The DRF theorem

Ori Lahav Viktor Vafeiadis

31 August 2017

Motivation for the DRF theorem

WMC is complicated:
» Most programmers “do not understand” WMC.
» Leads to subtle bugs ~ hard to debug and fix.

Define programming disciplines that:
> Avoid weak behaviors.
» Can be understood without referring to the WMM.

The DRF discipline:
» Do not have any data races.

» Just use locks for synchronization.

DRF: A minimal requirement for memory models

Definition (DRF property)

A memory model X satisfies the DRF property if
for every program that is race-free under SC semantics,
its allowed outcomes under X are the same as under SC.

» A programming discipline to avoid weak behavior.
» The premise requires us to establish race-freedom under SC.

» So a defensive programmer does not need to understand
WMM.

For specific memory models, one can establish more permissive
programming disciplines that ensure the absence of weak behaviors.

What models satisfy the DRF property?

Among the models we saw so far, which satisfy the DRF property?
» COH
» StrongCOH
» RA
» C11
» TSO

The DRF property can be also taken as a definition of a “catch
fire" crude model:

> If the program is race-free under SC, then the allowed
outcomes are the same as under SC

» Otherwise, “undefined behavior” (i.e., any outcome is
allowed!)

What constitutes a race under SC? (operationally)

Definition (racy program under SC (operationally))
P is called racy under SC if there exist P’, S’, M’ such that the
following hold:
> P, 50, Mo =* P,, 5/, M’
» P S L _and P, S’ Bl _ for some iy # ip, and labels
and h, such that loc(h) = loc(k), and
{typ(h), typ(2)} N {W,RMW} 7 0

What constitutes a race under SC? (declaratively)

Definition (race)

Given an execution graph G and a relation R C G.E X G.E, we say that two
events a, b R-race in G if the following hold:

> a#b

> loc(a) = loc(b)

> {typ(a), typ(b)} N {W,RMW} # 0
> (a,b) € R" and (b,a) & R

Definition (racy execution)

An execution graph G is called R-racy if there are two events that R-race in G.

Definition (racy program under SC (declaratively))

P is called racy under SC if there exists an execution graph G such that the
following hold:

> G is a (poU rf)T-prefix of an execution of P
> G is SC-consistent

> G is (poUrf)-racy

What constitutes a race under SC?

» The two definitions differ for programs with RMW's:

b:=FAl(y);, /1
if b then
c:=x /0

(FAIl(y) is an atomic fetch-and-increment)

x = 1;

a:=FAIl(y) /0

» Operational definition: the program is racy under SC
» Declarative definition: the program is not racy under SC

» Declaratively racy under SC = operationally racy under SC
» For programs without RMW's, the definitions coincide.

» Next, for simplicity, we assume the declarative definition (and
restrict RMW'’s when needed).

The DRF property

Among the models we saw so far, which satisfy the DRF property?
X COH: The out-of-thin-air (OOTA) problem:

a=x;, /1| b:=y;, /1
if a then if b then
y:=1 x:=1

v/ StrongCOH
v/ RA
X C11: same reason as for COH (using rlx accesses)
v/ RC11 (C11 with (po U rf) acyclicity)
v/ TSO

Proving DRF for RA

To prove that RA satisfies the DRF property, we have:

1. The easy part of the proof:

If an RA-consistent execution graph G contains no (po U rf)-races,
then it is also SC-consistent.

2. The more difficult part:

If P has an RA-consistent (po U rf)-racy execution graph, then P
is racy under SC.

We prove the latter by considering the “first” race of the
execution.

Proof outline (1)

Let G be a the an RA-consistent (po U rf)-racy execution
graph of P.

Let G’ be a minimal (po U rf)-prefix of G that is
(po U rf)-racy.

NB: This prefix might not be unique (e.g., SB).
Let a, b be two events that (po U rf)-race in G'.
Let x = loc(a) = loc(b).

G’ is RA-consistent. (why?)

Let G” = G'\ {a, b}.

» G is RA-consistent.
» G" is not (po U rf)-racy.

Therefore, G is SC-consistent.

10

Proof outline (2)

» Possible cases:

» typ(a) =W and typ(b) =W

» typ(a) € {R,RMW} and typ(b) =W

» typ(a) =W and typ(b) € {R,RMW} (symmetric)
» typ(a) =R and typ(b) = RMW

» typ(a) = RMW and typ(b) =R (symmetric)

» We cannot have typ(a) = RMW and typ(b) = RMW. (why?)

11

Proof outline (3)

CASE 1: typ(a) =W and typ(b) =W

» G is SC-consistent.
(Take an sc-order for G” and add a and b at the end)

12

Proof outline (4)

CASE 2: typ(a) € {R,RMW} and typ(b) =W

» There exists & ~ a (a and a’ are identical except for the read
value, and &’ may be a read if a is an RMW) such that some
G, € Add(G", d') is SC-consistent.

(read from the last write to x in the sc-order for G)

> Let Gap € Add(G,, b).

> G,p is SC-consistent and (po U rf)-racy.

13

Proof outline (5)

CASE 3: typ(a) =R and typ(b) = RMW
> Let G, = G\ {a}.
» Gp is SC-consistent. (why?)
» b is the (po U rf)T-maximal write to x in Gp.

» There exists 8’ ~ a (a and &’ are identical except for the read
value) such that some Gp, € Add(Gp, a') is SC-consistent and
<b, a’) & Gpy.rf.

(read from the (po U rf)T-maximal write to x in G”)

> Gp, is (po U rf)-racy.

14

Basic properties of program executions

What properties did we use?

» (po U rf)-acyclicity
» RA-consistency is (po U rf)-prefix closed

» Receptiveness (changing the value of a final read)

15

Can we actually write useful programs that are not racy under SC?

> Not really...

lock(/) : unlock(/) :
r:=20 I:=0
while —r do r := CAS(/,0,1)

» Formally, a lock induces races between the failed lock
acquisition attempts and the RMW's /writes to the lock
location.

» However, it suffices to consider only executions of the
program in which lock acquisitions never fail (why?).

» All successful lock acquisitions and lock releases are totally
ordered by (po U rf)™.

> In some models (e.g., full C11), locks are also primitives.

16

Other theorems

» Triangular race freedom for TSO. (Owens, ECOOP 2010)

» SC fences between every two racy accesses.

17

Exercise: Write-write races

Suppose that we change the definition of an R-race and require
also that R € {typ(a), typ(b)} (that is, R-concurrent writes are
not considered racy).

» Does RA satisfy the corresponding DRF-property?
» Does TSO satisfy the corresponding DRF-property?

18

Exercise: DRF property for RC11 via DRF-RA

Let RC11 be the simplified C11 model strengthened with (po U rf)
acyclicity.

Let P be a program without RMW's. Suppose that in every
RA-consistent execution graph, which is a (po U rf)"-prefix of an
execution graph of P, there are no two events a, b that

(po U rf)-race and satisfy rlx € {mod(a), mod(b)}.

» Show that the outcomes of P under RC11 are the same as
under RA.

» Conclude that RC11 satisfies the DRF-property.
» What happens if P contains RMW's?

19

