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Introduction

Writing any large program poses difficult problems of organization. In many modern programming
languages these problems arc addressed by special linguistic constructs, variously known as modules, packages,
or clusters, which provide for partitioning programs into manageable components and for securcly combining
these components to form complete programs. Some general purpose components are able to take on a life of
their own, being scparately compiled and stored in librarics of generic, reusable program units.  Usually
modularity constructs also support some form of information hiding, such as “abstract data types.” “Pro-
gramming in the large™ is concerncd with using such constructs to imposc structurc on large programs, in con-
trast to “programming in the small”, which deals with the detailed implementation of algorithms in terms of
data structurcs and control constructs. Our goal here is to examine some of the proposed linguistic notions
with respect to how they mect the pragmatic requirements of programming in the large.

Originally, linguistic constructs supporting modularity were introduced as a matter of pragmatic
language cngincering, in responsc to a widely perceived need. More recently, the underlying notions have
been analyzed in terms of type systems incorporating sccond-order concepts. Here 1 use the term “second-
order” in the sense of “sccond-order™ logic, which admits quantification over predicate variables [Pra63].
Similarly, the type systems in question introduce variables ranging over types and allow various forms of
abstraction or “quantification” over them.

Historically, these type systems arc based on fundamental insights in proof theory, particularly the “for-
mulas as types” notion that cvolved through the work of Curry and Feys [CF581, Howard {How80], dc Bruijn
{dcB80] and Scott {Sco70]. This notion provided the basis for Martin-L&{"s formalizations of constructive logic
as Intuitionistic Type Theory (ITT) [M-L71, M-L74, M-LB2|, and was utilized by Girard [Gir71}, who intro-
duced a form of sccond-order typed lambda caleulus as a tool in his proof-theorctic work, The "formulas as
types” notion, as developed in de Bruijn’s AUTOMATH system and Martin-L88s 1TT, is also central to the
"programming logics”, PL/CV3 and nu-PRL devcloped by Constable and his coworkers [CZ84, BC85].

In the programming language arca, Reynolds [Rey74] independently invented a language similar to that
used by Girard, and his version has come to be called the sccond-order lambda calculus. An.extended form of
this language, called SOL. was used by Mitchell and Plotkin [MP85] to give an cxplanation of abstract data
types. The programming languages ML [GMW78, Mil78] and Russcll [BDDR0, Hoo84, DD853] represent two
distinctly different ways of realizing *‘polymorphism” by abstraction with respect to types. ML is basically a
restricted form of sccond-order lambda calculus, while Russcll employs the more gencral notion of “dependent
types” (Martin-LOfs gencral product and sum, defined in §2). The Pcbble ladguage of Burstall and Lampson
|BL84, Bur84] also provides dependent types, but in a somewhat purer form. Finally, Huet and Coguand’s
Calculus of Constrictions is another variant of typed lambda calculus using the general product dependent
typc. It also provides a form of metatype (or typc of types), called a “context™, that characterizes the struc-
ture of sccond-order types. thus making it possible. to-abstract not only with: respect o types, but.also. with
respect to familics of types and type constructors. -The Caleulus of Constructions-is.an explicit attempt.to com-
binc a logic and a programming language in onc system.
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Among these Janguages, Russell and Pebble are distinguished by having “reflexive™ type systems, mean-
ing that there is a “type of all types™ that is a mémber of itself (Typec7ype). Martin-L6s initial version of
ITT [M-L71} was also reflexive in this sensc, but he abandoned this version in favor of a “ramified™! system
with a hicrarchy of type universes when Girard's Paradox [Gir71] showed that the reflexive system was incon-
sistent as a constructive logic. In terms of programming languages, the paradox implies at least the existence
of divergent cxpressions, but it s not yet clear whether more serious pathologics might follow from it (sec
Mceyer and Reinhold’s paper, this proceedings [MRB6]). Since types are simply values belonging 1o the type
Type, rcflexive type systems fond to obscure the distinction between types and the values they are meant to
describe, and this in turn tends to complicate the task of type checking. [t is, on the other hand, possible to
construct reasonable semantic models for reflexive type systems [McC79, Car85/.

The remaining nonreflexive languages distinguish. at least implicitly, between individual types and the
universe of types to which they belong and over which type variables range. However, the sccond order
lambda calculus, SOL, and the Caleulus of Constructions (despite its “contexts™) are “impredicative,”” mean-
ing that there is only one type universe and it is closed under type constructions like Y. o(r) and 3r.o(r) that
involve guantificrs ranging over itself. The reflexive type systems of Russell and Pebble are also impredica-
tive, in perhaps an even stronger sense since type variables can actually take on Type, the universe of types, as
a valuc. In contrast, the later versions of ITT and Constable’s logics arc ramified systems in which quantifica-
tion or abstraction-over a type universe at one level produces an clement of the next higher level, and they are
thercfore predicative.

Our purposc here is not to sct ouf the mathematical nuances of these various languages, but to look at
some of the pragmatic issucs that arisc when we actually attempt 1o usc such languages as vehicles for pro-
grammuing in the large. We will begin by discussing some of the consequences of the SOL Type system for
modular programming. Then in §2 we bricfly sketch a ramified (J.e. stratificd) system of dependent types
from which we derive a small language called DL, which is a generalized and “desugared™ version of the
cxtended ML language presented in [Mac85]. The final scotion uscs DL to illustrate some of the stylistic
differences between ML and Pebble,

1. Shortcomings of SOL’s existential types
The SOL language [MP8S] provides cxistential types of the form
Aol

where £ s a type variable and o) is a type expression possibly containing free occurrences of +. Values of
such types arc introduced by expressions of the form

TePg., TP o 3ro(t)

where P is an expression of type o{1). These valucs arc intended to model abstract data types, and were
calied dura algebras in [MP85] and packages in [CWE5]; we will usc the term structure to agroe with the termi-
nology of {Mac83] that we will be adopting in later scctions. The type component 7 will be called the wimess
or representation type of the structure.  Access to the components of a structure is provided by an expression
of the form

abstypet withxisMin /¥ . p
which is well-typed assuming M Jr.o(r) and x:o{r) = N:p with the restriction that ¢ docs not appear frec in
p nor in the type of any variable y appearing free in V.

As mentioned in [MP85], and becansce of the impredicative nature of SOL., these existential types arc
ordinary types just like inr and bool, and the structures that are their values arc just ordinary valucs. This
implics that all the standard valuc manipulating constructs such as conditionals and functional abstraction
apply cqually to structurcs. Thus a paramctric module is just an ordinary function of type 1-3r.0(1), for
examplc.

There is a tradeoff for this simplicity, however. Let us consider carcfully the conscquences of the res-
trictions on the abstype cxpression. Once a structure has been constructed, say

A = repg T P

" Since Bertrand Russcll introduced his “ramified type theory,” the word “ramificd” has been used in logic to
mean “stratified into a sequence of levels”, normally an infinite ascending scquence of levels.

* Roughly speaking, a definition of 2 set iv said fo be impredicative if the st contains members defined with
reference to the entire set.

278



the type 7 is essentially forgotten. Although we may locally “open™ the structure, as in

abstype ¢t with x is A in N

there is absolutely no conncction between the bound type variable t and the original representation type 7.
Morcover, we cannot even make a connection between the witness type names obtained from two different
openings of the same structurc. For cxample the types s and ¢ will not agree within the body of

abstype s with x is A in
abstype ¢ with v is A in

In cffect, not only is the form and identity of the representation type hidden, but we arc not even allowed to
assume that there is a unique witness type associated with the structurc A, The witness type has been madc
not only opaque, but hypothetical! This very strong restriction on our access to an abstraction goes beyond
common practice in language design, since we normally have some means of referring to an abstract type as a
definite though unrccognizable type within the scope of its definition. This indcfiniteness scems to be the price
paid for being able fo treat the absiract type structure as an ordinary valuc rather than as a type. (Scc
ICMBS5], where we use the terms “virtual witness,” “abstract witncss”™, and “transparcnt witncss” to deseribe
three possible treatments of the witness type in an cxistential structure.)

Hierarchies of structures. The consequences of SOL’s treatment of the witness type become clearer
when we consider building abstractions in terms of other abstractions. Consider the following definition of a
structure representing a geometric point abstraction.

PointWRT (p) = (mk_point: (real x realy - p,
x_coord  p = real,
y_coord:p—real )

Point = Ap. PointWRT (p)

CuartesianPoint = vep p,y (real x real)
{mk_point = Mx:real, vireal) . (x,y),
x_coord = Ap:real x real . ({5t p3,
y_coord = \p:real x real . (snd p) )

Now supposc that we want to define a rectangle abstraction that uses CartesianPoint. 'We must first open Car-
tesianPoint, define the rectangle structure, and then close the rectangle structure with respect to the point type.

RectWRT (p) = Irect. {poini_interp : PointWRT (p),
mk_rect:p x p —rect,
topleft rect =>p,
botright : rect = p )

Rect = Ap. RectWRT (p)

CuartesiunRect = abstype point with P is CartesianPoint in
TP g POINL \
ep RecitWRT (point) P(”vn{ X\p{)iﬂt

{point_interp = P,
mk_rect = Nt > poind, _brpoint) . (br,tl),
topleft = hr: point x poipt . (fst r),
botright = Ar: point x po%v!\.(xnd Y
If we (doubly) open CartesianRect we will get a new virtual point type unrelated to any ‘existing type.” We had

to incorporatc an interpretation. of-this ;point type in the Rect structure as point_interp:to provide: the 'means 1o
create clements of that type; which in turn allows us to create rectangles.

Now supposc we also define a circle abstraction based on the same CartesianPoint structure, and we
want to allow intcractions between the two abstractions, such as creating a unit circle centercd at the top left-
hand corner of a given rectangle. This requires that the rectangle structure, the circle structure, and any
operations relating them all be defined within the scope of a single opening of the CartcsianP()igt structure. in
general, we must anticipate all abstractions that usc:the peint structiire. and might, possibly inferact in-terms of
points and define them: within a singlc abstype CXPression. s : L

it appears that when building a collection of interrelated abstractions, the fower the levelof the a‘bs‘tr‘ac-
tion. the wider the scope in which it must be opened. We thus have the traditional disadvantages” of block
structured languages where low-level facilitics must be given the widcest visibilyity. (For further details, sce the
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cxamples in 86 of Cardelli and Wegner's tutorial [CW85])

Interprering known rypes. The notion of providing operations to interpret a type does not apply only to
“abstract”™ types. It is often useful to.imposc additional structure on a given type without hiding the identity.
of that type. For instance, we might want to temporarily view fnf x bool as an ordered set with some special
ordering. To do this we might define the structure /ntBoolOrd as follows

OrdSer = 31 {le 1 x t = bool )

(e =My, by, (ny. by if by and b, then n,<n,
elsell (b, vr by) then n,=n,
elseh )

The following related and potentially uscful muapping would take an OrdSet structurce to the corresponding lexi-
cographic ordering on lists

LexOrd 1 OrdSet — OrdSer =
MO OrdSet. abstype 1 with L is O in
TP s st 1)
{le = fix fon{lm), i (audl 1) then rue - )

Under the SOL typing rules. there s no way to make use of IntBoolOrd because we could never create any
clements to which the ordering operation could be applied.  In fact, no structure of type OrdSet can cver be
used, because of our inability to express valucs of type 1. Of course, this also mceans that LexOrd is uscless.
However, if we had access to the witness types, then structures like imtBoolOrd snd mappings like LexOrd
could be quite useful.

There are various ways of working around these problems within 830OL. We can, for instance, dclay or
avoid catirely the creation of closed structures and imstead deal separately with types and their interpreting
operations.  Thus, LexOrd could be rowritten to have the type Y1 OrdSetWRT (1) -~ OrdSerWRT (list 7). with
OrdSetWRT {1y = {le:rx 1 —bool). However, our preferred solution is to abandon the restrictive SOL rule and
view structures as inhcrently “open™ or “transparcnt.” This is suggested by the type rules of ITT, which pro-
vide access to both the witness and intcrpretation components of an existential {ie. gencral sum) structure,
intuitively, within the scope of the local declaration

abstype 1 with x s M in ¥

we consider 7 to be simply an abbreviation or local name for the witness type of M. Of course, 1 itself should
not appear in the types of free variables or of the entire cxprossion, becausce it has only local significance, but
#s meaning, that is the witness type of M, may. “Abstraction” is then achicved by other means, namcly by
real or simulated functional abstraction with respect a structure variable (sec [Mac85]), which is merely an
“uncurricd’ form of the approach to data abstraction originally proposcd by Reynolds in [Rey74{. When
structures are transparent, it is clear that they carry a particular type, together with its interpretation; in fact,
it is reasonable to think of structures as interpreted types rather than a kind of value. Conscquently we alse
abandon the impredicative two-level system of S0L and move to a ramified system in which quantified types
arc objects of level 2, while level 1 s occupicd by ordinary monomorphic types, structures, and polymorphic
functions.

2. A language with ramified dependent types

2.1, Dependent types

There are two basic forms of dependent types, which we will call the general product and the general
swim. The gencral product, written e A8 (x), s naively interproted as the ordinary Cartesian product of the
family of sets {B(x)},4 indexed by 4, i.e.

Hx4.B(x) = {[‘éﬁi»ﬁfﬁ(.{) | YacAf {ayeB (a)}

it denotes the type of functions that map an clement a¢A into B{a), that is functions whose result type
depends on the argement, with B specifying the dependence. Elements of lx:A.B{x) arc introduced by
lambda abstraction and climinated by function application. In the degenerate case where 8 is a constant func-
tion, ¢.g. when B{x) is defined by an expression not containing x froc, the general product reduces to the ordi-
nary function spacc A = 8.7

! General product types are also called “indexed products”, “Cartesisn products,” or “dependent function
spaces.” Other notations include x4 — B (1) [CZB4], 124 — B{x) |BLB4), and Yx:A.8(x) (from the formulas as
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The general sum, written 2x: A8 (x), is intuitively just the disjoint union of the family {B(x)} o, i.2.

VAL = {a,b)eAx L,J/\B{x) | acA & beB{a)}

Elements of the geacral sum have the form of pairs, where the first clement, called the wimess or index deter-

mines the type of the sccond element. Elements of the general sum are constructed by a primitive injection
function

fmj: Ha AB(a)~2x: A.B(x))

and they can be analyzed by using the two primitive projection functions
witness: (Zx:A.B(x)) ~A
out: Hp: (2x 4.8 (x)) . B(witness p)

Note that the cxistence of these projection functions (corresponding roughly to Martin-LO{’s £ operation) make
the general sum an “open” construct, in contrast to the existential type of SOL or the categorical sum (scc
[MP85}, §2.6).* In the degenerate case where B(x) is independent of x, the gencral sum is isomorphic to the
ordinary binary Cartesian product AcrossB,’

In the following sections we will sometimes take the liberty of saying simply “product” or “sum’ when
we mean “general product” and “general sum.”

2.2, Small and large types

The stratificd type system we will be working with is basically a simplificd version of the type system
described in {CZ84]. It has scveral (in fact infinitcly many) levels, though only the first two or three will be
mentioned here. At the bottom of the hicrarchy arc the small types, contained in the level 1 type universe
Type,. The small types arc generated from the customary primitive types inf, bool, ... by closing under
“first-order”  gencral products and sums (fe. Hx:A.B(x) and Zx:A.B(x) where A:Type, and
MciAB(x): A > Type,, including their degencrate forms — and x) and perhaps other comstructions such as
recursion.®

Type, serves as a type of all small types, but it is not itsclf a small type. It resides in the level 2
universe of “large types,” Type,, which in turn is a “very large type” belonging to the next universe Types,
and so on. The type universes arc cumulative, so Type; also contains all the small types. Type, contains
other large types gencrated from Type, using sccond-order products and sums. For instance, the first-order
products and sums can be viewed as operations’ and as such they have the following large type: |

H,, 2, U, X:Type, (X ~,Type,) > Type, : Type,

where — is the degencrate form of 1, (which has an analogous type in Type;}. Note that as clements of a
farge type in Type,, 1, and 2, arc considercd level | objects even though they do not belong to the basic type
universe Type; .

The cxistential and universal types of SOL correspond to the following large types:
Yi.o(t) = lhr:Type,.o(r) : Type;
Ar.o() = 2.0 Type,.o(t) : Type;

The clements of these large types are, respectively, the (first-order) polymorphic functions ‘and the 2,-
structurcs, which arc the open analogucs of 80L’s existential structurcs {we will call them simply “structurcs”
when there is no danger of confusion). Being. clements of large types, polymorphic functions and X,-
structurcs arc also level 1 obicets, 7.e. they are of the same level as small types. This means that ncither
polymorphic functions nor X,-structurcs can be manipulated as ordinary values (wh}ch are level 0 objects).

types isomorphism). @

+ A “closed” version of the general sum, analogous tor SOL's existential type, can be derived from the general
product {Pra65}, byt the open version used here and in 17T dppears to be an mdcpcngcm primitive notiop‘

5 General sums have also been galled “indexed sums,” “disjoint unions,” and “dependent products’ (an unfor-
tunate clash with the “gcncral product”’ terminology). Other notations used include x:A xx B{x) [BL84] and
T x:AB(x) (from the formulas as types isomorphism).

® The simpler forms of type language will not admit variables ranging over values and only constant functions B
will be definable.  Undér these circumstances the first~order gencral product and sum-always redice o their de-
generate forms A 2 B.and 4 x 8. e :

T With, ¢.g., oA Bx) = A 4B (0);
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We will in fact think of X-structures as a generalized form of small type.
The level 2 gencral sum operation 2, and its associated primitive operations actually have very general
polymorphic types:

Yo s M A Typey (A~ Type) — Type, | Type;
inj> o A Type, LB (A-Type,, . 1La A (B 0) —= 2.(ANE)  Type,
The corresponding types for witness, and ont, are loft as excercises, The basic structure expression
rePa, o TF Lo
translates into the following
o (Type A Type, . oUNTHP) 20 Type, . o(1)

which we will often abbreviate to inj, 7 £ when the polymorphic parameters Type, and A.o{f) clear from the
context. Notc that because of the generality of 2,. we may also create structures with structures rather than
types as witnesses (or even with polymorphic functions as witnesses, though we won't pursuc this possibility
herey. We will exploit this generality in the language described in the next scction,

The rules for type checking in this system are conventional. consisting of the appropriate gencralizations
of the wsual introduction and climination rules at cach level, together with additional rales to deal with B-
conversion and definitional cquality.

3. A simple Pebble-like language

We will now describe a fairly simple language which is intended to isolate a uscful subset of the rami-
ficd type system sketched in the previous scction. We will call this language DL, just to have a name for it
DL resembles Pebble in having explicit dependent types, but because of its ramificd nature it s closer in spirit
to ML and the module facilitics of [MacB5].

3.1, Small types

The base type language of DL will be a simplificd version of that of ML. For simplicity, we omit
recursive types, but add a labeled product to express types of value cnvironments. Type cxpressions,
represented by the metavariable rexp, have the following abstract syntax;

texp = bool lint | real | tvar | texp < texp’ | {id vtexpy, .., didy: texp,) | texp=texp’ | witness (svar)

where fvar ranges over type variables and svar over structure variables.® The actual small types of DL
correspond to the closed (i.c. variable free) type expressions, and this class is denoted simply by Type {shori
for Type,).

3.2. Signatures

The class of signaturcs is obtained by starting with Type, and closing with respect to the 2, operator.
This gives a class of types characterizing the union of small types and “abstraction-free” 2,-structures {(i.e.
those that do not contain any sccond-order lambda abstractions). Rather than use the 2, operator directly, we
give a Hitle grammar for signatures that covers the cases of inferest:

sig = Type | Lsvar:sig.texp | Zsvar:sig.sig’

where 2 is short for 2., Typically, the rexp forming the body of a signature is a labeled product type specify-
ing a collection of named functions and other values. Note that if sig is Type in cither of the 2 forms, the
structure variable is actually a type variable, so structurc variables subsume type variables. Note also that in a
signature such as 29:A.8(s), the structure variable s can appear in 8 only as a component of a type subcx-
pression. It can appear cither directly, if A = Type, or clsc in a sublxpression “witness(. . .s...)," formed by
aested application of witness and out and denoting a small type.

¥ For witness{svary 1o be proper small type, svar should be restricted to range over structurcs with Type
WitTesses.
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3.3. Structures

In DL, the term “structure” is used in a somewhat broader sensc than above to match the notion of sig-
nature. DL Structurcs may be cither small types or nested Z,-structurcs. As in the case of signatures, we

ggbsiitutc some syntax for the use of the inj primitive in its full genecrality. The syntax of structure expres-
stons naturally follows that of signatures, viz.

sexp = svar | texp | inj sexp exp | inj sexp sexp’

where svar ranges over structure variables and exp ranges over ordinary value cxpressions. We will not
further specify exp other than to say that it includes labeled tuples (called bindings in Pebble) cxpressing ele-
ments of labeled products, and cxpressions of the form “eut(...svar...),” formed by nested application of wit-
ness and out and denoting a value of type depending on the signature of svar.

3.4. Funclors

We allow (second-order) lambda-abstraction of structure expressions with respect to structure variables
to form functions from structures to structures. Following [Mac85], we will call such abstractions funciors.
We will allow nested abstractions, yielding “curried” functors. The type of a functor is a gencral product that
we will call a funcior signature.

The abstract syntax of functor signaturcs and functor cxpressions is

msig = Wesvar:sig.sig | Wsvar: sig.msig
mexp = Nsvarisig.sexp | hsvar:sig.mexp

where 1} represents 1l,. The syntax of structure cxpressions must be extended to encompass functor applica-
tions by adding

sexp = mexp (sexp)

The restrictions cmbodicd in the structure and functor syntax amount to saying that structures cannot
have functors as components, nor can functors have functors as arguments. In other words, functors arc res-
tricted to be cssentially “first-order” mappings over structures. These restrictions arc partly a reflection of
certain tentative principles for programming with parametric modules, and partly an attempt to simplify imple-
mentation of the language. Further experience with parametric modules {(functors) and their implementation
should help refinc our idcas about what restrictions on the full type theory are pragmatically justificd.

4. Dependence, abstraction, and signature closure

This scction considers some of the interactions that occur as structurcs and functors arce defined in terms
of onc another. The interactions between Il-abstraction and hicrarchical chains of definitions, particularly
those involving sharing, are particularly subtlc and interesting.

The definition of a new structurc will frequently refer to cxisting ones, sctting up various forms of
dependency between the new structure and the older structures mentioned in its definition (knowsn as its
antecedents). For instance, suppose CPoint (short for CartesianPoint, perhaps) is an cxisting structure of signa-
sure Point and we define a new rectangle structure CRect in terms of CPoint as follows:

RectWRT (P Point) =
Srect: Type. {mh_rect: |P| x |P|=rect,
topleft:rect > |P|,
botright rect = |p|)

CRect: RectWRT (CPoint) =
inj (|CPoint| x |CPoint|)
(mk_rect = N, brydd, br), - - )

Here the dependence of CRect on CPoint is explicitly indicated by the fact the the name CPoint appears free in
the signature of CReer. In such cases of overt dependency significant use of the dependent structure usually
requires access to the reforenced structurcs as auxiliarics: In' this instance the manipulation of rectangles using
CRect is véry likely to-entail the manipulation of associated points using CPoint.

In other cascs the dependency between a structure and one of its antecedents may be tacit rather than
overt, as when a structufe B is defined in‘terms of a structiré cxpression stry(A) but A does not appear in the
signature of 8. This generally occurs when A'is used for purcly internal purposes in the implementation of B
and therefore is not relevant to the use of B, The structures on which a structure overtly depends, i.e. those
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reforred to in its signature, will be called its supporsing structures, or more bricfly, its support.
If we have an overt dependency, such as
B = stralA) o sigglA)

where A:sig,, there are two ways of making B sclf-sufficient relative to A, both of which have the effect of
closing the signature sig,(A) with respect to A, One method is to abstract with respect to A, thus turning 8
into a functor:

BT = NAusigy . strglA) 1 HAtsigy L sigg(A)
whose signaturce is the H-closure of sigy with respect to A

The other alternative is to incorporate A as the witness component in a Z-structure with 8 as the body,
yiclding the 2-closure of sigy as signaturc:

B = ind A sirglA) @ ZX:sigs . sigg(X)

Note that the 87 closure is no longer a structure. In order to get a usable structurc we have 1o apply it to 2
structurc expression, thus recreating the original situation of overt dependency, as in

B = BTE(G(XA))): siggF(G LX)

On the other hand, BY is truly sclf-contained, at lcast so far as A is concerncd, and is usable as it stands
because it incorporates the necessary supporting structure A within itself. In ML, A is called a substructure of
8Y.

Mow consider what happens when there is a chain of dependencics such as
A TSI, 8i8a
B = strgld): sigy(A)
C = stre{A, B): sige(A, B)

and we wish to abstract  with respect to its supporting structures. There are three different ways to do this
{1} full abstraction with respect to all supporting structures:

MEC |, = WA sigy MB sigg{A) cstre(A, B)
s HA rsig,  HB tsigglA) . sige(A, B)

{2} abstraction with respect to B, with a residual dependence on the fixed A:

MEC , = ABsigglA) . sirg(A, B)
B sigy{A) csigi A, B)

and (3 abstraction of both B and C with respect to A:
MEB = NA sig, .xtrg(A) T HA 1xigy,  sigg(A)
MEC, = AA 1sigy cstre(A, MEB(A))
s HA taigy o sigo (A, MEBLA)Y)
Mow suppose that we first Z-close B with respect to A, obtaining
B = inj A (strplA)) : sigy = 2X:5ig, . 5igg(A)
Then abstracting C with respect to B' gives
MEC' = AB:sigg .in} B' stre([B'], out(B')
B sigy . sige (1B ], out(87))
1f we both Z-close C with respect to 8" and abstract with respect to B” we get
MIC' = AB:sigy Jinj B’ {stre(|B'], out(B))) : B :sigy . sige
where sige = 2B sigy . sige( B, out(87)). The rules of type cquality will insure that for all structures

S:sigy ., |MEC'(S)]=5, cven though the relation between the argument and result of MAC’ is not manifest in
its signature,

Mote that when B was Z-closed to form B8’ the support of € was coaleseed into a single structure, which
made it casier to fully abstract € with respect to its support. When there are many levels of supporting struc-
turcs this efficiency of abstraction becomes a significant advantage. On the other hand, it became impossible

284



to abstract with respect to 87 while leaving A fixed, because A had become a component of B.

The final example illustrates the interplay between sharing and abstraction. Suppose structures 4, B, C,
and D are related as follows:

A = sirg sig,

B = sirg(A): sigy(A)

C = stro(A): sige(A)

D = sirp(A, B, C): sig(A, B, C)

i.e. D depends on A, B, and C while 8 and € both depend on A, If we fully abstract D with respect to its sup-
port we have

MED = NAsigy B sigy ACisige . strp(A, B, C) & HA:sig, B sigy JMC sige . sigp(A, B, C)

If. on the other hand, we first 2-close B and € with respect to A and then abstract D with respect to its sup-
port, we get

B = inj A strg{A) @ sigy = 2Xsigy . sigp(A)
C' = inj A stre(A) @ sige = 2X150ig4 sige(A)

MED" = AB':sigg  hCisige strp (|8 ], out(B)), out(C'))
B sigy JC sige L sigp (18], out(B'), out(C’)) —sharing |8 | = |C'|

In the type of MkD' something new has been added. The way that B and € support the definition of D prob-
ably depcnds on the fact that B and C sharc the same support A (think of B and C as rectangles and circles,
and A as points, for cxample). For MD this sharing is dircctly cxpressed by the signaturc, but this is not the
case for MkD', s0 a special sharing constraint must be added to the signature.

Two styles of modular programming have been illustrated here. The first, which is favored in Pebble,
expresses dependencies by allowing structure names to appear in the signatures of other structures, and tends
to abstract dircctly and individually on cach supporting structure. The other style is representative of modules
in ML. 1t involves forming 2-closurcs to capture dependencics and coalesee the support of structurcs into one
level. In fact, the ML module language goes so far as to require that ali signatures be Z-closed, cven the
argument and result signatures of functors. There arc several other factors involved which indirectly support
this strict closure rulc. In particular, ML’s “gencrative” declarations of datatypes and exceptions, and the fact
that structures cap comtain statc, make it necessary to maintain fairly rigid relations between structures. In
addition, Y-closed structurcs appear to be morc appropriate units for scparate compilation and persistent
storage.

5. Conclusions

The main thrust of this work is that a ramified type system with general dependent type constructs is an
cffective tool for the analysis and design of programming language type systems, particularly those oriented
toward programming in the large. We have cxplored some of the design choices that have been raised by
recently proposcd languages such as Pebble, SOL, and Standard ML with modulcs. But many important qucs-
tions remain to be answered. For instance, we need to have precise characterizations of the relative strengths
of predicative vs impredicative type systems,: and reflexive vs irrcflexive systems.. It would. be desirable 1o
have a representation independence result analogous to that of Mitchell [Mit86] for the stratified system used
here. Finally, it appears that the basic polymorphic type system of ML |Mil78] is in fact a ramificd system,
and that the system described in §2, rather than the sccond order lambda calculus, can be viewed as its most
natural generalization, ]
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