
The DRF theorem

Ori Lahav Viktor Vafeiadis

31 August 2017



Motivation for the DRF theorem

WMC is complicated:
I Most programmers “do not understand” WMC.
I Leads to subtle bugs ; hard to debug and fix.

Define programming disciplines that:
I Avoid weak behaviors.
I Can be understood without referring to the WMM.

The DRF discipline:
I Do not have any data races.
I Just use locks for synchronization.

2



DRF: A minimal requirement for memory models

Definition (DRF property)
A memory model X satisfies the DRF property if
for every program that is race-free under SC semantics,
its allowed outcomes under X are the same as under SC.

I A programming discipline to avoid weak behavior.
I The premise requires us to establish race-freedom under SC.
I So a defensive programmer does not need to understand

WMM.

For specific memory models, one can establish more permissive
programming disciplines that ensure the absence of weak behaviors.

3



What models satisfy the DRF property?

Among the models we saw so far, which satisfy the DRF property?
I COH
I StrongCOH
I RA
I C11
I TSO

The DRF property can be also taken as a definition of a “catch
fire” crude model:

I If the program is race-free under SC, then the allowed
outcomes are the same as under SC

I Otherwise, “undefined behavior” (i.e., any outcome is
allowed!)

4



What constitutes a race under SC? (operationally)

Definition (racy program under SC (operationally))
P is called racy under SC if there exist P ′, S ′, M ′ such that the
following hold:

I P, S0, M0 =⇒∗ P ′, S ′, M ′

I P ′, S ′ i1:l1−−→ _ and P ′, S ′ i2:l2−−→ _ for some i1 6= i2, and labels l1
and l2, such that loc(l1) = loc(l2), and
{typ(l1), typ(l2)} ∩ {W, RMW} 6= ∅

5



What constitutes a race under SC? (declaratively)

Definition (race)
Given an execution graph G and a relation R ⊆ G .E× G .E, we say that two
events a, b R-race in G if the following hold:

I a 6= b
I loc(a) = loc(b)
I {typ(a), typ(b)} ∩ {W, RMW} 6= ∅
I 〈a, b〉 6∈ R+ and 〈b, a〉 6∈ R+

Definition (racy execution)
An execution graph G is called R-racy if there are two events that R-race in G .

Definition (racy program under SC (declaratively))
P is called racy under SC if there exists an execution graph G such that the
following hold:

I G is a (po ∪ rf)+-prefix of an execution of P
I G is SC-consistent
I G is (po ∪ rf)-racy

6



What constitutes a race under SC?

I The two definitions differ for programs with RMW’s:

x := 1;
a := FAI(y) //0

b := FAI(y); //1
if b then

c := x //0

(FAI(y) is an atomic fetch-and-increment)
I Operational definition: the program is racy under SC
I Declarative definition: the program is not racy under SC

I Declaratively racy under SC ⇒ operationally racy under SC

I For programs without RMW’s, the definitions coincide.

I Next, for simplicity, we assume the declarative definition (and
restrict RMW’s when needed).

7



The DRF property

Among the models we saw so far, which satisfy the DRF property?

7 COH: The out-of-thin-air (OOTA) problem:

a := x ; //1
if a then

y := 1

b := y ; //1
if b then

x := 1

3 StrongCOH
3 RA
7 C11: same reason as for COH (using rlx accesses)
3 RC11 (C11 with (po ∪ rf) acyclicity)
3 TSO

8



Proving DRF for RA

To prove that RA satisfies the DRF property, we have:

1. The easy part of the proof:

Lemma
If an RA-consistent execution graph G contains no (po∪ rf)-races,
then it is also SC-consistent.

2. The more difficult part:

Lemma
If P has an RA-consistent (po ∪ rf)-racy execution graph, then P
is racy under SC.

We prove the latter by considering the “first” race of the
execution.

9



Proof outline (1)

I Let G be a the an RA-consistent (po ∪ rf)-racy execution
graph of P.

I Let G ′ be a minimal (po ∪ rf)-prefix of G that is
(po ∪ rf)-racy.

I NB: This prefix might not be unique (e.g., SB).
I Let a, b be two events that (po ∪ rf)-race in G ′.
I Let x = loc(a) = loc(b).
I G ′ is RA-consistent. (why?)
I Let G ′′ 4= G ′ \ {a, b}.

I G ′′ is RA-consistent.
I G ′′ is not (po ∪ rf)-racy.

Therefore, G ′′ is SC-consistent.

10



Proof outline (2)

I Possible cases:
I typ(a) = W and typ(b) = W
I typ(a) ∈ {R, RMW} and typ(b) = W
I typ(a) = W and typ(b) ∈ {R, RMW} (symmetric)
I typ(a) = R and typ(b) = RMW
I typ(a) = RMW and typ(b) = R (symmetric)

I We cannot have typ(a) = RMW and typ(b) = RMW. (why?)

11



Proof outline (3)

CASE 1: typ(a) = W and typ(b) = W

I G ′ is SC-consistent.
(Take an sc-order for G ′′ and add a and b at the end)

12



Proof outline (4)

CASE 2: typ(a) ∈ {R, RMW} and typ(b) = W

I There exists a′ ∼ a (a and a′ are identical except for the read
value, and a′ may be a read if a is an RMW) such that some
Ga ∈ Add(G ′′, a′) is SC-consistent.
(read from the last write to x in the sc-order for G ′′)

I Let Gab ∈ Add(Ga, b).
I Gab is SC-consistent and (po ∪ rf)-racy.

13



Proof outline (5)

CASE 3: typ(a) = R and typ(b) = RMW

I Let Gb
4= G ′ \ {a}.

I Gb is SC-consistent. (why?)
I b is the (po ∪ rf)+-maximal write to x in Gb.
I There exists a′ ∼ a (a and a′ are identical except for the read

value) such that some Gba ∈ Add(Gb, a′) is SC-consistent and
〈b, a′〉 6∈ Gba.rf.

(read from the (po ∪ rf)+-maximal write to x in G ′′)
I Gba is (po ∪ rf)-racy.

14



Basic properties of program executions

What properties did we use?
I (po ∪ rf)-acyclicity
I RA-consistency is (po ∪ rf)-prefix closed
I Receptiveness (changing the value of a final read)

15



Can we actually write useful programs that are not racy under SC?

I Not really...

lock(l) :
r := 0
while ¬r do r := CAS(l , 0, 1)

unlock(l) :
l := 0

I Formally, a lock induces races between the failed lock
acquisition attempts and the RMW’s/writes to the lock
location.

I However, it suffices to consider only executions of the
program in which lock acquisitions never fail (why?).

I All successful lock acquisitions and lock releases are totally
ordered by (po ∪ rf)+.

I In some models (e.g., full C11), locks are also primitives.

16



Other theorems

I Triangular race freedom for TSO. (Owens, ECOOP 2010)
I SC fences between every two racy accesses.

17



Exercise: Write-write races

Suppose that we change the definition of an R-race and require
also that R ∈ {typ(a), typ(b)} (that is, R-concurrent writes are
not considered racy).

I Does RA satisfy the corresponding DRF-property?
I Does TSO satisfy the corresponding DRF-property?

18



Exercise: DRF property for RC11 via DRF-RA

Let RC11 be the simplified C11 model strengthened with (po ∪ rf)
acyclicity.

Let P be a program without RMW’s. Suppose that in every
RA-consistent execution graph, which is a (po ∪ rf)+-prefix of an
execution graph of P, there are no two events a, b that
(po ∪ rf)-race and satisfy rlx ∈ {mod(a), mod(b)}.

I Show that the outcomes of P under RC11 are the same as
under RA.

I Conclude that RC11 satisfies the DRF-property.
I What happens if P contains RMW’s?

19


