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Two alternative definitions of SC

Definition (Operational SC)
An outcome O is allowed for a program P under SC if there exists
M such that P,S0,M0 =⇒∗ skip‖ ... ‖skip,O,M.

Definition (Declarative SC)
An outcome O is allowed for a program P under SC if there exists
an SC-consistent execution graph of P with outcome O.

How do we show that
the two definitions
are equivalent?
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Operational version of SC declarative semantics

State:
〈P, S, G , sc〉 ∈ Program× (Tid→ Store)×ExecutionGraph×P(Event× Event)

I Initial stores: S0
4= λi . s0

I Initial execution: G0 consisting only of the initialization events
I Initial sc-relation: sc0 is an arbitrary total order on G0.E

silent
P, S i :ε−→ P ′, S ′

P, S,G , sc =⇒ P ′, S ′,G , sc

non-silent
P, S tid(a):lab(a)−−−−−−−−→ P ′, S ′

G ′ ∈ Add(G , a)
sc′ = sc ∪ (G .E× {a})

G ′ is SC-consistent wrt sc′

P, S,G , sc =⇒ P ′, S ′,G ′, sc′

where Add(G , a) is the set of all complete graphs G ′ satisfying:
I G ′.E = G .E ] {a}
I G ′.po = G .po ∪ ((E0 ∪ G .Etid(a))× {a})
I G .rf ⊆ G ′.rf
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Operational version of SC declarative semantics

Definition (Operational-declarative SC)
An outcome O is allowed for a program P under SC if there exist
G , sc such that P,S0,G0, sc0 =⇒∗ skip‖ ... ‖skip,O,G , sc.

Establish correspondence between operational SC and declarative
SC in two steps:

1. operational SC = intermediate SC
2. declarative SC = intermediate SC
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Operational SC = intermediate SC

We will use forward weak simulation. Consider two labeled state
transition systems M1 = 〈Q1, q0

1 ,−→1〉 and M2 = 〈Q2, q0
2 ,−→2〉.

I R ⊆ Q1 × Q2 is a simulation relation from M1 to M2 if:
I q0

1 R q0
2 , and

I whenever q1 R q2 and q1 −→1 q′1, then there exists some
q′2 ∈ Q2 such that q2 −→∗2 q′2 and q′1 R q′2.

I R ⊆ Q1 × Q2 is called a bisimulation relation if it is a
simulation relation from M1 to M2 and R−1 is a simulation
relation from M2 to M1.

Lemma
If a simulation relation exists then for every state q1 ∈ Q1 that is
reachable from q0

1 in M1, there exists some q2 ∈ Q2 that is
reachable from q0

2 in M2 and satisfies q1Rq2.
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Operational SC = intermediate SC

Our bisimulation relation:
〈P,S,M〉 ∼ 〈P ′,S ′,G , sc〉 if the following hold:

I P = P ′

I S = S ′

I M = λx . valw(maxsc G .Wx )
I G is complete and SC-consistent wrt sc.

I Show that ∼ is a bisimulation relation.
I Deduce that operational SC and intermediate SC have the

same outcomes for any given program.
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Declarative SC = intermediate SC

Two directions:

⊆ Every outcome allowed for P according to declarative
SC is allowed according to intermediate SC

⊇ Every outcome allowed for P according to
intermediate SC is allowed according to declarative
SC

Reminders:
Definition

G is an execution graph of a program P with an outcome O if G i is an
execution of P(i) with final store O(i) for every i ∈ Tid.

Definition (Declarative SC)
An outcome O is allowed for a program P under SC if there exists an
SC-consistent execution graph of P with outcome O.

7



Declarative SC ⊆ intermediate SC

Lemma (Execution generation)
Let G be an execution of a program P0 with outcome O. Let
a1, ... ,an be an enumeration of G .E \ E0 that respects G .po. Then,
there exist 〈P1, S1〉, ... ,〈Pn,Sn〉 such that:

I Pn = skip‖ ... ‖skip and Sn = O
I For every 1 ≤ j ≤ n, we have:

Pj−1, Sj−1
tid(aj ):ε−−−−−→∗ tid(aj ):lab(aj )−−−−−−−−−→ tid(aj ):ε−−−−−→∗ Pj , Sj
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Declarative SC ⊆ intermediate SC

I Let G be an SC-consistent execution graph of P0 with outcome O.
I Let sc be a total order on G .E such that G is SC-consistent wrt sc.
I We show that P, S0,G0, sc0 =⇒∗ skip‖ ... ‖skip,O,G , sc.
I Let a1, ... ,an be an enumeration of G .E \ E0 following sc.
I Since G .po ⊆ sc, by the previous lemma, there exist
〈P1, S1〉, ... ,〈Pn, Sn〉 such that:

I Pn = skip‖ ... ‖skip and Sn = O
I For every 1 ≤ j ≤ n, we have:

Pj−1, Sj−1
tid(aj ):ε−−−−−→

∗ tid(aj ):lab(aj )−−−−−−−−→ tid(aj ):ε−−−−−→
∗
Pj , Sj

I For every 0 ≤ j ≤ n, let
I Gj - the restriction of G to E0 ∪ {a1, ... ,aj}
I scj - the restriction of sc to E0 ∪ {a1, ... ,aj}

I Then, for every 1 ≤ j ≤ n, we have:

Pj−1, Sj−1,Gj−1, scj−1 =⇒∗ Pj , Sj ,Gj , scj
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Operational-declarative SC ⊆ declarative SC

I Suppose that P0, S0,G0, sc0 =⇒∗ skip‖ ... ‖skip,O,G , sc.
I By definition, G is SC-consistent. It remains to show that each G i

is an execution of P0(i) with final store O(i).
I We know: P0, S0,G0, sc0 =⇒ P1, S1,G1, sc1 =⇒ ... =⇒ Pn,Sn,Gn, scn

where Pn, Sn,Gn, scn = skip‖ ... ‖skip,O,G , sc.
I The sequence above induces the following sequence of transitions:

P0, S0
i1:l1−−→ P1, S1

i2:l2−−→ P2, S2
i3:l3−−→ ...

in:ln−−→ Pn, Sn

I In turn, by filtering only the transitions of thread i we obtain:

P0(i), S0(i)
lk1−→ Pk1(i),Sk1(i)

lk2−→ ...
lkni−−→ Pkni

(i), Skni
(i) = skip,O(i)

I It follows that P0(i), s0,G∅ =⇒∗ skip,O(i),G i , and so G i is an
execution of P0(i) with final store O(i).
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Operational semantics for COH



Operational semantics for coherence

Recall the following litmus tests:

Store buffering
x = y = 0

x := 1
a := y //0

y := 1
b := x //0

Coherence test
x = 0

x := 1
a := x // 2

x := 2
b := x // 1

Two approaches:
I Out-of-order execution with SC memory.
I In-order execution with non-standard memory:

I Allow threads to observe different subsets of writes.
I Use timestamps to order writes to the same location.
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Operational semantics for coherence

Store buffering
x = y = 0

I

x := 1;

I

a := y ; //0

I

I

y := 1;

I

b := x ; //0

I

Memory
〈x : 0@0〉
〈y : 0@0〉

〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
0 0

1

T2’s view
x y
0 0

1
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I Global memory is a pool of messages of the form

〈location : value @ timestamp〉

I Each thread maintains a thread-local view recording the last
observed timestamp for every location
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I

I
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b := x ; // 1

I
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0

1
2

T2’s view
x
0

2
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Supporting write-write reordering

2+2W
x = y = 0

I

x := 1;

I

y := 2;

I

a := y //1

I

y := 1;

I

x := 2;

I

b := x //1

Memory
〈x : 0@0〉
〈y : 0@0〉

〈x : 1@1〉
〈y : 2@1〉
〈y : 1@2〉
〈x : 2@0.5〉

T1’s view
x y
0 0

1 1

T2’s view
x y
0 0

0.5 2

I Writes choose timestamp greater than the thread’s view, not
necessarily the globally greatest one.
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Load buffering

Load buffering (LB)
x = y = 0

a := x //1
y := 1

b := y //1
x := 1

I COH allows this outcome.
I But, the suggested operational semantics disallows it!

I We will see later an approach to fix this mismatch (using
out-of-order execution).

I For now, we will strengthen the declarative semantics.
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Declarative semantics for strong coherence

Definition (Strong coherence)
An execution G is strongly coherent if the following hold:

I G is complete.
I G is coherent wrt some modification order mo for G .
I G .po ∪ G .rf is acyclic.

A note about the implementability of StrongCOH
Some hardware implementations (e.g., ARM) allow po ∪ rf cycles
involving only plain loads and stores. To implement StrongCOH on those
architectures, a syntactic dependency or a fence has to be introduced
between every load and subsequent store.
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Operational semantics for strong coherence

I Time 4= {t ∈ Q | t ≥ 0} is the set of timestamps.
I A message is a triple 〈x : v@t〉 where x ∈ Loc, v ∈ Val, and

t ∈ Time.
I A memory is a finite set of messages.
I A view is a function view : Loc→ Time.
I A thread view function is a function V : Tid→ (Loc→ Time)

assigning a view to every thread.

The state consists of
I a program P
I a store function S
I a memory M
I a thread view function V

Initial state 〈P, S0,M0,V0〉 where

I S0 = λi . s0 = λi . λr . 0
I M0 = {〈x : 0@0〉 | x ∈ Loc}
I V = λi . view0 = λi . λx . 0.
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Machine transitions

silent-thread
P, S i :ε−→ P ′, S ′

P,S,M,V =⇒ P ′, S ′,M,V

read
P,S i :l−→ P ′, S ′ l = R(x , v)
〈x : v@t〉 ∈ M V (i)(x) ≤ t

view ′ = V (i)[x 7→ t]
P, S,M,V =⇒ P ′, S ′,M,V [i 7→ view ′]

write
P,S i :l−→ P ′, S ′ l = W(x , v)

V (i)(x) < t ∀v ′. 〈x : v ′@t〉 6∈ M
M ′ = M ∪ {〈x : v@t〉} view ′ = V (i)[x 7→ t]

P, S,M,V =⇒ P ′, S ′,M ′,V [i 7→ view ′]

Definition (Operational StrongCOH)
An outcome O is allowed for a program P under StrongCOH if there
exist M,V such that P,S0,M0,V0 =⇒∗ skip‖ ... ‖skip,O,M,V .
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Correspondence proof

As for SC, we will introduce an “intermediate” semantics for
StrongCOH.

Establish correspondence between operational StrongCOH and
declarative StrongCOH in two steps:

1. operational StrongCOH = intermediate StrongCOH
2. declarative StrongCOH = intermediate StrongCOH
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Operational version of StrongCOH declarative semantics

State 〈P, S,G , mo〉 where P ∈ Program, S ∈ (Tid→ Store),
G ∈ ExecutionGraph, mo ⊆ G .E× G .E.

I Initial stores: S0
4= λi . s0

I Initial execution: G0 consisting only of the initialization events
I Initial modification order: mo0 = ∅

silent
P, S i :ε−→ P ′, S ′

P, S,G , mo =⇒ P ′, S ′,G , mo

non-silent
P, S i :l−→ P ′, S ′ l 6= ε

G ′ ∈ Add(G , 〈n, i , l〉, i) mo ⊆ mo′

mo′ is a modification order for G ′
G ′ is COH-consistent wrt mo′

P, S,G , mo =⇒ P ′, S ′,G ′, mo′

Definition (Operational-declarative StrongCOH)
An outcome O is allowed for a program P under StrongCOH if there
exist G , mo such that P, S0,G0, mo0 =⇒∗ skip‖ ... ‖skip,O,G , mo.
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Operational StrongCOH = intermediate StrongCOH

Our bisimulation relation:
P, S,M,V ∼ P ′,S ′,G , mo if the following hold:

I P = P ′

I S = S ′
I there exists a function ts : G .W→ Time such that:

I ts(w1) < ts(w2) whenever 〈w1,w2〉 ∈ mo
I M = {〈loc(w) : valw(w)@ts(w)〉 | w ∈ G .W}
I V = λi x . max{ts(w) | w ∈ dom([G .Wx ];G .rf?; [G .Ei ])}

I G is strongly coherent (wrt mo).

Exercise
I Show that ∼ is a bisimulation relation.
I Hence deduce that the operational StrongCOH model and the

intermediate StrongCOH model have the same outcomes for
any given program.
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Declarative StrongCOH ⊆ intermediate StrongCOH

I Let G be an StrongCOH-consistent execution graph of P0 with
outcome O.

I Let mo be a modification order for G such that G is COH-consistent
wrt mo.

I We show that P0, S0,G0, mo0 =⇒∗ skip‖ ... ‖skip,O,G , mo.
I Let a1, ... ,an be an enumeration of G .E \ E0 following G .po ∪ G .rf.
I By the “execution generation” lemma, there exist
〈P1, S1〉, ... ,〈Pn, Sn〉 such that:

I Pn = skip‖ ... ‖skip and Sn = O
I For every 1 ≤ j ≤ n, we have:

Pj−1, Sj−1
tid(aj ):ε−−−−−→

∗ tid(aj ):lab(aj )−−−−−−−−→ tid(aj ):ε−−−−−→
∗
Pj , Sj

I For every 0 ≤ j ≤ n, let
I Gj - the restriction of G to E0 ∪ {a1, ... ,aj}
I moj - the restriction of mo to E0 ∪ {a1, ... ,aj}

I Then, for every 1 ≤ j ≤ n, we have: (why?)

Pj−1, Sj−1,Gj−1, moj−1 =⇒∗ Pj ,Sj ,Gj , moj
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Operational-declarative StrongCOH ⊆ declarative StrongCOH

I Suppose that P0, S0,G0, mo0 =⇒∗ skip‖ ... ‖skip,O,G , mo.
I We show that G is a StrongCOH-consistent execution graph of P

with outcome O.
I We know:

P0,S0,G0, mo0 =⇒ P1, S1,G1, mo1 =⇒ ... =⇒ Pn, Sn,Gn, mon

where Pn, Sn,Gn, mon = skip‖ ... ‖skip,O,G , mo.
I By definition, G is COH-consistent.
I Using induction on the length of the sequence, we also have that

G .po ∪ G .rf is acyclic.
I It remains to show that each G i is an execution of P0(i) with final

store O(i). (This is done exactly as for SC.)
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Operational semantics for RA



Release/acquire synchronization

Can we extend the operational semantics to support message
passing (i.e., release-acquire synchronization)?

Message passing (MP)

x = y = 0
x := 42;
y := 1

a := y ; // 1
b := x // 0

Double message passing

x = y = 0
x := 42;
y := 1

a := y ; // 1
z := 1

b := z ; // 1
c := x // 0
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Message views

Desired semantics
When reading a message the thread becomes aware of all messages
that the writer of the message was aware of when the message was
written.

We implement this using message views:
I Each message m will carry a view: the view of the thread who

wrote m when m was written.
I When reading a message m, the thread will update its view to

include at least the view contained in m.
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Operational semantics for RA

I A message is a tuple 〈x : v@t view〉 where x ∈ Loc, v ∈ Val,
t ∈ Time and view : Loc→ Time

I Initially, M0
4= {〈x : 0@0 ⊥〉 | x ∈ Loc}

I Bottom view: ⊥ 4= λx . 0
I Joining views: view1 t view2

4= λx . max{view1(x), view2(x)}

silent-thread
P, S i :ε−→ P ′, S ′

P,S,M,V =⇒ P ′, S ′,M,V

read
P,S i :l−→ P ′, S ′ l = R(x , v)

〈x : v@t view〉 ∈ M V (i)(x) ≤ t
view ′ = V (i) t view

P, S,M,V =⇒ P ′, S ′,M,V [i 7→ view ′]

write
P,S i :l−→ P ′, S ′ l = W(x , v)

V (i)(x) < t ∀v ′, view . 〈x : v ′@t view〉 6∈ M
view ′ = V (i)[x 7→ t] M ′ = M ∪ {〈x : v@t view ′〉}

P, S,M,V =⇒ P ′, S ′,M ′,V [i 7→ view ′]
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Exercise: RA operational semantics

Definition (Operational RA)
An outcome O is allowed for a program P under RA if there exist
M,V such that P,S0,M0,V0 =⇒∗ skip‖ ... ‖skip,O,M,V .

Exercise
Prove the correspondence between the declarative and the
operational definitions of RA.
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Exercise: Strong release/acquire semantics

Suppose we change the write step in the operational semantics of
RA as follows:

write
P, S i :l−→ P ′,S ′ l = W(x , v)

∀t ′, v ′, view . 〈x : v ′@t ′ view〉 ∈ M ⇒ t ′ < t
view ′ = V (i)[x 7→ t] M ′ = M ∪ {〈x : v@t view ′〉}

P, S,M,V =⇒ P ′, S ′,M ′,V [i 7→ view ′]

Here, when writing a message, the thread may only choose a
timestamp larger than all timestamps that were used for the given
location.

I Show an example which differentiates this model from RA.
I What will be the corresponding declarative semantics?
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Exercise: Plain accesses in Java

Recall the following alternative definition of coherence:

Let mo be a modification order for an execution graph G .
G is coherent wrt mo iff the following hold:

I rf; po is irreflexive. (no-future-read)
I mo; po is irreflexive. (coherence-ww)
I mo; rf; po is irreflexive. (coherence-rw)
I rf−1; mo; po is irreflexive. (coherence-wr)
I rf−1; mo; rf; po is irreflexive. (coherence-rr)

Plain accesses in the Java memory model do not provide full
coherence. In particular, they do not ensure “coherence-rr”.

I Adapt the StrongCOH timestamp machine to match this
weaker variant.
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Further reading

I Taming release-acquire consistency. Ori Lahav, Nick
Giannarakis, Viktor Vafeiadis. POPL 2016: 649-662

I A promising semantics for relaxed-memory concurrency.
Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis,
Derek Dreyer. POPL 2017: 175-189
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