
An introduction to RGSep

Viktor Vafeiadis

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 11 13

Example: lock-coupling list

There is one lock per node; threads acquire locks in
a hand over hand fashion.

If a node is locked, we can insert a node just after it.

If two adjacent nodes are locked, we can remove the
second.

Operations (actions)

Lock

Unlock

Lock-coupling list

Add node

Delete node

• Local & shared state

• Actions

• Program & environment

• Program specifications

• Stability

Part I. Basic concepts

Local & shared state

2 3 5 7 11 13Shared

Local 6

The total state is logically divided into two components:
• Shared: accessible by all threads via synchronisation
• Local: accessible only by one thread, its owner

Figure. State of the lock-coupling list just before inserting a new node.
The node to be added is local because other threads cannot yet access it.

Actions describe minimal atomic changes to the
shared state.

An action allows any part of the shared state that
satisfies the LHS to be changed to a part satisfying
the RHS, but the rest of the shared state must not
be changed.

Actions (1/3)

Lock

Unlock

Actions (2/3)

This node becomes shared.

Add node

Delete node

This node becomes local.

Actions can also adjust the boundary between local
state and stared state. This is also known as tranfer
of ownership.

Actions (3/3)

2 3 5 7 11 13Shared

Local 6

Add node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

6

Local

Add node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

6

Local

Lock node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

6

Local

Lock node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

6

Local

Delete node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

Local 6

Delete node

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

Local 6

Now, the node is local; we can safely dispose it.

Example: Lock coupling list

Actions (3/3)

2 3 5 7 11 13Shared

Local

Now, the node is local; we can safely dispose it.

Example: Lock coupling list

Program: the current thread being verified.

Environment: all other threads of the system that
execute in parallel with the thread being verified.

Interference. The program interferes with the
environment by modifying the shared state.
Conversely, the environment interferes with the
program by modifying the shared state.

Program & environment

Program specifications

The specification of a program consists of two
assertions (precondition & postcondition), and
two sets of actions:

• Rely: Describes the interference that the program
can tolerate from the environment; i.e. specifies
how the environment can change the shared state.

• Guarantee: Describes the interference that the
program imposes on its environment; i.e. specifies
how the program can change the shared state.

Definition. An assertion is stable if and only if it is
preserved under interference by other threads.

Example 1. The following assertion is not stable.

For instance, another thread could remove node 3 or add a
node after node 11.

Stability (1/2)

2 7 11 135
A A

3

Definition. An assertion is stable if and only if it is
preserved under interference by other threads.

Example 1. The following assertion is not stable.

For instance, another thread could remove node 3 or add a
node after node 11.

Stability (1/2)

2 7 11 135
A A

Definition. An assertion is stable if and only if it is
preserved under interference by other threads.

Example 1. The following assertion is not stable.

For instance, another thread could remove node 3 or add a
node after node 11.

Stability (1/2)

2 7 11 135

12
A A

Stability (2/2)

75
A A

Lock
B

Unlock
B

Example 2. The following assertion, however, is stable.

Stability (2/2)

75
A A

Delete node
B

B

B

Add node
B B

Example 2. The following assertion, however, is stable.

• Syntax & semantics of assertions

• Syntax & semantics of actions

• Syntax & semantics of judgements

• Some proof rules

• Checking stability

Part II. Program logic

Assertion syntax

Separation Logic

Extended logic

P,Q ::= false | emp | e = e′ | e !→ e′

| ∃x. P | P ⇒ Q | P ∗Q | P −! Q

h !SL P −" Q ⇐⇒ h !SL ¬(P −∗ ¬Q)
⇐⇒ ∃h′. (h′ !SL P) ∧ (h ' h′ !SL Q)

p, q ::= P | P | p ∗ q | p ∧ q | p ∨ q | ∃x. p | ∀x. p

local shared

Assertion semantics

Split local state;
share global state.

l, s ! P ⇐⇒ l !SL P

l, s ! P ⇐⇒ l = ∅ ∧ (s !SL P)

l, s ! p1 ∗ p2 ⇐⇒
∃l1, l2. (l = l1 ' l2) ∧ (l1, s ! p1) ∧ (l2, s ! p2)

Actions

x !→ tid, v, t ! x !→ 0, v, t

x !→ 0, v, t ! x !→ tid, v, t

x !→ tid, v, t ! x !→ tid, v, y
∗ y !→ 0, v′, t

x !→ tid, v, y
∗ y !→ tid, v′, t

! x !→ tid, v, t

Judgements

(precondition, rely, guarantee, postcondition)

! C sat (p, R, G, q)

Parallel rule

Splits local state;
 Shares global state.

! C1 sat (p1, R ∪G2, G1, q1)
! C2 sat (p2, R ∪G1, G2, q2)

! (C1‖C2) sat (p1 ∗ p2, R, G1 ∪G2, q1 ∗ q2)

Atomic commands

Shared
state

Local
state

P2, Q2 precise (P2 ! Q2) ∈ G
" C sat (P1 ∗ P2, ∅, ∅, Q1 ∗Q2)

" (atomic C) sat
(
P1 ∗ P2 ∗ F , ∅, G,Q1 ∗ Q2 ∗ F

)

p, q stable under R
! (atomic C) sat (p, ∅, G, q)
! (atomic C) sat (p, R,G, q)

Stability

iff

S stable under P ! Q

((P −! S) ∗Q) ⇒ S

The End

Further topics:

• Automation (SmallfootRG)

• Local guards & provided clauses

• Modular reasoning about memory allocators

• Proving linearisability of concurrent algorithms

