Basic operational semantics for concurrency

Ori Lahav Viktor Vafeiadis

28 August 2017

A simple concurrent programming language

Basic domains:

$$
\begin{array}{ll}
r \in \text { Reg } & \text { - Registers (local variables) } \\
x \in \operatorname{Loc} & \text { - Locations } \\
v \in \text { Val } & \text { - Values including } 0 \\
i \in \operatorname{Tid}=\{1, \ldots, N\} & - \text { Thread identifiers }
\end{array}
$$

Expressions and commands:

$$
\begin{aligned}
e:: & r|v| e+e \mid \ldots \\
c::= & \text { skip } \mid \text { if } e \text { then } c \text { else } c \mid \text { while } e \text { do } c \mid \\
& c ; c|r:=e| r:=x|x:=e| \\
& r:=\operatorname{FAA}(x, e)|r:=\operatorname{CAS}(x, e, e)| \text { fence }
\end{aligned}
$$

Programs, $P:$ Tid \rightarrow Cmd, written as $P=c_{1}\|\ldots\| c_{N}$

Basic set up

Thread subsystem

- Thread-local steps: $c, s \xrightarrow{\prime} c^{\prime}, s^{\prime}$.
- Interpret sequential programs.
- Lift them to program steps: $P, S \xrightarrow{i: 1} P^{\prime}, S^{\prime}$.

Storage subsystem (defined by the memory model)

- Describe the effect of memory accesses and fences.
- $M \xrightarrow{i: I} M^{\prime}$ where M is the state of the storage subsystem.

Linking the two

- Either the thread or the storage subsystem make an internal step, ε; or they make matching $i: /$ steps.
- $P, S, M \Rightarrow P^{\prime}, S^{\prime}, M^{\prime}$.

The thread subsystem

Store: $s: \operatorname{Reg} \rightarrow$ Val \quad (Initial store: $s_{0} \triangleq \lambda r .0$)
State: $\langle c, s\rangle \in$ Command \times Store

Transitions:

$$
\begin{array}{cc}
\begin{array}{c}
\text { skip; } c, s \xrightarrow{\varepsilon} c, s \\
\frac{c_{1}, s \xrightarrow{l} c_{1}^{\prime}, s^{\prime}}{c_{1} ; c_{2}, s \xrightarrow{l} c_{1}^{\prime} ; c_{2}, s^{\prime}}
\end{array} \frac{s^{\prime}=s[r \mapsto s(e)]}{r:=e, s \xrightarrow{\varepsilon} \text { skip, } s^{\prime}} \\
\frac{l=R(x, v)}{r:=x, s \xrightarrow{\prime} \text { skip, } s[r \mapsto v]} & \frac{l=W(x, s(e))}{x:=e, s \xrightarrow{l} \text { skip,s }} \\
\frac{s(e) \neq 0}{\text { if } e \text { then } c_{1} \text { else } c_{2}, s \xrightarrow{\varepsilon} c_{1}, s} \quad \frac{s(e)=0}{\text { if } e \text { then } c_{1} \text { else } c_{2}, s \xrightarrow{\varepsilon} c_{2}, s}
\end{array}
$$

while e do $c, s \xrightarrow{\varepsilon}$ if e then ($c ;$ while e do c) else skip, s

The thread subsystem: RMW and fence commands

Fetch-and-add:

$$
\frac{I=\mathrm{U}(x, v, v+s(e))}{r:=\mathbf{F A A}(x, e), s \xrightarrow{l} \text { skip }, s[r \mapsto v]}
$$

Compare-and-swap:

$$
\begin{gathered}
\frac{I=\mathrm{R}(x, v) \quad v \neq s\left(e_{r}\right)}{r:=\mathbf{C A S}\left(x, e_{r}, e_{w}\right), s \xrightarrow{\prime} \text { skip, } s[r \mapsto 0]} \\
\frac{I=\mathrm{U}\left(x, s\left(e_{r}\right), s\left(e_{w}\right)\right)}{r:=\mathbf{C A S}\left(x, e_{r}, e_{w}\right), s \xrightarrow{\rightarrow} \text { skip, } s[r \mapsto 1]}
\end{gathered}
$$

Fence:
fence, $s \xrightarrow{\text { F }}$ skip, s

Lifting to concurrent programs

State: $\langle P, S\rangle \in$ Program $\times($ Tid \rightarrow Store $)$

- Initial stores: $S_{0} \triangleq \lambda i . s_{0}$
- Initial state: $\left\langle P, S_{0}\right\rangle$

Transition:

$$
\frac{P(i), S(i) \xrightarrow{l} c, s}{P, S \xrightarrow{i / I} P[i \mapsto c], S[i \mapsto s]}
$$

SC storage subsystem

SC storage subsystem

Machine state: M : Loc \rightarrow Val

- Maps each location to its value.
- Initial state: $M_{0} \triangleq \lambda x .0$
(i.e., the memory that maps every location to 0)

Transitions:

$$
\begin{aligned}
& \frac{I=\mathrm{W}(x, v)}{M \xrightarrow{i: I} M[x \mapsto v]} \quad \frac{I=\mathrm{R}(x, v)}{M \xrightarrow{i: I} M} M \\
& \frac{I=\mathrm{U}\left(x, v_{r}, v_{w}\right)}{M \xrightarrow{\text { i:I }} M\left[x \mapsto v_{w}\right]} \quad M(x)=v_{r} \\
& M \xrightarrow{M: I} M
\end{aligned}
$$

SC: Linking the thread and storage subsystems

$$
\begin{aligned}
& \text { SILENT } \\
& \frac{P, S \xrightarrow{\text { i: }} P^{\prime}, S^{\prime}}{P, S, M \Rightarrow P^{\prime}, S^{\prime}, M}
\end{aligned}
$$

Definition (Allowed outcome)

- An outcome is a function $O:$ Tid \rightarrow Store.
- An outcome O is allowed for a program P under SC if there exists M such that $P, S_{0}, M_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, M.

TSO storage subsystem

The state consists of:

- A memory M : Loc \rightarrow Val
- A function $B:$ Tid $\rightarrow(\text { Loc } \times \mathrm{Val})^{*}$ assigning a store buffer to every thread.

Initial state: $\left\langle M_{0}, B_{0}\right\rangle$ where

- $M_{0}=\lambda x .0$ (the memory maps 0 to every location)
- $B_{0}=\lambda i . \epsilon \quad$ (all store buffers are empty)

TSO storage subsystem transitions

WRITE
$\frac{I=W(x, v)}{M, B \xrightarrow{i: I} M, B[i \mapsto\langle x, v\rangle \cdot B(i)]}$

PROPAGATE

$$
B(i)=b \cdot\langle x, v\rangle
$$

$M, B \xrightarrow{i: \varepsilon} M[x \mapsto v], B[i \mapsto b]$

READ

$$
\begin{gathered}
I=\mathrm{R}(x, v) \\
B(i)=\left\langle x_{n}, v_{n}\right\rangle \cdot \ldots \cdot\left\langle x_{2}, v_{2}\right\rangle \cdot\left\langle x_{1}, v_{1}\right\rangle \\
\frac{M\left[x_{1} \mapsto v_{1}\right]\left[x_{2} \mapsto v_{2}\right] \ldots\left[x_{n} \mapsto v_{n}\right](x)=v}{M, B \xrightarrow{i: I} M, B}
\end{gathered}
$$

RMW
$\frac{I=\mathrm{U}\left(x, v_{r}, v_{w}\right) \quad B(i)=\epsilon \quad M(x)=v_{r}}{M, B \xrightarrow{i: I} M\left[x \mapsto v_{w}\right], B}$

FENCE
$\frac{I=\mathrm{F} \quad B(i)=\epsilon}{M, B \xrightarrow{i: I} M, B}$

TSO: linking thread and storage subsystems

SILENT-THREAD
$\frac{P, S \xrightarrow{\stackrel{i: \varepsilon}{\rightarrow}} P^{\prime}, S^{\prime}}{P, S, M, B \Rightarrow P^{\prime}, S^{\prime}, M, B}$

SILENT-STORAGE

$$
\frac{M, B \stackrel{i: \varepsilon}{\longrightarrow} M^{\prime}, B^{\prime}}{P, S, M, B \Rightarrow P, S, M^{\prime}, B^{\prime}}
$$

NON-SILENT

$$
\frac{P, S \xrightarrow{i: 1} P^{\prime}, S^{\prime} \quad M, B \xrightarrow{i: 1} M^{\prime}, B^{\prime}}{P, S, M, B \Rightarrow P^{\prime}, S^{\prime}, M^{\prime}, B^{\prime}}
$$

Definition (Allowed outcome)

An outcome O is allowed for a program P under TSO if there exists M such that $P, S_{0}, M_{0}, B_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, M, B_{0}.

Exercise: PSO storage subsystem

Partial Store Ordering (PSO) is a WMM similar to TSO, but it does not guarantee that stores to different locations propagate to the main memory in the order they were issued. In particular, it allows the following weak behavior:

$$
\begin{array}{l||l}
x:=1 ; & a:=y ; ~ / / 1 \\
y:=1 & b:=x
\end{array}
$$

1. Provide operational semantics for PSO.
2. Extend the semantics with a store-store fence, whose placement between two stores ensures that the stores propagate to the main memory in their issue order.
3. (Optional) Show that programs containing store-store fences between every two writes have the same outcomes under TSO and PSO.
