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Reduction to SC (robustness)

For TSO, it suffices to have a fence between every racy write &
subsequent racy read.

CPU
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write-back

read

CPU

. . .

. . .

Memory

For RA, we need more fences. Recall the IRIW example:

Independent reads of independent writes (IRIW)

x = y = 0

x := 1 a := x ; //1
b := y //0

c := y ; //1
d := x //0 y := 1
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What is the semantics of SC fences?

From C11, we had:

eco 4= (rf ∪ mo ∪ rb)+ (extended coherence order)
pscF

4= [Fsc]; (hb ∪ hb; eco; hb); [Fsc] (partial SC fence order)

and required that pscF is acyclic.

That is,

Definition (RA consistency with fences)
An execution graph G is RA-consistent iff there exists some
modification order mo for G such that:

I G is complete,
I (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic, and
I pscF is acyclic.
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Alternative definition of RA consistency

Theorem
An execution graph G is RA-consistent iff there exists a total order
sc on G .Fsc and a modification order mo for G such that:

I G is complete,
I (po ∪ rf ∪ sc)+ is irreflexive, and
I (po ∪ rf ∪ sc)∗; eco is irreflexive.
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Simple reduction theorem

Theorem
Let G be an RA-consistent execution graph. If

I For every G-racy events a, b, if 〈a, b〉 ∈ (G .po ∪ G .rf)+,
then 〈a, c〉, 〈c, b〉 ∈ (G .po ∪ G .rf)+ for some fence event c.

Then, G is SC-consistent.
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Proof of the simple reduction theorem (1/2)

Recall:
I Recall SC-consistency : po ∪ rf ∪ mo ∪ rb is acyclic.
I Let hb 4= (po ∪ rf ∪ sc)+ and K 4= eco \ hb.
I It suffices to prove : hb ∪ K is acyclic.

Consider minimal cycle in (hb ∪ K ).
I Cycles with ≤ 1 K -edges disallowed by RA consistency.
I Cycle with two K -edges:

a b

cd

K

hb

K

hb
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Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K -edges.

a b
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More advanced reduction theorem

Theorem
Let G be a WW-race-free RA-consistent execution, and there
exists a set B ⊆ G .E of protected events such that:
1. hb 4= (G .po ∪ G .rf)+ is total on B.
2. If a races with b in G, then either a ∈ B or b ∈ B.
3. For every G-racy write/update event a ∈ B and G-racy read

event b ∈ B, if 〈a, b〉 ∈ hb, then 〈a, c〉, 〈c, b〉 ∈ hb for some
fence event c.

4. For every G-racy write/update event a 6∈ B and G-racy read
event b 6∈ B, if 〈a, b〉 ∈ hb, then 〈a, c〉, 〈c, b〉 ∈ hb for some
fence or protected event c.

Then, G is SC-consistent.
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Proof sketch

Note
Because of WW-race-freedom, if 〈a, b〉 ∈ K , then a is a read and b
is a write (or update).

Consider minimal cycle in (hb ∪ K ).
I Cycle with two K -edges:

a:R b:W

c:Rd:W

K

hb

K

hb
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Applying the theorem to RCU

rcu_quiescent_state():
rc[get_my_tid()] := gc; fence();

rcu_thread_offline():
rc[get_my_tid()] := 0; fence();

rcu_thread_online():
rc[get_my_tid()] := gc; fence();

synchronize_rcu():
local was_online := (rc[get_my_tid()] 6= 0);
if was_online then rc[get_my_tid()] := 0;
lock();

gc := gc + 1;
fence();
for i := 1 to N do wait (rc[i] ∈ {0,gc});

unlock();
if was_online then rc[get_my_tid()] := gc;
fence();
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