MFPS 2011

Concurrent separation logic
and operational semantics

Viktor Vafeiadis

Maz-Planck Institute for Software Systems (MPI-SWS), Germany

Abstract

This paper presents a new soundness proof for concurrent separation logic (CSL) in terms of the
standard operational semantics. The new proof gives a direct meaning to CSL judgments, explains
clearly the problem with the conjunction rule and ‘precise’ resource invariants, and can easily be
adapted to handle extensions of CSL, such as permissions and storable locks, as well as more
advanced program logics, such as RGSep.

Keywords: Separation logic; concurrency; soundness; race condition

1 Introduction

Concurrent separation logic [15] (CSL) is a concurrent program logic, a formal
system for proving certain correctness properties of concurrent programs. It
is based on the notion of resource ownership, where the resource typically is
dynamically allocated memory (i.e., the heap). Since its inception by O’Hearn,
it has become quite popular, because it permits elegant correctness proofs of
some complex concurrent pointer programs that keep track of their memory
consumption and explicitly deallocate any unused memory. Its popularity is
evident by the number of extensions to CSL (e.g., permissions [2,1], locks in
the heap [9,13], variables as resource [16], re-entrant locks [11]).

Besides having many extensions, CSL also has many soundness proofs.
Some proofs [3,12,10] are about plain CSL, some [5,9,13] are about a particular
extension, while others [6,4] are more abstract and cover several extensions.

Existing proofs fall into two categories. Most proofs [3,9,10,13,6,4] give the
semantics of triples in terms of a non-standard ‘intermediate’ semantics that
keeps explicit track of resource ownership during execution. In such semantics,

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



VAFEIADIS

acquiring and releasing a lock, operations that normally update a single bit,
instead allocate or deallocate part of the heap (receiving it from or sending
to a shared resource). The adequacy of the intermediate semantics is usu-
ally justified by an ‘erasure’ theorem stating that the intermediate semantics
simulates a standard semantics. Some other proofs [11,14] instead follow the
preservation and progress proof strategy that is common in type systems. In
this style, the semantics of triples is never defined rendering the proofs fragile
and uninformative.

In this paper, we take a direct approach to proving soundness of CSL.
We define the meaning of CSL judgments directly in terms of a standard
operational semantics for the programming language (see §3). This leads to
four advantages over existing proofs:

(i) We have a concise statement of the semantics of CSL judgments in terms
of a standard semantics.

(ii) Our soundness proof is simpler than existing proofs and can be extended
easily to handle permissions (§6) and other CSL extensions.

(iii) Our statement encompasses the framing aspect of separation logic, and
hence does not technically require “safety monotonicity” and the “frame
property” [20], further simplifying the proof.

(iv) Our statement does not insist on resource invariants being precise. We
prove (a) that CSL with possibly imprecise resource invariants and with-
out the conjunction rule is sound, and (b) that the conjunction rule is
sound provided that the resource invariants in scope are precise. The two
proofs use exactly the same semantics. *

Paper Outline. For pedagogic reasons, we will first focus on a cut down
version of CSL where the only construct for synchronisation is an atomic block
executing in one atomic step (§2). We shall give the syntax and semantics
of the programming language and of separation logic assertions, as well as
the CSL proof rules. We shall then define carefully the semantics of the
CSL judgments (§3) and prove that the proof rules are sound paying special
attention to the conjunction rule and the precision issue (§4).

Later, in §5, we shall consider O’Hearn’s original setting with multiple
named conditional critical regions that execute non-atomically, but in mutual
exclusion, and prove CSL’s data race freedom result. This proof [18] consti-
tutes the main result of the paper and is formalised in Isabelle/HOL. We shall
also see how our correctness statements can be adapted to handle extensions
of CSL, such as permissions (§6) and RGSep (§7).

L Just to clarify, this is not the first soundness proof for CSL with imprecise resource
invariants. There exist such proofs in the literature (e.g., [8,11]), but unfortunately they do
not explain clearly why precision is necessary for the conjunction rule to hold.

2



VAFEIADIS

ALL) z := alloc(E), (s, h) — skip, (s[z := £], h[¢ := [E](s)]) where ¢ ¢ dom(h)
if [E](s) € dom
if [E](s) ¢ dom

h)
h)

3 (SEQ1) C,o —* skip, o’
(skip; C2),0 — Cs,0 (ATOoM)
atomic C,o — skip, o’
Ci,0 = C1,0
p - (SEQ2) Ci,0 — C},0'
(C1;C2),0 — (C1;C2),0 (PAR1)
(C1lICa),0 = (C1]|C2), 0
Ci,0 — abort
(SEQA) Ca,0 — Ch, 0’
(C1;C2),0 — abort (PAR2)
(C1]|C2),0 = (C1[|C3), 0’
=(s,h) [B
(s.h) [B]() (IF1) (PAR3)
(if B then C, else C3),0 — C1,0 (skip||skip), o — skip, o
—(s,h) —[B Cr, bort
o= {(s,h) =[B](s) (IF2) 1,0 — abor (PARA1L)
(if B then C else C3),0 — Cs,0 (C1||C2), 0 — abort
C,o0 —" abort Cy,0 — abort
(ATOMA) (PARA?2)
atomic C,0 — abort (C1||C2), 0 — abort
(Loop)
while B do C,o — (if B then (C;while B do C) else skip), o
(ASSIGN) z := E, (s, h) — skip, (s[z := [E](s)], h)
(READ) =z := [E], (s, h) — skip, (s[z :=v], h) if h([E](s)) =v
(READA) z := [E], (s, h) — abort if [E](s) ¢ dom(h)
(WRI) [E] =E', (s, h) — skip, (s, h[[E](s) := [E'](s)]) if [E](s) € dom(h)
(WRIA) [E]:=FE’,(s,h) — abort if [E](s) ¢ dom(h)
(
(
(

)
dispose(FE), (s,h) — skip, (s, h[[E](s) := 1])
), (s, h) — abort

(
(

FREEA) dispose(E
Fig. 1. Small-step operational semantics for commands

2 Concurrent Separation Logic

Consider the following simple language of commands:

E:=xz|n|E+E|E-F]|...
B:=BAB|-B|E=E|E<E]|...
C:u=skip|z:=F|x:=[E]||[E] = FE |z :=alloc(F) | dispose(F)

| C1;Cy | C41]|Cy | if B then C) else Cs | while B do C' | atomic C

Arithmetic expressions, E, consist of program variables, integer constants, and
arithmetic operations. Boolean expressions, B, consist of arithmetic equalities
and inequalities and Boolean operations. Commands, C', include the empty
command, variable assignments, memory reads, writes, allocations and deallo-
cations, sequential composition, parallel composition, conditionals, loops, and
atomic commands.

We assume a domain of variable names (VarName), a domain of memory
locations (Loc) and a domain of values (Val) that includes memory locations

3



VAFEIADIS
and define the following composite domains:

s € Stack & VarName — Val stacks (interpretations for variables)
h € Heap & Loc —4, Val heaps (dynamically allocated memory)
o € State % Stack x Heap program states

Arithmetic and Boolean expressions are interpreted denotationally as total
functions from stacks to values or Boolean values respectively:

[-] : Exp — Stack — Val [-] : BoolExp — Stack — {true, false}
[1(s) = () [B1 A Bal(s) = [Bi](s) A [Ba)(s)
[Ey+ Bu](s) = [Bi(s) + [Bal(s) | [Br < Ea](s) = [En](s) < [E2](s)

Commands are given a small-step operational semantics in Figure 1. Con-
figurations are pairs (C, o) of a command and a state. There are transitions
from one configuration to another as well as transitions from a configuration
to abort denoting execution errors such as accessing an unallocated memory
location. Parallel composition interleaves executions of its two components,
while atomic commands execute their body, C, in one transition. In the
premise of ATOM, —* stands for zero or more — transitions. 2

Separation logic assertions are given by the following grammar:

P.Q,R,J:=B|PVQ|PAQ|-P|P=Q|Vz. P|3z. P
lemp | By — E> [ PxQ | P Q| ®ier P

These include Boolean expressions, all the classical connectives, first order
quantification, and five assertions pertinent to separation logic. These are the
empty heap assertion (emp), the points-to assertion (E; — FEs) indicating
that the heap consists of a single memory cell with address £ and contents
E5, separating conjunction (x), separating implication (—), and an iterative
version of separating conjunction (&).

Assertions denote sets of states. Their semantics is given as a modelling
relation, s, h = P, stating that the state (s, h) satisfies the assertion P.

s,h = emp &L dom(h) =0
s,hl= E B &L dom(h) = [E](s) A R([E](s)) = [E'](s)

sShiEP*Q &L 3hy ho. h=h Wha A (s,hy £ P)A(s,hs = Q)

s,hi=P—~Q <L Vhy. def(hWh) A(s,hi = P) = (s,h&hy = Q)

2 Normally, in addition to ATOM, there should be another rule for infinite executions for
the body of atomic blocks. For simplicity, we omit such a rule. In §5, we will present a
different semantics that does not involve —* and does not suffer from this problem.

4



VAFEIADIS

- (SKIP) JEA{P} Ci {Q1}
J - {P} skip {P} J P} Oy {Q2)
x & fv(J) ASSIGN fv(Py,C1, Q1) Nwr(Ca) =0
T B/aPt e —B (P} | ! WP, G @) Nwrl(C) =0
v (B E.) JEA{PL* P2} C1]|C2 {Q1 % Q2}
, , -, (READ) JxRF {P} C{Q}
JE{E— E}z:=[E]{E— E'Nz=FE'"} (SHARE)
(WRITE) JH{P xR} C {Q* R}
JH{Ew— -} [E]:=FE {Ew— E'} JH (P} C Q)
@ ¢ M(E,J) (ALLOC) MER) N wr(C) =0 (FRAME)
J F {emp} z:=alloc(F) {z — E} JE{P xR} C{Q=* R}
. (FREE) JH{P} C{Q}
J+{FE +— —} dispose(FE) {emp} P p 0= Consia)
{P} O (R} JH{P} C{Q:}
J+{PAB}Ci {Q} JHA{P} C {Q2}

JH{PA-B} C: {Q} (IF) JE{P1V P} C{Q1VQ2} (b=
J +{P} if B then C else C> {Q}

JE{P}YC{Q} = ¢N(0O) (Ex)
J+{PAB}C{P} (WHILE) J {3z P} C{3z. Q}
J + {P} while B do C {P A -B} JF{P} C{Q:}
emp - {PxJ} C{Q*J} (ATOM) S {2} C{Qz} J precise (Cony)

J +{P} atomic C {Q} JHE{PLA P} C{Q1 A Q2}

Fig. 2. Concurrent separation logic proof rules.

Here, hy W hy stands for the union of the two heaps h; and ho and is undefined
unless dom(h;) N dom(hy) = 0. We write def(X) to say that X is defined.
The other assertions are interpreted classically.

An important class of assertions are the so-called precise assertions, which
are assertions satisfied by at most one subheap of any given heap. Formally,
if there are satisfied by two such heaps, hy and h}, the two must be equal:

Definition 2.1 An assertion, P, is precise iff for all hy, ho, R}, and hj, if
dEf(hl L‘Uhg) and hl L‘Uhg = hll Lﬂh; and S, hl ): P and S, hll ): P, then hl = hll

CSL judgments are of the form, J F {P} C' {Q}, where J is known as
the resource invariant, P as the precondition, and () as the postcondition.
Informally, these specifications say that if C' is executed from an initial state
satisfying P * .J, then J will be satisfied throughout execution and the final
state (if the command terminates) will satisfy @ x J. There is also an own-
ership reading attached to the specifications saying that the command ‘owns’
the state described by its precondition: the command can change it and can
assume that no other parallel thread can change it. In contrast, the state

bt



VAFEIADIS

described by J can be changed by other concurrently executing threads. The
only guarantee is that it will always satisfy the resource invariant, .J.

The proof rules are shown in Figure 2. Among the proof rules, some are
particularly noteworthy. READ and WRITE both require that the memory
cell accessed is part of the precondition: this ensures that the cell is allocated
(and hence, the access will be safe) and that no other thread is accessing it
concurrently. ATOM allows the body of atomic blocks to use the resource
invariant, J, and requires them to re-establish it at the postcondition. PAR
allows us to compose two threads in parallel if and only if their preconditions
describe disjoint parts of the heap. This prevents data races on memory
locations. The side-conditions ensure that there are also no data races on
program variables—here, fv returns the set of free variables of a command or
an assertion, whereas wr(C') returns the set of variables being written by the
command C. SHARE allows us at any time to extend the resource invariant by
separatingly conjoining part of the local state, R. FRAME allows us to ignore
part of the local state, the frame R, which is not used by the command,
ensuring that R is still true at the postcondition.

Finally, the conjunction rule, CONJ, has a perhaps surprising side-condition.
This side-condition is necessary for soundness as illustrated by Reynolds’s
counterexample [15, §11]. In most presentations, J is required to be precise
in all judgments. This, however, is unnecessary: precision is needed only for
the conjunction rule.

3 The Meaning of CSL Judgments

We define the semantics of CSL judgments in terms of an auxiliary predicate,
safe, (C, s, h, J, @), stating that the command C executing with a stack, s, and
a local heap, h, is safe with respect to the resource invariant J and the post-
condition () for up to n execution steps. A CSL judgment, J = {P} C {Q},
simply says that the program C' is safe with respect to J and () for every
initial local state satisfying the precondition, P, and for any number of steps:

Definition 3.1 (Configuration Safety) safe,(C,s,h, J, Q) holds always.
safe,1(C, s, h, J, Q) holds if and only if

(7) if C' = skip, then s, h = Q; and

(#) for all hy and hg, if s,h; = J and (h W h; W hg) is defined, then
C,(s,hW h; W hg) 4 abort; and

(@i) for all C", hy, hg, W' and ¢, if s,hy; | J, (h W hy; W hg) is defined,
and C, (s,h W hy; W hg) — C',(s', 1), then there exist h” and R, such that
B =h"Wh, W hg and ', 1) = J and safe,(C', ', 1", J, Q).

Definition 3.2 J = {P} C {Q} if and only if for all n, s, and h, if s,h = P,
then safe, (C, s, h, J, Q).



VAFEIADIS

Intuitively, any configuration is safe for zero steps. For n + 1 steps, it
must (7) satisfy the postcondition if it is a terminal configuration, (i) not
abort, and (4ii) after any step, re-establish the resource invariant and be safe
for another n steps. The number of steps merely ensures the definition is
structurally decreasing.

In more detail, h is the part of the heap that is ‘owned’ by the command:
the command can update h and no other command can access it in parallel.
In conditions (7i) and (iiz), h; represents the part of the heap that is shared
among threads, and must hence satisfy the resource invariant. So, condition
(747) ensures that after the transition a new such component, h’;, can be found.
Finally, hg represents the remaining part of the heap owned by the rest of the
system. In condition (4i), the command must not abort regardless of what
that remaining part is. In condition (7i), the command must not change any
part of the heap that could be owned by another thread. Therefore, hg must
be a subheap of the new heap h'.

Safety Monotonicity & Frame Property. Another way to view hp is that
the quantifications’ purpose is to admit the frame rule. Indeed, in condition
(i), hr essentially plays the role of “safety monotonicity” [20], which requires
that if (C, h) is safe (i.e., does not abort), then (C,h W hg) is also safe.

Similarly, in condition (éiz), hr plays the role of the “frame property” [20],
which requires that whenever (C, h) is safe and C, (s, Aihg) — C’, (s', h’), then
there exists h” such that C, (s,h) — C’,(s',h") and b’ = h” & hg. Condition
(7ii) does not quite imply the frame property, as it does not require that
C,(s,h) — C',(s',h"). Tt rather takes the transition C,(s,h) — C’, (s, h")
into account even though it might not be present.

The difference is quite subtle. In particular, if the operational semantics
satisfies the safety monotonicity and frame properties (which it does in our
case), we can drop the hp quantification. (See [18] for a proof.) Having the
quantification, however, is crucial for some of the CSL extensions (see §6) and
even simplifies some of the proofs for the normal CSL (PAR and FRAME).

Discussion. A nice aspect of Definition 3.1 is that the straightforward lem-
mata about safety of compound commands are usually already inductive,
thereby rendering the otherwise most challenging part of soundness proofs
trivial. The only exception is Lemma 5.3 about the resource declaration rule
(for an extension of Definition 3.1 to handle multiple named CCRs), which
was arguably the most intellectually challenging part of the proof.

A second benefit is that we do not strictly require an abort semantics to
prove the soundness of CSL: if we drop condition (ii) from Definition 3.1,
we can still prove the soundness of CSL without ever referring to an abort
semantics. In contrast, proofs relying on the safety monotonicity and frame
properties heavily depend on an abort semantics (e.g., [3,4,5,6,9,10]).

7



VAFEIADIS

4 Soundness Proof

We start with some basic —but important— properties of the semantics. In the
following, let [s ~ §']X stand for Vo € X. s(z) = s'(x).

Proposition 4.1 If C,(s,h) — C',(s',h'), then fv(C") C fv(C), wr(C") C
wr(C), and [s ~ """,

Proposition 4.2 (i) If [s ~ s']"E) then [E](s) = [E](s).

(i3) If [s ~ s'|NB) | then [B](s) = [B](s').

(i3i) If [s ~ &')MP) | then s, h |= P if and only if s',h = P.

(iv) If [s ~ s']"C) and C, s — abort, then C,s' — abort.

(v) If X D fv(C) and [s ~ §'|X and C,s — C,s1, then there exist s} such
that C,s' — C1, s} and [s; ~ si]%.

Now to the properties of Definition 3.1. By construction, safe is monotonic
with respect to n: if a configuration is safe for a number of steps, n, it is also
safe for a smaller number of steps, m. (This is proved by induction on m.)

Lemma 4.3 If safe,(C,s, h, J,Q) and m < n, then safe,,(C, s, h, J, Q).

Further, as a corollary of Proposition 4.2, safe, (C, s, h, J, Q) depends only
on the values of variables that are mentioned in C', J, Q).

Lemma 4.4 Ifsafe,(C, s, h,J,Q) and [s ~ s']VCIQ) then safe, (C, s, h, J,Q).
The soundness theorem for CSL is the following:

Theorem 4.5 (CSL Soundness) IfJF {P} C {Q}, then J = {P} C {Q}.

Our proof strategy is to prove that each proof rule is a sound implication if we
replace all the - by |=. Then, the theorem follows by a straightforward rule
induction. For brevity, we only show the proofs of the most interesting rules.

(Sk1p) The rule for skip follows immediately from the following lemma, whose
proof is trivial because there are no transitions from skip.

Lemma 4.6 Foralln, s, h, J, and Q, if s, h |= Q, then safe,(skip, s, h, J, Q).
(AToM) We need an auxiliary lemma for code executing in atomic blocks:

Lemma 4.7 If Vn. safe,(C, s, h,emp, Q)) and def(h W hg), then

(i) =(C, (s,h & hg) —* abort); and

(1) if, moreover, C, (s, hW hg) —* skip, (s',h'), then there exists h" such that
R =h"Whg and s', 1" = Q.

This lemma is proved by an induction on the length of the —* traces,
noting that when J = emp, the second clause of Definition 3.1 simplifies to
safe,1(C, s, h,emp, @) if and only if

8



VAFEIADIS

(i) if C' = skip, then s,h = @Q; and

(i) for all hy, if def(h W hg), then C, (s, h W hg) /4 abort; and

(éi1) for all hg, C', &', B, if C,(s,h W hg) — C’,(s', k'), then there exists h”
such that A’ = h” W hy and safe,(C’, s, 1", J, Q).

Now to the main lemma for atomic commands:
Lemma 4.8 [femp = {PxJ} C {Q* J}, then J = {P} atomic C {Q}.

Proof. Assume (*) emp = {P* J} C {Q * J}, and pick arbitrary s, h = P
and n. We have to show that safe,(atomic C,s,h,J, Q). If n = 0, this is
trivial; so consider n = m + 1. Condition () is trivial as atomic C # skip.
(i) If atomic C, (s, hWh,;Why) — abort, then from the operational semantics
C, (s,h W h; W hyp) —* abort, which with Lemma 4.7 contradicts (*).

(#i) The only way for atomic C, (s,h W hyhp) — C',(s', 1) is if C" = skip
and C, (s,h W hy; W hg) —* skip, (s',h’). Hence, from assumption (*) and
Lemma 4.7, there exists h” such that ' = h” W hg and §',h" = Q x J. So,
there exist A" and R/, such that A" = " W R/, s',h" = Q, and §', 1/, = J.
Finally, from Lemma 4.6, we get safe,,(skip, s', b, J, Q). O

(PAR) For parallel composition, we need the following auxiliary lemma:

Lemma 4.9 Ifsafe,(Cy, s, hy, J,@Q1), safe,(Cy, s, he, J,Q1), hyWhy is defined,
fv(C1, Q1) Nwr(Cy) = 0, and fv(Cy, Q2) Nwr(CY) = 0, then safe, (Cy||Cy, s, hy W
ha, J, Q1 * Q2).

Proof. The proof by induction on n. In the inductive step, we know IH (n) def

VC’l, hl, CQ, hg. safen(C’l, S, hl, J, Ql) A safen(Cg, S, hg, J, Ql) AN def(h1 () h2>
A fV(Cl, Ql) N WI’(CQ) = (Z) A\ fV(CQ, QQ) N WI’(Cl) = @
= safe, (C1]|Cy, s, i W hy, J, Q1 % Q2)

and we have to show IH (n+1). So, pick arbitrary C1, hy, Cs, hy and assume (1)
safe,1(Ch, s, h1, J,Q1), (2) safe,1(Cy, s, he, J,Q2), (3) def(hyWhy) and (4) the
variable side-conditions, and try to show safe,1(C1||Cy, s, hi W ho, J, Q1 % Q3).
Condition (1) is trivial.

(i1) If C1||Cy, (s, hy WheWh;Whr) — abort, then according to the operational
semantics C1, (s, hywhowh jwhg) — abort or Cy, (s, hyWheWh ;Whr) — abort,
contradicting our assumptions (1) and (2).

(#ii) Pick arbitrary C’, hy, hg, §', b’ such that s,h; = J, (hy Why Wh; W hy)
is defined, and C4[|Cy, (s,h1 W he W hy W hg) — (C', ', h'). The operational
semantics has three possible transitions for C||Cs.

Case (PARl) C = CiHCQ and Cl, (S, hiWhy W hJ W hF) — Ci, (S/, ]’Ll)

From (1), there exist A} and A/, such that A’ = b WA/, W (ha Whg), s', 1) = J,
and safe, (C1, s, hy, J, Q1).



VAFEIADIS

From (2) and Proposition 4.3, we have safe,, (Cy, s, ha, J, Q2). Then, from
Propositions 4.4 and 4.1, and assumption (4), we have safe,(Cs, §', ha, J, Q2).
Also, from Proposition 4.1 and (4), fv(C}, Q1) Nwr(Cy) = () and fv(Cy, Q2) N
wr(C1) = 0, and hence from IH (n), safe,(C1||Ca, s', b} W he, J, Q1 * Q2).
Case (PAR2). This case is completely symmetric.

Case (PAR3) CL =0y = C = Skip7 h = hiWho hJ W hr. From (1) and
(2), unfolding the definition of safe, we have that s, hy = @ and s, hy = Q5.
So, s, hy W hy = Q1 % Qy, and, from Lemma 4.6, safe,, (skip, s, h & hy). O

(FRAME) The frame rule is a cut-down version of the parallel composition
rule. It follows directly from the following lemma:

Lemma 4.10 Ifsafe,(C, s, h,J,Q), fv(R)Nwr(C) =0, hWhg is defined, and
s,hr = R, then safe,(C,s,h W hg, J,Q * R).

Proof. By induction on n. The base case is trivial. For the inductive step,
assume (*) safe,1(C, s, h, J,Q), (1) fv(R) Nwr(C) =0, and (}) s,hr F R.
Now, we have to prove safe,1(C, s, h & hg, J,Q * R).

(i) From (*), we get s, h = @ and so, using (f), s,h W hg = Q * R.

(i1) Pick hy and hp. Then, from (*), C,(s,h W hg W h; W hg) 4 abort.

(ii) If C, (s,h hghy W hg) — C', (s, 1), then from (*), there exist h”, b/,
such that A’ = K" Wh, W (hg W hp) and §', b/, = J and safe,(C’, s', h", J, Q).
Now, from (1), (1), Prop. 4.1 and 4.2, we get ', hg = R and fv(R)Nwr(C") = 0.
Therefore, from the induction hypothesis, safe,,(C’, ', k' W hg, J,Q « R). O

(SHARE) We need the following lemma, which is similar to the previous one.

Lemma 4.11 [f safe,(C,s,h,J * R,Q), h W hg is defined, and s,hr = R,
then safe, (C,s,h W hg, J,Q * R).

Proof. By induction on n. For the inductive step,

(i) From our assumptions, s,h = @ and s, hg = R, and so s, hWhr = Q * R.
(i) C, (s,hW hg W h; W hp) 4 abort follows directly from our assumptions.

(ii) If C,(s,h W hg W hy W hgp) — C',(s',h'), then from our assumptions,
there exist h”, h';p such that A’ = A" WA/, W hy and ', A} = J * R and
safe,(C', s, h", J* R, Q). From the definition of *, there exist i/, and h/; such
that b, = b, W hY and ¢,k = J and §',h}; = R. Therefore, from the
induction hypothesis, safe,(C’,s', h" W h'y, J,Q % R), as required. O

(CoNJ) Now consider the conjunction rule. Its soundness rests upon the
validity of the following implication:

safe, (C, s, h, J, Q1) A safe, (C, s, h, J,Qy) = safe,(C,s,h,J, Q1N Q2).

Naturally, one would expect to prove this implication by induction on n with
an induction hypothesis quantifying over all C' and h. The base case is trivial;

10



VAFEIADIS

(C1,0) = (C1,0") (C2,0) = (C3,0")
locked(C1) N locked(C2) = 0 (PAR1) locked(C1) N locked(C3) = 0 (PAR2)
(C1]|C2,0) = (C1]|C2, 0") (C1[|C2,0) = (Ch|C3,07)

(accesses(C1, s) Nwrites(Ca, s)) U (accesses(Ca, s) Nwrites(C1, s)) # 0

(RACEDETECT)
(C1]|C2, (s, h)) — abort

(RES1) resource r in C,0 — resource 7 in C', ¢’ if C,0 — C’, 0’

(RES2) resource r in skip,oc — skip, o

(WrTH1) with » when B do C,0 — within r do C,o  if 0 = (s,h) and [B](s)

(W1TH2) within r do C,0 — within r do C’,0’ if C,0 — C’,0’

(Wr1TH3) within r do skip,o — skip,o

(RESA) resource r in C,0c — abort if C, 0 — abort

(W1THA) within r do C,c — abort if C,0 — abort

Fig. 3. Operational semantics for CCRs.

so consider the n+1 case. The first two subcases are easy; so consider subcase
(711). From the first assumption, we know that there exist A' and k' such that
' = h'Whl and bl | J and safe,(C’,h', J,Q,). Similarly, from the first
assumption, there exist h? and h? such that i/ = h* W h% and A% = J and
safe,, (C', h?, J,Q-), but, in general, we do not know that h' = h? which would
allow us to complete the proof. Since, however, J must be precise, then (from
Definition 2.1) h} = h3, and since W is cancellative, we also have h' = h? and
the result follows by applying the induction hypothesis. O

5 Multiple Resources & Data Race Freedom

In this section, we consider the programming language used by O’Hearn [15]
and Brookes [3], which has multiple named resources and permits the execu-
tion of critical regions acting on different resources to go on in parallel. The
programming language replaces atomic commands, atomic C', with two new
constructs and an intermediate command form:

C = ... | resource r in C' | with r when B do C | within r do C

The first declares a new mutual exclusion lock, r, known as a resource or a
resource bundle in CSL terminology. The second construct denotes a condi-
tional critical region (CCR) which runs in isolation with respect to any other
CCRs with the same lock. Executing a CCR, blocks until the resource is avail-
able and the condition B is true, and then executes the body C' in isolation
to other CCRs acting on the same resource. This is achieved by holding a
lock for the duration of testing whether B is satisfied and the execution of its
body. Finally, within » do C represents a partially executed CCR: one that
has acquired the lock, tested the condition, and still has to execute C. We

11



VAFEIADIS

define locked(C') to be the set of regions syntactically locked by C": those r for
which C contains a within r do C’ subterm.

The operational semantics is given by the rules of Figure 1 (excluding
PAr1, PArR2, AToMm, ATOMA) and the new rules shown in Figure 3. The
reduction rules for parallel composition (PAR1, PAR2) have been adapted to
check that two threads do not hold the same lock at the same time. This was
unnecessary in the simpler setting because atomic blocks executed in one step.

To show absence of data races, we have added a rule (RACEDETECT) that
aborts whenever a data race is observed. Here, the functions accesses(C), s)
and writes(C, s) return the set of heap locations accessed or modified by C
respectively. Their formal definitions can be found in [18].

CSL judgments for multiple resources are of the form I' F {P} C {Q},
where I' is a mapping from resource names, r, to their corresponding resource
invariants, which are normal assertions. We have the proof rules from Figure 2
—except (ATOM) and (SHARE)— uniformly replacing J by I'. In addition, we
have the following two rules concerning resource declarations and CCRs:

I'r:JH{P} C{Q} I'-{(P+xJ)AB}C{Q=xJ}
I'-{P =« J} resource r in C {Q * J} I',r:J+F {P} with r when B do C {Q}

The first rule is analogous to the SHARE rule: it allows us to declare a
new resource bundle, r, and associate a resource invariant with it. The second
rule is analogous to ATOM, allowing the verifier to assume that the relevant
resource invariant holds separately at the beginning of the CCR and requiring
him to be re-establish it at the end of the CCR.

The definition of configuration safety is adapted as follows:

Definition 5.1 safey(C, s, h,I', Q) holds always.

safe,11(C, s, h, [, Q) if and only if

(i) if C' = skip, then s, h = @; and

(i) for all hg, if (hW hg) is defined, then C| (s, h W hg) /4 abort; and

(741) accesses(C, s) € dom(h); and

(ZU) for all O/, hr, hF, S/, h/, L/, if hr ): @relocked(C’)\locked(C) P(T’), and
(C,(s,hdhprWhg), L) — (C", (', k'), L"), then there exist " and h[. such that
h = h//H'Jh/FH'JhF and S,, hiﬂ ): @relocked(c)\locked(C’) F(?") and safen(C’, S,, h//, F, Q)

Similar to Definition 3.1, here h is the part of the heap owned by the com-
mand; hr is the part that belongs to definitely unacquired resources (since any
memory cells belonging to a currently acquired resource are part of the local
heap of the thread that holds the lock for that resource); and hg represents
the frame, namely memory cells belonging to other parts of the system. The
set locked(C”) \ locked(C') represents the set of locks that have been acquired
by the transition from C' to C’: for all of those, we assume that the resource
invariant holds. Conversely, locked(C”) \ locked(C) is the set of locks released

12



VAFEIADIS

by the transition: for all those, we check that the resource invariant is estab-
lished. Finally, the new conjunct accesses(C, s) C dom(h) is included so that
we can show that safe programs do not have any data races.

As before, the semantics of triples is given in terms of the safe predicate:

Definition 5.2 I' = {P} C' {Q} if and only if for all n, s, h, if s, h = P then
safe, (C, L, s, h,T’, Q).

The proof of soundness proceeds as before and has been fully formalised in
Isabelle/HOL. See [18] for details. We say that a command is well-formed if
and only if it does not have two different subcommands simultaneously having
acquired the same CCR lock, as this cannot occur in a normal execution. To
prove the soundness of the two new rules, we use the following lemmata:

Lemma 5.3 If safe,(C, s, h,(I',r : R),Q) and C' is well-formed and fv(R) N
wr(C) =0, then

(i) if r ¢ locked(C), then for all hg, if dom(h)Ndom(hg) = 0 and s,hg = R,
then safe,(resource 7 in C,s,hW hg,I',Q * R); and

(11) if r € locked(C'), then safe,(resource r in C, s, h,I',Q * R).

Lemma 5.4 [fsafe,(C, s, h,I',Q*R) and within r do C' is well-formed, then
safe, (within » do C, s, h, (I',r : R), Q).

The proofs of these lemmata can be found in [18]. Our formalisation also
covers local variable declarations as well as the auxiliary variable elimination
rule as in Brookes’s original proof [3].

6 Permissions

Permissions [2,1] are an extension to the standard heap model that enables
read-sharing between parallel threads. Consider, for example, the Hoare triple:
{10 — =} 2 :=[10] || y := [10] {10 — —}. Standard CSL cannot verify that
the program satisfies its specification because to read from [10] both threads
must know that the cell is allocated (i.e., have 10 — — as a precondition), but
the assertion 10 — — % 10 — — (required by the parallel composition rule) is
unsatisfiable. With permissions, one can instead split 10 — — into two half

permissions, (10 = —) % (10 2 —), and give one to each thread. The idea
then is such partial permissions are read-only: they allow the cell to be read,
but not updated. This is captured by the following new proof rule:

v ¢ fv(E,E E" J)

- - (READ2)
JH{EL E"} 2= [E|{EE E" Az = E"}

13



VAFEIADIS

At the postcondition, the two half permissions are collected and joined to give
back 10 — —, which is just shorthand notation for 10 EN—

Permission models are sets, K, with a distinguished element, T € K,
called full permission, and a commutative and associative partial operator, &,
denoting addition of two permissions, satisfying the following properties:

Vke K. —def(T®k) and Vke K\{T} 3K e K. kaok' =T

The first equation says that T is the greatest permission, as it cannot be
combined with any other permission. The second equation says that every
non-full permission has a complement permission which when added to it
gives full permission. The model we saw previously is known as fractional
permissions. K is the set of numbers in the range (0, 1], @ is ordinary addition
and is undefined when the result falls out of the range, and T = 1. The
complement of fractional permission £ is simply 1 — k.

To model a heap with permissions, we extend @ to act on permission-value
pairs as follows:

(k1,v1) @ (k v)dif{(k‘l@k‘z,vl) if v; = vy and def(k; @ ko)
1, Y1 2,02) —

undefined otherwise

We also extend @ to act on permission-heaps, PH © ) oc (Perm x Val),
as follows. We take hy @ hy to be defined if and only if hi(a) @ he(a) is
defined for all a € (dom(hy) Ndom(hs)). If hy @ hs is defined, it has domain
dom(h,) Udom(hy) with the following values:

e hl (CL) D hg((l) ifae (dom(hl) N dOIIl(hQ))
(h1 @ ho)(a) = hi(a) if a € (dom(hy) \ dom(hy))
ho(a) if a € (dom(hsy) \ dom(hy))

As expected, adding two permission-heaps is defined whenever for each loca-
tion in their overlap, the heaps store the same value and permissions that can
be added together. The result is a permission-heap whose permissions for the
location in the overlap is just the sum of the individual heaps.

Assertions are now modelled by permission-heaps, PH. The new assertion

form Fj = E3 has the following semantics:
s,h B 3 By £5 dom(h) = {[E\](s)} A R(E(s)) = ([E](s), [Es](5))

We can consider the set of concrete heaps as being a subset of that of
permission-heaps by equating a concrete heap, h, with the permission-heap,
R, which has the same domain as h and for each location ¢ € dom(h), h/(¢) =

14



VAFEIADIS

(T,Rh(£)). In other words, A’ has full permission and the same values for every
location in h, and no permission for any other location. Observe that every
permission-heap can be extended to a normal heap:

Vh € PH. 3hp € PH. (b & hg) € Heap.

This allows us to use the same definitions for safe predicate as we have seen
already, uniformly replacing W with & and having the h, hg, etc. range over
permission-heaps rather than normal heaps. The definition is a bit subtle: as
the operational semantics is defined over normal heaps, (C,h@®h; ®hg) — ...
makes sense only when h@® h ;@ hg is a normal heap, a condition that is always
possible to achieve as hp is universally quantified.

The check in the safe definition that hg does not change by transitions
ensures that programs update the values only of heap locations they have full
permission to, but allows threads to access any memory they partially own.

The soundness proof carries over to permission-heaps with no difficulty.
See the machine-checked proof [18] for details.

7 RGSep

RGSep [19] is a more radical extension to CSL replacing resource invariants
by two binary predicates, R and G, known as the rely and the guarantee
respectively. As in CSL, the heap is logically divided into parts owned by
threads and other parts owned by resources (and hence shared among threads,
but accessed only within an atomic commands). The rely, R, describes the
changes made to the resource-owned states by the environment (i.e., every
other thread in the system that could execute concurrently with the current
command), whereas the guarantee, G, describes the changes made by the
command itself.

Preconditions and postconditions are also changed into binary predicates
describing both the local (thread-owned) and the shared (resource-owned)
components of the state. We shall use the notation s, (hy, he) = P to denote
that the stack s and the heaps h; and ho satisfy the binary assertion P,
whether it is a pre-, a post-, a rely or a guarantee condition.

The safe®™® predicate records not only the local heap, hr, but also the
shared heap, hg, as this is needed for R and G:

Definition 7.1 safef"(C, s, hy, hs, R, G, Q) holds always.
safefs (O, s, hy, hs, R, G, Q) if and only if
(i) if C' = skip, then s, (hy, hs) = Q; and

3 RGSep uses different syntax to denote pre- and postconditions than the one used to
denote rely and guarantee conditions. In this paper, however, we shall not go into the
syntax of RGSep assertions, and so we overlook such syntactic differences.

15



VAFEIADIS

(i) for all hg, C, (s, hy W hg W hg) /4 abort; and

(7i1) whenever C, (s, hyWhgWhg) — C’, (s', h'), then there exist k', and h’y such

that b/ = b, W h'g W hy and s, (hg, hs) = G and safeSG(C”, s’ hy R, R,GLQ);

(iv) whenever s, (hg, h'y) =R and def(h WhY), then safe™(C, s, by, b, R, G, Q).

A configuration is safe for n + 1 steps if (i) whenever it is a terminal
configuration, it satisfies the postcondition; and (ii) it does not abort; and
(iii) whenever it performs a transition, its change to the shared state satisfies
the guarantee and the new configuration remains safe for n steps; and finally
(iv) whenever the environment changes the shared state according to the rely,
the resulting configuration remains safe for another n steps.

The semantics of RGSep judgments is defined in terms of safe®™® in the
standard way:

Definition 7.2 R;G [=rasep {P} C {Q} if and only if for all s, by, hg, and
n, if s, (hy, hs) = P, then safe"%(C, s, hy, hs, R, G, Q).

Note that the RGSep definitions use exactly the same operational seman-
tics for commands as the CSL definitions: we did not have to come up with
a new special semantics. As we did earlier with CSL, it is possible to extend
the RGSep definitions to multiple shared regions. The soundness proof goes
through in pretty much the same way as in §4 and in [17].

8 Conclusion

The paper has presented a concise soundness proof of CSL and related pro-
gram logics that does not involve any intermediate instrumented semantics,
unlike most proofs in the literature (e.g., [3,5,9,13,6]). We have shown that
inventing elaborate semantics is unnecessary and have argued that it is also
harmful because it obscures the soundness argument. This becomes increas-
ingly problematic as one moves towards larger languages and more complicated
concurrent program logics.

As mentioned already, there exist several soundness proofs for concurrent
separation logic, while even the first proof by Brookes [3] came 3-4 years af-
ter the CSL proof rules were conceived. This is partly due to the intricacy
of the soundness resulting from imprecise assertions (cf., Reynolds’s coun-
terexample [15, §11]) and partly due to the numerous extensions to CSL that
came along (e.g., permissions [2,1], “variables as resource” [16], “locks-in-the-
heap” [9,13]) for which existing proofs required adaptation (e.g. [5]) or new
proofs were developed [9,11,13].

A partial solution to the plethora of adapted proofs was given by Calcagno
et al. [6] with abstract separation logic, a soundness proof of CSL with respect
to an abstract operational semantics to commands that could be instantiated

16



VAFEIADIS

to the various permission and variables-as-resource models. This unifying
approach, unfortunately, has a significant drawback: the soundness of any
particular instance of the logic (e.g., CSL with fractional permissions) tells us
nothing about how verified programs behave when executed by the hardware.
This is because the instantiated abstract semantics bears little resemblance
to the ‘machine semantics.” To get a meaningful correspondence, one would
have to relate the two semantics, a task that is most likely non-trivial. This
is why our proof is instead based on a concrete semantics.

The style of semantic definitions presented in this paper has also been
used to justify the soundness of more advanced program logics, such as the
concurrent abstract predicates of Dinsdale-Young et al. [7]. So far, however,
we have used this style of semantic definitions to justify the correctness only
of program logics about partial correctness. It is quite possible to extend
these definitions in order to capture certain kinds of liveness properties. For
example, we can define the meaning of a Hoare triple for obstruction-freedom
by changing safey(C, h,...) instead of always being true to require that C
terminates under no environment interference. In the future, I would like to
explore this direction further.

Acknowledgement

I would like to thank Stephen Brookes, Matthew Parkinson, Peter O’Hearn,
and Glynn Winskel, who encouraged me to write this paper, and also John
Wickerson and the anonymous reviewers for their valuable comments.

References
[1] Bornat, R., Calcagno, C., O'Hearn, P. W., Parkinson, M. J., Permission accounting in
separation logic, in: POPL (2005), pp. 259-270.

[2] Boyland, J., Checking interference with fractional permissions, in: 10th SAS, LNCS 2694
(2003), pp. 55-72.

[3] Brookes, S., A semantics for concurrent separation logic, Theor. Comput. Sci. 375 (2007),
pp. 227-270.

[4] Brookes, S., Fairness, resources, and separation, Electr. Notes Theor. Comput. Sci. 265 (2010),
pp. 177-195.

[5] Brookes, S., Variables as resource for shared-memory programs: Semantics and soundness,
Electr. Notes Theor. Comput. Sci. 158 (2006), pp. 123-150.

[6] Calcagno, C., O’Hearn, P. W., Yang, H., Local action and abstract separation logic, in: LICS
(2007), pp. 366-378.

[7] Dinsdale-Young, T., Dodds, M., Parkinson, M., Gardner, P., Vafeiadis, V., Concurrent abstract
predicates, in: ECOOP, LNCS 6183 (2010), pp. 504-528.

[8] Gotsman, A., “Logics and analyses for concurrent heap-manipulating programs,” Ph.D.

dissertation, University of Cambridge Computer Laboratory (2009), also available as Technical
Report UCAM-CL-TR-758.

17



VAFEIADIS

[9] Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M., Local reasoning for storable locks
and threads, in: Shao, Z., editor, APLAS, LNCS 4807 (2007), pp. 19-37.

[10] Gotsman, A., Berdine, J., Cook, B., Precision and the conjunction rule in concurrent separation
logic, in: MFPS, (20011)

[11] Haack, C., Huisman, M., Hurlin, C., Reasoning about Java’s reentrant locks, in: Ramalingam,
G., editor, APLAS, LNCS 5356 (2008), pp. 171-187.

[12] Hayman, J., Winskel, G., Independence and concurrent separation logic, in: LICS (2006), pp.
147-156.

[13] Hobor, A., Appel, A. W., Zappa Nardelli, F., Oracle semantics for concurrent separation logic,
in: S. Drossopoulou, editor, ESOP, LNCS 4960 (2008), pp. 353-367.

[14] Jacobs, B., Piessens, F., Ezpressive modular fine-grained concurrency specification, in: POPL
(2011).

[15] O’Hearn, P. W., Resources, concurrency and local reasoning, Theor. Comput. Sci. 375 (2007),
pp. 271-307.

[16] Parkinson, M. J., Bornat, R., Calcagno, C., Variables as resource in Hoare logics, in: LICS
(2006), pp. 137-146.

[17] Vafeiadis, V., “Fine-grained concurrency verification,” Ph.D. dissertation, University of
Cambridge Computer Laboratory (2007), available as Technical Report UCAM-CL-TR-726.

[18] Vafeiadis, V., Concurrent separation logic and operational semantics (Isabelle proof) (2011),
http://wuw.mpi-sws.org/ viktor/cslsound/.

[19] Vafeiadis, V., Parkinson, M., A marriage of rely/quarantee and separation logic, in: Caires, L.,
Vasconcelos, V. T., editors, CONCUR, LNCS 4703 (2007), pp. 256-271.

[20] Yang, H., O’Hearn, P. W., A semantic basis for local reasoning, in: Nielsen, M., Engberg, U.,
editors, FoSSaCS, LNCS 2303 (2002), pp. 402-416.

18


http://www.mpi-sws.org/~viktor/cslsound/

	Introduction
	Concurrent Separation Logic
	The Meaning of CSL Judgments
	Soundness Proof
	Multiple Resources & Data Race Freedom
	Permissions
	RGSep
	Conclusion
	Acknowledgement 
	References

