Correspondence between operational and
declarative concurrency semantics

Ori Lahav Viktor Vafeiadis

29 August 2017

Two alternative definitions of SC

Definition (Operational SC)

An outcome O is allowed for a program P under SC if there exists
M such that P, So, My =* skipl|| ... |skip, O, M.

Definition (Declarative SC)

An outcome O is allowed for a program P under SC if there exists
an SC-consistent execution graph of P with outcome O.

How do we show that
the two definitions
are equivalent?

Operational version of SC declarative semantics
State:
(P, S, G,sc) € Program x (Tid — Store) x ExecutionGraph x P(Event x Event)

» Initial stores: Sg £ \i. o
> Initial execution: Gy consisting only of the initialization events
> Initial sc-relation: scq is an arbitrary total order on Ggy.E

NON-SILENT
P.S tid(a):lab(a) P,75,
G' € Add(G, a)
SILENT ' sc’ =scU(G.E x {a})
P,S 5 PS8 G’ is SC-consistent wrt sc’
P,S,G,sc= P',S G,sc P,S,G,sc= P, S G, sc

where Add(G, a) is the set of all complete graphs G’ satisfying:
» G'E=GEW{a}
» G'.po = G.po U ((Eo U G.E**4?) x {a})
» Grf C G'.rf

Operational version of SC declarative semantics

Definition (Operational-declarative SC)

An outcome O is allowed for a program P under SC if there exist
G, sc such that P, Sp, G, sco =* skip]| ... ||skip, O, G, sc.

Establish correspondence between operational SC and declarative
SC in two steps:

1. operational SC = intermediate SC
2. declarative SC = intermediate SC

Operational SC = intermediate SC

We will use forward weak simulation. Consider two labeled state
transition systems M; = (Q1,q?, —1) and My = (@2, 43, —2).

» R C Q1 X @ is a simulation relation from M; to Ms if:
> qf R g3, and
» whenever g1 R g2 and g1 —1 g, then there exists some
g5 € Q2 such that g —3 g5 and ¢} R 5.
» R C Q1 x Q is called a bisimulation relation if it is a
simulation relation from M; to M» and R~ is a simulation
relation from M, to M.

If a simulation relation exists then for every state q1 € @1 that is
reachable from q? in My, there exists some g € @, that is
reachable from q3 in My and satisfies g1 Rq>.

Operational SC = intermediate SC

Our bisimulation relation:

(P,S,M) ~ (P, S’ G,sc) if the following hold:

> P = PI
| 2 S = 5,
» M = Ax. valy(maxs. G.Wy)

v

G is complete and SC-consistent wrt sc.

Show that ~ is a bisimulation relation.

v

v

Deduce that operational SC and intermediate SC have the
same outcomes for any given program.

Declarative SC = intermediate SC

Two directions:
C Every outcome allowed for P according to declarative
SC is allowed according to intermediate SC

DO Every outcome allowed for P according to
intermediate SC is allowed according to declarative
SC

Reminders:

Definition

G is an execution graph of a program P with an outcome O if G’ is an
execution of P(i) with final store O(/) for every i € Tid.

Definition (Declarative SC)

An outcome O is allowed for a program P under SC if there exists an
SC-consistent execution graph of P with outcome O.

Declarative SC C intermediate SC

Lemma (Execution generation)

Let G be an execution of a program Py with outcome O. Let
ai, ... ,an be an enumeration of G.E\ Eq that respects G.po. Then,
there exist (P1,51), ... ,(Pn, Sn) such that:

> P, = skip| ... ||skip and S, = O
> Foreveryl < j < n, we have:

tid(aj):e , tid(aj):lab(a;) tid(aj):e

Pj—1,5j-1 > > P, Sj

Declarative SC C intermediate SC

> Let G be an SC-consistent execution graph of Py with outcome O.
> Let sc be a total order on G.E such that G is SC-consistent wrt sc.
> We show that P, Sy, Go, sco =™ skip|| ... ||skip, O, G, sc.

> Let ay,...,a, be an enumeration of G.E\ Eq following sc.

> Since G.po C sc, by the previous lemma, there exist
(P1,51), ... ,{(Pn, Sp) such that:
» P, =skip|| ... ||skip and S, = O
» For every 1 < j < n, we have:

tid(a)):e ¥ tid(aj):lab(a;) tid(gj)e P.S;

Pi—1,5;1
> Forevery 0 < j <n, let

» G; - the restriction of G to Eg U {ay,...,a;}
» sc; - the restriction of sc to Eg U {ay,...,3;}

» Then, for every 1 < j < n, we have:

*
Pj-1,5j-1, Gj—1,s¢;-1 =" P}, 5, Gj, s¢;

Operational-declarative SC C declarative SC

> Suppose that Py, So, Go, sco =* skip| ... ||skip, O, G, sc.

» By definition, G is SC-consistent. It remains to show that each G’
is an execution of Pg(/i) with final store O(i).

» We know: Py, Sp, Go, sco = P1, 51, Gi,s¢1 = ... = P,,S,, G, sc,,
where P,, S, G, sc, = skip]| ... ||skip, O, G, sc.

» The sequence above induces the following sequence of transitions:
i1/ in: 1 i3: /- in:ly
Po, So =5 P1, St 22 Py, Sy 225 2 P, S,

» In turn, by filtering only the transitions of thread i we obtain:

Ik2 /k,,l.

P()(f),S()(f) lk—1> Pkl(i); Skl(i) — . Pk"(_(l'), Skn/.(i) = Skip, O(I)

> It follows that Py(i), so, Gy =* skip, O(i), G', and so G’ is an
execution of Py(i) with final store O(/).

10

Operational semantics for coherence

Recall the following litmus tests:

Coherence test

Store buffering

x=0
x:=1 x:=2
a=x/2| bi=x/1

Two approaches:
» QOut-of-order execution with SC memory.

> In-order execution with non-standard memory:

» Allow threads to observe different subsets of writes.
» Use timestamps to order writes to the same location.

12

Operational semantics for coherence

Store buffering

13

Operational semantics for coherence

Store buffering x{en(;gg T — T,'s view
: Xy X Yy
<y : 0@0> 0 0 0 0

» Global memory is a pool of messages of the form

(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last

observed timestamp for every location

13

Operational semantics for coherence

Store buffering Memory T.'sview HEEEE
(x : 0@0) 1x y 2x y
(y : 0@0) X o0 0 0
(x:le1) i

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

13

Operational semantics for coherence

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

13

Operational semantics for coherence

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

13

Operational semantics for coherence

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

13

Operational semantics for coherence

Store buffering

T1's view T,'s view
X Yy X Yy
X o 0 X
1 1

13

Operational semantics for coherence

Store buffering

Coherence test
x=0 (x : 0e0)
» x = 1; » X =2;
a=x; /2 b=x; /1

T1's view T,'s view
X y X y
X o o X
1 1
T1's view v .
1 T>’s view
X
X
0
0

13

Operational semantics for coherence

Store buffering

T1’s view T>’s view
Xy X y
X o o X
1 1
Coherence test Memory T1XS VIS Ts view
x=0 (x : 0@0) " G X
x=1 > x =2 (x:1e1) 0
»a=x; /2 b=x; /1 1

13

Operational semantics for coherence

Store buffering T:i's view T>'s view
Xy Xy
Xo “oX
1

1

T1's view .
! T>'s view

Coherence test

x=0 (x : 0@0) X
X :1=2 (x:1le1)

>a=x; /2| »bi=x; /1 (x :202)

N =g X

x:=1;

13

Operational semantics for coherence

Store buffering

Coherence test

x=0 (x : 0@0)

x =1 x =2 (x:1le1)

a=x; /2| »wb=x; /1 (x : 202)
| 4

T1's view T,'s view

X Y X Y

X o o X
1

1

T1's view .
1 T>'s view

M)(X‘X
N =g X

13

Operational semantics for coherence

Store buffering

T1's view T,'s view
X Yy X Yy
X o o X
1 1

T>'s view
X

X

2

13

Supporting write-write reordering

14

Supporting write-write reordering

Memory
(x : 0@0)
(y : 0@0)

T1’s view T>’s view
Xy Xy
0 0 0 0

14

Supporting write-write reordering

Memory
(x : 0@0)
(y : 0@0)
(x:le1)

T1's view T>'s view
X Yy X Yy
X o 0 o
1

14

Supporting write-write reordering

T1’s view T>’s view
XYy X Yy
X X 0 o0
1 1

14

Supporting write-write reordering

x=y=0
x:=1; y:=1;
yi=2; » x =2;

»a=y /1 b:=x /1

Ey) i T1's view T>'s view
x: o1 x_ Y Xy
iy XX 0 X
(y : le2) vl 2

14

Supporting write-write reordering

T1’s view T>’s view
Xy Xy
X X X X
1 1 0 2

&b

» Writes choose timestamp greater than the thread’s view, not
necessarily the globally greatest one.

14

Load buffering

Load buffering (LB)

x=y=0
a=x /1| b=y /1
y:=1 x:=1

COH allows this outcome.

v

v

But, the suggested operational semantics disallows it!

v

We will see later an approach to fix this mismatch (using
out-of-order execution).

v

For now, we will strengthen the declarative semantics.

15

Declarative semantics for strong coherence

Definition (Strong coherence)

An execution G is strongly coherent if the following hold:
» G is complete.
» G is coherent wrt some modification order mo for G.

» G.poU G.rf is acyclic.

A note about the implementability of StrongCOH

Some hardware implementations (e.g., ARM) allow po U rf cycles
involving only plain loads and stores. To implement StrongCOH on those
architectures, a syntactic dependency or a fence has to be introduced
between every load and subsequent store.

16

Operational semantics for strong coherence

» Time £ {t € Q| t > 0} is the set of timestamps.

» A message is a triple (x : v@t) where x € Loc, v € Val, and
t € Time.

» A memory is a finite set of messages.
» A view is a function view : Loc — Time.

» A thread view function is a function V : Tid — (Loc — Time)
assigning a view to every thread.

The state consists of Initial state (P, So, My, Vo) where

> a program P
> So=Xi.sgp=Ai. Ar. 0

> My = {(x:000) | x € Loc}

» a store function S

> a memory M
M

oV i e — i
> a thread view function V V = Al. viewp = Ai. Ax. 0.

17

Machine transitions

READ

PSP S I=R(x,v)

SILENT-THREAD (x:vet) e M V(i) (x) <t
P.S =5 P S view' = V(i)[x + t]

P,S,M,V=P S MV P,S,M,V = P, S M, V[i — view]

WRITE
PSP s I=u(x,v)
V(i)(x) <t VW (x:vet) g M
M =MU{(x:vet)} view' = V(i)[x + t]
P.S,M,V = PS5 M, V[is view]

Definition (Operational StrongCOH)

An outcome O is allowed for a program P under StrongCOH if there
exist M, V such that P, Sy, My, Vo =* skip|| ... ||skip, O, M, V.

18

Correspondence proof

‘

As for SC, we will introduce an “intermediate” semantics for

StrongCOH.

Establish correspondence between operational StrongCOH and
declarative StrongCOH in two steps:

1. operational StrongCOH = intermediate StrongCOH
2. declarative StrongCOH = intermediate StrongCOH

19

Operational version of StrongCOH declarative semantics

State (P, S, G,mo) where P € Program, S € (Tid — Store),
G € ExecutionGraph, C G.EE X G.E.

> Initial stores: Sy = \i. so
» Initial execution: Gy consisting only of the initialization events

> Initial modification order: mog = ()

NON-SILENT
P,stLps I#e
G' € Add(G, (n,i,1), i) C mo’
SILENT ‘ ""is a modification order for G’
P,S = P S G’ is COH-consistent wrt mo’
P,S,G,mo= PSS G, P,S,G,mo= PSS G' mo

Definition (Operational-declarative StrongCOH)

An outcome O is allowed for a program P under StrongCOH if there
exist G,mo such that P, Sy, Gg, mog =* skip|| ... ||skip, O, G,

20

Operational StrongCOH = intermediate StrongCOH

Our bisimulation relation:

P,S,M,V ~ P" S G,no if the following hold:

> P = P/
| 2 S — S,
» there exists a function ts : G.W — Time such that:

» ts(wy) < ts(wa) whenever (wy, wy) €
» M = {(loc(w) : valy(w)ets(w)) | w € G.W} '
» V = \i x. max{ts(w) | w € dom([G.W,]; G.rt’;[G.ET])}

G is strongly coherent (wrt mo).

v

v

Show that ~ is a bisimulation relation.

v

Hence deduce that the operational StrongCOH model and the
intermediate StrongCOH model have the same outcomes for
any given program.

21

Declarative StrongCOH C intermediate StrongCOH

>

>

v

Let G be an StrongCOH-consistent execution graph of Py with
outcome O.
Let be a modification order for G such that G is COH-consistent
wrt
We show that Py, So, Gg, mog =* skip|| ... ||skip, O, G,
Let ay,...,a, be an enumeration of G.E\ Eg following G.po U G.rf.
By the "execution generation” lemma, there exist
(P1,51), .. ,{(Pn, Sp) such that:

» P, =skip|| ... ||skip and S, = O

» For every 1 < j < n, we have:
tid(aj):e * tid(aj):lab(a;) tid(aj):e *

Pj: 5

Pj—17 5}—1

For every 0 < j < n, let
» G; - the restriction of G to Eg U {a,...,a;}
» moj - the restriction of mo to Eg U {ay, ... ,a;}
Then, for every 1 < j < n, we have: (why?)

Pi_1,5j-1, Gj—1,m0j_1 =" P}, 5}, Gj, mo;

22

Operational-declarative StrongCOH C declarative StrongCOH

Suppose that Py, Sp, Go, mog =* skip|| ... ||skip, O, G,

We show that G is a StrongCOH-consistent execution graph of P
with outcome O.

We know:
P07507G03 ijlyslaGla 1:>~-~:>Pn35na Gn7 n

where P,, S,, G,,mo, = skip|| ... ||skip, O, G,
By definition, G is COH-consistent.

Using induction on the length of the sequence, we also have that
G.po U G.rf is acyclic.

It remains to show that each G' is an execution of Py(i) with final
store O(i). (This is done exactly as for SC.)

23

Release/acquire synchronization

Can we extend the operational semantics to support message
passing (i.e., release-acquire synchronization)?

Message passing (MP)

x=y=0
x = 42; a=y;, /1
y:=1 b:=x /0

Double message passing

x=y=0
v /1
=1

= b=z /1
: c:=x/0

v

Message views

Desired semantics
When reading a message the thread becomes aware of all messages
that the writer of the message was aware of when the message was

written.

We implement this using message views:
» Each message m will carry a view: the view of the thread who
wrote m when m was written.
> When reading a message m, the thread will update its view to
include at least the view contained in m.

26

Operational semantics for RA

» A message is a tuple (x : v@t view) where x € Loc, v € Val,
t € Time and view : Loc = Time

» Initially, Mo = {(x:000 L) |x € Loc}

» Bottom view: | = Ax. 0

> Joining views: view; LI views = Ax. max{views (x), view(x)}

READ
P.stp s I=R(x,v)
SILENT-THREAD (x:vet view) e M V(i)(x) <t
P,S = P S view' = V(i) Ll view

P,S,M,V = P'.S' M,V P,S,M,V = P .S M, V[i — view]

WRITE .
P.S PSS I=u(x,v)
V(i(x) <t Vv, view. (x : Vet view) ¢ M
view' = V(i)[x = t] M =MU{(x:vet view')}
P75> M7 V = P/,S/7M/, V[I — view’]

27

Exercise: RA operational semantics

Definition (Operational RA)

An outcome O is allowed for a program P under RA if there exist
M,V such that P, Sg, My, Vo =* skip|| ... ||skip, O, M, V.

Prove the correspondence between the declarative and the
operational definitions of RA.

28

Exercise: Strong release/acquire semantics

Suppose we change the write step in the operational semantics of
RA as follows:

WRITE
P.S L pPS I=w(xv)
vt', v, view. (x : Vet view) e M =t <t
view' = V(i)[x — t] M = MU {(x:vet view')}
P,S,M,V = P S M V[i— view']

Here, when writing a message, the thread may only choose a
timestamp larger than all timestamps that were used for the given
location.

» Show an example which differentiates this model from RA.

> What will be the corresponding declarative semantics?

29

Exercise: Plain accesses in Java

Recall the following alternative definition of coherence:

Let mo be a modification order for an execution graph G.
G is coherent wrt mo iff the following hold:

» rf;po is irreflexive. (no-future-read)
» m0; po is irreflexive. (coherence-ww)
» mo;rf;po is irreflexive. (coherence-rw)
» rf~1mo; po is irreflexive. (coherence-wr)
» r£ 1 ;rf; po is irreflexive. (coherence-rr)

Plain accesses in the Java memory model do not provide full
coherence. In particular, they do not ensure “coherence-rr".

» Adapt the StrongCOH timestamp machine to match this
weaker variant.

30

Further reading

» Taming release-acquire consistency. Ori Lahav, Nick
Giannarakis, Viktor Vafeiadis. POPL 2016: 649-662

» A promising semantics for relaxed-memory concurrency.
Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis,
Derek Dreyer. POPL 2017: 175-189

31

http://plv.mpi-sws.org/sra/
https://people.mpi-sws.org/~viktor/papers/popl2017-promising.pdf

	Operational semantics for COH
	Operational semantics for RA

