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Weak memory consistency
is about the
semantics of concurrent programs
taking into account the effects of:

» multicore hardware implementations

» and compiler optimizations.



CPU trends: Parallelism is here!
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Concurrent programming is hard!

If you can get away with it, avoid using threads.
Threads can be difficult to use, and they make
programs harder to debug.
(Java documentation, =~ 15 years ago)
“Difficult to use”
» Requires a fundamentally different way of thinking.
» Interference among threads.

“Harder to debug”
» Huge non-determinism ~ testing is ineffective.

X =X+1 H X := X + 1 might increment X only once.

Thread 1: - Read X=0 Write X=1

Thread 2: Read X=0 Write X=1




The illusion of sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul| --- |CPUnN

read | | write

Memory
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Sequential consistency (SC)
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But...
» No multicore processor implements SC.

» Compiler optimizations invalidate SC.



Weak consistency

Hardware provides weak consistency.
» Weak memory models ~ semantics of shared memory.

» Every hardware architecture has its own WMM:
x86-TSO, ARM, Power, Itanium.

x86-TSO model (2010) ARMv8 model (2016)
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Weak consistency examples

Store buffering (SB)
Initially, x =y =0
x =1,
a=y /0

y =1
b:=x /0

Load buffering (LB)

Initially, x =y =0
=y, /1| b:=x; /1
= y:=1
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There is more to WMC than just reorderings [FM'16]

Independent reads of independent writes (IRIW)
Initially, x =y =0
a=x; /1| c=y; /1
x:=1 | Iwsync; lwsync; y =1
b:=y /0 d:=x /0

» Thread Il and Ill can observe
the x :==1 and y := 1 writes
happen in different orders.

» Because of the Iwsync fences,
no reorderings are possible!



WMC is not just about hardware




Quiz. Should these transformations be allowed?

1. CSE over acquiring a lock:

a=x; a=x;
lock(); ~ lock();
b=x; b=a;

2. Load hoisting:

if (¢) t=x;
~>
a=x; a=c?t:a;

[x is a global variable; a, b, ¢ are local; t is a fresh temporary.]
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Allowing both is clearly wrong! [CGO'16,CGO’'17]

Consider the transformation sequence:

if (¢) t = x; t = x;
Aa=X, hoits a=c?t:a cE a=c?t:a;

lock(); - lock(); - lock();

b= x; b= x; b=t

When c is false, x is moved out of the critical region!

So we have to forbid one transfomation.
» C11 forbids load hoisting, allows CSE over lock().
» LLVM allows load hoisting, forbids CSE over lock().
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Weak consistency in “real life”

» Messages may be delayed.

r MsgX =1, MsgY = 1;
Wb' a:= MsgY; /0 b= MsgX; /0

» Messages may be sent/received out of order.

r Email :=1; a:=Sms; /1
% Sms :=1; b:= Email; /0
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Embracing weak consistency

Weak consistency is not a threat, but an opportunity.
» Can lead to more scalable concurrent algorithms.
» Several open research problems.
» What is a good memory model?

Reasoning under WMC is often easier than under SC.
» Avoid thinking about thread interleavings.
» Many/most concurrent algorithms do not need SC!

» Positive vs negative knowledge.
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Syllabus

Memory model definitions
» Operational memory models
» Axiomatic/declarative memory models

» Promising semantics

WMM metatheory
» Relating memory models
» Correctness of compilation and program transformations

» Programming guarantees: the DRF theorem

Verification techniques for WMM
» Program logics (relaxed separation logic, OGRA)
» Model checking
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