
Introduction to weak
memory consistency

Ori Lahav Viktor Vafeiadis

28 August 2017



Weak memory consistency
is about the

semantics of concurrent programs
taking into account the effects of:

I multicore hardware implementations
I and compiler optimizations.



CPU trends: Parallelism is here!

3



Concurrent programming is hard!

If you can get away with it, avoid using threads.
Threads can be difficult to use, and they make
programs harder to debug.

(Java documentation, ≈ 15 years ago)
“Difficult to use”

I Requires a fundamentally different way of thinking.
I Interference among threads.

“Harder to debug”
I Huge non-determinism ; testing is ineffective.

X := X + 1 X := X + 1 might increment X only once.

Thread 1:
Thread 2:

Read X=0 Write X=1
Read X=0 Write X=1

4



The illusion of sequential consistency

Sequential consistency (SC)
I The standard simplistic concurrency model.
I Threads access shared memory in an interleaved fashion.

cpu 1
writeread

cpu n. . .

Memory

But. . .
I No multicore processor implements SC.
I Compiler optimizations invalidate SC.

5



The illusion of sequential consistency

Sequential consistency (SC)
I The standard simplistic concurrency model.
I Threads access shared memory in an interleaved fashion.

cpu 1
writeread

cpu n. . .

Memory

But. . .
I No multicore processor implements SC.
I Compiler optimizations invalidate SC.

5



Weak consistency

Hardware provides weak consistency.
I Weak memory models ; semantics of shared memory.
I Every hardware architecture has its own WMM:

x86-TSO, ARM, Power, Itanium.

x86-TSO model (2010)

CPU
write

write-back

read

CPU

. . .

. . .

Memory

ARMv8 model (2016)

Memory

6



Weak consistency examples

Store buffering (SB)
Initially, x = y = 0

x := 1;
a := y //0

y := 1;
b := x //0

x86-TSO
CPU

write

write-back

read

CPU

. . .

. . .

Memory

Load buffering (LB)
Initially, x = y = 0

a := y ; //1
x := 1

b := x ; //1
y := 1

ARMv8

Memory

7



There is more to WMC than just reorderings [FM’16]

Independent reads of independent writes (IRIW)
Initially, x = y = 0

x := 1
a := x ; //1
lwsync;
b := y //0

c := y ; //1
lwsync;
d := x //0

y := 1

I Thread II and III can observe
the x := 1 and y := 1 writes
happen in different orders.

I Because of the lwsync fences,
no reorderings are possible!

Power

8



WMC is not just about hardware

Power ARMx86

C/C++/Java/. . .

9



Quiz. Should these transformations be allowed?

1. CSE over acquiring a lock:

a = x ;
lock();
b = x ;

;
a = x ;
lock();
b = a;

2. Load hoisting:

if (c)
a = x ; ;

t = x ;
a = c ? t : a;

[x is a global variable; a, b, c are local; t is a fresh temporary.]

10



Allowing both is clearly wrong! [CGO’16,CGO’17]

Consider the transformation sequence:

if (c)
a = x ;

lock();
b = x ;

hoist;

t = x ;
a = c ? t : a;
lock();
b = x ;

CSE;

t = x ;
a = c ? t : a;
lock();
b = t;

When c is false, x is moved out of the critical region!

So we have to forbid one transfomation.
I C11 forbids load hoisting, allows CSE over lock().
I LLVM allows load hoisting, forbids CSE over lock().

11



Weak consistency in “real life”

I Messages may be delayed.

MsgX := 1;
a := MsgY ; //0

MsgY := 1;
b := MsgX ; //0

I Messages may be sent/received out of order.

Email := 1;
Sms := 1;

a := Sms; //1
b := Email ; //0

12



Embracing weak consistency

Weak consistency is not a threat, but an opportunity.
I Can lead to more scalable concurrent algorithms.
I Several open research problems.

I What is a good memory model?

Reasoning under WMC is often easier than under SC.
I Avoid thinking about thread interleavings.
I Many/most concurrent algorithms do not need SC!
I Positive vs negative knowledge.

13



Syllabus

Memory model definitions
I Operational memory models
I Axiomatic/declarative memory models
I Promising semantics

WMM metatheory
I Relating memory models
I Correctness of compilation and program transformations
I Programming guarantees: the DRF theorem

Verification techniques for WMM
I Program logics (relaxed separation logic, OGRA)
I Model checking

14


