Introduction to weak
memory consistency

Ori Lahav Viktor Vafeiadis

28 August 2017

Weak memory consistency
is about the
semantics of concurrent programs
taking into account the effects of:

» multicore hardware implementations

» and compiler optimizations.

CPU trends: Parallelism is here!

' ' T T T
104 I]
| -
: ., i Single-Thread
= : Performance
10 (SpecINT x 102)
102 L
Number of
1o 1 Logical Cores
100
I | f f . i

1985 1990 1995 2000 2005 2010 2015 2020
Year

Concurrent programming is hard!

If you can get away with it, avoid using threads.
Threads can be difficult to use, and they make
programs harder to debug.
(Java documentation, =~ 15 years ago)
“Difficult to use”
» Requires a fundamentally different way of thinking.
» Interference among threads.

“Harder to debug”
» Huge non-determinism ~ testing is ineffective.

X =X+1 H X := X + 1 might increment X only once.

Thread 1: - Read X=0 Write X=1

Thread 2: Read X=0 Write X=1

The illusion of sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul| --- |CPUnN

read | | write

Memory

The illusion of sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul| --- |CPUnN

read | | write

’ Memory ‘

But...
» No multicore processor implements SC.

» Compiler optimizations invalidate SC.

Weak consistency

Hardware provides weak consistency.
» Weak memory models ~ semantics of shared memory.

» Every hardware architecture has its own WMM:
x86-TSO, ARM, Power, Itanium.

x86-TSO model (2010) ARMv8 model (2016)

s g

read ‘Ti Ti‘ ‘Ti N‘
write-back il il

] Memory] Memory \

Weak consistency examples

Store buffering (SB)
Initially, x =y =0
x =1,
a=y /0

y =1
b:=x /0

Load buffering (LB)

Initially, x =y =0
=y, /1| b:=x; /1
= y:=1

11

read

x86-TSO
CPU

write

write-back

CPU

Memory

RMv

foge

A
;
1l

fl

‘Ti

‘Tl

There is more to WMC than just reorderings [FM'16]

Independent reads of independent writes (IRIW)
Initially, x =y =0
a=x; /1| c=y; /1
x:=1 | Iwsync; lwsync; y =1
b:=y /0 d:=x /0

» Thread Il and Ill can observe
the x :==1 and y := 1 writes
happen in different orders.

» Because of the Iwsync fences,
no reorderings are possible!

WMC is not just about hardware

Quiz. Should these transformations be allowed?

1. CSE over acquiring a lock:

a=x; a=x;
lock(); ~ lock();
b=x; b=a;

2. Load hoisting:

if (¢) t=x;
~>
a=x; a=c?t:a;

[x is a global variable; a, b, ¢ are local; t is a fresh temporary.]

10

Allowing both is clearly wrong! [CGO'16,CGO’'17]

Consider the transformation sequence:

if (¢) t = x; t = x;
Aa=X, hoits a=c?t:a cE a=c?t:a;

lock(); - lock(); - lock();

b= x; b= x; b=t

When c is false, x is moved out of the critical region!

So we have to forbid one transfomation.
» C11 forbids load hoisting, allows CSE over lock().
» LLVM allows load hoisting, forbids CSE over lock().

11

Weak consistency in “real life”

» Messages may be delayed.

r MsgX =1, MsgY = 1;
Wb' a:= MsgY; /0 b= MsgX; /0

» Messages may be sent/received out of order.

r Email :=1; a:=Sms; /1
% Sms :=1; b:= Email; /0

12

Embracing weak consistency

Weak consistency is not a threat, but an opportunity.
» Can lead to more scalable concurrent algorithms.
» Several open research problems.
» What is a good memory model?

Reasoning under WMC is often easier than under SC.
» Avoid thinking about thread interleavings.
» Many/most concurrent algorithms do not need SC!

» Positive vs negative knowledge.

13

Syllabus

Memory model definitions
» Operational memory models
» Axiomatic/declarative memory models

» Promising semantics

WMM metatheory
» Relating memory models
» Correctness of compilation and program transformations

» Programming guarantees: the DRF theorem

Verification techniques for WMM
» Program logics (relaxed separation logic, OGRA)
» Model checking

14

