
Basic operational semantics for
concurrency

Ori Lahav Viktor Vafeiadis

28 August 2017

A simple concurrent programming language

Basic domains:

r ∈ Reg – Registers (local variables)
x ∈ Loc – Locations
v ∈ Val – Values including 0
i ∈ Tid = {1, ... ,N} – Thread identifiers

Expressions and commands:

e ::= r | v | e + e | ...
c ::= skip | if e then c else c | while e do c |

c ; c | r := e | r := x | x := e |
r := FAA(x , e) | r := CAS(x , e, e) | fence

Programs, P : Tid→ Cmd, written as P = c1‖ ... ‖cN

2

Basic set up

Thread subsystem
I Thread-local steps: c , s l−→ c ′, s ′.
I Interpret sequential programs.
I Lift them to program steps: P, S i :l−→ P ′, S ′.

Storage subsystem (defined by the memory model)
I Describe the effect of memory accesses and fences.
I M i :l−→ M ′ where M is the state of the storage subsystem.

Linking the two
I Either the thread or the storage subsystem make an

internal step, ε; or they make matching i :l steps.
I P, S,M =⇒ P ′, S ′,M ′.

3

The thread subsystem

Store: s : Reg→ Val (Initial store: s0
4= λr . 0)

State: 〈c , s〉 ∈ Command× Store

Transitions:

skip; c, s ε−→ c, s

c1, s
l−→ c ′

1, s ′

c1; c2, s
l−→ c ′

1; c2, s ′

s ′ = s[r 7→ s(e)]
r := e, s ε−→ skip, s ′

l = R(x , v)

r := x , s l−→ skip, s[r 7→ v]

l = W(x , s(e))

x := e, s l−→ skip, s

s(e) 6= 0
if e then c1 else c2, s

ε−→ c1, s
s(e) = 0

if e then c1 else c2, s
ε−→ c2, s

while e do c, s ε−→ if e then (c; while e do c) else skip, s

4

The thread subsystem: RMW and fence commands

Fetch-and-add:
l = U(x , v , v + s(e))

r := FAA(x , e), s l−→ skip, s[r 7→ v]

Compare-and-swap:

l = R(x , v) v 6= s(er)
r := CAS(x , er , ew), s l−→ skip, s[r 7→ 0]

l = U(x , s(er), s(ew))
r := CAS(x , er , ew), s l−→ skip, s[r 7→ 1]

Fence:

fence, s F−→ skip, s
5

Lifting to concurrent programs

State: 〈P, S〉 ∈ Program× (Tid→ Store)
I Initial stores: S0

4= λi . s0

I Initial state: 〈P, S0〉

Transition:

P(i), S(i) l−→ c , s
P, S i :l−→ P[i 7→ c], S[i 7→ s]

6

SC storage subsystem

CPU 1

writeread

CPU n. . .

Memory

7

SC storage subsystem

Machine state: M : Loc→ Val
I Maps each location to its value.
I Initial state: M0

4= λx . 0
(i.e., the memory that maps every location to 0)

Transitions:

l = W(x , v)
M i :l−→ M[x 7→ v]

l = R(x , v) M(x) = v
M i :l−→ M

l = U(x , vr , vw) M(x) = vr

M i :l−→ M[x 7→ vw]
l = F

M i :l−→ M

8

SC: Linking the thread and storage subsystems

silent
P, S i :ε−→ P ′, S ′

P, S,M =⇒ P ′, S ′,M

non-silent
P, S i :l−→ P ′, S ′ M i :l−→ M ′

P, S,M =⇒ P ′, S ′,M ′

Definition (Allowed outcome)
I An outcome is a function O : Tid→ Store.
I An outcome O is allowed for a program P under SC if

there exists M such that
P, S0,M0 =⇒∗ skip‖ ... ‖skip,O,M.

9

TSO storage subsystem

CPU

Bu
ffe
r

CPU

Bu
ffe
r

CPU

Bu
ffe
r

Memory

10

TSO storage subsystem

The state consists of:
I A memory M : Loc→ Val
I A function B : Tid→ (Loc× Val)∗

assigning a store buffer to every thread.

Initial state: 〈M0,B0〉 where
I M0 = λx . 0 (the memory maps 0 to every location)
I B0 = λi . ε (all store buffers are empty)

11

TSO storage subsystem transitions

write
l = W(x , v)

M,B i :l−→ M,B[i 7→ 〈x , v〉 · B(i)]

propagate
B(i) = b · 〈x , v〉

M,B i :ε−→ M[x 7→ v],B[i 7→ b]

read
l = R(x , v)

B(i) = 〈xn, vn〉· ... ·〈x2, v2〉 · 〈x1, v1〉
M[x1 7→ v1][x2 7→ v2] ... [xn 7→ vn](x) = v

M,B i :l−→ M,B

rmw
l = U(x , vr , vw) B(i) = ε M(x) = vr

M,B i :l−→ M[x 7→ vw],B

fence
l = F B(i) = ε

M,B i :l−→ M,B

12

TSO: linking thread and storage subsystems

silent-thread
P, S i :ε−→ P ′, S ′

P, S,M,B =⇒ P ′, S ′,M,B

silent-storage
M,B i :ε−→ M ′,B ′

P, S,M,B =⇒ P, S,M ′,B ′

non-silent
P, S i :l−→ P ′, S ′ M,B i :l−→ M ′,B ′

P, S,M,B =⇒ P ′, S ′,M ′,B ′

Definition (Allowed outcome)
An outcome O is allowed for a program P under TSO if there
exists M such that P, S0,M0,B0 =⇒∗ skip‖ ... ‖skip,O,M,B0.

13

Exercise: PSO storage subsystem

Partial Store Ordering (PSO) is a WMM similar to TSO, but
it does not guarantee that stores to different locations
propagate to the main memory in the order they were issued.
In particular, it allows the following weak behavior:

x := 1;
y := 1

a := y ; //1
b := x //0

1. Provide operational semantics for PSO.
2. Extend the semantics with a store-store fence, whose

placement between two stores ensures that the stores
propagate to the main memory in their issue order.

3. (Optional) Show that programs containing store-store
fences between every two writes have the same outcomes
under TSO and PSO.

14

