
Reconciling Event Structures with Modern1

Multiprocessors2

Evgenii Moiseenko3

St. Petersburg University, Russia4

JetBrains Research, Russia5

e.moiseenko@2012.spbu.ru6

Anton Podkopaev7

National Research University Higher School of Economics, Russia8

MPI-SWS, Germany9

JetBrains Research, Russia10

anton.podkopaev@jetbrains.com11

Ori Lahav12

Tel Aviv University, Israel13

orilahav@tau.ac.il14

Orestis Melkonian15

University of Edinburgh, UK16

melkon.or@gmail.com17

Viktor Vafeiadis18

MPI-SWS, Germany19

viktor@mpi-sws.org20

Abstract21

Weakestmo is a recently proposed memory consistency model that uses event structures to resolve22

the infamous “out-of-thin-air” problem and to enable efficient compilation to hardware. Nevertheless,23

this latter property—compilation correctness—has not yet been formally established.24

This paper closes this gap by establishing correctness of the intended compilation schemes from25

Weakestmo to a wide range of formal hardware memory models (x86, POWER, ARMv7, ARMv8) in26

the Coq proof assistant. Our proof is the first that establishes correctness of compilation of an27

event-structure-based model that forbids “out-of-thin-air” behaviors, as well as the first mechanized28

compilation proof of a weak memory model supporting sequentially consistent accesses to such a29

range of hardware platforms. Our compilation proof goes via the recent Intermediate Memory Model30

(IMM), which we suitably extend with sequentially consistent accesses.31

2012 ACM Subject Classification Theory of computation → Logic and verification; Software and32

its engineering → Concurrent programming languages33

Keywords and phrases Weak Memory Consistency, Event Structures, IMM, Weakestmo.34

Digital Object Identifier 10.4230/LIPIcs...35

1 Introduction36

A major research problem in concurrency semantics is to develop a weak memory model37

that allows load-to-store reordering (a.k.a. load buffering, LB) combined with compiler38

optimizations (e.g., elimination of fake dependencies), while forbidding “out-of-thin-air”39

behaviors [18, 11, 5, 14]. This problem can be illustrated with the following two programs40

accessing locations x and y that are initialized to 0. The annotated outcome a = b = 1 ought41

to be allowed for LB-fake (because 1 + a ∗ 0 can be optimized to 1 and then the instructions42

of thread 1 executed out of order) and forbidden for LB-data (where no optimizations are43

applicable).44

© Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, Viktor Vafeiadis;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.moiseenko@2012.spbu.ru
mailto:anton.podkopaev@jetbrains.com
mailto:orilahav@tau.ac.il
mailto:melkon.or@gmail.com
mailto:viktor@mpi-sws.org
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Reconciling Event Structures with Modern Multiprocessors

a := [x] //1
[y] := 1 + a ∗ 0

b := [y] //1
[x] := b

(LB-fake) a := [x] //1
[y] := a

b := [y] //1
[x] := b

(LB-data)
45

Among the proposed models that correctly distinguish between these two programs is the46

recent Weakestmo model [6]. Weakestmo was developed in response to certain limitations of47

earlier models, such as the “promising semantics” of Kang et al. [12], namely that (i) they48

did not cover the whole range of C/C++ concurrency features and that (ii) they did not49

support the intended compilation schemes to hardware.50

Being flexible in its design, Weakestmo addresses the former point. It supports all51

usual features of the C/C++11 model [3] and can easily be adapted to support any new52

concurrency features that may be added in the future. It does not, however, provide an53

adequate answer to the latter point. Because of the difficulty of establishing correctness of54

the intended compilation schemes to hardware architectures that permit load-store reordering55

(i.e., POWER, ARMv7, ARMv8), Chakraborty and Vafeiadis [6] only establish correctness of56

suboptimal schemes that add (unnecessary) explicit fences to prevent load-store reordering.57

In this paper, we address this major limitation of the Weakestmo paper. We establish in58

Coq correctness of the intended compilation schemes to a wide range of hardware architectures59

that includes the major ones: x86-TSO [17], POWER [1], ARMv7 [1], ARMv8 [21]. The com-60

pilation schemes, whose correctness we prove, do not require any fences or fake dependencies61

for relaxed accesses. Because of a technical limitation of our setup (see §6), however, compi-62

lation of read-modify-write (RMW) accesses to ARMv8 uses a load-reserve/store-conditional63

loop (similar to that of ARMv7 and POWER) as opposed to the newly introduced ARMv864

instructions for certain kinds of RMWs.65

The main challenge in this proof is to reconcile the different ways in which hardware66

models and Weakestmo allow load-store reordering. Unlike most models at the programming67

language level, hardware models (such as ARMv8) do not execute instructions in sequence;68

they instead keep track of dependencies between instructions and ensure that no dependency69

cycles ever arise in a single execution. In contrast, Weakestmo executes instructions in order,70

but simultaneously considers multiple executions to justify an execution where a load reads71

a value that indirectly depends upon a later store. Technically, these multiple executions72

together form an event structure, upon which Weakestmo places various constraints.73

IMMSC
ARMv7

POWER

x86-TSO

ARMv8

Weakestmo

C11

Figure 1 Results proved in this paper.

The high-level proof structure is shown in74

Fig. 1. We reuse IMM, an intermediate memory75

model, introduced by Podkopaev et al. [19] as76

an abstraction over all major existing hardware77

memory models. To support Weakestmo compila-78

tion, we extend IMM with sequentially consistent79

(SC) accesses following the RC11 model [14]. As80

IMM is very much a hardware-like model (e.g., it81

tracks dependencies), the main result is compilation from Weakestmo to IMM (indicated by82

the bold arrow). The other arrows in the figure are extensions of previous results to account83

for SC accesses, while double arrows indicate results for two compilation schemes.84

The complexity of the proof is also evident from the size of the Coq development. We85

have written about 30K lines of Coq definitions and proof scripts on top of an existing86

infrastructure of about another 20K lines (defining IMM, the aforementioned hardware models87

and many lemmas about them). As part of developing the proof, we also had to mechanize88

the Weakestmo definition in Coq and to fix some minor deficiencies in the original definition,89

which were revealed by our proof effort.90

E. Moiseenko et al. XX:3

Init
R(x, 1)

W(y, 1)

R(y, 1)

W(x, 1)
po po ppo

rf

po po

(a) GLB: Execution graph of LB.

Init
R(x, 1)

W(y, 1)

R(y, 1)

W(x, 1)
po poppo ppo

rf

po po

(b) Execution of LB-data and LB-fake.

Figure 2 Executions of LB and LB-data/LB-fake with outcome a = b = 1.

To the best of our knowledge, our proof is the first proof of correctness of compilation of91

an event-structure-based memory model. It is also the first mechanized compilation proof92

of a weak memory model supporting sequentially consistent accesses to such a range of93

hardware architectures. The latter, although fairly straightforward in our case, has had a94

history of wrong compilation correctness arguments (see [14] for details).95

Outline We start with an informal overview of IMM, Weakestmo, and our compilation proof96

(§2). We then present a fragment of Weakestmo formally (§3) and its compilation proof (§4).97

Subsequently, we extend these results to cover SC accesses (§5), discuss related work (§6) and98

conclude (§7). The associated proof scripts can be found in the supplementary material.99

2 Overview of the Compilation Correctness Proof100

To get an idea about the IMM and Weakestmo memory models, consider a version of the101

LB-fake and LB-data programs from §1 with no dependency in thread 1:102

a := [x] //1
[y] := 1

b := [y] //1
[x] := b

(LB)103

As we will see, the annotated outcome is allowed by both IMM and Weakestmo, albeit in104

different ways. The different treatment of load-store reordering affects the outcomes of other105

programs. For example, IMM forbids the annotate outcome of LB-fake by treating it exactly106

as LB-data, whereas Weakestmo allows the outcome by treating LB-fake exactly as LB.107

2.1 An Informal Introduction to IMM108

IMM is a declarative (also called axiomatic) model identifying a program’s semantics with a109

set of execution graphs, or just executions. As an example, Fig. 2a contains GLB, an IMM110

execution graph of LB corresponding to an execution yielding the annotated behavior.111

Vertices of execution graphs, called events, represent memory accesses either due to the112

initialization of memory or to the execution of program instructions. Each event is labeled113

with the type of the access (e.g., R for reads, W for writes), the location accessed, and the114

value read or written. Memory initialization consists of a set of events labeled W(x, 0) for115

each location x used in the program; for conciseness, however, we depict the initialization116

events as a single event with label Init.117

Edges of execution graphs represent different relations on events. In Fig. 2, three different118

relations are depicted. The program order relation (po) totally orders events originated from119

the same thread according to their order in the program, as well as the initialization event(s)120

before all other events. The reads-from relation (rf) relates a write event to the read events121

that read from it. Finally, the preserved program order (ppo) is a subset of the program122

XX:4 Reconciling Event Structures with Modern Multiprocessors

order relating events that cannot be executed out of order. Such ppo edges arise whenever123

there is a dependency chain between the corresponding instructions (e.g., a write storing the124

value read by a prior read).125

Because of the syntactic nature of ppo, IMM conflates the executions of LB-data and126

LB-fake leading to the outcome a = b = 1 (see Fig. 2b). This choice is in line with hardware127

memory models; it means, however, that IMM is not suitable as a memory model for a128

programming language (because, as argued in §1, LB-fake can be transformed to LB by an129

optimizing compiler).130

The executions of a program are constructed in two steps.1 First, a thread-local semantics131

determines the sequential executions of each thread, where the values returned by each132

read access are chosen non-deterministically (among the set of all possible values), and the133

executions of different threads are combined into a single execution. Then, the execution134

graphs are filtered by a consistency predicate, which determines which executions are allowed135

(i.e., are IMM-consistent). These IMM-consistent executions form the program’s semantics.136

IMM-consistency checks three basic constraints:137

Completeness: Every read event reads from precisely one write with the same location and138

value;139

Coherence: For each location x, there is a total ordering of x-related events extending the140

program order so that each read of x reads from the most recent prior write according to141

that total order; and142

Acyclic dependency: There is no cycle consisting only of ppo and rf edges.143

The final constraint disallows executions in which an event recursively depends upon itself,144

as this pattern can lead to “out-of-thin-air” outcomes. Specifically, the execution in Fig. 2b,145

which represents the annotated behavior of LB-fake and LB-data, is not IMM-consistent146

because of the (ppo ∪ rf)-cycle. In contrast, GLB is IMM-consistent.147

2.2 An Informal Introduction to Weakestmo148

We move on to Weakestmo, which also defines the program’s semantics as a set of execution149

graphs. However, they are constructed differently—extracted from a final event structure,150

which Weakestmo incrementally builds for a program.151

An event structure represents multiple executions of a programs in a single graph. Like152

execution graphs, event structures contain a set of events and several relations among them.153

Like execution graphs, the program order (po) orders events according to each thread’s154

control flow. However, unlike execution graphs, po is not necessarily total among the events155

of a given thread. Events of the same thread that are not po-ordered are said to be in conflict156

(cf) with one another, and cannot belong to the same execution. Such conflict events arise157

when two read events originate from the same read instruction (e.g., representing executions158

where the reads return different values). Moreover, cf “extends downwards”: events that159

depend upon conflicting events (i.e., have conflicting po-predecessors) are also in conflict160

with one other. In pictures, we typically show only the immediate conflict edges (between161

reads originating from the same instruction) and omit the conflict edges between events162

po-after immediately conflicting ones.163

Event structures are constructed incrementally starting from an event structure consisting164

only of the initialization events. Then, events corresponding to the execution of program165

1 For a detailed formal description of the graphs and their construction process we refer the reader to [19,
§2.2].

E. Moiseenko et al. XX:5

Init
e1

11 : R(x, 0)

jf

(a) Sa

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

jf

(b) Sb with execution Xb selected

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e2
1 : R(y, 1)

jf

jf

(c) Sc

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

jf

jf

(d) Sd with execution Xd selected

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e1
12 : R(x, 1) e2

1 : R(y, 1)

e2
2 : W(x, 1)

cf

jfjf

jf

(e) Se

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e1
12 : R(x, 1)

e1
22 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

cf

ew

jf

(f) Sf with execution Xf selected

Figure 3 A run of Weakestmo witnessing the annotated outcome of LB.

instructions are added one at a time. We start by executing the first instruction of a166

program’s thread. Then, we may execute the second instruction of the same thread or the167

first instruction of another thread, and so on.168

As an example, Fig. 3 constructs an event structure for LB. Fig. 3a depicts the event169

structure Sa obtained from the initial event structure by executing a := [x] in LB’s thread 1.170

As a result of the instruction execution, a read event e1
11 : R(x, 0) is added.171

Whenever the event added is a read, Weakestmo has to justify the returned value from an172

appropriate write event. In this case, there is only one write to x—the initialization write—173

and so Sa has a justified from edge, denoted jf, going to e1
11 in Sa. This is a requirement of174

Weakestmo: each read event in an event structure has to be justified from exactly one write175

event with the same value and location. (This requirement is analogous to the completeness176

requirement in IMM-consistency for execution graphs.) Since events are added in program177

order and read events are always justified from existing events in the event structure, po∪ jf178

is guaranteed to be acyclic by construction.179

The next three steps (Figures 3b to 3d) simply add a new event to the event structure.180

Notice that unlike IMM executions, Weakestmo event structures do not track syntactic181

dependencies, e.g., Sd in Fig. 3d does not contain a ppo edge between e2
1 and e2

2. This is182

precisely what allows Weakestmo to assign the same behavior to LB and LB-fake: they183

have exactly the same event structures. As a programming-language-level memory model,184

Weakestmo supports optimizations removing fake dependencies.185

The next step (Fig. 3e) is more interesting because it showcases the key distinction186

between event structures and execution graphs, namely that event structures may contain187

more than one execution for each thread. Specifically, the transition from Sd to Se reruns188

the first instruction of thread 1 and adds a new event e1
12 justified from a different write189

event. We say that this new event conflicts (cf) with e1
11 because they cannot both occur190

XX:6 Reconciling Event Structures with Modern Multiprocessors

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(a) T Ca

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(b) T Cb

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(c) T Cc

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(d) T Cd

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(e) T Ce

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(f) T Cf

Figure 4 Traversal configurations for GLB.

in a single execution. Because of conflicts, po in event structures does not totally order all191

events of a thread; e.g., e1
11 and e1

12 are not po-ordered in Se. Two events of the same thread192

are conflicted precisely when they are not po-ordered.193

The final construction step (Fig. 3f) demonstrates another Weakestmo feature. Conflicting194

write events writing the same value to the same location (e.g., e1
21 and e1

22 in Sf) may be195

declared equal writes, i.e., connected by an equivalence relation ew.2196

The ew relation is used to define Weakestmo’s version of the reads-from relation, rf,197

which relates a read to all (non-conflicted) writes equal to the write justifying the read. For198

example, e2
1 reads from both e1

21 and e1
22.199

The Weakestmo’s rf relation is used for extraction of program executions. An execution200

graph G is extracted from an event structure S denoted S BG if G is a maximal conflict-free201

subset of S, it contains only visible events (to be defined in §3), and every read event in G202

reads from some write in G according to S.rf. Two execution graphs can be extracted from203

Sf : {Init, e1
11, e

1
21, e

2
1, e

2
2} and {Init, e1

12, e
1
22, e

2
1, e

2
2} representing the outcomes a = 0 ∧ b = 1204

and a = b = 1 respectively.205

2.3 Weakestmo to IMM Compilation: High-Level Proof Structure206

In this paper, we assume that Weakestmo is defined for the same assembly language as IMM207

(see [19, Fig. 2]) extended with SC accesses and refer to this language as L. Having that, we208

show the correctness of the identity mapping as a compilation scheme from Weakestmo to209

IMM in the following theorem.210

I Theorem 1. Let prog be a program in L, and G be an IMM-consistent execution graph of211

prog. Then there exists an event structure S of prog under Weakestmo such that S BG.212

To prove the theorem, we must show that Weakestmo may construct the needed event213

structure in a step by step fashion. If the IMM-consistent execution graph G contains no214

po ∪ rf cycles, then the construction is completely straightforward: G itself is a Weakestmo-215

consistent event structure (setting jf to be just rf), and its events can be added in any216

order extending po ∪ rf.217

2 In this paper, we take ew to be reflexive, whereas it is is irreflexive in Chakraborty and Vafeiadis [6].
Our ew is the reflexive closure of the one in [6].

E. Moiseenko et al. XX:7

The construction becomes tricky for IMM-consistent execution graphs, such as GLB, that218

contain po∪rf cycles. Due to the cycle(s), G cannot be directly constructed as a (conflict-free)219

Weakestmo event structure. We must instead construct a larger event structure S containing220

multiple executions, one of which will be the desired graph G. Roughly, for each po ∪ rf221

cycle in G, we have to construct an immediate conflict in the event structure.222

To generate the event structure S, we rely on a basic property of IMM-consistent execution223

graphs shown by Podkopaev et al. [19, §§6,7], namely that execution graphs can be traversed224

in a certain order, i.e., its events can be issued and covered in that order, so that in the225

end all events are covered. The traversal captures a possible execution order of the program226

that yields the given execution. In that execution order, events are not added according to227

program order, but rather according to preserved program order (ppo) in two steps. Events228

are first issued when all their dependencies have been resolved, and are later covered when229

all their po-prior events have been covered.230

In more detail, a traversal of an IMM-consistent execution graph G is a sequence of231

traversal steps between traversal configurations. A traversal configuration TC of an execution232

graph G is a pair of sets of events, 〈C, I〉, called the covered and issued set respectively. As233

an example, Fig. 4 presents all six (except for the initial one) traversal configurations of the234

execution graph GLB of LB from Fig. 2a, with the issued set marked by and the covered235

set marked by .236

A traversal might be seen as an execution of an abstract machine which is allowed to237

perform write instructions out-of-order but has to execute everything else in order. The first238

option corresponds to issuing a write event, and the second option to covering an event. The239

traversal strategy has certain constraints. To issue a write event, all external reads that it240

depends upon must read from issued events, while to cover an event, all its po-predecessors241

must also be covered.3 For example, a traversal cannot issue e2
2 : W(x, 1) before issuing242

e1
2 : W(y, 1) in Fig. 4, or cover e1

1 : R(x, 1) before issuing e2
2 : W(x, 1).243

According to Podkopaev et al. [19, Prop. 6.5], every IMM-consistent execution graph G
has a full traversal of the following form:

G ` TCinit(G) −→ TC1 −→ TC2 −→ ... −→ TCfinal(G)

where the initial configuration, TCinit(G) , 〈G.Init, G.Init〉, has covered/issued only G’s244

initial events and the final configuration, TCfinal(G) , 〈G.E, G.W〉, has covered all G’s events245

and issued all its write events.246

We then construct the event structure S following a full traversal of G. We define a247

simulation relation, I(prog, G, TC, S,X), between the program prog, the current traversal248

configuration TC of execution G and the current event structure’s state 〈S,X〉, where X is249

a subset of events corresponding to a particular execution graph extracted from the event250

structure S.251

Our simulation proof is divided into the following three lemmas.252

I Lemma 2 (Simulation Start). Let prog be a program of L, and G be an IMM-consistent253

execution graph of prog. Then I(prog, G, TCinit(G), Sinit(prog), Sinit(prog).E) holds.254

I Lemma 3 (Weak Simulation Step). If I(prog, G, TC, S,X) and G ` TC −→ TC ′ hold,255

then there exist S′ and X ′ such that I(prog, G, TC ′, S′, X ′) and S −→∗ S′ hold.256

3 For readers familiar with PS [12], issuing a write event corresponds to promising a message, and covering
an event to normal execution of an instruction.

XX:8 Reconciling Event Structures with Modern Multiprocessors

I Lemma 4 (Simulation End). If I(prog, G, TCfinal(G), S,X) holds, then the execution graph257

associated with X is isomorphic to G.258

The proof of Theorem 1 then proceeds by induction on the length of the traversal259

G ` TCinit(G) −→∗ TCfinal(G). Lemma 2 serves as the base case, Lemma 3 is the induction260

step simulating each traversal step with a number of event structure construction steps, and261

Lemma 4 concludes the proof.262

The proofs of Lemmas 2 and 4 are technical but fairly straightforward. (We define I in a263

way that makes these lemmas immediate.) In contrast, Lemma 3 is much more difficult to264

prove. As we will see, simulating a traversal step sometimes requires us to construct a new265

branch in the event structure, i.e., to add multiple events (see Section 4.3).266

2.4 Weakestmo to IMM Compilation Correctness by Example267

Before presenting any formal definitions, we conclude this overview section by showcasing268

the construction used in the proof of Lemma 3 on execution graph GLB in Fig. 2a following269

the traversal of Fig. 4. We have actually already seen the sequence of event structures270

constructed in Fig. 3. Note that, even though Figures 3 and 4 have the same number of271

steps, there is no one-to-one correspondence between them as we explain below.272

Consider the last event structure Sf from Fig. 3. A subset of its events Xf marked by ,273

which we call a simulated execution, is a maximal conflict-free subset of Sf and all read events274

in Xf read from some write in Xf (i.e., are justified from a write deemed “equal” to some275

write in Xf). Then, by definition, Xf is extracted from Sf . Also, an execution graph induced276

by Xf is isomorphic to GLB. That is, construction of Sf for LB shows that in Weakestmo it is277

possible to observe the same behavior as GLB. Now, we explain how we construct Sf and278

choose Xf .279

During the simulation, we maintain the relation I(prog, G, TC, S,X) connecting a program280

prog, its execution graph G, its traversal configuration TC, an event structure S, and a281

subset of its events X. Among other properties (presented in Section 4.2), the relation states282

that all issued and covered events of TC have exact counterparts in X, and that X can be283

extracted from S.284

The initial event structure and XInit consist of only initial events. Then, following issuing285

of event e1
2 : W(y, 1) in TCa (see Fig. 4a), we need to add a branch to the event structure that286

has W(y, 1) in it. Since Weakestmo requires adding events according to program order, we287

first need to add a read event corresponding to ‘a := [x]’ of LB’s thread 1. Each read event288

in an event structure has to be justified from somewhere. In this case, the only write event to289

location x is the initial one. That is, the added read event e1
11 is justified from it (see Fig. 3a).290

In the general case, having more than one option, we would choose a ‘safe’ write event for291

an added read event to be justified from, i.e., the one which the corresponding branch is292

‘aware’ of already and being justified from which would not break consistency of the event293

structure. After that, a write event e1
21 : W(y, 1) can be added po-after e1

11 (see Fig. 3b), and294

I(LB, GLB, TCa, Sb, Xb) holds for Xb = {Init, e1
11, e

1
21}.295

Next, we need to simulate the second traversal step (see Fig. 4b), which issues W(x, 1). As296

with the previous step, we first need to add a read event related to the first read instruction297

of LB’s thread 2 (see Fig. 3c). However, unlike the previous step, the added event e2
1 has to298

get value 1, since there is a dependency between instructions in thread 2. As we mentioned299

earlier, the traversal strategy guarantees that e1
2 : W(y, 1) is issued at the moment of issuing300

e2
2 : W(x, 1), so there is the corresponding event in the event structure to justify the read301

event e2
1 from. Now, the write event e2

2 : W(y, 1) representing e2
2 can be added to the event302

E. Moiseenko et al. XX:9

structure (see Fig. 3d) and I(LB, GLB, TCb, Sd, Xd) holds for Xd = {Init, e1
11, e

1
21, e

2
1, e

2
2}.303

In the third traversal step (see Fig. 4c), the read event e1
1 : R(x, 1) is covered. To have304

a representative event for e1
1 in the event structure, we add e1

12 (see Fig. 3e). It is justified305

from e2
2, which writes the needed value 1. Also, e1

12 represents an alternative to e1
11 execution306

of the first instruction of thread 1, so the events are in conflict.307

However, we cannot choose a simulated execution X related to TCc and Se by the308

simulation relation since X has to contain e1
12 and a representative for e1

2 : W(y, 1) (in Se it is309

represented by e1
21) while being conflict-free. Thus, the event structure has to make one other310

step (see Fig. 3f) and add the new event e1
22 to represent e1

2 : W(y, 1). Now, the simulated311

execution contains everything needed, Xf = {Init, e1
12, e

1
22, e

2
1, e

2
2}.312

Since Xf has to be extracted from Sf , every read event in X has to be connected via an313

rf edge to an event in X.4 To preserve the requirement, we connect the newly added event314

e1
22 and e1

21 via an ew edge, i.e., marking them to be equal writes.5 This induces an rf edge315

between e1
22 and e2

1. That is, I(LB, GLB, TCc, Sf , Xf) holds.316

To simulate the remaining traversal steps (Figures 4d to 4f), we do not need to modify317

Sf because it already contains counterparts for the newly covered events and, moreover, the318

execution graph associated with Xf is isomorphic to GLB. That is, we just need to show that319

I(LB, GLB, TCd, Sf , Xf), I(LB, GLB, TCe, Sf , Xf), and I(LB, GLB, TCf , Sf , Xf) hold.320

3 Formal Definition of Weakestmo321

In this section, we introduce the notation used in the rest of the paper and define the322

Weakestmo memory model. For simplicity, we present only a minimal fragment of Weakestmo323

containing only relaxed reads and writes. For the definition of the full Weakestmo model, we324

refer the readers to Chakraborty and Vafeiadis [6] and to our Coq development.325

Notation Given relations R1 and R2, we write R1 ; R2 for their sequential composition.326

Given relation R, we write R?, R+ and R∗ to denote its reflexive, transitive and reflexive-327

transitive closures. We write id to denote the identity relation (i.e., id , {〈x, x〉}). For a set328

A, we write [A] to denote the identity relation restricted to A (that is, [A] , {〈a, a〉 | a ∈ A}).329

Hence, for instance, we may write [A] ;R ; [B] instead of R ∩ (A×B). We also write [e] to330

denote [{e}] if e is not a set.331

Given a function f : A→ B, we denote by =f the set of f -equivalent elements: (=f ,332

{〈a, b〉 ∈ A×A | f(a) = f(b)}). In addition, given a relation R, we denote by R|=f the333

restriction of R to f -equivalent elements (R|=f , R∩=f), and by R| 6=f be the restriction of334

R to non-f -equivalent elements (R| 6=f , R \=f).335

3.1 Events, Threads and Labels336

Events, e ∈ Event, and thread identifiers, t ∈ Tid, are represented by natural numbers. We337

treat the thread with identifier 0 as the initialization thread. We let x ∈ Loc to range over338

locations, and v ∈ Val over values.339

A label, l ∈ Lab, takes one of the following forms:340

4 Actually, it is easy to show that there could be only one such event since equal writes are in conflict
and X is conflict-free.

5 Note that we could have left e1
22 without any outgoing ew edges since the choice of equal writes for

newly added events in Weakestmo is non-deterministic. However, that would not preserve the simulation
relation.

XX:10 Reconciling Event Structures with Modern Multiprocessors

R(x, v) — a read of value v from location x.341

W(x, v) — a write of value v to location x.342

Given a label l the functions typ, loc, val return (when applicable) its type (i.e., R or W),343

location and value correspondingly. When a specific function assigning labels to events is344

clear from the context, we abuse the notations R and W to denote the sets of all events labelled345

with the corresponding type. We also use subscripts to further restrict this set to a specific346

location (e.g., Wx denotes the set of write events operating on location x.)347

3.2 Event Structures348

An event structure S is a tuple 〈E, tid, lab, po, jf, ew, co〉 where:349

E is a set of events, i.e., E ⊆ Event.350

tid : E→ Tid is a function assigning a thread identifier to every event. We treat events351

with the thread identifier equal to 0 as initialization events and denote them as Init, that352

is Init , {e ∈ E | tid(e) = 0}.353

lab : E→ Lab is a function assigning a label to every event in E.354

po ⊆ E × E is a strict partial order on events, called program order, that tracks their355

precedence in the control flow of the program. Initialization events are po-before all other356

events, whereas non-initialization events can only be po-before events from the same357

thread.358

Not all events of a thread are necessarily ordered by po. We call such po-unordered359

non-initialization events of the same thread conflicting events. The corresponding binary360

relation cf is defined as follows:361

cf , ([E \ Init] ; =tid ; [E \ Init]) \ (po ∪ po−1)?
362

jf ⊆ [E∩W] ; (=loc∩=val) ; [E∩R] is the justified from relation, which relates a write event363

to the reads it justifies. We require that reads are not justified by conflicting writes (i.e.,364

jf ∩ cf = ∅) and jf−1 be functional (i.e., whenever 〈w1, r〉, 〈w2, r〉 ∈ jf, then w1 = w2).365

We also define the notion of external justification: jfe , jf \ po. A read event is366

externally justified from a write if the write is not po-before the read.367

ew ⊆ [E ∩ W] ; (cf ∩=loc ∩=val)? ; [E ∩ W] is an equivalence relation called the equal-writes368

relation. Equal writes have the same location and value, and (unless identical) are in369

conflict with one another.370

co ⊆ [E ∩ W] ; (=loc \ ew) ; [E ∩ W] is the coherence order, a strict partial order that relates371

non-equal write events with the same location. We require that coherence be closed with372

respect to equal writes (i.e., ew ; co ; ew ⊆ co) and total with respect to ew on writes to373

the same location:374

∀x ∈ Loc. ∀w1, w2 ∈ Wx. 〈w1, w2〉 ∈ ew ∪ co ∪ co−1
375

Given an event structure S, we use “dot notation” to refer to its components (e.g.,376

S.E, S.po). For a set A of events, we write S.A for the set A ∩ S.E (for instance, S.Wx =377

{e ∈ S.E | typ(S.lab(e)) = W ∧ loc(S.lab(e)) = x}). Further, for e ∈ S.E, we write S.typ(e)378

to retrieve typ(S.lab(e)). Similar notation is used for the functions loc and val. Given a379

set of thread identifiers T , we write S.thread(T) to denote the set of events belonging to one380

of the threads in T , i.e., S.thread(T) , {e ∈ S.E | S.tid(e) ∈ T}. When T = {thread(t)}381

is a singleton, we often write S.thread(t) instead of S.thread({t}).382

We define the immediate po and cf edges of an event structure as follows:383

S.poimm , S.po \ (S.po ; S.po) S.cfimm , S.cf ∩ (S.poimm
−1 ; S.poimm)384

E. Moiseenko et al. XX:11

An event e1 is an immediate po-predecessor of e2 if e1 is po-before e2 and there is no event385

po-between them. Two conflicting events are immediately conflicting if they have the same386

immediate po-predecessor.6387

3.3 Event Structure Construction388

Given a program prog, we construct its event structures operationally in a way that guarantees389

completeness (i.e., that every read is justified from some write) and po ∪ jf acyclicity. We390

start with an event structure containing only the initialization events and add one event at a391

time following each thread’s semantics.392

For the thread semantics, we assume reductions of the form σ
e−→ σ′ between thread393

states σ, σ′ ∈ ThreadState and labeled by the event e ∈ E generated by that execution394

step. Given a thread t and a sequence of events e1, ... , en ∈ S.thread(t) in immediate po395

succession (i.e., 〈ei, ei+1〉 ∈ S.poimm for 1 ≤ i < n) starting from a first event of thread t (i.e.,396

dom(S.po; [e1]) ⊆ Init), we can add an event e po-after that sequence of events provided that397

there exist thread states σ1, ... , σn and σ′ such that prog(t) e1−→ σ1
e2−→ σ2 · · ·

en−→ σn
e−→ σ′,398

where prog(t) is the initial thread state of thread t of the program prog. By construction,399

this means that the newly added event e will be in conflict with all other events of thread t400

besides e1, ... , en.401

Further, when the new event e is a read event, it has to be justified from an existing402

write event, so as to ensure completeness and prevent “out-of-thin-air” values. The write403

event is picked non-deterministically from all non-conflicting writes with the same location404

as the new read event. Similarly, when e is a write event, its position in co order should be405

chosen. It can be done by either picking an ew equivalence class and including the new write406

in it, or by putting the new write immediately after some existing write in co order. At each407

step, we also check for event structure consistency (to be defined in Def. 5): If the event408

structure obtained after the addition of the new event is inconsistent, it is discarded.409

3.4 Event Structure Consistency410

To define consistency, we first need a number of auxiliary definitions. The happens-before411

order S.hb is a generalization of the program order. Besides the program order edges, it412

includes certain synchronization edges (captured by the synchronizes with relation, S.sw).413

S.hb , (S.po ∪ S.sw)+
414

For the fragment covered in this section, there are no synchronization edges (i.e., sw = ∅),415

and so hb and po coincide. In the full model,7 however, certain justification edges (e.g.,416

between release/acquire accesses) contribute to sw and hence to hb.417

The extended conflict relation S.ecf extends the notion of conflicting events to account418

for hb; two events are in extended conflict if they happen after conflicting events.419

S.ecf , (S.hb−1)? ; S.cf ; S.hb?
420

As already mentioned in §2, the reads-from relation, S.rf, of a Weakestmo event structure421

is derived. It is defined as an extension of S.jf to all S.ew-equivalent writes.422

S.rf , (S.ew ; S.jf) \ S.cf423

6 Our definition of immediate conflicts differs from that of [6] and is easier to work with. The two
definitions are equivalent if the set of initialization events is non-empty.

7 The full model is presented in [6] and also in our Coq development.

XX:12 Reconciling Event Structures with Modern Multiprocessors

Note that unlike S.jf−1, the relation S.rf−1 is not functional. This does not cause any424

problems, however, since all the writes from whence a read reads have the same location and425

value and are in conflict with one another.426

The relation S.fr, called from-read or reads-before, places read events before subsequent427

writes.428

S.fr , S.rf−1 ; S.co429

The extended coherence S.eco is a strict partial order that orders events operating on the430

same location. (It is almost total on accesses to a given location, except that it does not431

order equal writes nor reads reading from the same write.)432

S.eco , (S.co ∪ S.rf ∪ S.fr)+
433

We observe that in our model, eco is equal to rf∪co;rf?∪fr;rf?, similar to the corresponding434

definitions about execution graphs in the literature.8435

The last ingredient that we need for event structure consistency is the notion of visible436

events, which will be used to constrain external justifications. We define it in a few steps.437

Let e be some event in S. First, consider all write events used to externally justify e or438

one of its justification ancestors. The relation S.jfe ; (S.po ∪ S.jf)∗ defines this connection439

formally. Among that set of write events restrict attention to those conflicting with e, and440

call that set M . That is, M , dom(S.cf ∩ (S.jfe ; (S.po ∪ S.jf)∗) ; [e]). Event e is visible if441

all writes in M have an equal write that is po-related with e. Formally,9442

S.Vis , {e ∈ S.E | S.cf ∩ (S.jfe ; (S.po ∪ S.jf)∗) ; [e] ⊆ S.ew ; (S.po ∪ S.po−1)?}443

Intuitively, visible events cannot depend on conflicting events: for every such justification444

dependence, there ought to be an equal non-conflicting write.445

Consistency places a number of additional constraints on event structures. First, it checks446

that there is no redundancy in the event structure: immediate conflicts arise only because447

of read events justified from non-equal writes. Second, it extends the constraints about cf448

to the extended conflict ecf; namely that no event can conflict with itself or be justified449

from a conflicting event. Third, it checks that reads are justified either from events of the450

same thread or from visible events of other threads. Finally, it ensures coherence, i.e., that451

executions restricted to accesses on a single location do not have any weak behaviors.452

I Definition 5. An event structure S is said to be consistent if the following conditions hold.453

dom(S.cfimm) ⊆ S.R (cfimm-read)454

S.jf ; S.cfimm ; S.jf−1 ; S.ew is irreflexive. (cfimm-justification)455

S.ecf is irreflexive. (ecf-irreflexivity)456

S.jf ∩ S.ecf = ∅ (jf-non-conflict)457

dom(S.jfe) ⊆ S.Vis (jfe-visible)458

S.hb ; S.eco? is irreflexive. (coherence)459

8 This equivalence equivalence does not hold in the original Weakestmo model [6]. To make the equivalence
hold, we made ew transitive, and require ew ; co ; ew ⊆ co.

9 Note, that in [6] the definition of the visible events is slightly more verbose. We proved in Coq that our
simpler definition is equivalent to the one given there.

E. Moiseenko et al. XX:13

3.5 Execution Extraction460

The last part of Weakestmo is the extraction of executions from an event structure. An461

execution is essentially a conflict-free event structure.462

I Definition 6. An execution graph G is a tuple 〈E, tid, lab, po, rf, co〉 where its components463

are defined similarly as in the case of an event structure with the following exceptions:464

po is required to be total on the set of events from the same thread. Thus, execution465

graphs have no conflicting events, i.e., cf = ∅.466

The rf relation is given explicitly instead of being derived. Also, there are no jf and ew467

relations.468

co totally orders write events operating on the same location.469

All derived relations are defined similarly as for event structures. Next we show how to470

extract an execution graph from the event structure.471

I Definition 7. A set of events X is called extracted from S if the following conditions are472

met:473

X is conflict-free, i.e., [X] ; S.cf ; [X] = ∅.474

X is S.rf-complete, i.e., X ∩ S.R ⊆ codom([X] ; S.rf).475

X contains only visible events of S, i.e., X ⊆ S.Vis.476

X is hb-downward-closed, i.e., dom(S.hb ; [X]) ⊆ X.477

Given an event structure S and extracted subset of its events X, it is possible to associate478

with X an execution graph G simply by restricting the corresponding components of S to X:479

G.E = X G.tid = S.tid|X G.lab = S.lab|X
G.po = [X] ; S.po ; [X] G.rf = [X] ; S.rf ; [X] G.co = [X] ; S.co ; [X]

480

We say that such execution graph G is associated with X and that it is extracted from the481

event structure: S BG.482

Weakestmo additionally defines another consistency predicate to further filter out some483

of the extracted execution graphs. In the Weakestmo fragment we consider, this additional484

consistency predicate is trivial—every extracted execution satisfies it—and so we do not485

present it here. In the full model, execution consistency checks atomicity of read-modify-write486

instructions, and sequential consistency for SC accesses.487

4 Compilation Proof for Weakestmo488

In this section, we outline our correctness proof for the compilation from Weakestmo to489

the various hardware models. As already mentioned, our proof utilizes IMM [19]. In the490

following, we briefly present IMM for the fragment of the model containing only relaxed491

reads and writes (Section 4.1), our simulation relation (Section 4.2) for the compilation from492

Weakestmo to IMM, and outline the argument as to why the simulation relation is preserved493

(Section 4.3). Mapping from IMM to the hardware models has already been proved correct494

by Podkopaev et al. [19], so we do not present this part here. Later, in §5, we will extend495

the IMM mapping results to cover SC accesses.496

As a further motivating example for this section consider yet another variant of the load497

buffering program shown in Fig. 5. As we will see, its annotated weak behavior is allowed by498

IMM and also by Weakestmo, albeit in a different way. The argument for constructing the499

Weakestmo event structure that exhibits the weak behavior from the given IMM execution500

graph is non-trivial.501

XX:14 Reconciling Event Structures with Modern Multiprocessors

r1 := [x] //1
[y] := r1

[z] := 1

r2 := [y] //1
r3 := [z] //1
[x] := r3

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

rf

rf

rf
ppo

ppo

Figure 5 A variant of the load-buffering program (left) and the IMM graph G corresponding to
its annotated weak behavior (right).

4.1 The Intermediate Memory Model IMM502

In order to discuss the proof, we briefly present a simplified version of the formal IMM503

definition, where we have omitted constraints about RMW accesses and fences.504

I Definition 8. An IMM execution graph G is an execution graph (Def. 6) extended with505

one additional component: the preserved program order ppo ⊆ [R] ; po ; [W].506

Preserved program order edges correspond to syntactic dependencies guaranteed to be507

preserved by all major hardware platforms. For example, the execution graph in Fig. 5 has508

two ppo edges corresponding to the data dependencies via registers r1 and r3. (The full509

IMM definition [19] distinguishes between the different types of dependencies—control, data,510

adress–and includes them as separate components of execution graphs. In the full model,511

ppo is actually derived from the more basic dependencies.)512

IMM-consistency checks completeness, coherence, and acyclicity:10513

I Definition 9. An IMM execution graph G is IMM-consistent if514

codom(G.rf) = G.R, (completeness)515

G.hb ;G.eco? is irreflexive, and (coherence)516

G.rf ∪G.ppo is acyclic. (no-thin-air)517

As we can see, the execution graph G of Fig. 5 is IMM-consistent because every read of518

the graph reads from some write event and, moreover, the coherence and no-thin-air519

properties hold.520

4.2 Simulation Relation for Weakestmo to IMM Proof521

In this section, we define the simulation relation I, which is used for the simulation of a522

traversal of an IMM-consistent execution graph by a Weakestmo event structure presented in523

Section 2.3.524

The way we define I(prog, G, 〈C, I〉, S,X) induces a strong connection between events in525

the execution graph G and the event structure S. We make this connection explicit with the526

function s2gG,S : S.E→ G.E, which maps events of the event structure S into the events of527

the execution graph G, such that e and s2gG,S(e) belong to the same thread and have the528

same po-position in the thread.11 Note that s2gG,S is defined for all events e ∈ S.E, meaning529

10Again, this is a simplified presentation for a fragment of the model. We refer the reader to Podkopaev
et al. [19] or our Coq development for the full definition, which further distinguishes between internal
and external rf edges.

11Here we assume existence and uniqueness of such a function. In our Coq development, we have a
different representation of execution graphs which makes the existence and uniqueness questions trivial.

E. Moiseenko et al. XX:15

that the event structure S does not contain any redundant events that do not correspond to530

events in the IMM execution graph G. The function s2gG,S , however, does not have to be531

injective: in particular, events e and e′ that are in immediate conflict in S have the same532

s2gG,S-image in G. In the rest of the paper, whenever G and S are clear from the context,533

we omit the G,S subscript from s2g.534

In the context of a function s2g (for some G and S), we also use V·W and T·U to lift s2g535

to sets and relations:536

for AS ⊆ S.E : VASW , {s2g(e) | e ∈ AS}537

for AG ⊆ G.E : TAGU , {e ∈ S.E | s2g(e) ∈ AG}538

for RS ⊆ S.E× S.E : VRSW , {〈s2g(e), s2g(e′)〉 | 〈e, e′〉 ∈ RS}539

for RG ⊆ G.E×G.E : TRGU , {〈e, e′〉 ∈ S.E× S.E | 〈s2g(e), s2g(e′)〉 ∈ RG}540
541

For example, TCU denotes a subset of S’s events whose s2g-images are covered events in G,542

and VS.rfW denotes a relation on events in G whose s2g-preimages in S are related by S.rf.543

We define the relation I(prog, G, 〈C, I〉, S,X) to hold if the following conditions are met:544

1. G is an IMM-consistent execution of prog.545

2. S is a Weakestmo-consistent event structure of prog.546

3. X is an extracted subset of S.547

4. S and X corresponds precisely to all covered and issued events and their po-predecessors:548

VS.EW = VXW = C ∪ dom(G.po? ; [I])549

(Note that C is closed under po-predecessors, so dom(G.po? ; [C]) = C.)550

5. Each S event has the same thread, type, modifier, and location as its corresponding551

G event. In addition, covered and issued events in X have the same value as their552

corresponding ones in G.553

a. ∀e ∈ S.E. S.{tid, typ, loc, mod}(e) = G.{tid, typ, loc, mod}(s2g(e))554

b. ∀e ∈ X ∩ TC ∪ IU. S.val(e) = G.val(s2g(e))555

6. Program order in S corresponds to program order in G:556

VS.poW ⊆ G.po557

7. Identity relation in G corresponds to identity or conflict relation in S:558

TidU ⊆ S.cf?
559

8. Reads in S are justified by writes that have already been observed by the corresponding560

events in G. Moreover, covered events in X are justified by a write corresponding to that561

read from the corresponding read in G:562

a. VS.jfW ⊆ G.rf? ;G.hb?
563

b. VS.jf ; [X ∩ TCU]W ⊆ G.rf564

9. Every write event justifying some external read event should be S.ew-equal to some issued565

write event in X:566

dom(S.jfe) ⊆ dom(S.ew ; [X ∩ TIU])567

10. Equal writes in S correspond to the same write event in G:568

VS.ewW ⊆ id569

11. Every non-trivial S.ew equivalence class contains an issued write in X:570

S.ew ⊆ (S.ew ; [X ∩ TIU] ; S.ew)?
571

12. Coherence edges in S correspond to coherence or identity edges in G. (We will explain in572

Section 4.3 why a coherence edge in S might correspond to an identity edge in G.)573

VS.coW ⊆ G.co?
574

XX:16 Reconciling Event Structures with Modern Multiprocessors

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The execution graph G and
its traversal configuration TCa

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

jf

The event structure Sa and
the selected execution Xa

Figure 6 The execution graph G, its traversal configuration T Ca, the related event structure Sa,
and the selected execution Xa. Covered events are marked by and issued ones by . Events
belonging to the selected execution are marked by .

As an example, consider the execution G from Fig. 5, the traversal configuration575

TCa , 〈{Init}, {Init, e1
3}〉, and the event structure Sa shown in Fig. 6. We will show that576

I(prog, G, TCa, Sa, Xa), where Xa , Sa.E, holds.577

Take s2gG,Sa
= {Init 7→ Init, e1

11 7→ e1
1, e

1
21 7→ e1

2, e
1
31 7→ e1

3}. Given that cf = ew = ∅, the578

consistency constraints hold immediately. For example, condition 8 holds because e1
11 is579

justified by Init, which happens before it. Finally, note that only e1
31 and e1

3 are required to580

have the same value by constraint 5, the other related thread events only need to have the581

same type and address.582

The definition of the simulation relation I renders the proofs of Lemmas 2 and 4 straight-583

forward. Specifically, for Lemma 2, the initial configuration TCinit(G) containing only the584

initialization events is simulated by the initial event structure Sinit as all the constraints are585

trivially satisfied (Sinit.po = Sinit.jf = Sinit.ew = Sinit.co = ∅).586

For Lemma 4, since TCfinal(G) covers all events of G, property 5 implies that the labels587

of the events in X are equal to the corresponding events of G; property 6 means that po is588

the same between them; property 8 means that rf is the same between them; properties 7589

and 12 together mean that co is the same. Therefore, G and the execution corresponding to590

X are isomorphic.591

4.3 Simulation Step Proof Outline592

We next outline the proof of Lemma 3, which states that the simulation relation I can be593

restored after a traversal step.594

Suppose that I(prog, G, TC, S,X) holds for some prog, G, TC, S, and X, and we need595

to simulate a traversal step TC −→ TC ′ that either covers or issues an event of thread596

t. Then we need to produce an event structure S′ and a subset of its events X ′ such that597

I(prog, G, TC ′, S′, X ′) holds. Whenever thread t has any uncovered issued write events,598

Weakestmo might need to take multiple steps from S to S′ so as to add any missing events po-599

before the uncovered issued writes of thread t. Borrowing the terminology of the “promising600

semantics” [12], we refer to these steps as constructing a certification branch for the issued601

write(s).602

Before we present the construction, let us return to the example of Fig. 5. Consider the603

traversal step from configuration TCa to to configuration TCb , 〈{Init}, {Init, e1
3, e

2
3}〉 by604

issuing the event e2
3 (see Fig. 7). To simulate this step, we need to show that it is possible605

E. Moiseenko et al. XX:17

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The traversal configuration TCb

vf vf

vf

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

e2
11 : R(y, 0)

e2
21 : R(z, 1)

e2
31 : W(x, 1)

jf jf

jf

The event structure Sb and
the selected execution Xb

Figure 7 The traversal configuration T Cb, the related event structure Sb, and the selected
execution Xb.

to execute instructions of thread 2 and extend the event structure with a set of events Brb606

matching these instructions. As we have already seen, the labels of the new events can differ607

from their counterparts in G—they only have to agree for the covered and issued events. In608

this case, we set Brb = {e2
11, e

2
21, e

2
31}, and adding them to the event structure Sa gives us609

event structure Sb shown in Fig. 7.610

In more detail, we need to build a run of thread-local semantics prog(2) e2
11−−→ e2

21−−→ e2
31−−→ σ′611

such that (1) it contains events corresponding to all the events of thread 2 up to e2
3 (i.e.,612

e2
1, e

2
2, e

2
3) with the same location, type, and thread identifier and (2) any events corresponding613

to covered or issued events (i.e., e2
3) should also have the same value as the corresponding614

event in G.615

Then, following the run of the thread-local semantics, we should extend the event structure616

Sa to Sb by adding new events Brb, and ensure that the constructed event structure Sb is617

consistent (Def. 5) and simulates the configuration TCb. In particular, it means that:618

for each read event in Brb we need to pick a justification write event, which is either619

already present in S or po-preceed the read event;620

for each write event in Brb we should determine its position in co order of the event621

structure.622

Finally, we need to update the selected execution by replacing all events of thread 2 by the623

new events Brb: Xb , Xa \ S.thread({2}) ∪Brb.624

4.3.1 Justifying the New Read Events625

In order to determine whence these read events should be justified (and hence what value626

they should return), we have adopted the approach of Podkopaev et al. [19] for a similar627

problem with certifying promises in the compilation proof from PS to IMM. The construction628

relies on several auxiliary definitions.629

First, given an execution G and a traversal configuration 〈C, I〉, we define the set of630

determined events to be those events of G that must have equal counterparts in S. In631

particular, this means that S should assign to these events the same label as G, and thus the632

same reads-from source for the read events.633

G.determined〈C,I〉 , C∪I∪dom((G.rf ∩G.po)? ;G.ppo ; [I])∪codom([I] ; (G.rf ∩G.po))634

Besides covered and issued events, the set of determined events also contains the ppo-prefixes635

of issued events, since issued events may depend on their values, as well as any internal reads636

reading from issued events, since their values are also determined by the issued events.637

XX:18 Reconciling Event Structures with Modern Multiprocessors

For the graph G and traversal configuration TCb, the set of determined events contains638

events e1
3, e2

2, and e2
3. (The events e1

3 and e2
3 are issued, whereas e2

2 has a ppo edge to e2
3.)639

In contrast, events e1
1, e1

2, and e2
1 are not determined, since their corresponding events in S640

read/write a different value.641

Second, we introduce the viewfront relation (vf) to contain all the writes that have been642

observed at a certain point in the graph. That is, the edge 〈w, e〉 ∈ G.vfTC indicates that643

the write w either happens before e, is read by a covered event happening before e, or is644

read by a determined read earlier in the same thread as e.645

G.vf〈C,I〉 , [G.W] ; (G.rf ; [C])? ;G.hb? ∪G.rf ; [G.determined〈C,I〉] ;G.po?
646

Figure 7 depicts three G.vfTCb edges. Since G.vfTC ;G.po ⊆ G.vfTC , the other incoming647

viewfront edges to thread 2 can be derived. Note that there is no edge from e1
2 to thread 2,648

since e1
2 neither happens before any event in thread 2 nor is read by any determined read.649

Finally, we construct the stable justification relation (sjf) that helps us justify the read650

events in Brb in the event structure:651

G.sjfTC , ([G.W] ; (G.vfTC ∩=G.loc) ; [G.R]) \ (G.co ;G.vfTC)652

It relates a read event r to the co-last ‘observed’ write event with same location. Assuming653

that G is IMM-consistent, it can be shown that G.sjf agrees with G.rf on the set of654

determined reads.655

G.sjfTC ; [G.determinedTC] ⊆ G.rf656

For the graph G and traversal configuration TCb shown in Fig. 7 the sjf relation coincides657

with the depicted vf edges: i.e., we have 〈Init, e1
1〉, 〈Init, e2

1〉, 〈e1
3, e

2
2〉 ∈ G.sjfTCb .658

Having sjfTCb as a guide for values read by instructions in the certification run, we659

construct the steps of the thread-local operational semantics prog(2) −→∗ σ′ using the660

receptiveness property of the thread’s semantics, which essentially says that given an execution661

trace τ = e1, ... , en of the thread semantics, and a subset of events K ⊆ {e1, ... , en−1} along662

that trace that have no ppo-successors in the graph, we arbitrarily change the values of read663

events in K, and there exist values for the write events in K such that the updated execution664

trace is also a trace of the thread semantics.12665

The relation sjfTCb is also used to pick justification writes for the read events in Brb. We666

have proved that each sjf edge either starts in some issued event (of the previous traversal667

configuration) or it connects two events that are related by po:668

G.sjfTCb ⊆ [Ia] ;G.sjfTCb ∪G.po669

In the former case, thanks to the property 4 of our simulation relation, we can pick a670

write event from Xa corresponding to the issued write (e.g., for Fig. 7, it is the event e1
31,671

corresponding to the issued write e1
3). In the latter case, we pick either the initial write or672

some Sb.po preceding write belonging to Brb.673

4.3.2 Ordering the New Write Events674

In order to pick the Sb.co position of the new write events in the updated event structure, we675

generally follow the original G.co order of the IMM graph. Because of the conflicting events,676

12The formal definition of the receptiveness property is quite elaborate. For the detailed definition we
refer the reader to the Coq development of IMM [7].

E. Moiseenko et al. XX:19

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The traversal configuration TCc

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

e1
12 : R(x, 1)

e1
22 : W(y, 1)

e1
32 : W(z, 1)

e2
11 : R(y, 0)

e2
21 : R(z, 1)

e2
31 : W(x, 1)

cf

co

ew

The event structure Sc and
the selected execution Xc

Figure 8 The traversal configuration T Cc, the related event structure Sc, and the selected
execution Xc.

however, it is not always possible to preserve the inclusion between the relations. This is677

why we relax the inclusion to VS.coW ⊆ G.co? in property 12 of the simulation relation.678

To see the problem let us return to the example. Suppose that the next traversal step679

covers the read e1
1. To simulate this step, we build an event structure Sc (see Fig. 8). It680

contains the new events Brc , {e1
12, e

1
22, e

1
32}.681

Consider the write events e1
21 and e1

22 of the event structure. Since the events have682

different labels, we cannot make them ew-equivalent. And since Sc.co should be total among683

all writes to the same location (with respect to Sc.ew), we must put a co edge between these684

two events in one direction or another. Note that events e1
21 and e1

22 correspond to the same685

event e1
2 in the graph, thus we cannot use the coherence order of the graph G.co to guide686

our decision.687

In fact, the co-order between these two events does not matter, so we could pick either688

direction. For the purposes of our proofs, however, we found it more convenient to always689

put the new events earlier in the co order (thus we have 〈e1
22, e

1
21〉 ∈ Sc.co). Thereby we can690

show that the co edges of the event structure ending in the new events, have corresponding691

edges in the graph: VSc.co ; [Brc]W ⊆ G.co.692

Now consider the events e1
31 and e1

32. Since these events have the same label and correspond693

to the same event in G, we make them ew-equivalent. In fact, this choice is necessary for the694

correctness of our construction. Otherwise, the new events Brc would be deemed invisible,695

because of the Sc.cf ∩ (Sc.jfe ; (Sc.po ∪ Sc.jf)∗) path between e1
31 and e1

12. Recall that only696

the visible events can be used to extract an execution from the event structure (Def. 7).697

In general, assuming that I(prog, G, 〈C, I〉, S,X) holds, we attach the new write event e698

to an S.ew equivalence class represented by the write event w, s.t. (i) w has the same s2g699

image as e, i.e., s2g(w) = s2g(e); (ii) w belongs to X and its s2g image is issued, that is700

w ∈ X ∩ TIU. If there is no such an event w, we put e S.co-after events such that their s2g701

images are ordered G.co-before s2g(e), and S.co-before events such that their s2g images702

are equal to s2g(e) or ordered G.co-after it. Note that thanks to property 9 of the simulation703

relation, that is dom(S.jfe) ⊆ dom(S.ew ; [X ∩ TIU]), our choice of ew guarantees that all704

new events will be visible.705

4.3.3 Construction Overview706

To sum up, to prove Lemma 3, we consider the events of G.thread({t}) where t is the707

thread of the event issued or covered by the traversal step TC −→ TC ′, together with the708

XX:20 Reconciling Event Structures with Modern Multiprocessors

sjf relation determining the values of the read events. At this point, we can show that709

I-conditions for the new configuration TC ′ hold for all events except for those in thread t.710

Because of receptiveness, there exists a sequence of the thread steps prog(t) −→∗ σ′ for711

some thread state σ′ such that the labels on this sequence match the events G.thread({t})712

with the labels determined by sjf, and include an event with the same label as the one713

issued or covered by the traversal step TC −→ TC ′.714

We then do an induction on this sequence of steps, and add each event to the event715

structure S and to its selected subset of events X (unless already there), showing along the716

way that the I-conditions also hold for the updated event structure, selected subset, and717

the events added. At the end, when we have considered all the events generated by the718

step sequence, we will have generated the event structure S′ and execution X ′ such that719

I(prog, G, TC ′, S′, X ′) holds.720

5 Handling SC Accesses721

In this section, we briefly describe the changes needed in order to handle the compilation722

of Weakestmo’s sequentially consistent (SC) accesses. The purpose of SC accesses is to723

guarantee sequential consistency for the simple programming pattern that uses exclusively724

SC accesses to communicate between threads. As Lahav et al. [14] showed, however, their725

semantics is quite complicated because they can be freely mixed with non-SC accesses.726

We first define an extension of IMM, which we call IMMSC. Its consistency extends that727

of IMM with an additional acyclicity requirement concerning SC accesses, which is taken728

directly from RC11-consistency [14, Definition 1].729

I Definition 10. An execution graph G is IMMSC-consistent if it is IMM-consistent [19,730

Definition 3.11] and G.pscbase ∪G.pscF is acyclic, where:13731

G.scb , G.po ∪G.po| 6=G.loc ;G.hb ;G.po| 6=G.loc ∪G.hb|=loc ∪G.co ∪G.fr732

G.pscbase , ([G.Esc] ∪ [G.Fsc] ;G.hb?) ;G.scb ; ([G.Esc] ∪G.hb? ; [G.Fsc])733

G.pscF , [G.Fsc]; (G.hb ∪G.hb;G.eco;G.hb); [G.Fsc]734
735

The scb, pscbase and pscF relations were carefully designed by Lahav et al. [14] (and736

recently adopted by the C++ standard), so that they provide strong enough guarantees for737

programmers while being weak enough to support the intended compilation of SC accesses738

to commodity hardware. In particular, a previous (simpler) proposal in [2], which essentially739

includes G.hb between SC accesses in the relation required to be acyclic, is too strong740

for efficient compilation to the POWER architecture. Indeed, the compilation schemes to741

POWER do not enforce a strong barrier on hb-paths between SC accesses, but rather on742

G.po ;G.hb ;G.po-paths between SC accesses.743

I Remark 11. The full IMM model (i.e., including release/acquire accesses and SC fences, as744

defined by Podkopaev et al. [19]) forbids cycles in rfe∪ppo∪bob∪pscF, where bob is (similar745

to ppo) a subset of the program order that must preserved due to the presence of a memory746

fence or release/acquire access. Since pscF is already included in IMM’s acyclicity constraint,747

one may consider the natural option of including pscbase in that acyclicity constraint as well.748

13 In IMMSC, event labels include an “access mode”, where sc denotes an SC access. The sets G.Esc

consists of all SC accesses (reads, writes and fences) in G, and G.Fsc consists of all SC fences in G.

E. Moiseenko et al. XX:21

However, it leads to a model that is too strong, as it forbids the following behavior:749

a := [x]rlx //2
[y]sc := 1 [y]sc := 2 b := [y]rlx //2

[x]rlx := b

Rrlx(x, 2)

Wsc(y, 1)

Wsc(y, 2) Rrlx(y, 2)

Wrlx(x, 2)

bob
coe

pscbase

rfe

pporfe750

This behavior is allowed by POWER (using any of the two intended compilation schemes for751

SC accesses; see Section 5.1.2).752

Adapting the compilation from Weakestmo to IMMSC to cover SC accesses is straightfor-753

ward because the full definition of Weakestmo [6] does not have any additional constraints754

about SC accesses at the level of event structures. It only has an SC constraint at the level of755

extracted executions which is actually the same as in RC11, which we took as is for IMMSC.756

5.1 Compiling IMMSC to Hardware757

In this section, we establish describe the extension of the results of [19] to support SC accesses758

with their intended compilation schemes to the different architectures.759

As was done in [19], since IMMSC and the models of hardware we consider are all760

defined in the same declarative framework (using execution graphs), we formulate our761

results on the level of execution graphs. Thus, we actually consider the mapping of IMMSC762

execution graphs to target architecture execution graphs that is induced by compilation763

of IMMSC programs to machine programs. Hence, roughly speaking, for each architecture764

α ∈ {TSO,POWER,ARMv7,ARMv8}, our (mechanized) result takes the following form:765

If the α-execution-graph Gα corresponds to the IMMSC-execution-graph G, then766

α-consistency of Gα implies IMMSC-consistency of G.767

Since the mapping from Weakestmo to IMMSC (on the program level) is the identity mapping768

(Theorem 1), we obtain as a corollary the correctness of the compilation from Weakestmo to769

each architecture α that we consider. The exact notions of correspondence between Gα and770

G are presented in the technical appendix.771

The mapping of IMMSC to each architecture follows the intended compilation scheme772

of C/C++11 [16, 14], and extends the corresponding mappings of IMM from Podkopaev773

et al. [19] with the mapping of SC reads and writes. Next, we schematically present these774

extensions.775

5.1.1 TSO776

There are two alternative sound mappings of SC accesses to x86-TSO:777

Fence after SC writes Fence before SC reads
(|Rsc|) , mov (|Rsc|) , mfence;mov
(|Wsc|) , mov;mfence (|Wsc|) , mov
(|RMWsc|) , (lock) xchg (|RMWsc|) , (lock) xchg

778

The first, which is implemented in mainstream compilers, inserts an mfence after every SC779

write; whereas the second inserts an mfence before every SC read. Importantly, one should780

globally apply one of the two mappings to ensure the existence of an mfence between every781

SC write and following SC read.782

XX:22 Reconciling Event Structures with Modern Multiprocessors

5.1.2 POWER783

There are two alternative sound mappings of SC accesses to POWER:784

Leading sync Trailing sync
(|Rsc|) , sync;(|Racq|) (|Rsc|) , ld;sync
(|Wsc|) , sync;st (|Wsc|) , (|Wrel|);sync
(|RMWsc|) , sync;(|RMWacq|) (|RMWsc|) , (|RMWrel|);sync

785

The first scheme inserts a sync before every SC access, while the second inserts an sync786

after every SC access. Importantly, one should globally apply one of the two mappings to787

ensure the existence of a sync between every two SC accesses.788

Observing that sync is the result of mapping an SC-fence to POWER, we can reuse the789

existing proof for the mapping of IMM to POWER. To handle the leading sync (respectively,790

trailing sync) scheme we introduce a preceding step, in which we prove that splitting in the791

whole execution graph each SC access to a pair of an SC fence followed (preceded) by a792

release/acquire access is a sound transformation under IMMSC. That is, this global execution793

graph transformation cannot make an inconsistent execution consistent:794

I Theorem 12. Let G be an execution graph such that

[Rsc ∪ Wsc] ; (G.po′ ∪G.po′ ;G.hb ;G.po′) ; [Rsc ∪ Wsc] ⊆ G.hb ; [Fsc] ;G.hb,

where G.po′ , G.po \G.rmw. Let G′ be the execution graph obtained from G by weakening795

the access modes of SC write and read events to release and acquire modes respectively. Then,796

IMMSC-consistency of G follows from IMM-consistency of G′.797

Having this theorem, we can think about mapping of IMMSC to POWER as if it consists798

of three steps. We establish the correctness of each of them separately.799

1. At the IMMSC level, we globally split each SC-access to an SC-fence and release/acquire800

access. Correctness of this step follows by Theorem 12.801

2. We map IMM to POWER, whose correctness follows by the existing results of [19], since802

we do not have SC accesses at this stage.803

3. We remove any redundant fences introduced by the previous step. Indeed, following the804

leading sync scheme, we will obtain sync;lwsync;st for an SC write. The lwsync is805

redundant here since sync provides stronger guarantees than lwsync and can be removed.806

Similarly, following the trailing sync scheme, we will obtain ld;cmp;bc;isync;sync for807

an SC read. Again, the sync makes other synchronization instructions redundant.808

5.1.3 ARMv7809

The ARMv7 model [1] is very similar to the POWER model with the main difference being810

that it has a weaker preserved program order than POWER. However, Podkopaev et al. [19]811

proved IMM to POWER compilation correctness without relying on POWER’s preserved812

program order explicitly, but assuming the weaker version of ARMv7’s order. Thus, their813

proof also establishes correctness of compilation from IMM to ARMv7.814

Extending the proof to cover SC accesses follows the same scheme discussed for POWER,815

since two intended mappings of SC accesses for ARMv7 are the same except for replacing816

POWER’s sync fence with ARMv7’s dmb:817

Leading dmb Trailing dmb
(|Rsc|) , dmb;(|Racq|) (|Rsc|) , ldr;dmb
(|Wsc|) , dmb;str (|Wsc|) , (|Wrel|);dmb
(|RMWsc|) , dmb;(|RMWacq|) (|RMWsc|) , (|RMWrel|);dmb

818

E. Moiseenko et al. XX:23

5.1.4 ARMv8819

Since ARMv8 has added dedicated instructions to support C/C++-style SC accesses, we820

have established the correctness of a mapping employing these new instructions:821

(|Rsc|) , LDAR
(|Wsc|) , STLR
(|FADDsc|) , L:LDAXR;STLXR;BC L
(|CASsc|) , L:LDAXR;CMP;BC Le;STLXR;BC L;Le:

822

We note that in this mapping, we follow Podkopaev et al. [19] and compile RMW opera-823

tions to loops with load-linked and store-conditional instructions (LDX/STX). An alternative824

mapping for RMWs would be to use single hardware instructions, such as LDADD and CAS, that825

directly implement the required functionality. Unfortunately, however, due to a limitation of826

the current IMM setup and unclarity about the exact semantics of the CAS instruction, we827

are not able to prove the correctness of the alternative mapping employing these instructions.828

The problem is that IMM assumes that every po-edge from a RMW instruction is preserved,829

which holds for the mapping of CAS using the aforementioned loop, but not necessarily using830

the single instruction.831

6 Related Work832

While there are several memory model definitions both for hardware architectures [1, 10, 17,833

21, 22] and programming languages [3, 4, 11, 15, 18, 20] in the literature, there are relatively834

few compilation correctness results [6, 9, 12, 14, 19, 25].835

Most of these compilation results do not tackle any of the problems caused by po∪rf cycles,836

which are the main cause of complexity in establishing correctness of compilation mappings837

to hardware architectures. A number of papers (e.g., [6, 12, 25]) consider only hardware838

models that forbid such cycles, such as x86-TSO [17] and “strong POWER” [13], while others839

(e.g., [9]) consider compilation schemes that introduce fences and/or dependencies so as to840

prevent po∪ rf cycles. The only compilation results where there is some non-trivial interplay841

of dependencies are by Lahav et al. [14] and by Podkopaev et al. [19].842

The former paper [14] defines the RC11 model (repaired C11), and establishes a number843

of results about it, most of which are not related to compilation. The only relevant result844

is its pencil-and-paper correctness proof of a compilation scheme from RC11 to POWER845

that adds a fence between relaxed reads and subsequent relaxed writes, but not between846

non-atomic accesses. As such, the only po ∪ rf cycles possible under the compilation scheme847

involve a racy non-atomic access. Since non-atomic races have undefined semantics in RC11,848

whenever there is such a cycle, the proof appeals to receptiveness to construct a different849

acyclic execution exhibiting the race.850

The latter paper [19] introduced IMM and used it to establish correctness of compilation851

from the “promising semantics” (PS) [12] to the usual hardware models. As already men-852

tioned, IMM’s definition catered precisely for the needs of the PS compilation proof, and853

so did not include important features such as sequentially consistent (SC) accesses. Our854

compilation proof shares some infrastructure with that proof—namely, the definition of855

IMM and traversals—but also has substantial differences because PS is quite different from856

Weakestmo. The main challenges in the PS proof were (1) to encode the various orders of857

the IMM execution graphs with the timestamps of the PS machine, and (2) to construct the858

certification runs for each outstanding promise. In contrast, the main technical challenge in859

the Weakestmo compilation proof is that event structures represent several possible executions860

XX:24 Reconciling Event Structures with Modern Multiprocessors

of the program together, and that Weakestmo consistency includes constraints that correlate861

these executions, allowing one execution to affect the consistency of another.862

7 Conclusion863

In this paper, we presented the first correctness proof of mapping from the Weakestmo864

memory model to a number of hardware architectures. As a way to show correctness of865

Weakestmo compilation to hardware, we employed IMM [19], which we extended with SC866

accesses, from which compilation to hardware follows.867

Although relying on IMM modularizes the compilation proof and makes it easy to extend868

to multiple architectures, it does have one limitation. As was discussed in Section 5.1.4, IMM869

enforces ordering between RMW events and subsequent memory accesses, while one desirable870

alternative compilation mapping of RMWs to ARMv8 does not enforce this ordering, which871

means that we cannot prove soundness of that mapping via the current definition of IMM.872

We are investigating whether one can weaken the corresponding IMM constraint, so that we873

can establish correctness of the alternative ARMv8 mapping as well.874

Another way to establish correctness of this alternative mapping to ARMv8 may be to use875

the recently developed Promising-ARM model [22]. Indeed, since Promising-ARM is closely876

related to PS [12], it should be relatively easy to prove the correctness of compilation from877

PS to Promising-ARM. Establishing compilation correctness of Weakestmo to Promising-878

ARM, however, would remain unresolved because Weakestmo and PS are incomparable [6].879

Moreover, a direct compilation proof would probably also be quite difficult because of the880

rather different styles in which these models are defined.881

References882

1 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,883

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,884

July 2014. URL: http://doi.acm.org/10.1145/2627752, doi:10.1145/2627752.885

2 Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics in C11 and886

OpenCL. In POPL 2016, pages 634–648. ACM, 2016.887

3 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++888

concurrency. In POPL 2011, pages 55–66, New York, 2011. ACM. doi:10.1145/1925844.889

1926394.890

4 John Bender and Jens Palsberg. A formalization of java’s concurrent access modes. Proc.891

ACM Program. Lang., 3(OOPSLA):142:1–142:28, October 2019. URL: http://doi.acm.org/10.892

1145/3360568, doi:10.1145/3360568.893

5 Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In894

MSPC 2014, pages 7:1–7:6. ACM, 2014. doi:10.1145/2618128.2618134.895

6 Soham Chakraborty and Viktor Vafeiadis. Grounding thin-air reads with event structures.896

Proc. ACM Program. Lang., 3(POPL):70:1–70:27, 2019. doi:10.1145/3290383.897

7 The Coq development of IMM, available at http://github.com/weakmemory/imm, 2019.898

8 Will Deacon. The ARMv8 application level memory model, 2017. URL: https://github.com/899

herd/herdtools7/blob/master/herd/libdir/aarch64.cat.900

9 Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races in space901

and time. In PLDI 2018, pages 242–255, New York, 2018. ACM. URL: http://doi.acm.org/10.902

1145/3192366.3192421, doi:10.1145/3192366.3192421.903

10 Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,904

Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: Concurrency905

and ISA. In POPL 2016, pages 608–621, New York, 2016. ACM. URL: http://doi.acm.org/10.906

1145/2837614.2837615, doi:10.1145/2837614.2837615.907

http://doi.acm.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/1925844.1926394
http://dx.doi.org/10.1145/1925844.1926394
http://dx.doi.org/10.1145/1925844.1926394
http://doi.acm.org/10.1145/3360568
http://doi.acm.org/10.1145/3360568
http://doi.acm.org/10.1145/3360568
http://dx.doi.org/10.1145/3360568
http://dx.doi.org/10.1145/2618128.2618134
http://dx.doi.org/10.1145/3290383
http://github.com/weakmemory/imm
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
http://doi.acm.org/10.1145/3192366.3192421
http://doi.acm.org/10.1145/3192366.3192421
http://doi.acm.org/10.1145/3192366.3192421
http://dx.doi.org/10.1145/3192366.3192421
http://doi.acm.org/10.1145/2837614.2837615
http://doi.acm.org/10.1145/2837614.2837615
http://doi.acm.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615

E. Moiseenko et al. XX:25

11 Alan Jeffrey and James Riely. On thin air reads towards an event structures model of relaxed908

memory. In LICS 2016, pages 759–767, New York, 2016. ACM. URL: http://doi.acm.org/10.909

1145/2933575.2934536, doi:10.1145/2933575.2934536.910

12 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising911

semantics for relaxed-memory concurrency. In POPL 2017, pages 175–189, New York, 2017.912

ACM. doi:10.1145/3009837.3009850.913

13 Ori Lahav and Viktor Vafeiadis. Explaining relaxed memory models with program transfor-914

mations. In FM 2016. Springer, 2016. doi:10.1007/978-3-319-48989-6_29.915

14 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing916

sequential consistency in C/C++11. In PLDI 2017, pages 618–632, New York, 2017. ACM.917

doi:10.1145/3062341.3062352.918

15 Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In POPL 2005,919

pages 378–391, New York, 2005. ACM. doi:10.1145/1040305.1040336.920

16 C/C++11 mappings to processors, 2016. URL: http://www.cl.cam.ac.uk/~pes20/cpp/921

cpp0xmappings.html.922

17 Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In923

TPHOLs 2009, volume 5674 of LNCS, pages 391–407, Heidelberg, 2009. Springer.924

18 Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that925

permits optimisation and avoids thin-air executions. In POPL 2016, pages 622–633, New York,926

2016. ACM. doi:10.1145/2837614.2837616.927

19 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between programming928

languages and hardware weak memory models. Proc. ACM Program. Lang., 3(POPL):69:1–929

69:31, 2019. doi:10.1145/3290382.930

20 Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. Operational aspects of C/C++931

concurrency. CoRR, abs/1606.01400, 2016. URL: http://arxiv.org/abs/1606.01400.932

21 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.933

Simplifying ARM concurrency: multicopy-atomic axiomatic and operational models for ARMv8.934

Proc. ACM Program. Lang., 2(POPL):19:1–19:29, 2018. doi:10.1145/3158107.935

22 Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-936

Kil Hur. Promising-ARM/RISC-V: a simpler and faster operational concurrency model.937

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design938

and Implementation, PLDI 2019, pages 1–15, New York, NY, USA, 2019. ACM. URL:939

http://doi.acm.org/10.1145/3314221.3314624, doi:10.1145/3314221.3314624.940

23 The RISC-V instruction set manual. volume i: Unprivileged ISA, 2018. Available941

at https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/942

riscv-spec.pdf [Online; accessed 23-August-2018].943

24 RISC-V: herd vs. operational models, 2018. URL: http://diy.inria.fr/cats7/riscv/.944

25 Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter945

Sewell. CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22,946

2013. doi:10.1145/2487241.2487248.947

http://doi.acm.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://dx.doi.org/10.1145/2933575.2934536
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1145/3062341.3062352
http://dx.doi.org/10.1145/1040305.1040336
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://dx.doi.org/10.1145/2837614.2837616
http://dx.doi.org/10.1145/3290382
http://arxiv.org/abs/1606.01400
http://dx.doi.org/10.1145/3158107
http://doi.acm.org/10.1145/3314221.3314624
http://dx.doi.org/10.1145/3314221.3314624
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf
http://diy.inria.fr/cats7/riscv/
http://dx.doi.org/10.1145/2487241.2487248

	1 Introduction
	2 Overview of the Compilation Correctness Proof
	2.1 An Informal Introduction to IMM
	2.2 An Informal Introduction to Weakestmo
	2.3 Weakestmo to IMM Compilation: High-Level Proof Structure
	2.4 Weakestmo to IMM Compilation Correctness by Example

	3 Formal Definition of Weakestmo
	3.1 Events, Threads and Labels
	3.2 Event Structures
	3.3 Event Structure Construction
	3.4 Event Structure Consistency
	3.5 Execution Extraction

	4 Compilation Proof for Weakestmo
	4.1 The Intermediate Memory Model IMM
	4.2 Simulation Relation for Weakestmo to IMM Proof
	4.3 Simulation Step Proof Outline
	4.3.1 Justifying the New Read Events
	4.3.2 Ordering the New Write Events
	4.3.3 Construction Overview

	5 Handling SC Accesses
	5.1 Compiling IMM-SC to Hardware
	5.1.1 TSO
	5.1.2 POWER
	5.1.3 ARMv7
	5.1.4 ARMv8

	6 Related Work
	7 Conclusion

