
Model checking for weak memory
models

Ori Lahav Viktor Vafeiadis

30 August 2017



What is model checking?

Software model checking
Given a property Φ and a program C , check whether all
(consistent) executions of C satisfy the property Φ.

The property, Φ:
I Traditionally, given in a temporal logic (e.g., LTL)
I Here, we consider only safety properties.
I These can be expressed as reachability of error states.

The program, C , and its semantics:
I A concurrent program with WMC semantics.
I Axiomatic WMM ensuring (po ∪ rf)+ is acyclic.

2



Traditional MC approaches

Following an operational semantics. . .
I Explicit state MC
I Stateless MC (with POR)

Following an axiomatic semantics. . .
I Encode the problem in SAT/SMT

3



Graph-based stateful model checking

Goal: Enumerate all consistent execution graphs of P without
I generating the same graph multiple times; and
I generating any inconsistent graphs.

Naive approach:
I Record the set V of all graphs already generated.
I Initially, V contains only the empty execution graph.
I At each point, pick a graph G ∈ V and an event a such

that G ′ = Add(G , a) is a consistent execution of P, and
add G ′ to V .

I Repeat the previous until no new graphs can be added.

4



The naive algorithm is too naive

Observation
The order in which events are added is mostly irrelevant.

Example
x := 1 y := 2

.

.

W x 1

.

W y 2

.

W x 1 W y 2

x := 1 y := 2

x := 1y := 2

5



Improving the naive algorithm

Fix an order in which events are added.
I e.g., in increasing thread ID order.

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Consider all possible placements of w in mo and also

whether any existing reads can read from w .
I For any subset of such reads, “revisit” them:

I Change their rf-incoming edges to read from w .
I Delete any events (po ∪ rf)+ after them.

6



Representing sets of visited graphs

Use a trie
I A standard data structure for

storing sets of strings.
I Particularly useful if strings

often have a common prefix.

H

E

A

R T

L

P

R

E

I

R

E

{HEAR, HEAT, HELP, HERE, HIRE}

Mapping executions to strings
I Visit events in some total order extending (po ∪ rf)+.

(preferably matching the event addition order)
I For reads, record where they read from.
I For writes, record their position in mo.

7



Graph-based stateless model checking

Goal: Enumerate all consistent execution graphs of P without
I generating the same graph multiple times;
I generating any inconsistent graphs; and
I recording the set of graphs already generated.

Key challenge:
I How to avoid repetition?

8



How can repetition arise?

I Revisiting the ‘same’ read in multiple subexecutions.
I The same event but reading from different writes.

x := 1 a := x x := 2

I The reads differ only in their (po ∪ rf)+ suffix.

y := 1 a := x ;
b := y x := 2

I We get the same graph after revisiting them.

9



Revisit sets

Record the set T of revisitable reads:
I i.e., reads that may be revisited when extending G .

When adding a read r :
I Make r revisitable in only one of the subexecutions; more

specifically, in one reading from a (po ∪ rf)+-prior write.
I In all other cases, remove its (po ∪ rf)+-prior reads from

the revisit set, T .

When adding a write w and revisiting a set R of reads:
I Require that R ⊆ T and [R]; (po ∪ rf)+; [R ∪ {w}] = ∅.
I Remove R and all their (po ∪ rf)+-predecessors from T .

10



Properties

I Reads reachable from a revisitable read are revisitable:

codom([T ]; (po ∪ rf)+; [R]) ⊆ T

I Every non-revisitable read in G is revisitable in some
other visited execution.

11


