Model checking for weak memory
models

Ori Lahav Viktor Vafeiadis

30 August 2017

What is model checking?

Software model checking

Given a property ® and a program C, check whether all
(consistent) executions of C satisfy the property ®.

The property, ®:
» Traditionally, given in a temporal logic (e.g., LTL)
» Here, we consider only safety properties.
» These can be expressed as reachability of error states.

The program, C, and its semantics:
» A concurrent program with WMC semantics.
» Axiomatic WMM ensuring (po U rf)™ is acyclic.

Traditional MC approaches

Following an operational semantics. . .
» Explicit state MC
» Stateless MC (with POR)

Following an axiomatic semantics. . .
» Encode the problem in SAT/SMT

Graph-based stateful model checking

Goal: Enumerate all consistent execution graphs of P without
» generating the same graph multiple times; and

» generating any inconsistent graphs.

Naive approach:
» Record the set V of all graphs already generated.
» Initially, V' contains only the empty execution graph.

» At each point, pick a graph G € V and an event a such
that G’ = Add(G, a) is a consistent execution of P, and
add G’ to V.

» Repeat the previous until no new graphs can be added.

The naive algorithm is too naive

Observation
The order in which events are added is mostly irrelevant.

Improving the naive algorithm

Fix an order in which events are added.
» e.g., in increasing thread ID order.

When adding a read r:
» Consider all possible writes that r could read from.

When adding a write w:
» Consider all possible placements of w in and also
whether any existing reads can read from w.
» For any subset of such reads, “revisit” them:

» Change their rf-incoming edges to read from w.
» Delete any events (po Urf)" after them.

Representing sets of visited graphs

Use a trie
» A standard data structure for G 0

storing sets of strings. OROeIO (®)

» Particularly useful if strings

often have a common prefix. e ° (P) (E) (E)

{HEAR, HEAT, HELP, HERE, HIRE}

Mapping executions to strings

» Visit events in some total order extending (po U rf)™.
(preferably matching the event addition order)

» For reads, record where they read from.

» For writes, record their position in

Graph-based stateless model checking

Goal: Enumerate all consistent execution graphs of P without
» generating the same graph multiple times;
» generating any inconsistent graphs; and

» recording the set of graphs already generated.

Key challenge:
» How to avoid repetition?

How can repetition arise?

» Revisiting the ‘same’ read in multiple subexecutions.

» The same event but reading from different writes.

x:lea:szx:zZ J

» The reads differ only in their (po U rf)* suffix.

ol

» We get the same graph after revisiting them.

a: = Xx;

y:=1

Reuvisit sets

Record the set T of revisitable reads:

» j.e., reads that may be revisited when extending G.

When adding a read r:

» Make r revisitable in only one of the subexecutions; more
specifically, in one reading from a (po U rf)™-prior write.

» In all other cases, remove its (po U rf)™-prior reads from
the revisit set, T.

When adding a write w and revisiting a set R of reads:
» Require that R C T and [R]; (po Urf)™; [RU{w}] = 0.
» Remove R and all their (po U rf)"-predecessors from T.

10

Properties

» Reads reachable from a revisitable read are revisitable:

codom([T]; (poUrf)";[R]) C T

» Every non-revisitable read in G is revisitable in some
other visited execution.

11

