doi.acm.org/10.1145/2786763.2694383

[9] Y. Juglaret and C. Hritcu, “Secure compilation using micro-policies,”
2015.

[10] H. M. Levy, Capability-Based Computer Systems. Newton, MA, USA:
Butterworth-Heinemann, 1984.

[11] R. S. Fabry, “Capability-based addressing,” Commun. ACM, vol. 17,
no. 7, pp. 403–412, Jul. 1974. [Online]. Available: http://doi.acm.org/
10.1145/361011.361070

[12] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for fast
capability-based addressing,” in ACM SIGPLAN Notices, vol. 29, no. 11.
ACM, 1994, pp. 319–327.

[13] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for unix.”

[14] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe,
J. Anderson, D. Chisnall, B. Davis, A. Joannou, B. Laurie,
S. W. Moore, S. J. Murdoch, R. Norton, S. Son, and H. Xia,
“Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 5),” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-891, Jun. 2016. [Online].
Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-891.pdf

[15] J. Heinrich, MIPS R4000 Microprocessor User’s manual, 1994.
[16] A. El-Korashy, “A Formal Model for Capability Machines: An

Illustrative Case Study towards Secure Compilation to CHERI,”
Max-Planck Institute for Software Systems, Saarbrücken, Tech. Rep.,
2016. [Online]. Available: https://people.mpi-sws.org/~elkorashy/

[17] “Rigorous Engineering of Mainstream Systems,” 2016, [Online;
accessed 06-September-2016]. [Online]. Available: https://www.cl.cam.
ac.uk/~pes20/rems/

[18] M. Abadi, “Protection in programming-language translations,” in In-
ternational Colloquium on Automata, Languages, and Programming.
Springer, 1998, pp. 868–883.

[19] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits, “Fully abstract compilation to javascript,” SIGPLAN
Not., vol. 48, no. 1, pp. 371–384, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2480359.2429114

[20] A. Ahmed and M. Blume, “Typed closure conversion preserves
observational equivalence,” SIGPLAN Not., vol. 43, no. 9, pp. 157–168,
Sep. 2008. [Online]. Available: http://doi.acm.org/10.1145/1411203.
1411227

[21] Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, and B. C.
Pierce, “Beyond good and evil: Formalizing the security guarantees
of compartmentalizing compilation,” in 29th IEEE Symposium on
Computer Security Foundations (CSF). IEEE Computer Society Press,
Jul. 2016. [Online]. Available: http://arxiv.org/abs/1602.04503

[22] D. Devriese, M. Patrignani, and F. Piessens, “Fully-abstract compilation
by approximate back-translation,” in Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, 2016, pp. 164–177. [Online]. Available: http://doi.acm.org/10.
1145/2837614.2837618

[23] M. S. New, W. J. Bowman, and A. Ahmed, “Fully abstract compilation
via universal embedding,” in International Conference on Functional
Programming. ACM, 2016, pp. 103–116.

[24] R. M. Norton, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J.
Murdoch, P. G. Neumann, and J. Woodruff, “Capability Hardware
Enhanced RISC Instructions: CHERI Programmer’s Guide,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-877,
Sep. 2015. [Online]. Available: http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-877.pdf

[25] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, no. 3,
pp. 143–155, 1966.

[26] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[27] D. Devriese, L. Birkedal, and F. Piessens, “Reasoning about object
capabilities with logical relations and effect parametricity,” in IEEE
European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany, March 21-24, 2016, 2016, pp. 147–162.
[Online]. Available: http://dx.doi.org/10.1109/EuroSP.2016.22

[28] J. S. Shapiro, J. M. Smith, and D. J. Farber, “Eros: A fast capability
system,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 170–185, Dec.
1999. [Online]. Available: http://doi.acm.org/10.1145/319344.319163

[29] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack, “Hydra: The kernel of a multiprocessor operating system,”
Commun. ACM, vol. 17, no. 6, pp. 337–345, Jun. 1974. [Online].
Available: http://doi.acm.org/10.1145/355616.364017

http://doi.acm.org/10.1145/2678373.2665740
http://dx.doi.org/10.1109/CSF.2010.30
http://dx.doi.org/10.1109/CSF.2011.18
http://dx.doi.org/10.1109/CSF.2012.12
http://doi.acm.org/10.1145/2786763.2694383
http://doi.acm.org/10.1145/361011.361070
http://doi.acm.org/10.1145/361011.361070
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-891.pdf
https://people.mpi-sws.org/~elkorashy/
https://www.cl.cam.ac.uk/~pes20/rems/
https://www.cl.cam.ac.uk/~pes20/rems/
http://doi.acm.org/10.1145/2480359.2429114
http://doi.acm.org/10.1145/1411203.1411227
http://doi.acm.org/10.1145/1411203.1411227
http://arxiv.org/abs/1602.04503
http://doi.acm.org/10.1145/2837614.2837618
http://doi.acm.org/10.1145/2837614.2837618
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-877.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-877.pdf
http://dx.doi.org/10.1109/EuroSP.2016.22
http://doi.acm.org/10.1145/319344.319163
http://doi.acm.org/10.1145/355616.364017

[30] A. Mettler, D. Wagner, and T. Close, “Joe-e: A security-oriented subset
of java.” in NDSS. The Internet Society, 2010. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ndss/ndss2010.html#MettlerWC10

[31] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Caja -
Safe active content in sanitized JavaScript,” http://code.google.com/p/
google-caja/downloads/detail?name=caja-spec-2008-06-07.pdf, Google
Inc., Tech. Rep., Jun. 2008.

[32] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich,
and W. S. Lee, “The m-machine multicomputer,” International Journal
of Parallel Programming, vol. 25, no. 3, pp. 183–212, 1997.

[33] J. D. Woodruff, “CHERI: A RISC capability machine for practical
memory safety,” University of Cambridge, Computer Laboratory,
Tech. Rep. UCAM-CL-TR-858, Jul. 2014. [Online]. Available:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-858.pdf

[34] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for
fast capability-based addressing,” SIGPLAN Not., vol. 29, no. 11, pp.
319–327, 1994. [Online]. Available: http://doi.acm.org/10.1145/195470.
195579

[35] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus: Low-
cost trustworthy extensible networked devices with a zero-software
trusted computing base,” in 22nd USENIX Security symposium.
USENIX Association, August 2013, pp. 479–494. [Online]. Available:
https://lirias.kuleuven.be/handle/123456789/402673

[36] M. Patrignani and D. Garg, “Secure Compilation and Hyperproperties
Preservation,” in Proceedings of the 30th IEEE Computer Security
Foundations Symposium CSF 2017, Santa Barbara, USA, ser. CSF 2017,
2017.

[37] A. Ahmed and M. Blume, “An equivalence-preserving CPS translation
via multi-language semantics,” SIGPLAN Not., vol. 46, no. 9, pp.
431–444, Sep. 2011. [Online]. Available: http://doi.acm.org/10.1145/
2034574.2034830

[38] M. Patrignani and D. Clarke, “Fully abstract trace semantics for pro-
tected module architectures,” Computer Languages, Systems & Struc-
tures, vol. 42, pp. 22–45, 2015.

http://dblp.uni-trier.de/db/conf/ndss/ndss2010.html#MettlerWC10
http://code.google.com/p/google-caja/downloads/detail?name=caja-spec-2008-06-07.pdf
http://code.google.com/p/google-caja/downloads/detail?name=caja-spec-2008-06-07.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-858.pdf
http://doi.acm.org/10.1145/195470.195579
http://doi.acm.org/10.1145/195470.195579
https://lirias.kuleuven.be/handle/123456789/402673
http://doi.acm.org/10.1145/2034574.2034830
http://doi.acm.org/10.1145/2034574.2034830

	Introduction
	The target language
	A target language with capabilities and libcheri
	Values, expressions, and commands
	Target setup, and initial and terminal states
	Summary of target language features

	Problem statement and overview of our solution
	Standard compilation and its security issues
	Overview of our solution

	The source language
	Program and module representation, and well-formedness
	Commands and expressions
	Program state
	Initial and terminal states

	The compiler
	Expression and command translation
	Function and module translation
	A compiler from LImpMod to LLibcheri
	Security Properties

	Implementation
	Related and Future Work
	Conclusion
	References

