The out-of-thin-air problem
and a promising solution

Ori Lahav Viktor Vafeiadis

31 August 2017

What is the right semantics for

a concurrent programming language?

Programming language concurrency semantics

Programming language concurrency semantics

o O
i; Q l WMM desiderata

1. Mathematically sane
(e.g., monotone)

2. Not too strong

£er 4 (good for hardware)

3. Not too weak
(allows reasoning)

N

. Admits optimizations

@ § % (good for compilers)
5. No undefined behavior

The out-of-thin-air problem in C11

> Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

a=x; /1

y =1, =Y

This behavior must be allowed:
Power/ARM allow it

The out-of-thin-air problem in C11

> Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

a=x; /1

y =1, =Y

This behavior must be allowed:
Power/ARM allow it

[x =y =0]
Rexx, 1 rixys 1
*

~ ’1
~ ’
N
N
4 ~
4 ~
4 ~
Wexy, 1 Weixx, 1

program order

P

reads from
-------- >

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1

y = a; R

The behavior should be forbidden:
Values appear out-of-thin-air!

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1 Xy
yi=a = / \
The behavior should be forbidden:

Values appear out-of-thin-air! v, P
-~ ’
N
7N
’ ~
’ ~
’ -~

Weixy, 1 Weixx, 1

Same execution as before!
C11 allows these behaviors

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1

Vo= X o= / \
The behavior should be forbidden:

Values appear out-of-thin-air!

w7
Load-buffering + control dependencies l RN [
a=x; /1 . Weiny, 1 Wetxx, 1
‘) f -1 rixY s rixX,
if (a=1) Ix(%/—l)
y:=1 ' Same execution as before!
C11 allows these behaviors

The behavior should be forbidden:
DRF guarantee is broken!

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”. [x=y=0]

Load-buffering + data dependency / \

X =Y, J' AR 7 [
J .~ v B
. Pt :
H s :
. ’ . :
{ P S >

wrlx.)’a 1 wl’|XX) 1

a=x; /1
y = a;

dependenc
................. >

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”. [x=y=0]

Load-buffering + data dependency / \

a=x; /1 o Ryixx, 1 erx)’: 1
X =Y,
y = a; J' AN ,r ['_:
Wl
Load-buffering + fake dependency Wy, 1 Wixx, 1
a=x; /1 X =y dependency
y=a+1-a; =y TEPETEEnT

This approach is not suitable for a programming language:

Compilers do not preserve syntactic dependencies.

J

A “promising” semantics for relaxed-memory concurrency

We will now describe a model that satisfies all these goals, and
covers nearly all features of C11.

> DRF guarantees » Efficient implementation on

» No “out-of-thin-air” values modern hardware

> Avoid “undefined behavior” B Cinbleropimizations

Key idea: Start with an operational interleaving semantics, but
allow threads to promise to write in the future

Simple operational semantics for C11's relaxed accesses

Store buffering

Simple operational semantics for C11's relaxed accesses

Store buffering x{en(;;g T — T,'s view
: Xy X Yy
<y : 0@0> 0 0 0 0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store buffering Memory T.'sview HEEEE
(x : 0@0) 1x y 2x y
(y : 0@0) X o0 0 0
(x:le1) i

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

Xy Xy
X o o X
1 1
Coherence test T1's view .
T>’s view
x=0 (x : 000) S X
» x = 1; » X =2; 0 0

a=x; /2 b=x; /1

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

X y X y
X o o X
1 1
Coherence test Memory T1XS view T
x=0 (x : 0e0) D X
x = 1; > x =2 (x:1le1) 0

»a=x; /2 b=x; /1 1

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

Coherence test

" T,’s view
x=0 (x : 0@0) D X
x =1 X :=2; (x:1le1) X
>a=x;, /2| »b:i=x; /1 (x :2@2) ! 2

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

Xy Xy

X o o X

1 1

Coherence test Ty’s view T.'s view
2

x=0 (x : 0@0) —%— X
x =1 x =2 (x:1le1) X
a=x; /2| »bi=x; /1 (x : 2@2) § 2

| 2

Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

X Yy Xy

X o o X

1 1
VS e T>'s view

M)()(‘X
N =g X

Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

> At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

Promises

Load-buffering Memory e i m—
<X : 0@0> 1 S view 2 S view
Xy Xy
: 0@0
<y > 0 O 0 O

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

Memory
(x : 0©0)
(y : 0e0)
(y:1le1)

T1's view T>'s view
X y X y
0 O 0 O

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised

message.

Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

Memory
(x : 0©0)
(y : 0e0)
(y:1le1)

T1's view T>'s view

X y X y

0 0 0o X
1

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised

message.

Promises

Load-buffering

T1's view T>'s view

X y X y

0 0 X X
1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

Promises

Load-buffering

T1's view T>'s view
X y X y
X o X X
1 1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

Promises

Load-buffering

T1's view T>'s view

X y X y
X X X X
1 1 1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

Promises

Load-buffering Memory
Ti's view T3's view

: 00
a=x; /1 (v : 0@o) X X X X
=1 =Y (y: le1)
y=1 > Y 11 11
> (x:1le1)
Load-buffering + dependency
a=x /I Must not adm'it
yi=a = the same execution!

Promises

Load-buffering

x=y=0
a=x; /1 o
y =1 N
>
Load-buffering + dependency
a:=x; /1 Xy
y = a; =

Key ldea

A thread can only promise if it
can perform the write anyway
(even without having made the
promise)

Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.

10

Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.

Load-buffering Load buff. + fake dependency

a=x; /1
y =1

a=x; /1

x=) yi=a+1-—a;

X =y,

T; may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

T; may NOT promise y = 1, since
a=x; /1 ‘ it is not able to write y = 1 by itself.

yi=a

10

Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;

11

Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;
No.

Suppose the thread promises x = 1. Then, once a := x reads 1,

the thread view is increased and so the promise cannot be fulfilled.

11

Quick quiz #2

Is this behavior possible?

X =y

a=x; /1 H
y =X

x =1;

12

Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;

Yes. And the ARM-Flowing model allows it!

12

Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;

Yes. And the ARM-Flowing model allows it!

This behavior can be also explained by sequentialization:

a:=x /1 a:=x; /1
X;lv H}/ZZX; X =Y, ~ X::]_; X =y,
. ' y =X

12

Quick quiz #2

But, note that sequentialization is generally unsound in our model:

a = x, 1
a=x; /1 . A
. if a = 0then
if a=0then ||y :=x;| x:=y; X =y,
x:=1;
x:=1;
y = X;

13

The full model

v

Atomic updates (e.g., CAS, fetch-and-add)

Release/acquire fences and accesses

v

v

Release sequences

v

SC fences (no SC accesses)

v

Plain accesses (C11's non-atomics & Java's normal accesses)

To achieve all of this we enrich our timestamps, messages, and
thread views.

14

Release/acquire accesses

Message-passing

x = 1;
Y =rel 1,

x=y=0

a = Yacq» /1

b:=x;

/1

15

Release/acquire accesses

Message-passing

x=y=0
» x =1, > a:= Yacq; /1
Y =rel L; b:=x; /1

Memory T1’s view T>'s view
(x : 0e0) X y Xy

: 0@0
<y > 0 O 0 O

15

Release/acquire accesses

Message-passing

x=y=0
x = 1; > a:= Yacq; /1
> Y = L; b:=x; /1
?f(erg;g T1’s view T>'s view
(y : 0@0) = -
(x:1le1))f 0 00

15

Release/acquire accesses

Message-passing

x=y=0
x:=1 > a:= Yacq; /1
Y =rel L; b:=x; /1
>
?f(erg;g T1’s view T>'s view
(y : 0@0) ;(§)(() (})/
(x:1le1) L
(y:1le1 xe1)

15

Release/acquire accesses

Message-passing

x =1 a = Yacq» /1
Y =rel 1; » b:=x; /1
>
?)/:erggg T1’s view T>'s view
(y : 0@0) ;(§ ; §
(x:1le1) L L
(y:1le1 xe1)

15

Release/acquire accesses

Message-passing

?f(erg;g T1’s view T>'s view

(y : 0@0) ;(§ ; §

(x:1le1) L L
(y:1le1 xe1)

15

Certification is needed at every step

Key lemma for DRF

Races only on RA under promise-free semantics

= only promise-free behaviors

if Wacq =1 then
z:=1;
else
W i=rel 1; Y =rel 1,
a=x; /1
if a=1 then
z:=1;

if yacq =1 then
if z=1 then
x =1;

16

Invariant-based program logic

Theorem (Invariant-Based Program Logic)

Fix a global invariant J. Hoare logic where all assertions are
of the form P A J, where P mentions only local variables, is sound.

» Useful for proving absence of OOTA.

Load-buffering 4+ data dependency

o T
J

a:=x; {J}
{Jn(a=0)} 5 o=
y = a; {J}

{/}

i JE(x=0)A(y=0)

17

