
Declarative semantics for
concurrency

Ori Lahav Viktor Vafeiadis

28 August 2017

An alternative way of defining the semantics

Declarative/axiomatic concurrency semantics
I Define the notion of a program execution

(generalization of an execution trace)
I Map a program to a set of executions
I Define a consistency predicate on executions
I Semantics = set of consistent executions of a program

Exception: “catch-fire” semantics

I Existence of at least one “bad” consistent execution implies
undefined behavior.

2

Executions

Events
I Reads, Writes, Updates, Fences

Relations
I Program order, po (also called “sequenced-before”, sb)
I Reads-from, rf

W x 0 W y 0

W x 1 R x 1

R y 0

R y 1

R x 0

W y 1
porf rfrf

3

Executions

Definition (Label)
A label has one of of the following forms:

R x vr W x vw U(x vr vw) F

where x ∈ Loc and vr , vw ∈ Val.

Definition (Event)
An event is a triple 〈id , i , l〉 where

I id ∈ N is an event identifier,
I i ∈ Tid ∪ {0} is a thread identifier, and
I l is a label.

4

Executions

Definition (Execution graph)
An execution graph is a tuple 〈E , po, rf 〉 where:

I E is a finite set of events
I po (“program order”) is a partial order on E
I rf (“reads-from”) is a binary relation on E such that:

I For every 〈w , r〉 ∈ rf
I typ(w) ∈ {W, U}
I typ(r) ∈ {R, U}
I loc(w) = loc(r)
I valw(w) = valr(r)

I rf −1 is a function
(that is: if 〈w1, r〉, 〈w2, r〉 ∈ rf then w1 = w2)

5

Some notations

Let G = 〈E , po, rf 〉 be an execution graph.
I G .E 4= E
I G .po 4= po
I G .rf 4= rf
I G .R 4= {r ∈ E | typ(r) = R ∨ typ(r) = U}
I G .W 4= {w ∈ E | typ(w) = W ∨ typ(w) = U}
I G .RMW 4= {u ∈ E | typ(u) = U}
I G .F 4= {f ∈ E | typ(f) = F}
I G .Rx

4= G .R ∩ {r ∈ E | loc(r) = x}
I ...

6

Mapping programs to executions: Example

Store buffering (SB)

x = y = 0
x := 1
a := y

y := 1
b := x

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

W x 0 W y 0

W x 1

R y 1

W y 1

R x 1

W x 0 W y 0

W x 1

R y 0

W y 1

R x 42

7

Mapping programs to executions: Definition

I The thread subsystem associates a sequential execution
graph to every command.

I A program execution is obtained by joining the sequential
execution graphs of the constituent threads.

Definition
An execution graph G is called sequential if the following hold:

I tid(a) = 0 for every a ∈ G .E
I G .po is a total order on G .E
I G .rf = ∅

8

From commands to sequential execution graphs

Initial execution graph: G∅ - the empty graph

silent
c , s ε−→ c ′, s ′

c , s,G =⇒ c ′, s ′,G

non-silent
c , s l−→ c ′, s ′ l 6= ε

a = 〈n, 0, l〉
n 6∈ {id(b) | b ∈ G .E}

c , s,G =⇒ c ′, s ′,Add(G , a)

where Add(G , a) is the execution graph G ′ given by:
I G ′.E = G .E] {a}
I G ′.po = G .po ∪ (G .E× {a})
I G ′.rf = G .rf

Definition (Execution graph of a command)
G is a an execution graph of a command c with a final store s
if c , s0,G∅ =⇒∗ skip, s,G .

9

Mapping programs to executions: Definition

Definition (Thread restriction)
Given i ∈ Tid and an execution graph G , G i denotes the
sequential execution graph obtained by restricting G to the
events {a ∈ G .E | tid(a) = i}, modifying their thread
identifiers to 0, and discarding all rf-edges.

Definition (Execution graph of a program)
G is an execution graph of a program P (with an outcome O)
if G i is an execution of P(i) (with final store O(i)) for every
i ∈ Tid.

10

Consistency predicate

Let X be some consistency predicate (on execution graphs)

Definition (Allowed outcome under a declarative model)
An outcome O is allowed for a program P under X if there
exists an execution graph G such that:

I G is an execution graph of P with outcome O.
I G is X-consistent.

Exception: “catch-fire” semantics
... or if there exists an execution graph G such that:

I G is an execution graph of P.
I G is X-consistent.
I G is “bad”.

11

Completeness

The most basic consistency condition:

Definition (Completeness)
An execution graph G is called complete if

codom(G .rf) = G .R

i.e., every read reads from some write.

12

Sequential consistency

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order specified
by the program [Lamport, 1979]

13

Sequential consistency [Lamport]

Definition
Let sc be a total order on G .E. G is called SC-consistent
wrt sc if the following hold:

I If 〈a, b〉 ∈ G .po then 〈a, b〉 ∈ sc.
I If 〈a, b〉 ∈ G .rf then 〈a, b〉 ∈ sc and there does not exist

c ∈ G .Wloc(b) such that 〈a, c〉 ∈ sc and 〈c , b〉 ∈ sc.

Definition
An execution graph G is called SC-consistent if the following
hold:

I G is complete.
I G is SC-consistent wrt some total order sc on G .E.

14

SB example

Store buffering (SB)

x = y = 0
x := 1
a := y

y := 1
b := x

Allowed

W x 0 W y 0

W x 1

R y 0

W y 1

R x 1

Forbidden

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

15

Sequential consistency (Alternative)

Definition (Modification order (aka coherence order))
mo is called a modification order for an execution graph G if
mo = ⋃

x∈Loc mox where each mox is a total order on G .Wx .

Definition (Alternative SC definition)
An execution graph G is called SC-consistent if the following
hold:

I G is complete
I There exists a modification order mo for G such that

G .po ∪ G .rf ∪ mo ∪ rb is acyclic where:
I rb 4= G .rf−1; mo \ id (from-reads / reads-before)

16

SB example

Store buffering (SB)

x = y = 0
x := 1
a := y

y := 1
b := x

Allowed

W x 0 W y 0

W x 1

R y 0

W y 1

R x 1

Forbidden

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

17

Equivalence

Theorem
The two SC definitions are equivalent.

Proof (sketch).
Lamport SC ⇒ alternative SC:

I Take mox
4= [Wx]; sc; [Wx].

I Then, G .po ∪ G .rf ∪ mo ∪ rb ⊆ sc.

Alternative SC ⇒ Lamport SC:
I Take sc to be any total order extending

G .po ∪ G .rf ∪ mo ∪ rb.

18

Relaxing sequential consistency

I SC is very expensive to implement in hardware.
I It also forbids various optimizations that are sound for

sequential code.
What most hardware guarantee and compilers preserve is
“SC-per-location” (aka coherence).

Definition
An execution graph G is called coherent if the following hold:

I G is complete
I For every location x , there exists a total order scx on all

accesses to x such that:
I If 〈a, b〉 ∈ [RWx]; G .po; [RWx] then 〈a, b〉 ∈ scx
I If 〈a, b〉 ∈ [Wx]; G .rf; [Rx] then 〈a, b〉 ∈ scx and there

does not exist c ∈ G .Wx such that 〈a, c〉 ∈ scx and
〈c, b〉 ∈ scx .

19

Alternative definition of coherence I

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G . G is
called coherent wrt mo if G .po|loc ∪ G .rf ∪ mo ∪ rb is acyclic
(where rb 4= G .rf−1; mo \ id).

Theorem
An execution graph G is coherent iff the following hold:

I G is complete
I G is coherent wrt some modification order mo for G.

20

“Bad patterns” I

Rx

Wx

porf

no-future-read

a := x // 1
x := 1

Ux

rf

rmw-1

r := CAS(x , 1, 1) // 1

Recall:
I W is either a write or an RMW.
I R is either a read or an RMW.

21

“Bad patterns” II

x := 1
x := 2

a := x // 2
a := x // 1

Wx

Wx

pomo

coherence-ww

Wx Rx

Wx

rf

pomo

coherence-rw

Wx Wx

Rx

rf po

mo

coherence-wr

Wx Rx

RxWx

rf

rf
pomo

coherence-rr

22

“Bad patterns” III

Wx Ux
mo

rf

rmw-2

Wx Wx Ux
mo mo

rf

atomicity

In coherent executions, an RMW event may only read from its
immediate mo-predecessor.

23

Alternative definition of coherence II

Theorem
Let mo be a modification order for an execution graph G.
G is coherent wrt mo iff the following hold:

I rf; po is irreflexive. (no-future-read)
I mo; po is irreflexive. (coherence-ww)
I mo; rf; po is irreflexive. (coherence-rw)
I rf−1; mo; po is irreflexive. (coherence-wr)
I rf−1; mo; rf; po is irreflexive. (coherence-rr)
I rf is irreflexive. (rmw-1)
I mo; rf is irreflexive. (rmw-2)
I rf−1; mo; mo is irreflexive. (rmw-atomicity)

24

Examples (aka “litmus tests”)

Coherence test
x = 0

x := 1
a := x // 2

x := 2
b := x // 1

Store buffering
x = y = 0

x := 1
a := y //0

y := 1
b := x //0

25

Atomicity

Parallel increment
x = 0

a := FAA(x , 1) b := FAA(x , 1)

Guarantees that a = 1 ∨ b = 1.

Can we implement locks in this semantics?

Spinlock implementation
lock(l) :
r := 0;
while ¬r do
r := CAS(l , 0, 1)

unlock(l) :
l := 0

26

Implementing locks?

Under COH, the spinlock implementation does not guarantee
mutual exclusion.

Spinlock implementation
lock(l) :
r := 0;
while ¬r do
r := CAS(l , 0, 1)

unlock(l) :
l := 0

Lock example
lock(l)
x := 1
a := y //0
unlock(l)

lock(l)
y := 1
b := x //0
unlock(l)

27

Message passing

More generally, COH is often too weak:

x = y = 0

x := 42;
y := 1

a := y ;
while ¬a do a := y ;
b := x //0

x = y = 0
x := 42;
y := 1

a := y ; //1
b := x //0

MP is a common programming idiom.
How can we disallow the weak behavior?

28

Supporting message passing

Wx Wx

Rx

rf po

mo

coherence-wr

;

Wx Wx

Rx

rf (po ∪ rf)+

mo

coherence-wr

Solution:
I Strengthen the notion of an “observed” write.
I In other words, make rf-edges “synchronizing.”

29

Release/acquire (RA) memory model

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic
RA: (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G .
G is called RA-consistent wrt mo if (po ∪ rf)+|loc ∪ mo ∪ rb is
acyclic for some modification order mo for G (where
rb 4= G .rf−1; mo \ id).

Definition
An execution graph G is RA-consistent if the following hold:

I G is complete
I G is RA-consistent wrt some modification order mo for G .

30

Alternative definition of RA consistency

Theorem
Let mo be a modification order for an execution graph G. G is
RA-consistent wrt mo iff the following hold:

I (po ∪ rf)+ is irreflexive. (no-future-read)
I mo; (po ∪ rf)+ is irreflexive. (coherence-ww)
I rf−1; mo; (po ∪ rf)+ is irreflexive. (coherence-wr)
I rf−1; mo; mo is irreflexive. (rmw-atomicity)

31

Hardware implementation of RA

RA is cheaper to implement than SC, but some architectures
still require some fences.

I On Power, a “lightweight” fence (lwsync) suffices, and
RA is still cheaper than SC.

I Release write ; lwsync ; store
I Acquire read ; load ; lwsync (or load ; bc ; isync)

I ARMv7 is like Power, but has no lightweight fence.
I Release write ; dmb ; store
I Acquire read ; load ; dmb (or load ; bc ; isb)

I ARMv8 has special release/acquire accesses.
I Alternative: acquire read ; load ; dmb ld

I On TSO, no fences are needed. (See also exercise.)

32

Mixing the models

COH < RA < SC

I Revisit the MP idiom:

x := 42
y := 1

a := y
while ¬a do a := y
b := x //0

I We only need the last read of y to synchronize.
I Idea: introduce access modes.

x :=rlx 42
y :=rel 1

a := yrlx
while ¬a do a := y
a := yacq
b := xrlx //0

33

Happens-before

I Each memory accesses has a mode:
I Reads: rlx or acq
I Writes: rlx or rel
I RMWs: rlx, acq, rel or acq-rel

I “Strength” order < is given by (the transitive closure of):

acq **
rlx

66

((
// acq-rel

rel
44

I Synchronization:

G .sw = [Wwrel];G .rf; [Rwacq]

I Happens-before:

G .hb = (G .po ∪ G .sw)+

34

Towards C/C++11 memory model

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic
RA: (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic
C11: hb|loc ∪ rf ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G . G is
called C11-consistent wrt mo if hb|loc ∪ rf ∪ mo ∪ rb is acyclic
(where rb 4= G .rf−1; mo \ id).

Definition
An execution graph G is C11-consistent if the following hold:

I G is complete
I G is C11-consistent wrt some modification order mo for G .

35

The C/C++11 memory model

non-
atomic

< relaxed <
release/
acquire

< sc

The full C/C++11 is more general:
I Non-atomics for non-racy code (the default!)
I Four types of fences for fine grained control
I SC accesses to ensure sequential consistency if needed
I More elaborate definition of sw (“release sequences”)

36

Summary

I A declarative approach for (weak) concurrency semantics
I Uniformly and modularly handle various models
I Important weakenings of SC (coherence, RA) with

alternative formulations based on “bad patterns”
I Introduction to the C/C++11 memory model

37

Exercise: Extended coherence order

Let G be a coherent execution wrt some modification order mo
for G .
Let eco 4= (rf ∪ mo ∪ rb)+.

1. Does eco totally order all accesses to a given location x?

2. Provide a simplification of eco that avoids the use of
transitive closure.

38

Exercise: RA vs. TSO

Do RA and TSO have the same behaviors?

1. Construct a program with two threads that has different
outcomes under TSO and RA.

2. Construct a program without write-write races that
distinguishes the two models.

39

Exercise: Write-before

Let G be a complete execution without RMW events and let:

wb 4= [W]; (po ∪ rf)+|loc; [W]∪ ([W]; (po ∪ rf)+|loc; rf−1; [W]\id)

1. Show that G is RA-consistent iff wb is acyclic.

2. (Optional, difficult) Extend the definition of wb to work
for executions with RMW events.

3. (Optional, difficult) Can one define an analogue wb
relation in terms of just G , such that G is SC-consistent
iff wb is acyclic?

40

