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What is the right semantics for

a concurrent programming language?



Programming language concurrency semantics




Programming language concurrency semantics
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1. Mathematically sane
(e.g., monotone)

2. Not too strong

£er 4 (good for hardware)

3. Not too weak
(allows reasoning)
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. Admits optimizations

@ § % (good for compilers)
5. No undefined behavior




The out-of-thin-air problem in C11

> Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

a=x; /1

y =1, =Y

This behavior must be allowed:
Power/ARM allow it
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The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1

y = a; R

The behavior should be forbidden:
Values appear out-of-thin-air!
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Same execution as before!
C11 allows these behaviors




The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1

Vo= X o= / \
The behavior should be forbidden:

Values appear out-of-thin-air!

w7
Load-buffering + control dependencies l RN [
a=x; /1 . Weiny, 1 Wetxx, 1
‘ ) f -1 rixY s rixX,
if (a=1) Ix(%/—l )
y:=1 ' Same execution as before!
C11 allows these behaviors

The behavior should be forbidden:
DRF guarantee is broken!



The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”. [x=y=0]

Load-buffering + data dependency / \
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The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”. [x=y=0]

Load-buffering + data dependency / \

a=x; /1 o Ryixx, 1 erx)’: 1
X =Y,
y = a; J' AN ,r [ '_:
Wl
Load-buffering + fake dependency Wy, 1 Wixx, 1
a=x; /1 X =y dependency
y=a+1-a; =y TEPETEEnT

This approach is not suitable for a programming language:

Compilers do not preserve syntactic dependencies.
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A “promising” semantics for relaxed-memory concurrency

We will now describe a model that satisfies all these goals, and
covers nearly all features of C11.

> DRF guarantees » Efficient implementation on

» No “out-of-thin-air” values modern hardware

> Avoid “undefined behavior” B Cinbleropimizations

Key idea: Start with an operational interleaving semantics, but
allow threads to promise to write in the future



Simple operational semantics for C11's relaxed accesses

Store buffering




Simple operational semantics for C11's relaxed accesses

Store buffering x{en(;;g T — T,'s view
: Xy X Yy
<y : 0@0> 0 0 0 0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location



Simple operational semantics for C11's relaxed accesses
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» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location



Simple operational semantics for C11's relaxed accesses

Store buffering
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» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location
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Simple operational semantics for C11's relaxed accesses

Store buffering
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Simple operational semantics for C11's relaxed accesses
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
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Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

> At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.



Promises

Load-buffering Memory e i m—
<X : 0@0> 1 S view 2 S view
Xy Xy
: 0@0
<y > 0 O 0 O

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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» At any point, a thread may promise to write a message in the
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» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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Load-buffering
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» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.



Promises

Load-buffering Memory
Ti's view  T3's view

: 00
a=x; /1 (v : 0@o) X X X X
=1 =Y (y: le1)
y=1 > Y 11 11
> (x:1le1)
Load-buffering + dependency
a=x /I Must not adm'it
yi=a = the same execution!




Promises

Load-buffering

x=y=0
a=x; /1 o
y =1 N
>
Load-buffering + dependency
a:=x; /1 Xy
y = a; =

Key ldea

A thread can only promise if it
can perform the write anyway
(even without having made the
promise)




Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.

10



Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.

Load-buffering Load buff. + fake dependency

a=x; /1
y =1

a=x; /1

x=) yi=a+1-—a;

X =y,

T; may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

T; may NOT promise y = 1, since
a=x; /1 ‘ it is not able to write y = 1 by itself.

yi=a
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Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;
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Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;
No.

Suppose the thread promises x = 1. Then, once a := x reads 1,

the thread view is increased and so the promise cannot be fulfilled.
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Quick quiz #2

Is this behavior possible?

X =y

a=x; /1 H
y =X

x =1;
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Yes. And the ARM-Flowing model allows it!
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Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;

Yes. And the ARM-Flowing model allows it!

This behavior can be also explained by sequentialization:

a:=x /1 a:=x; /1
X;lv H}/ZZX; X =Y, ~ X::]_; X =y,
. ' y =X
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Quick quiz #2

But, note that sequentialization is generally unsound in our model:

a = x, 1
a=x; /1 . A
. if a = 0then
if a=0then ||y :=x;| x:=y; X =y,
x:=1;
x:=1;
y = X;
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The full model

v

Atomic updates (e.g., CAS, fetch-and-add)

Release/acquire fences and accesses

v

v

Release sequences

v

SC fences (no SC accesses)

v

Plain accesses (C11's non-atomics & Java's normal accesses)

To achieve all of this we enrich our timestamps, messages, and
thread views.

14



Release/acquire accesses

Message-passing

x = 1;
Y =rel 1,

x=y=0

a = Yacq» /1

b:=x;

/1

15



Release/acquire accesses

Message-passing

x=y=0
» x =1, > a:= Yacq; /1
Y =rel L; b:=x; /1

Memory T1’s view T>'s view
(x : 0e0) X y Xy

: 0@0
<y > 0 O 0 O
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Release/acquire accesses

Message-passing

x=y=0
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Release/acquire accesses

Message-passing

x=y=0
x:=1 > a:= Yacq; /1
Y =rel L; b:=x; /1
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Release/acquire accesses

Message-passing

x =1 a = Yacq» /1
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Release/acquire accesses

Message-passing

?f(erg;g T1’s view T>'s view

(y : 0@0) ;( § ; §

(x:1le1) L L
(y:1le1 xe1)
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Certification is needed at every step

Key lemma for DRF

Races only on RA under promise-free semantics

= only promise-free behaviors

if Wacq =1 then
z:=1;
else
W i=rel 1; Y =rel 1,
a=x; /1
if a=1 then
z:=1;

if yacq =1 then
if z=1 then
x =1;
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Invariant-based program logic

Theorem (Invariant-Based Program Logic)

Fix a global invariant J. Hoare logic where all assertions are
of the form P A J, where P mentions only local variables, is sound.

» Useful for proving absence of OOTA.

Load-buffering 4+ data dependency

o T
J

a:=x; {J}
{Jn(a=0)} 5 o=
y = a; {J}

{/}

i JE(x=0)A(y=0)
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