
The C/C++11 memory model

Ori Lahav Viktor Vafeiadis

30 August 2017



Recap

We considered a simplified C11 model:
I Each memory accesses has a mode:

I Reads: rlx or acq
I Writes: rlx or rel
I RMWs: rlx, acq, rel or acq-rel

I Synchronization:

G .sw = [Wrel]; G .rf; [Racq]

I Happens-before:

G .hb = (G .po ∪ G .sw)+

I C11-consistent wrt mo:

hb|loc ∪ rf ∪ mo ∪ rb is acyclic

I C11-consistent:

complete & C11-consistent wrt some mo

2



The C/C++11 memory model

non-
atomic

< relaxed <
release/
acquire

< sc

The full C/C++11 is more general:
I Non-atomics for non-racy code (the default!)
I Four types of fences for fine grained control
I SC accesses to ensure sequential consistency if needed
I More elaborate definition of sw (“release sequences”)

3



C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf
sw

4

rf

sw

4



The “synchronizes-with” relation

Wrel Racqrf

sw Wrel

Facq

R
rf

po
sw

Frel

RacqW
rf

po
sw

Frel

FacqW

R

rfpo po
sw

sw 4= ([Wwrel] ∪ [Fwrel]; po); rf; ([Rwacq] ∪ po; [Fwacq])

Fence modes
acq

,, acq-rel // sc
rel

22

5



Release sequences (RMW’s)

xrlx := 42;
yrel := 1 a := FAIrlx(y); // 1 b := yacq; // 2

c := xrlx; // 0

Wrel RMW ... RMW Racq
rf rf rf rf

sw

sw 4= ([Wwrel] ∪ [Fwrel]; po); rf+; ([Rwacq] ∪ po; [Fwacq])

6



Release sequences (thread internal)

xrlx := 42;
yrel := 1;
yrlx := 2;

a := yacq // 2
b := xrlx // 0

Wrel
x

Wx Racq
xrf

po

sw

sw 4= ([Wwrel]; po|?loc ∪ [Fwrel]; po); rf+; ([Rwacq] ∪ po; [Fwacq])

7



C11 “synchronizes-with” relation

Read modes
na // rlx // acq // sc

Write modes
na // rlx // rel // sc

RMW modes
acq **

rlx
66

((
// acq-rel // sc

rel
44

Fence modes
acq **

acq-rel // sc
rel

44

sw 4= ([Wwrel]; po|?loc ∪ [Fwrel]; po); rf+; ([Rwacq] ∪ po; [Fwacq])

hb 4= (po ∪ sw)+

8



“Catch-fire” semantics

Definition (Race in C11)
Given a C11-execution graph G , we say that two events a, b C11-race in G if
the following hold:

I a 6= b
I loc(a) = loc(b)
I {typ(a), typ(b)} ∩ {W, RMW} 6= ∅
I na ∈ {mod(a), mod(b)}
I 〈a, b〉 6∈ hb and 〈b, a〉 6∈ hb

G is called C11-racy if some a, b C11-race in G .

Definition (Allowed outcome under C11)
An outcome O is allowed for a program P under C11 if there exists an
execution graph G such that:

I G is an execution graph of P
I G is C11-consistent.
I G has outcome O or G is C11-racy.

9



C11 consistency

Definition
Let mo be a modification order for an execution graph G .
G is called C11-consistent wrt mo if:

I hb|loc ∪ rf ∪ mo ∪ rb is acyclic (where rb 4= G .rf−1; mo \ id).
I ...sc... ?

Definition
An execution graph G is C11-consistent if the following hold:

I G is complete
I G is C11-consistent wrt some modification order mo for G .

10



SC conditions

I The most involved part of the model, due to the possible
mixing of different access modes to the same location.

I Currently (August 2017) under revision.
I If there is no mixing of SC and non-SC accesses, then

additionally require acyclicity of hb ∪ mosc ∪ rbsc.

Further reading:
I Overhauling SC atomics in C11 and OpenCL. Mark Batty,

Alastair F. Donaldson, John Wickerson, POPL 2016.
I Repairing sequential consistency in C/C++11. Ori Lahav,

Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek
Dreyer, PLDI 2017.

11

http://dl.acm.org/citation.cfm?id=2837637
http://plv.mpi-sws.org/scfix/


(Repaired) SC condition for fences

eco 4= (rf ∪ mo ∪ rb)+ (extended coherence order)
pscF

4= [Fsc]; (hb ∪ hb; eco; hb); [Fsc] (partial SC order on fences)

Condition on SC fences
pscF is acyclic

Example: SB with fences
x = y = 0

xrlx := 1;
fence(sc);
a := yrlx; // 0

yrlx := 1;
fence(sc);
b := xrlx; // 0

7 behavior disallowed

12



Exercise: ARC

a = new(v)
y = read(a)
clone(a)
drop(a)

new(v){
a = alloc();
a.data = v;
a.count = 1;
return a;

}

read(a){
return a.data;

}

clone(a){
FADD(a.count, +1);

}

drop(a){
t = FADD(a.count, -1);
if(t == 1){

free(a);
}

}

FADD = fetch_and_add
13



Exercise: seqlock

writer(v1,v2) {
local a,b;
do {

a = s;
if (a % 2 == 1)

continue;
b = CAS(s,a,a+1);

} while (¬b);
x1 = v1;
x2 = v2;
s = a + 2;

}

reader(t1,t2) {
local a,b;
while (1) {

a = s;
if (a % 2 == 1)

continue;
t1 = x1;
t2 = x2;
b = s;
if (a==b) return;

}
}

14


