Correspondence between operational and declarative concurrency semantics

Ori Lahav Viktor Vafeiadis

29 August 2017

Two alternative definitions of SC

Definition (Operational SC)

An outcome O is allowed for a program P under SC if there exists M such that $P, S_{0}, M_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, M.

Definition (Declarative SC)

An outcome O is allowed for a program P under SC if there exists an SC-consistent execution graph of P with outcome O.

How do we show that the two definitions are equivalent?

Operational version of SC declarative semantics

State:

$\langle P, S, G, s c\rangle \in$ Program $\times($ Tid \rightarrow Store $) \times$ ExecutionGraph $\times \mathcal{P}($ Event \times Event $)$

- Initial stores: $S_{0} \triangleq \lambda i . s_{0}$
- Initial execution: G_{0} consisting only of the initialization events
- Initial sc-relation: sc_{0} is an arbitrary total order on $G_{0} . \mathrm{E}$
NON-SILENT

$$
P, S \xrightarrow{\operatorname{tid}(a): \operatorname{lab}(a)} P^{\prime}, S^{\prime}
$$

$$
G^{\prime} \in \operatorname{Add}(G, a)
$$

SILENT

$$
\mathrm{sc}^{\prime}=\mathrm{sc} \cup(G . \mathrm{E} \times\{a\})
$$

$$
\frac{P, S \xrightarrow{i: \varepsilon} P^{\prime}, S^{\prime}}{P, S, G, \mathrm{sc} \Rightarrow P^{\prime}, S^{\prime}, G, \mathrm{sc}}
$$

G^{\prime} is SC-consistent wrt sc^{\prime}
$\overline{P, S, G, \mathrm{sc} \Rightarrow P^{\prime}, S^{\prime}, G^{\prime}, \mathrm{sc}^{\prime}}$
where $\operatorname{Add}(G, a)$ is the set of all complete graphs G^{\prime} satisfying:

- $G^{\prime} . E=G . E \uplus\{a\}$
- $G^{\prime} . \mathrm{po}=G . \mathrm{po} \cup\left(\left(\mathrm{E}_{0} \cup G . \mathrm{E}^{\operatorname{tid}(a)}\right) \times\{a\}\right)$
- G.rf $\subseteq G^{\prime} . r f$

Definition (Operational-declarative SC)

An outcome O is allowed for a program P under SC if there exist G, sc such that $P, S_{0}, G_{0}, \mathrm{sc}_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, sc.

Establish correspondence between operational SC and declarative SC in two steps:

1. operational $\mathrm{SC}=$ intermediate SC
2. declarative $S C=$ intermediate $S C$

Operational SC $=$ intermediate SC

We will use forward weak simulation. Consider two labeled state transition systems $M_{1}=\left\langle Q_{1}, q_{1}^{0}, \rightarrow_{1}\right\rangle$ and $M_{2}=\left\langle Q_{2}, q_{2}^{0}, \rightarrow_{2}\right\rangle$.

- $\mathcal{R} \subseteq Q_{1} \times Q_{2}$ is a simulation relation from M_{1} to M_{2} if:
- $q_{1}^{0} \mathcal{R} q_{2}^{0}$, and
- whenever $q_{1} \mathcal{R} q_{2}$ and $q_{1} \rightarrow_{1} q_{1}^{\prime}$, then there exists some $q_{2}^{\prime} \in Q_{2}$ such that $q_{2} \rightarrow_{2}^{*} q_{2}^{\prime}$ and $q_{1}^{\prime} \mathcal{R} q_{2}^{\prime}$.
- $\mathcal{R} \subseteq Q_{1} \times Q_{2}$ is called a bisimulation relation if it is a simulation relation from M_{1} to M_{2} and \mathcal{R}^{-1} is a simulation relation from M_{2} to M_{1}.

Lemma

If a simulation relation exists then for every state $q_{1} \in Q_{1}$ that is reachable from q_{1}^{0} in M_{1}, there exists some $q_{2} \in Q_{2}$ that is reachable from q_{2}^{0} in M_{2} and satisfies $q_{1} \mathcal{R} q_{2}$.

Operational SC = intermediate SC

Our bisimulation relation:

$\langle P, S, M\rangle \sim\left\langle P^{\prime}, S^{\prime}, G, \mathrm{sc}\right\rangle$ if the following hold:

- $P=P^{\prime}$
- $S=S^{\prime}$
- $M=\lambda x \cdot \operatorname{val}_{\mathrm{w}}\left(\max _{\mathrm{sc}} G . \mathrm{W}_{x}\right)$
- G is complete and SC-consistent wrt sc.
- Show that \sim is a bisimulation relation.
- Deduce that operational SC and intermediate SC have the same outcomes for any given program.

Declarative $\mathrm{SC}=$ intermediate SC

Two directions:
\subseteq Every outcome allowed for P according to declarative SC is allowed according to intermediate SC
\supseteq Every outcome allowed for P according to intermediate SC is allowed according to declarative SC

Reminders:

Definition

G is an execution graph of a program P with an outcome O if G^{i} is an execution of $P(i)$ with final store $O(i)$ for every $i \in$ Tid.

Definition (Declarative SC)
An outcome O is allowed for a program P under SC if there exists an SC-consistent execution graph of P with outcome O.

Declarative $\mathrm{SC} \subseteq$ intermediate SC

Lemma (Execution generation)

Let G be an execution of a program P_{0} with outcome O. Let a_{1}, \ldots, a_{n} be an enumeration of $G . E \backslash E_{0}$ that respects $G . p o$. Then, there exist $\left\langle P_{1}, S_{1}\right\rangle, \ldots,\left\langle P_{n}, S_{n}\right\rangle$ such that:

- $P_{n}=$ skip $\|\ldots\|$ skip and $S_{n}=0$
- For every $1 \leq j \leq n$, we have:

$$
P_{j-1}, S_{j-1} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon} * \xrightarrow{\operatorname{tid}\left(a_{j}\right): \operatorname{lab}\left(a_{j}\right)} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon} * P_{j}, S_{j}
$$

Declarative $\mathrm{SC} \subseteq$ intermediate SC

- Let G be an SC-consistent execution graph of P_{0} with outcome O.
- Let sc be a total order on G.E such that G is SC-consistent wrt sc.
- We show that $P, S_{0}, G_{0}, \mathrm{sc}_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, sc.
- Let a_{1}, \ldots, a_{n} be an enumeration of G.E $\backslash E_{0}$ following sc.
- Since G.po \subseteq sc, by the previous lemma, there exist $\left\langle P_{1}, S_{1}\right\rangle, \ldots,\left\langle P_{n}, S_{n}\right\rangle$ such that:
- $P_{n}=$ skip $\|\ldots\|$ skip and $S_{n}=O$
- For every $1 \leq j \leq n$, we have:

$$
P_{j-1}, S_{j-1} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon}{ }^{*} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \operatorname{lab}\left(a_{j}\right)} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon}{ }^{*} P_{j}, S_{j}
$$

- For every $0 \leq j \leq n$, let
- G_{j} - the restriction of G to $\mathrm{E}_{0} \cup\left\{a_{1}, \ldots, a_{j}\right\}$
- $s c_{j}$ - the restriction of sc to $E_{0} \cup\left\{a_{1}, \ldots, a_{j}\right\}$
- Then, for every $1 \leq j \leq n$, we have:

$$
P_{j-1}, S_{j-1}, G_{j-1}, \mathrm{sc}_{j-1} \Rightarrow^{*} P_{j}, S_{j}, G_{j}, \mathrm{sc}_{j}
$$

Operational-declarative SC \subseteq declarative SC

- Suppose that $P_{0}, S_{0}, G_{0}, \mathrm{sc}_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, sc.
- By definition, G is SC-consistent. It remains to show that each G^{i} is an execution of $P_{0}(i)$ with final store $O(i)$.
- We know: $P_{0}, S_{0}, G_{0}, \mathrm{sc}_{0} \Rightarrow P_{1}, S_{1}, G_{1}, \mathrm{sc}_{1} \Rightarrow \ldots \Rightarrow P_{n}, S_{n}, G_{n}, \mathrm{sc}_{n}$ where P_{n}, S_{n}, G_{n}, sc $_{n}=$ skip $\|\ldots\|$ skip, O, G, sc.
- The sequence above induces the following sequence of transitions:

$$
P_{0}, S_{0} \xrightarrow{i_{1}: I_{1}} P_{1}, S_{1} \xrightarrow{i_{2}: I_{2}} P_{2}, S_{2} \xrightarrow{i_{3}: l_{3}} \ldots \xrightarrow{i_{n}: I_{n}} P_{n}, S_{n}
$$

- In turn, by filtering only the transitions of thread i we obtain:

$$
P_{0}(i), S_{0}(i) \xrightarrow{I_{k_{1}}} P_{k_{1}}(i), S_{k_{1}}(i) \xrightarrow{I_{k_{2}}} \ldots \xrightarrow{I_{k_{n}}} P_{k_{n_{i}}}(i), S_{k_{n_{i}}}(i)=\text { skip}, O(i)
$$

- It follows that $P_{0}(i), s_{0}, G_{\emptyset} \Rightarrow^{*}$ skip, $O(i), G^{i}$, and so G^{i} is an execution of $P_{0}(i)$ with final store $O(i)$.

Operational semantics for COH

Recall the following litmus tests:

Store buffering

$$
\begin{aligned}
& x=y=0 \\
& \begin{array}{l||l}
x:=1 \\
a:=y \quad / / 0 & \begin{array}{l}
y:=1 \\
b \\
b
\end{array}=x \quad / / 0
\end{array}
\end{aligned}
$$

Coherence test

$$
\left. \right\rvert\, \begin{aligned}
& x:=2 \\
& b:=x / / 1
\end{aligned}
$$

Two approaches:

- Out-of-order execution with SC memory.
- In-order execution with non-standard memory:
- Allow threads to observe different subsets of writes.
- Use timestamps to order writes to the same location.

Operational semantics for coherence

Store buffering

\[

\]

Store buffering
$x=y=0$

Memory
〈 x : 0@0〉
$\langle y$: 0@0 \rangle

- Global memory is a pool of messages of the form

$$
\langle l o c a t i o n ~: ~ v a l u e ~ @ ~ t i m e s t a m p\rangle
$$

- Each thread maintains a thread-local view recording the last observed timestamp for every location

Operational semantics for coherence

Store buffering
$x=y=0$
$x:=1 ; \quad| | r \mid l$

- $a:=y ; 10 \quad b:=x ; 110$

- Global memory is a pool of messages of the form

$$
\langle l o c a t i o n ~: ~ v a l u e ~ @ ~ t i m e s t a m p\rangle
$$

- Each thread maintains a thread-local view recording the last observed timestamp for every location

Operational semantics for coherence

Store buffering
$\left.\begin{aligned} & x=y=0 \\ x:=1 ; & y:=1 ; \\ -a:=y ; & / / 0 \\ & \end{aligned} \right\rvert\, \begin{aligned} & \langle x: 0 @\rangle \\ & \end{aligned}$
Memory
$\langle x: 0 @\rangle$
$\langle y: 0 @\rangle\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1} 's view	
x	y
K	0
1	

- Global memory is a pool of messages of the form

$$
\langle l o c a t i o n ~: ~ v a l u e ~ @ ~ t i m e s t a m p\rangle
$$

- Each thread maintains a thread-local view recording the last observed timestamp for every location

Operational semantics for coherence

Store buffering
$x=y=0$
$x:=1 ; \quad$
$a:=y ; \quad / / 0 \mid r$

Memory
$\langle x$: 0@0〉
$\langle y: 0 @ 0\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

- Global memory is a pool of messages of the form

$$
\langle l o c a t i o n ~: ~ v a l u e ~ @ ~ t i m e s t a m p\rangle
$$

- Each thread maintains a thread-local view recording the last observed timestamp for every location

Operational semantics for coherence

Store buffering

\[

\]

Memory
$\langle x: 0 @ 0\rangle$
$\langle y: 0 @ 0\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1} 's	view
x	y
\nless	0
1	

- Global memory is a pool of messages of the form

$$
\langle l o c a t i o n ~: ~ v a l u e ~ @ ~ t i m e s t a m p\rangle
$$

- Each thread maintains a thread-local view recording the last observed timestamp for every location

Operational semantics for coherence

Store buffering

$$
\begin{aligned}
& x=y=0
\end{aligned}
$$

Memory
〈x: 0@0〉
$\langle y: 0 @\rangle\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1} 's	view
x	y
\nless	0
1	

Coherence test

\[

\]

Operational semantics for coherence

Store buffering

$$
\quad \begin{aligned}
& y:=1 ; \\
& b:=x ; \quad / / 0
\end{aligned}
$$

Memory
$\langle x: 0 @ 0\rangle$
$\langle y: 0 @ 0\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1} 's	view
x	y
\nless	0
1	

T_{2} 's view

Operational semantics for coherence

Store buffering

$$
\quad \begin{aligned}
& y:=1 ; \\
& b:=x ; \quad / / 0
\end{aligned}
$$

Memory
$\langle x: 0 @ 0\rangle$
$\langle y: 0 @ 0\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1} 's	view
x	y
\nless	0
1	

Memory
〈x:0@0〉 $\langle x: 1 @ 1\rangle$
T_{2} 's view

Operational semantics for coherence

Store buffering

$$
\quad \begin{aligned}
& y:=1 ; \\
& b:=x ; \quad / / 0
\end{aligned}
$$

Coherence test
$\begin{array}{rl} & x=0 \\ x:=1 ; \\ a:=x ; ~ / / 2 ~ & x:=2 ; \\ b:=x ; / / 1\end{array}$
Memory
〈x: 0@0〉
$\langle x: 1 @ 1\rangle$
$\langle x: 2 @ 2\rangle$

T_{1} 's	view
x	y
\nless	0
1	

T_{2} 's view

Operational semantics for coherence

Memory
〈x：0＠0〉
$\langle y: 0 @\rangle\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

T_{1}＇s	view
x	y
\nless	0
1	

Coherence test

\[

\]

Memory
〈 x ：0＠0〉
$\langle x: 1 @ 1\rangle$
$\langle x: 2 @ 2\rangle$

T_{2}＇s view

Operational semantics for coherence

Store buffering

$$
\quad \begin{aligned}
& y:=1 ; \\
& b:=x ;
\end{aligned}
$$

Memory
$\langle x: 0 @ 0\rangle$
$\langle y: 0 @ 0\rangle$
$\langle x: 1 @ 1\rangle$
$\langle y: 1 @ 1\rangle$

Coherence test

\[

\]

T_{1} 's	view
x	y
\nless	0
1	

T_{2} 's	view
x	y
0	k
	1

T_{2} 's view

Supporting write-write reordering

$$
\begin{aligned}
& 2+2 \mathrm{~W} \\
& \begin{array}{l||l}
x:=1 ; & \begin{array}{l}
y:=1 ; \\
y:=2 ; \\
a:=y ~ / / 1
\end{array} \\
x:=2 ; \\
b:=x \quad / / 1
\end{array}
\end{aligned}
$$

Supporting write-write reordering

Memory
$\langle x: 0 @\rangle$
$\langle y$: 0@ \rangle

Supporting write-write reordering

Memory		
$\begin{aligned} & \langle y: 0 @ 0\rangle \\ & \langle x: 1 @ 1\rangle \end{aligned}$	T_{1} 's view	T_{2} 's view
	$x \quad y$	$x \quad y$
	X 0	00
	1	

Supporting write-write reordering

$2+2 \mathrm{~W}$	<x: 0@0〉
$\begin{gathered} x=y=0 \\ x:=1 ; \\ y:=2 ; \\ a:=y ~ / / 1 \end{gathered} \quad \begin{array}{l\|l} x:=1 \\ x:=2 \\ b:=x \end{array}$	$\begin{aligned} & \langle x: 1 @ 1\rangle \\ & \langle y: 2 @ 1\rangle \end{aligned}$

Memory $\langle x: 0 @ 0\rangle$				
$y: 0 @ 0\rangle$	T_{1} 's view	T_{2} 's view		
$\langle x: 1 @ 1\rangle$	x	y	x	y
$\langle y: 2 @ 1\rangle$	$\not X$	\nless	0	0
1	1			

Memory				
$\langle x: 0 @ 0\rangle$	T_{1} 's view	T_{2} 's view		
$\langle y: 0 @ 0\rangle$	x	y	x	y
$\langle x: 1 @ 1\rangle$	$\not X$	\nless	0	\nless
$\langle y: 2 @ 1\rangle$	1	1		2
$\langle y: 1 @ 2\rangle$				

Supporting write-write reordering

Memory

$\langle x: 0 @\rangle\rangle$
〈 y : 0@0〉
$\langle x: 1 @ 1\rangle$
$\langle y: 2 @ 1\rangle$
$\langle y: 1 @ 2\rangle$

$$
\langle x: 2 @ 0.5\rangle
$$

- Writes choose timestamp greater than the thread's view, not necessarily the globally greatest one.

Load buffering (LB)

$$
\begin{gathered}
x=y=0 \\
a:=x \quad / / 1 \\
y:=1
\end{gathered}
$$

- COH allows this outcome.
- But, the suggested operational semantics disallows it!
- We will see later an approach to fix this mismatch (using out-of-order execution).
- For now, we will strengthen the declarative semantics.

Declarative semantics for strong coherence

Definition (Strong coherence)

An execution G is strongly coherent if the following hold:

- G is complete.
- G is coherent wrt some modification order mo for G.
- G.po \cup G.rf is acyclic.

A note about the implementability of StrongCOH

Some hardware implementations (e.g., ARM) allow po \cup rf cycles involving only plain loads and stores. To implement StrongCOH on those architectures, a syntactic dependency or a fence has to be introduced between every load and subsequent store.

- Time $\triangleq\{t \in \mathbb{Q} \mid t \geq 0\}$ is the set of timestamps.
- A message is a triple $\langle x: v @ t\rangle$ where $x \in \operatorname{Loc}, v \in$ Val, and $t \in$ Time.
- A memory is a finite set of messages.
- A view is a function view : Loc \rightarrow Time.
- A thread view function is a function $V:$ Tid \rightarrow (Loc \rightarrow Time $)$ assigning a view to every thread.

The state consists of

- a program P
- a store function S
- a memory M
- a thread view function V

Initial state $\left\langle P, S_{0}, M_{0}, V_{0}\right\rangle$ where

- $S_{0}=\lambda i . s_{0}=\lambda i . \lambda r .0$
- $M_{0}=\{\langle x: 0 @ 0\rangle \mid x \in$ Loc $\}$
- $V=\lambda i . v i e w_{0}=\lambda i . \lambda x .0$.

Machine transitions

READ

$$
\begin{aligned}
& \text { SILENT-THREAD } \\
& \frac{P, S \xrightarrow{i: \&} P^{\prime}, S^{\prime}}{P, S, M, V \Rightarrow P^{\prime}, S^{\prime}, M, V}
\end{aligned}
$$

WRITE

$$
\begin{gathered}
P, S \xrightarrow{i: I} P^{\prime}, S^{\prime} \quad I=W(x, v) \\
V(i)(x)<t \quad \forall v^{\prime} .\left\langle x: v^{\prime} @ t\right\rangle \notin M \\
\frac{M^{\prime}=M \cup\{\langle x: v @ t\rangle\}}{} \quad \begin{array}{ll}
\text { view }
\end{array}=V(i)[x \mapsto t]
\end{gathered}
$$

Definition (Operational StrongCOH)

An outcome O is allowed for a program P under StrongCOH if there exist M, V such that $P, S_{0}, M_{0}, V_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, M, V.

Correspondence proof

As for SC, we will introduce an "intermediate" semantics for StrongCOH.

Establish correspondence between operational StrongCOH and declarative StrongCOH in two steps:

1. operational StrongCOH $=$ intermediate StrongCOH
2. declarative StrongCOH $=$ intermediate StrongCOH

Operational version of StrongCOH declarative semantics

State $\langle P, S, G$, mo \rangle where $P \in$ Program, $S \in($ Tid \rightarrow Store $)$, $G \in$ ExecutionGraph, mo $\subseteq G$.E \times G.E.

- Initial stores: $S_{0} \triangleq \lambda i . s_{0}$
- Initial execution: G_{0} consisting only of the initialization events
- Initial modification order: $\mathrm{m} \circ_{0}=\emptyset$

SILENT

$$
\frac{P, S \xrightarrow{i: \varepsilon} P^{\prime}, S^{\prime}}{P, S, G, \mathrm{mo} \Rightarrow P^{\prime}, S^{\prime}, G, \mathrm{mo}}
$$

NON-SILENT

$$
P, S \xrightarrow{i: 1} P^{\prime}, S^{\prime} \quad I \neq \varepsilon
$$

$$
G^{\prime} \in \operatorname{Add}(G,\langle n, i, I\rangle, i) \quad \mathrm{mo} \subseteq \mathrm{mo}^{\prime}
$$

mo ${ }^{\prime}$ is a modification order for G^{\prime} G^{\prime} is COH -consistent wrt mo ${ }^{\prime}$

$$
P, S, G, \mathrm{mo} \Rightarrow P^{\prime}, S^{\prime}, G^{\prime}, \mathrm{mo}^{\prime}
$$

Definition (Operational-declarative StrongCOH)

An outcome O is allowed for a program P under StrongCOH if there exist G, mo such that $P, S_{0}, G_{0}, \mathrm{mo}_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, mo.

Operational StrongCOH = intermediate StrongCOH

Our bisimulation relation:

$P, S, M, V \sim P^{\prime}, S^{\prime}, G, m o$ if the following hold:

- $P=P^{\prime}$
- $S=S^{\prime}$
- there exists a function ts : G.W \rightarrow Time such that:
- ts $\left(w_{1}\right)<t s\left(w_{2}\right)$ whenever $\left\langle w_{1}, w_{2}\right\rangle \in$ mo
- $M=\left\{\left\langle\operatorname{loc}(w): \operatorname{val}_{\mathrm{w}}(w) @ t s(w)\right\rangle \mid w \in G . W\right\}$
- $V=\lambda i x \cdot \max \left\{t s(w) \mid w \in \operatorname{dom}\left(\left[G . W_{x}\right] ; G . r f{ }^{?} ;\left[G . E^{i}\right]\right)\right\}$
- G is strongly coherent (wrt mo).

Exercise

- Show that \sim is a bisimulation relation.
- Hence deduce that the operational StrongCOH model and the intermediate StrongCOH model have the same outcomes for any given program.

Declarative StrongCOH \subseteq intermediate StrongCOH

- Let G be an StrongCOH-consistent execution graph of P_{0} with outcome O.
- Let mo be a modification order for G such that G is COH -consistent wrt mo.
- We show that $P_{0}, S_{0}, G_{0}, m \circ_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, mo.
- Let a_{1}, \ldots, a_{n} be an enumeration of $G . E \backslash E_{0}$ following G.po $\cup G . r f$.
- By the "execution generation" lemma, there exist $\left\langle P_{1}, S_{1}\right\rangle, \ldots,\left\langle P_{n}, S_{n}\right\rangle$ such that:
- $P_{n}=$ skip $\|\ldots\|$ skip and $S_{n}=0$
- For every $1 \leq j \leq n$, we have:

$$
P_{j-1}, S_{j-1} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon}{ }^{*} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \operatorname{lab}\left(a_{j}\right)} \xrightarrow{\operatorname{tid}\left(a_{j}\right): \varepsilon}{ }^{*} P_{j}, S_{j}
$$

- For every $0 \leq j \leq n$, let
- G_{j} - the restriction of G to $E_{0} \cup\left\{a_{1}, \ldots, a_{j}\right\}$
- mo_{j} - the restriction of mo to $\mathrm{E}_{0} \cup\left\{a_{1}, \ldots, a_{j}\right\}$
- Then, for every $1 \leq j \leq n$, we have: (why?)

$$
P_{j-1}, S_{j-1}, G_{j-1}, \mathrm{mo}_{j-1} \Rightarrow^{*} P_{j}, S_{j}, G_{j}, \mathrm{mo}_{j}
$$

- Suppose that P_{0}, S_{0}, G_{0}, mo $_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, G, mo.
- We show that G is a StrongCOH-consistent execution graph of P with outcome O.
- We know:

$$
P_{0}, S_{0}, G_{0}, \mathrm{mo}_{0} \Rightarrow P_{1}, S_{1}, G_{1}, \mathrm{mo}_{1} \Rightarrow \ldots \Rightarrow P_{n}, S_{n}, G_{n}, \mathrm{mo}_{n}
$$

where P_{n}, S_{n}, G_{n}, mo $_{n}=$ skip $\|\ldots\|$ skip, O, G, mo.

- By definition, G is COH -consistent.
- Using induction on the length of the sequence, we also have that G.po $\cup G . r f$ is acyclic.
- It remains to show that each G^{i} is an execution of $P_{0}(i)$ with final store $O(i)$. (This is done exactly as for SC.)

Operational semantics for RA

Can we extend the operational semantics to support message passing (i.e., release-acquire synchronization)?

Message passing (MP)

$$
\begin{gathered}
x=y=0 \\
x:=42 ; \left\lvert\, \begin{array}{l}
a:=y ; / / 1 \\
y:=1 \\
b:=x / / 0
\end{array}\right.
\end{gathered}
$$

Double message passing

$$
\begin{array}{l||l||l}
& x=y=0 \\
x:=42 ; & a:=y ; / / 1 & b:=z ; / / 1 \\
y:=1 & z:=1 & c:=x / / 0
\end{array}
$$

Message views

Desired semantics

When reading a message the thread becomes aware of all messages that the writer of the message was aware of when the message was written.

We implement this using message views:

- Each message m will carry a view: the view of the thread who wrote m when m was written.
- When reading a message m, the thread will update its view to include at least the view contained in m.

Operational semantics for RA

- A message is a tuple $\langle x: v @ t$ view \rangle where $x \in \operatorname{Loc}, v \in \operatorname{Val}$, $t \in$ Time and view : Loc \rightarrow Time
- Initially, $M_{0} \triangleq\{\langle x: 0 @ 0 \quad \perp\rangle \mid x \in$ Loc $\}$
- Bottom view: $\perp \triangleq \lambda x$. 0
- Joining views: view view $_{1} \sqcup$ view $_{2} \triangleq \lambda x$. $\quad \max \left\{\operatorname{view}_{1}(x), \operatorname{view}_{2}(x)\right\}$

READ

$$
\begin{gathered}
P, S \xrightarrow{\text { i:I }} P^{\prime}, S^{\prime} \quad I=\mathrm{R}(x, v) \\
\langle x: v @ t \underset{\text { view }\rangle \in M \quad V(i)(x) \leq t}{\text { view }}=V(i) \sqcup \text { view } \\
\hline P, S, M, V \Rightarrow P^{\prime}, S^{\prime}, M, V\left[i \mapsto \text { view }^{\prime}\right]
\end{gathered}
$$

WRITE

$$
\begin{gathered}
P, S \xrightarrow{i: I} P^{\prime}, S^{\prime} \quad I=W(x, v) \\
V(i)(x)<t \quad \forall v^{\prime}, \text { view. }\left\langle x: v^{\prime} @ t \text { view }\right\rangle \notin M \\
\frac{\text { view }}{\prime}=V(i)[x \mapsto t] \quad M^{\prime}=M \cup\{\langle x: v @ t \text { view }\rangle\} \\
P, S, M, V \Rightarrow P^{\prime}, S^{\prime}, M^{\prime}, V[i \mapsto \text { view }]
\end{gathered}
$$

Exercise: RA operational semantics

Definition (Operational RA)

An outcome O is allowed for a program P under RA if there exist M, V such that $P, S_{0}, M_{0}, V_{0} \Rightarrow^{*}$ skip $\|\ldots\|$ skip, O, M, V.

Exercise

Prove the correspondence between the declarative and the operational definitions of RA.

Exercise: Strong release/acquire semantics

Suppose we change the write step in the operational semantics of RA as follows:

WRITE

$$
\begin{gathered}
P, S \xrightarrow{\stackrel{i: l}{\rightarrow} P^{\prime}, S^{\prime} \quad I=W(x, v)} \begin{array}{c}
\forall t^{\prime}, v^{\prime}, \text { view. }\left\langle x: v^{\prime} @ t^{\prime}, ~ v i e w\right\rangle \in M \Rightarrow t^{\prime}<t \\
\frac{\text { view }}{}=V(i)[x \mapsto t] \quad M^{\prime}=M \cup\{\langle x: v @ t \text { view' }\rangle\} \\
P, S, M, V \Rightarrow P^{\prime}, S^{\prime}, M^{\prime}, V[i \mapsto \text { view' }]
\end{array}
\end{gathered}
$$

Here, when writing a message, the thread may only choose a timestamp larger than all timestamps that were used for the given location.

- Show an example which differentiates this model from RA.
- What will be the corresponding declarative semantics?

Recall the following alternative definition of coherence:
Let mo be a modification order for an execution graph G.
G is coherent wrt mo iff the following hold:

- rf; po is irreflexive.
(no-future-read)
- mo; po is irreflexive. (coherence-ww)
- mo;rf; po is irreflexive. (coherence-rw)
- $r f^{-1}$; mo; po is irreflexive. (coherence-wr)
- $r f^{-1}$; mo; rf; po is irreflexive. (coherence-rr)

Plain accesses in the Java memory model do not provide full coherence. In particular, they do not ensure "coherence-rr".

- Adapt the StrongCOH timestamp machine to match this weaker variant.

Further reading

- Taming release-acquire consistency. Ori Lahav, Nick Giannarakis, Viktor Vafeiadis. POPL 2016: 649-662
- A promising semantics for relaxed-memory concurrency. Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, Derek Dreyer. POPL 2017: 175-189

