Correctness of compiler optimizations

Ori Lahav Viktor Vafeiadis

30 August 2017



Compiler optimizations

» Compilers do more than mapping source command to
machine instructions.

> In particular, they try to optimize the produced code by
performing source-to-source transformations.

Examples of transformations:

Read-after-write elimination

Write-read reordering

x:=1, x =1 x:=1; a:=y;
N>
a = x; a:=1 a:=y,; X 1=

1

» Such optimizations are sound for sequential programs, but are
they sound for concurrent programs?

» It obviously depends on the concurrency semantics (aka the
memory model)



Soundness of compiler optimizations

Definition (Sound transformation)

Psic ~ Pigt is sound under a memory model X if

[[Ptgt]]X - IIPsrc]]X

i.e., if every outcome that is allowed P under X is also an
allowed outcome for Psc under X.

» We will implicitly consider families of transformations (e.g.,
write-read reordering, read-after-write elimination) that can
be applied under any context.

> As before, the compiler is allowed to “lose” behaviors.



Transformations under SC

» Reorderings are generally unsound under SC.
» Eliminations of adjacent accesses are sound:

Read-after-write elimination Read-after-read elimination

x = 1; x:=1; a:=x a:=x;
(e d >
a:=x; a:=1; b= x; b:=a
Write-after-write elimination Write-after-read elimination
x:=1; a:=Xx;
~ X =2; ~ aI= X
X = 2; X = a;

Soundness of these transformations can be proved:
> via the operational semantics of SC using simulations.

> via the declarative semantics of SC.



Example: read-after-write elimination using the declarative semantics

Read-after-write elimination

X =V, X =V,
i g
a =X, a. =V,
Wx v Wx v
1
rfj‘l
Rx v

> Place the read immediately after the write in the sc order



Transformations under COH and StrongCOH

» Reorderings of independent adjacent accesses of different
locations are sound under COH.

Write-read reordering Read-read reordering

=V A=y, ai=x; b:=y;
a:=y,; X = V; b:=y; a:i=x;

Write-write reordering Read-write reordering
x.—v; L Y=V a=xi Y=y
y =V X =V; y i=v; a:i=x;

W

Soundness of these transformations can be proved:

> via the operational semantics of COH using simulations.
> via the declarative semantics of COH.



Example: read-read reordering using the declarative semantics

g = =y;
b:=y; a:i=x;
: Wy v Wy v
i I" l k«'rf
RX vy ,’rf Ry vy

GSFC

WX ve-->Rx vy

rf l

Gigt

COH : pol1oc U rf Umo Urb is acyclic



Reorderings in StrongCOH

StrongCOH : COH A po U rf is acyclic

Write-read reordering Read-read reordering

Xi=vio A=y, v a=x b:=y; v
a:=y; X = v; b:=y; a:=Xx;
x.—v; L Y=V v a=xi Y=Y X
y =V, X i=v; yi=v; a =x;




Example: write-read reordering in RA

Reminder: RA-consistency

(po U )™ |10c Umo Urb is acyclic

A useful structure for reordering soundness proofs:

reordering = deordering + sequentialization




Write-read deordering in RA

Reminder: RA-consistency

(po U rf)T|10c Umo Urb is acyclic

GSI'C

Gtgt

Observation: (Gsre.po U Gre.T£)t = (Gigr.po U Gyge.v£) T U {(w, 1)}

10



Sequentialization in RA

Reminder: RA-consistency

(po U rf)t|10c Umo U rb is acyclic

At the execution graph level, sequentialization adds pairs to po:
Gsrc.po C Gigr.po

This is trivially sound under RA.
(Because increasing po cannot remove cycles.)

11



Reorderings in RA (exercise)

Write-read reordering Read-read reordering
=y, 5 a .= X, b:= v
a::y; X:=v; b:=y; a:=x;

X
y:

Read-write reordering

a:=x;
yi=v;

yi=v;
a:=x;

?

12



Eliminations in RA

Read-after-write elimination

Read-after-read elimination

x = 1; x:=1; a:=Xx; a:=Xx;
? ~ ?
a:i=x; a:.=1; b= x; b:=a
Write-after-write elimination Write-after-read elimination
3= 1 ~ x:=2; 7 Te=N a:=x; 7
X 1= 2; X = a;

13



Write-after-write elimination in RA

Reminder: RA-consistency

(po U rf)T|10c Umo Urb is acyclic

wi i Wx v
l “mo
E
wo tWX v wr i WX v
'l 'l
' d ' d
-’ -’
'd 'd
47 47
Rx v : Rx w
Gsrc Gtgt

Place w; as the immediate predecessor of wy in mogc.

Observations:
(a, w1) € mogre = (@, Wo) € Moy
(a, w1) € Tbee = (a, W2) € Tbyg
(a,w1) € (Gsre.po U Gye.tt)T = (2, w2) € (Gigt-po U Gige.vf)™

14



Write-after-read elimination in RA

Reminder: RA-consistency

(po Urf)T|10c Umo Urb is acyclic

Wx v : Wx v :
\~ . 4 \~ .
~ ’ ~
~ , ~
~\ l ’ A l
r:Rxv ) r:Rxv
1
1
1
w:Wx v '
g
< R |
.
Vig Y
Rx v Rx v
Gsrc Gtgt

15



Unsoundness of write-after-read elimination in RA

y:=1

x:=1; o
source: a:=FAA(x,1); /1 )(-; :>C< /1
= ffl- /1

target: a:=FAA(x,1); /1 =X
b=y, /0 b 2

16



Eliminations in RA

Read-after-write elimination Read-after-read elimination

x =1; x =1; a:= x; a:=x
1 ,\,} 1 / 1 M 1 /
a:=Xx; a:.=1; b:=x b= a;
Write-after-write elimination Write-after-read elimination
x:=1; a:=x;
x:=2; v ~ a:=x; X
X = 2; X = a;




Summary

Summary:

» We defined soundness of program transformations under a
memory model.

» We studied various examples.

» Declarative semantics allows simple arguments for soundness.

Not covered:

» Transformation correctness under catch-fire semantics:

» We may assume that the source program has no “bad”
executions.

» We have to show that the transformation does not introduce
“bad"” executions.

18



Exercise: Sequentialization

» Is sequentialization is sound under the simplified C11 model?

» Is sequentialization is sound under TSQO?

19



Exercise: “Roach-motel” reorderings in C11

Part | — The RA model

» Which reorderings are sound under RA? Consider read-read,
read-write, write-read, and write-write reorderings. For each
case, either prove soundness or provide a counterexample.

» Are any reorderings involving RMW's sound? Why?

Part Il — The C11 model
Show the soundness of the following transformations under the
simplified C11 model.

Xrel <= Vx, ~ Yrix -= Vy, a 1= Xrlx, ~ b:= Yacq:
Yrix -= Vy, Xrel -= Vx b:= Yacq: a 1= Xlx:

20



