
Correctness of compiler optimizations

Ori Lahav Viktor Vafeiadis

30 August 2017



Compiler optimizations

I Compilers do more than mapping source command to
machine instructions.

I In particular, they try to optimize the produced code by
performing source-to-source transformations.

Examples of transformations:

Read-after-write elimination
x := 1;
a := x ; ;

x := 1;
a := 1;

Write-read reordering
x := 1;
a := y ; ;

a := y ;
x := 1;

I Such optimizations are sound for sequential programs, but are
they sound for concurrent programs?

I It obviously depends on the concurrency semantics (aka the
memory model)

2



Soundness of compiler optimizations

Definition (Sound transformation)
Psrc ; Ptgt is sound under a memory model X if

[[Ptgt]]X ⊆ [[Psrc]]X

i.e., if every outcome that is allowed Ptgt under X is also an
allowed outcome for Psrc under X.

I We will implicitly consider families of transformations (e.g.,
write-read reordering, read-after-write elimination) that can
be applied under any context.

I As before, the compiler is allowed to “lose” behaviors.

3



Transformations under SC

I Reorderings are generally unsound under SC.
I Eliminations of adjacent accesses are sound:

Read-after-write elimination
x := 1;
a := x ; ;

x := 1;
a := 1;

Read-after-read elimination
a := x ;
b := x ; ;

a := x ;
b := a;

Write-after-write elimination
x := 1;
x := 2; ; x := 2;

Write-after-read elimination
a := x ;
x := a; ; a := x ;

Soundness of these transformations can be proved:
I via the operational semantics of SC using simulations.
I via the declarative semantics of SC.

4



Example: read-after-write elimination using the declarative semantics

Read-after-write elimination

...

...
x := v ;
a := x ;

...

... ; ...

...
x := v ;
a := v ;

...

...

...

W x v

R x v
...

... ...

rf

...

W x v

...

... ...

I Place the read immediately after the write in the sc order
5



Transformations under COH and StrongCOH

I Reorderings of independent adjacent accesses of different
locations are sound under COH.

Write-read reordering
x := v ;
a := y ; ;

a := y ;
x := v ;

Read-read reordering
a := x ;
b := y ; ;

b := y ;
a := x ;

Write-write reordering
x := v ;
y := v ′; ;

y := v ′;
x := v ;

Read-write reordering
a := x ;
y := v ; ;

y := v ;
a := x ;

Soundness of these transformations can be proved:
I via the operational semantics of COH using simulations.
I via the declarative semantics of COH.

6



Example: read-read reordering using the declarative semantics

...

...
a := x ;
b := y ;

...

... ; ...

...
b := y ;
a := x ;

...

...

...

R x vx

W x vx R y vy

W y vy

...

... ...rf
rf

Gsrc

...

R y vy

W x vx R x vx

W y vy

...

... ...
rf

rf

Gtgt

COH : po|loc ∪ rf ∪ mo ∪ rb is acyclic 7



Reorderings in StrongCOH

StrongCOH : COH ∧ po ∪ rf is acyclic

Write-read reordering
x := v ;
a := y ; ;

a := y ;
x := v ; 3

Read-read reordering
a := x ;
b := y ; ;

b := y ;
a := x ; 3

Write-write reordering
x := v ;
y := v ′; ;

y := v ′;
x := v ; 3

Read-write reordering
a := x ;
y := v ; ;

y := v ;
a := x ; 7

8



Example: write-read reordering in RA

Reminder: RA-consistency
(po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

A useful structure for reordering soundness proofs:

reordering = deordering + sequentialization

9



Write-read deordering in RA

Reminder: RA-consistency
(po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

...

w : W x vx

r : R y vy

W y vy

...

...

R x vx

R x vx

...

Gsrc

...

w : W x vx

r : R y vy

W y vy

...

...

R x vx

R x vx

...

Gtgt

Observation: (Gsrc.po∪Gsrc.rf)+ = (Gtgt.po∪Gtgt.rf)+∪{〈w , r〉}

10



Sequentialization in RA

Reminder: RA-consistency
(po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

At the execution graph level, sequentialization adds pairs to po:

Gsrc.po ⊆ Gtgt.po

This is trivially sound under RA.
(Because increasing po cannot remove cycles.)

11



Reorderings in RA (exercise)

Write-read reordering
x := v ;
a := y ; ;

a := y ;
x := v ; ?

Read-read reordering
a := x ;
b := y ; ;

b := y ;
a := x ; ?

Write-write reordering
x := v ;
y := v ′; ;

y := v ′;
x := v ; ?

Read-write reordering
a := x ;
y := v ; ;

y := v ;
a := x ; ?

12



Eliminations in RA

Read-after-write elimination
x := 1;
a := x ; ;

x := 1;
a := 1; ?

Read-after-read elimination
a := x ;
b := x ; ;

a := x ;
b := a; ?

Write-after-write elimination
x := 1;
x := 2; ; x := 2; ?

Write-after-read elimination
a := x ;
x := a; ; a := x ; ?

13



Write-after-write elimination in RA

Reminder: RA-consistency
(po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

...

w1 : W x v1

w2 : W x v2

...

...

R x v2

...

mo

Gsrc

...

w2 : W x v2

...

...

R x v2

...

Gtgt

Place w1 as the immediate predecessor of w2 in mosrc.
Observations:

〈a, w1〉 ∈ mosrc ⇒ 〈a, w2〉 ∈ motgt
〈a, w1〉 ∈ rbsrc ⇒ 〈a, w2〉 ∈ rbtgt
〈a, w1〉 ∈ (Gsrc.po ∪ Gsrc.rf)+ ⇒ 〈a, w2〉 ∈ (Gtgt.po ∪ Gtgt.rf)+

14



Write-after-read elimination in RA

Reminder: RA-consistency
(po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

...

r : R x v

w : W x v

...

...

R x v

W x v

...

Gsrc

...

r : R x v

...

...

R x v

W x v

...

Gtgt

15



Unsoundness of write-after-read elimination in RA

source:
x := 1;
a := FAA(x , 1); // 1
b := y ; // 0

y := 1;
c := x ; // 1
x := c;
b := x ; // 2

target:
x := 1;
a := FAA(x , 1); //1
b := y ; //0

y := 1;
c := x ; //1

b := x ; //2

16



Eliminations in RA

Read-after-write elimination
x := 1;
a := x ; ;

x := 1;
a := 1; 3

Read-after-read elimination
a := x ;
b := x ; ;

a := x ;
b := a; 3

Write-after-write elimination
x := 1;
x := 2; ; x := 2; 3

Write-after-read elimination
a := x ;
x := a; ; a := x ; 7

17



Summary

Summary:
I We defined soundness of program transformations under a

memory model.
I We studied various examples.
I Declarative semantics allows simple arguments for soundness.

Not covered:
I Transformation correctness under catch-fire semantics:

I We may assume that the source program has no “bad”
executions.

I We have to show that the transformation does not introduce
“bad” executions.

18



Exercise: Sequentialization

I Is sequentialization is sound under the simplified C11 model?

I Is sequentialization is sound under TSO?

19



Exercise: “Roach-motel” reorderings in C11

Part I – The RA model
I Which reorderings are sound under RA? Consider read-read,

read-write, write-read, and write-write reorderings. For each
case, either prove soundness or provide a counterexample.

I Are any reorderings involving RMW’s sound? Why?

Part II – The C11 model
Show the soundness of the following transformations under the
simplified C11 model.

xrel := vx ;
yrlx := vy ; ;

yrlx := vy ;
xrel := vx

a := xrlx;
b := yacq; ;

b := yacq;
a := xrlx;

20


