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Abstract of the Dissertation

Robust Service Composition

by

Jeffrey M. Fischer

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2008

Professor Rupak Majumdar, Chair

The development of the HTTP protocol and web services have made it convenient

to build large-scale systems out of loosely-coupled services. Key advantages of

this approach include the ability to leverage existing applications in new contexts,

the incremental evolution of systems, and better scalability/availability through

replication of services.

Unfortunately, service-oriented architectures have a number of drawbacks.

Implementations must account for differing data representations or protocols,

remote system failures, and asynchronous processing. New failure modes are in-

troduced, such as hangs, deadlocks, and data inconsistencies. Securing a service-

oriented architecture is frequently more difficult than for a monolithic architecture

due to the larger attack “surface area” and differing security frameworks across

the individual services. Finally, testing and debugging service-oriented architec-

tures is difficult due to the lack of a global perspective, non-determinism, and

the challenge of building tools which work across heterogeneous systems.

This dissertation investigates new approaches to address these issues. I show

that service-oriented architectures can be made more robust through better ab-
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stractions together with lightweight, compositional tools to automatically enforce

the abstractions. Four specific problems are addressed: lost messages in asyn-

chronous programs, the consistency of long running transactions, reconciliation

of access control policies, and the trust by end users of composed applications.

For each issue, I develop a operational model which captures the salient aspects

of service-oriented systems. From the models, I define new abstractions, which

accomplish the goals of the original system while avoiding the issues under con-

sideration. Practical tools to enforce the abstractions are then derived from the

models, either by construction or through the lightweight verification of devel-

oper artifacts. Finally, each tool is evaluated using performance tests and case

studies.
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CHAPTER 1

Introduction

The development of the HTTP protocol and web services have made it convenient

to build large-scale systems out of loosely-coupled services. Examples include

e-commerce web applications, such as Amazon [DHJ07] and eBay [SP06], col-

lections of enterprise applications within an organization, and “mashups”, which

compose independently-developed websites into entirely new applications.

Advantages of service-based architectures This approach is attractive for

three key reasons. First, it enables existing applications to be used in new con-

texts. In Chapter 3, we describe a real-world scenario where customer data from

a mainframe application is made available to newer applications. Second, this

approach enables services to be partitioned or replicated, to improve both avail-

ability and scalability. For example, Amazon uses Dynamo, a partitioned and

replicated data storage service, to maintain its customers’ shopping cart data

[DHJ07]. Third, service-based systems enable components to evolve indepen-

dently, reducing the cost and availability impact of upgrades. This style of evo-

lution is practiced by most large web applications, allowing new functionality to

be delivered while providing continuous availability. It is also used to evolve the

software in an enterprise: legacy systems can be incrementally replaced without

disrupting the normal operation of a company.
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Drawbacks Unfortunately, service-based architectures have a number of draw-

backs when compared to centralized systems. The implementation of each com-

ponent must handle the more complex semantics of remote calls. If services were

developed independently, then glue code may be needed to reconcile differing data

representations and protocols. In a centralized system, if a callee fails, this fact

can be communicated immediately through callers using standard exception han-

dling mechanisms. In distributed systems, exception handling must be built into

each message protocol and it is difficult to distinguish the complete failure of a re-

mote service from a delayed response. Finally, many service-based systems make

use of asynchronous processing, where responses are handled independently from

requests. This style of interaction is not well supported by modern programming

language.

Service-based architectures introduce new types of defects, which must be

prevented or caught through testing. Applications can hang if a deadlock occurs

or if two applications have different expectations regarding the sequence of mes-

sages between them. Applications frequently must make assumptions regarding

the internal state of their peers. If these assumptions are incorrect, data inconsis-

tencies may result. Maintaining consistency is the face of failures is particularly

difficult. Unfortunately, traditional approaches, such as distributed transactions,

do not scale well in high throughput service-based systems [DHJ07].

Composing applications from independent services may introduce security

issues. Each service interface exposes on the network a potential attack point.

Even assuming all users of the system have been authorized, a number of unique

issues must be addressed. Frequently, each application has its own framework for

access control. There is no framework to relate access rights in one application

to rights in another application. This may make it difficult to ensure that a

2



given user has all the access rights necessary to use an application built from

composed services. More seriously, if sensitive information is passed between

services, nothing prevents the recipient from disclosing that data to users who do

not have access in the source application.

Finally, testing and debugging service-based architectures is difficult. Due to

software limitations and clock skew, it is not possible to obtain a true global per-

spective on the events occurring throughout a distributed system [Lam78]. Due

to non-determinism in the individual services and the messaging infrastructure,

the same system inputs may result in different sequences of messages. The het-

erogeneous nature of these systems impedes the development of debuggers which

are aware of each component’s internal state.

Addressing the drawbacks In this thesis, I will show how these issues can be

mitigated through the use of formal methods to define lightweight analysis tools

and frameworks. These can then be put into use by industrial programmers or

end users, without requiring a detailed understanding of the formalisms behind

them.

1.0.1 Example applications

To better understand the architecture of service-based systems, we look in more

detail at a few representative applications.

Enterprise Application Integration As described in [Hig06], Washington

Group International (WGI), an engineering and construction management com-

pany, automated the interactions between several of their applications using a

service-based architecture. Figure 1.1 shows a simplified view of their network.
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Figure 1.1: Example of enterprise applications

End users work from desktop machines, which run CAD and design capture

applications locally and connect to WGI’s main data center via the Internet. Au-

thentication for their data center-based applications is centrally managed, using

a single sign-on (SSO) architecture. Authentication requests are directed to a se-

curity appliance, which matches each query against a database of user identities

stored in a directory server. Upon authentication, the security appliance issues a

token that is accepted by each of the data center applications.

The applications run in WGI’s data center include Enterprise Resource Plan-

ning (ERP), Materials Management from another vendor, Document Manage-

ment, and an E-mail server. Requests which require the interactions of multiple

applications are coordinated by business processes written in Business Process

Execution Language for Web Services (BPEL) [BPE03]. BPEL is a flow compo-
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sition language which provides constructs for composing services: sequential and

parallel composition, branching and loops, compensation and exception handling,

and asynchronous messaging.

[Hig06] describes two processes coordinated by the BPEL server. Purchase

orders are created in either the ERP or Materials Management application, dig-

itally signed by users (using E-mail to notify users that their action is needed),

and then stored in the Document Management application. Engineering designs

are created on user workstations, correlated with data from other applications,

rendered into a PDF document, and then stored in the Document Management

application. The Document Management application assigns a unique identifier

to the design, which can subsequently be used by other applications to reference

or retrieve the design.

These processes were previously implemented using a combination of auto-

mated and manual steps. For example, users would print out purchase orders

entered into their ERP and Materials Management applications, sign the printed

order, rescan the signed order, and upload the scan to the Document Management

application.

Using a service-based architecture coordinated by BPEL processes has also

reduced the coupling between applications. For example, the Document Man-

agement application provides only a programmatic API for other applications

to call. Previously, WGI would have to write “glue” code in each application’s

infrastructure to call this API. Instead, they wrote a web services “wrapper” in

front the Document Management application. This allows the other applications

to access documents indirectly, through BPEL processes.

Although the approach used by WGI simplifies the integration of their appli-

cations, it does not address two key issues. First, even through authentication is
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centralized, each application still maintains its own access control infrastructure

and policies. Developers of business processes must manually reconcile access

control policies, which is difficult to do a priori, since user to permission map-

pings may be changed at any time. Alternatively, they may bypass security

checks, which may lead to subversion of an access control policy and disclosure

of confidential data.

Second, the loose coupling between applications makes it harder for develop-

ers to reason about the error handling scenarios for their processes. In a more

tightly-coupled system, distributed transactions allow the infrastructure to han-

dle much of the error handling and recovery. In WGI’s system, each service call

is an independent transaction. BPEL provides a compensation operator which

can specify an undo function that reverses committed transactions in the event

of an error. However, services requiring compensation must be identified by the

developer, who must also define and implement the overall error handling strat-

egy.

Large-scale e-commerce web applications Amazon’s web applications are

implemented using a decentralized service architecture, built on hundreds of in-

dividual services [DHJ07]. A page request may construct its response by sending

requests to over 150 services, many with multiple dependencies.

Figure 1.2 shows a logical view of how these services are organized. Requests

are first accepted into a page rendering layer, which calls aggregator services

to obtain the data needed to render a web page. These aggregator services,

which are usually stateless, combine the results of calls to lower-tiered services.

Caching is used to reduce the number of calls made in a typical aggregation

service request. The lower-tiered services provide more specialized functionality

6
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Figure 1.2: Amazon’s service oriented architecture (based on a figure in [DHJ07])

and make use of a storage tier for persistent data. Several types of storage services

are used by Amazon. These offer different indexing capabilities, consistency

models, performance, and availability.

The storage services may in turn be service compositions. For example, Dy-

namo provides high availability and scalability through a combination of parti-

tioning (via consistent hashing) and replication. The service is completely de-

centralized, with no need for manual administration to add or remove nodes.
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Consistency between replicas is maintained via a versioning scheme. This scheme

completely sacrifices isolation and provides a weaker notion of consistency in or-

der to ensure higher availability and scalability than typically achievable with

standard transactional models.

Building applications on top of this infrastructure introduces new challenges.

Due to performance issues with threading and the nature of request routing in

a distributed application, responses are frequently handled independently from

their associated requests. This leads to an event-driven style of programming

which, while appropriate for these applications, can obscure control flow and the

programmer’s intent.

Second, relaxed consistency models make it harder to reason about the cor-

rectness of an application. Developers must consider what inconsistencies can

occur and which are acceptable. Services like Dynamo require the user to under-

stand the underlying implementation to answer these questions.

If the response to a request is lost, or the state of a service becomes incon-

sistent, application invariants may be violated (e.g. customers should be billed

for what they buy) or the ongoing interactions with a customer may become

deadlocked.

Mashups Mashups are web applications which display correlated data from

multiple sources, typically other web applications. Usually, one of the applica-

tions is a map (e.g. Google Maps), and the data from the other applications has

a geographical component, allowing it to be superimposed over the map. The

website http://www.programmableweb.com provides a directory of over 2500

mashups which use over 500 different APIs or websites as their sources.
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Figure 1.3: Example of a mashup

Figure 1.3 shows CitySearch Map,1 one such mashup. This application dis-

plays data from citysearch.com on maps provided by Google. The interface to

this application requests the user to select a city, a category (e.g. restaurants

or shopping), and a sub-category (e.g. cuisine). It then displays the top ten

selections from Citysearch in that category, along with links to the Citysearch

reviews and a map from the area showing the location of each business. The

user can further interact with the application by clicking on a push-pin to get

a pop-up with a picture and more details or by zooming the map in or out.

The data from Citysearch is obtained through XML-formatted messages passed

over HTTP. Google provides a JavaScript programming interface which allows

its Google Maps functionality to be embedded in other web applications.

1http://mapmash.googlepages.com/citysearch.htm
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Mashups are popular because they help users to avoid manually correlating

data from multiple sources and because they are relatively easy to program using

modern browser technology (HTML, JavaScript, and XML). However, compo-

sition does require programming — end users cannot create their own mashups

specific to personal tasks they wish to automate. More seriously, these mashups

provide no security guarantees. Users cannot be certain that the mashup will not

make unauthorized updates using their credentials or pass their data to external

sources. This limits the types of applications that will be built using the current

technologies behind mashups.

1.1 Contributions

In this dissertation, I focus on four specific issues which impact the robustness of

service-oriented architectures — asynchronous programming, consistency, access

policy integration, and secure composition. Through my investigation of these

issues, I will demonstrate my thesis: service-oriented architectures can be made

more robust through better abstractions together with lightweight, compositional

tools to automatically enforce the abstractions.

Methodology I use the following methodology to approach each issue:

1. Identify a problem to be addressed. Problems which are caused by complex,

non-local interactions between independent components are of particular

interest, since they cannot be easily found by testing in isolation. In this

dissertation, I am focusing on domain-specific issues for service-oriented

systems.

2. Define a language describing systems which may exhibit this problem, fo-
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cusing only on aspects related to the problem. The language model should

capture the structure of the system (syntax) as well as its runtime be-

havior (operational semantics). Aspects of the system not relevant to the

issue under consideration should be left unconstrained (e.g. the TaskJava

scheduling algorithm in Chapter 2).

3. Define an abstraction which limits the possible behaviors of systems in

exchange for easier reasoning (for both humans and tools) about the issue

being addressed. For example, I define in Chapter 4 the global role schema,

an abstraction over the security policies of service oriented systems. Such

abstractions may, by their nature, prevent the problem we are addressing,

or may make it easier to precisely define properties of systems which do not

exhibit the problem under consideration. Any properties needed to ensure

the absense of the problem must also be identified.

4. Create a compositional, syntax-directed algorithm (type checker), which an-

alyzes systems in our language, enforcing the abstraction and ensuring that

any properties identified in step 3 do, in fact, hold. This algorithm should

not require any fundamental changes to the underlying language. However,

it may make use of additional information at interface boundaries, in the

form of lightweight annotations or specifications. The algorithm should

be compositional: if each individual component of the system satisfies the

checks, and the composition does not violate any component’s assumptions

about its environment, the entire system is free from the problem in ques-

tion.

5. Create tools which implement the checking algorithm for concrete systems.

Due to the compositional nature of the algorithm, such tools can be used

to incrementally check components of a system. Since the tools require
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only minor annotations, they can be used on legacy code and by developers

which might not fully understand the theory behind the model.

Now, let us look in more detail at the four issues I will investigate using this

methodology.

1.1.1 Asynchronous programming

First, in Chapter 2, I consider asynchronous programming. In their simplest form,

web services are synchronous requests: the requesting system waits for a response

before continuing. This simplifies program design and matches the underlying

HTTP protocol. However, when interactions between applications may take long

periods of time (due to human interactions for approvals, for example), requests

and responses are handled separately. The requester does not wait for a request

to complete, but instead provides an “address” for a response as a part of the

request. This avoids tying up resources (e.g. threads) on the requester and is

resilient to failures that may occur before the response is sent. Highly concurrent

servers may also use this approach when processing many simultaneous requests,

as this consumes fewer resources than other approaches (e.g. multi-threading).

This programming style, where requests and responses are separated, is called

event-driven programming. Unfortunately, the event-driven style severely com-

plicates program maintenance and understanding, as it requires each logical flow

of control to be fragmented across multiple independent operations (e.g. func-

tions, procedures, methods, etc.). To reduce these challenges, I extend the Java

programming language to include tasks, a new abstraction for lightweight con-

currency. Tasks allow each logical control ow to be modularized in the tradi-

tional manner, including usage of standard control mechanisms like procedures

and exceptions. At the same time, by using method annotations, task-based
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programs can be automatically and modularly translated into ecent event-based

code, using a form of continuation passing style (CPS) translation. I have imple-

mented support for tasks using a source-to-source translator from my extended

language, TaskJava, to standard Java. The benefits of this language are illus-

trated through a formalization, in which I show that key safety properties are

guaranteed, and a case study based on an open-source web server.

1.1.2 Consistency

In service-oriented systems, a single action on behalf of the user may require co-

ordinating changes across several systems. Ensuring that the correct changes are

made together can be challenging, especially in error scenarios. In traditional,

centralized systems, these issues are mitigated through the use of transactions,

which provide atomicity: either the task runs to completion or, if an error occurs,

all partial changes are undone completely. Although distributed transactions

may be used to extend this model to distributed systems, they are generally not

suitable in a web services environment due to the long-running nature of many ac-

tivities (distributed transactions require locking resources for the duration of the

transaction) and the lack of the necessary transactional programming interfaces

on many applications. As an alternative, most service-oriented systems use com-

pensation to implement atomicity: changes to each system are implemented as

independent transactions, but if an error occurs, any changes are undone through

separate, compensating transactions. When all changes are undone in the event

of an error, this approach is called full cancellation.

Although the compensation model is better than ad hoc error handling, it can

still be very error prone, especially when combined with asynchronous computa-

tion. Full cancellation of partially completed work can also be too limiting, as
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many real-world scenarios require taking alternative paths when an error occurs

(forward recovery) or leaving some state changes in place after an error.

In Chapter 3, I address the limitations of compensation through a new specifi-

cation language and associated verification algorithm. Compensation is still used

for error handling, but I relax the full cancellation restriction on activities. In-

stead, developers can specify which groups of actions must occur together. Since

the set of completed actions may be different depending on the outcome of the

overall activity, multiple groups of actions may be specified. It turns out that

this can be compactly represented as a predicate. I call this notion of correctness

set consistency

In some situations, the actions being coordinated may require exchanging

multiple messages, as a part of a conversation. I extend set consistency to these

conversations by modeling each conversation using an automaton and labeling

states as either committed (a complete change has been made), nochange (no

change has been made or the change was undone), or inconsistent (further mes-

sages must be exchanged to leave the conversation in either a committed or

nochange state).

To demonstrate the value of consistency specifications, I have implemented

BPELCheck, a consistency verifier for long running transactions written to

the Business Process Execution Language (BPEL) [BPE03] specification. I have

tested this on several example processes, including an industrial example from

Sun Microsystems.

1.1.3 Access policy interoperability

When coordinating changes across systems, one must also address the secu-

rity policies enforced by the individual services. In particular, applications in
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a service-oriented system are designed independently and have their own access

control policies and enforcement mechanisms. When a service calls to another

service, it must have access rights to the other systems. One could just give

full access rights to services, but this violation of least privilege can circumvent

the intent of access policies and leaves a greater “attack surface” for security

exploits. In addition, when data from one system is stored in other systems, it

may be possible for users to circumvent the intent of the primary system’s access

control policy by reading data from secondary systems.

I address these issues in Chapter 4, where I consider the interoperability of

access control policies, specifically those built using Role Based Access Control

(RBAC). In RBAC, the mapping of users to permissions is abstracted using

roles, which represent a collection of permissions needed to perform a specific job

function.

I present an algorithm which infers a global role schema, which is a set of

global roles to be used across multiple systems, along with a mapping from each

global role to a set of local system-specific roles. Users are assigned by an admin-

istrator to global roles according to their job function and then are automatically

assigned to all the local roles associated with their global roles. This assignment

is guaranteed to be sufficient: service-to-service calls will not fail due to access

restrictions, non-disclosing: data copied between applications is not disclosed to

anyone who cannot see the original data, and minimal: no additional local roles

are given to the user beyond those needed to satisfy the first two properties. My

inference algorithm works by generating Boolean constraints based on the local

access control policies of each application and the interactions between services.

These constraints are then passed to a Boolean satisfiability solver. If a satisfying

solution to the constraints can be found, it is translated into a global role schema.
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I have implemented this inference algorithm in RoleMatcher, a tool which

extracts RBAC metadata from applications, builds a model of the application

interactions, and infers a global role schema. I show that it can quickly infer global

roles for composed systems, or determine the absence of a globally consistent role

schema.

1.1.4 End-user security for service composition

Finally, in Chapter 5, I examine end-user composition and the issue of trust.

Mashups allow end users to correlate content from multiple services. However, as

described above, mashups do not provide any guarantees about the distribution of

sensitive data. This prevents applications that correlate data from services with

different levels of trust. For example, consider a mashup combining a company’s

sales data with information from the public Internet. To be useful, the mashup

must ensure that the sales data is never passed outside the company.

I address these issues in the context of mobile devices through a framework

which supports secure, automatic composition. I present a new class of com-

ponents, called monents (mobile components), that streamline the creation of

mobile applications which combine data from multiple services. The composition

framework guarantees that trusted data is not passed to untrusted services.

Monents are built by declaratively interconnecting smaller components which

represent external services, UI controls, and inputs/outputs. All interactions of a

monent with the external world are controlled through a security manager, which

enforces user-defined security policies that restrict the monent’s information flow.

Security policies are not evaluated until a monent is activated, and a given monent

can be run with different security policies, depending on the user’s level of trust

for that monent. A collection of monents can be automatically composed, using
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an algorithm which guarantees that the security policies of the individual monents

are preserved.

I model the security and composition of monents using a novel interface for-

malism I call information flow interfaces. My formal model represents monents

at a very abstract level and thus can be applied in many contexts beyond my

specific implementation.

I have built a prototype implementation of the monent framework. My com-

piler accepts a declarative description of a monent’s interconnections and pro-

duces an Adobe Flash application.
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CHAPTER 2

Asynchronous programming

2.1 Overview

Most service implementations make use of an asynchronous programming style,

where calls to a service are decoupled from the processing of its response. This

may be done to enable the interleaved processing of requests, to avoid tying up

system resources during the processing of a request, or to prevent system failures

and restarts from impacting the progress of a long-lived request.

To implement asynchronous programming in most widely used program-

ming languages, a technique called event-driven programming is employed. This

approach relies upon a stylized programming idiom where programs use non-

blocking I/O operations, and the programmer breaks the computation into fine-

grained callbacks (or event handlers) that are each associated with the completion

of an I/O call (or event). This permits the interleaving of many simultaneous

logical tasks with minimal overhead, under the control of an application-level

cooperative scheduler. Each callback executes some useful work and then either

schedules further callbacks, contingent upon later events, or invokes a contin-

uation, which resumes the control flow of its logical caller. The event-driven

style has been demonstrated to achieve high throughput in server applications

[PDZ99, WCB01], resource-constrained embedded devices [GLB03], and business

applications [Mic].
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Unfortunately, programming with events comes at a cost: event-driven pro-

grams are extremely difficult to understand and maintain. Each logical unit of

work must be manually broken into multiple callbacks scattered throughout the

program text. This manual code decomposition is in conflict with higher-level

program structuring. For example, calls do not return directly to their callers,

so it is difficult to make use of procedural abstraction as well as a structured

exception mechanism.

2.1.1 Other approaches

Threads represent an alternative programming model commonly used to inter-

leave multiple flows of control. Since each thread maintains its own call stack,

standard program structuring may be naturally used, unlike in the event-driven

style. However, threads have disadvantages as well, including the potential for

race conditions and deadlocks, as well as high memory consumption [BCZ03].

Within the systems research community, there is currently no agreement that

one approach is better than the other [PDZ99, BCB03, BCZ03, AHT02]. In ad-

dition, in some contexts, threads either cannot be used at all (such as within some

operating system kernels) or can only be used in conjunction with events (such

as thread-pooled servers for Java Servlets [Mic]). Thus, I believe that events are

here to stay and are an important target for programming language support.

Other existing solutions attempt to preserve the asynchronous computation

model, while limiting its disadvantages. This solutions include the use of first-

class continuations to structure control flow (e.g. in Scheme [GKH01, Que03]),

full-program transformations [MFG04, LZ04, PCM05], cooperative threading

[Eng00, BCZ03], and the static analysis of event-driven programs [DGJ98, JM07].

These solutions all suffer from limitations, including expensive implementation,
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the need for the entire application’s source, and the need to access low level ma-

chine resources not available in virtual machine based languages (e.g. Java and

C#).

2.1.2 TaskJava

To address these issues, I introduce tasks as a new programming language con-

struct for event-driven applications. A task, like a thread, encapsulates an inde-

pendent unit of work. The logical control flow of each unit of work is preserved,

and standard program structures like procedures and exceptions may be naturally

used. However, unlike threads, tasks can be automatically implemented by the

compiler in an event-driven style, thereby obtaining the low-overhead and high-

throughput advantages of events. My compilation strategy is a restricted form

of continuation-passing style (CPS), a well-studied compiler transformation that

is popular for functional programming languages [App91]. I have instantiated

this concept of tasks as a backward-compatible extension to Java called Task-

Java and have implemented the TaskJava compiler in the Polyglot compiler

framework [NCM03].

Tasks are a variant of cooperative multitasking, a form of interleaved execu-

tion where context switches only occur upon explicit yields. TaskJava provides

several technical contributions over existing cooperative multitasking systems.

• First, TaskJava’s modular static type system tracks the set of methods

whose execution might yield, requiring each to have a new async modifier.

Aside from serving as useful documentation for clients, these annotations

tell the compiler exactly where CPS translation is required (and where it is

not). In contrast, existing systems must allow for yields anywhere, which

requires either low-level stack manipulation (which is not possible in virtual
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machine-based languages), maintaining the stack on the heap, or copying

the stack onto the heap as necessary.

• Second, TaskJava is scheduler-independent: TaskJava programs can be

“linked” against any scheduler that provides the semantics of a new wait

primitive, which yields control to the scheduler. This design permits the

benefits of tasks to be accrued across multiple event domains (GUI events,

web server events, etc.). Prior approaches are tied to a specific scheduler

and notion of events.

• Finally, TaskJava properly handles the interactions of wait with Java

language features including checked exceptions and method overriding, and

TaskJava’s implementation adheres to the constraints imposed by the Java

virtual machine.

TaskJava programs are guaranteed to avoid two significant classes of errors

that may occur in event-driven programs, the lost continuation and lost exception

problems.

The lost continuation problem occurs when a callback has an execution path in

which the callback’s continuation is neither invoked nor passed along to the next

callback in the event chain. A lost continuation causes the intended sequential

behavior of the program to be broken, often producing errors that are difficult

to trace to their source. The lost exception problem occurs when an exceptional

condition produced by a callback is not properly handled by the subsequent

continuation, potentially causing the program to crash or continue executing in

undefined ways.

21



2.1.3 Evalution

I evaluate TaskJava in two ways. First, I have formalized the language and

its compilation strategy via CoreTaskJava (CTJ), a core language that extends

Featherweight Java [IPW01]. I provide a direct operational semantics for CTJ,

whereby wait calls block until an appropriate event is signaled, as well as

a translation relation from CTJ to Featherweight Java, which formalizes the

continuation-passing transformation performed by the TaskJava compiler. I

have proven CTJ’s type system sound, and as corollaries of this property, show

that a well-typed CTJ program is guaranteed to avoid the lost continuation and

lost exception problems.

Second, to evaluate TaskJava’s benefits in practice, I extended Fizmez [Bon],

an open source web server, to use interleaved computation. I implemented two

versions: one using a manual event-driven style and the other using TaskJava.

The TaskJava version maintains the same structure as the original web server,

while the event-driven version requires its logic to be fragmented across many call-

back classes, obscuring the control flow. At the same time, the TaskJava version

pays only a modest performance penalty versus the hand-coded one.

2.1.4 Chapter organization

The rest of this chapter is organized as follows. In Section 2.2, I informally present

tasks and TaskJava by example and contrast with event-driven programs. In

Section 2.3, I describe the CoreTaskJava formalisms. In Section 2.6, I overview

the implementation of the TaskJava compiler, and in Section 2.7, I discuss a

web server case study. Finally, I survey related work in Section 2.8.
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2.2 Example: programming with tasks

I will highlight the features of TaskJava by example, demonstrating the use of

TaskJava for managing non-blocking I/O.

2.2.0.1 Event-driven Programming

The event-driven programming style is frequently used in server programming

in conjunction with non-blocking I/O. Non-blocking I/O libraries (such as Java’s

NIO package) permit input/output operations to be scheduled so that they do not

block inside the operating system. Thus, independent requests can be executed

in an overlapping fashion without preemptive multi-threading.

Non-blocking I/O libraries generally provide two types of calls. First, a se-

lection call permits waiting for one or more channels/sockets to be ready for a

new request. Examples include the Unix select call and the Selector.select

method in Java’s NIO package. Second, calls are provided to initiate the actual

I/O operations (e.g., read and write) once the associated channel has become

ready. Unlike a standard blocking read or write request, non-blocking read and

write calls generally complete only the portion of a request that can be accom-

plished without blocking.

Selection calls are usually incorporated into a user-defined scheduler frame-

work. Rather than calling the selection API directly, clients of the scheduler

register to receive notification when the state of a given channel/socket changes.

The scheduler then calls the selection API on behalf of all clients, notifying clients

of events via callbacks. The control logic of each client is broken across a series

of these callbacks and thus is interleaved by the scheduler with the callbacks of

the other clients. This approach permits independent activities to cooperatively
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share the process’s CPU and I/O resources.

2.2.0.2 Event-driven Writer

Figure 2.1 shows a simple program fragment, written in an event-driven style,

which sends a buffer of data on a nonblocking channel. Writer’s run method

first obtains the data to be written (not shown), which is stored in a buffer buf.

The method then calls Scheduler.register, which registers a callback to be

invoked upon a write-ready or error event on the channel ch. The run method

returns immediately after the register call — execution of this logical control

flow must be resumed by the scheduler.

When an event occurs on channel ch, the scheduler invokes the run method of

the callback it was given (an instance of WriteReadyCB). This method performs

a write on the channel and then checks to see if more data needs to be written.

If so, the callback re-registers itself with the scheduler. Otherwise, it calls the

continuation method restOfRun on the original Writer object, which resumes

the logical control flow. If an error event is returned by the scheduler, the callback

prints an error message. Since no callback is registered or continuation method

invoked, the logical control flow is effectively terminated in that case.

Even this simple example illustrates the violence that the event-driven style

does to a program’s natural flow of control. The code in restOfRun logically

follows the buffer write, but they must be unnaturally separated because of the

intervening event registration. Similarly, performing the buffer write conceptually

involves a loop that writes to the channel until the entire buffer has been written.

In WriteReadyCB.run, this loop must be unnaturally simulated by having the

callback re-register itself repeatedly.

Without care, it is easy for a programmer to introduce errors that go un-
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detected. For example, if the call to restOfRun is accidentally omitted on line

30, then Writer’s control flow will never be resumed after the write. If the re-

registration on line 28 is omitted, the write will not even be completed. These

are examples of lost continuation problems.

2.2.1 Task-based Writer

Figure 2.2 shows a TaskJava implementation of the same program fragment.

The class WriterTask is declared as a task by implementing the Task interface.

Tasks are the unit of concurrency in TaskJava, serving a role similar to that of

a thread in multi-threaded systems. Instances of a task may be created by using

the spawn keyword, which is followed by a call to one of the task’s constructors

(e.g., spawn WriterTask()). A spawn causes a new instance of the task to be

created and schedules the instance’s run method for execution.

The logical control flow of our writer is now entirely encapsulated in

WriterTask’s run method. The register call from Writer is replaced with

a wait call, which conceptually blocks until one of the requested events has oc-

curred, returning that event. In this way, explicit callback functions are not

needed, so the code need not be unnaturally fragmented across multiple methods

(e.g., restOfRun). Similarly, the logic of the buffer write can be implemented

using an ordinary do-while loop.

The ability to use traditional program structures to express the control flow

of a task avoids the lost continuation problem. The programmer need not man-

ually ensure that the appropriate callback is registered or continuation method

is invoked on each path. This work is done by the TaskJava compiler, which

translates the WriterTask into a continuation-passing style that is very similar

to the Writer code in Figure 2.1. In particular, wait calls are translated to
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01 public class Writer {
02 ByteChannel ch;

03 ...

04 /* The main body of our task */

05 public void run() {
06 // get the data to write

07 ByteBuffer buf = ...;

08 /* wait for channel to be ready */

09 Scheduler.register(ch, Event.WRITE RDY EVT,

10 Event.ERR EVT,

11 new WriteReadyCB(ch, buf, this));

12 }
13 /* After the write has completed, we continue with what

14 we were doing. The event-driven style forces this

15 in a separate method. */

16 public void restOfRun() { ... }
17 /* Callback which does the write and then registers

18 itself if there still is data left */

19 class WriteReadyCB implements Callback {
20 ...

21 public WriteReadyCB(ByteChannel ch, ByteBuffer buf,

22 WriteTask caller) {...}
23 public void run(Event e) {
24 switch (e.type()) {
25 case Event.WRITE RDY EVT:

26 ch.write(buf);

27 if (buf.hasRemaining())

28 Scheduler.register(ch, Event.WRITE RDY EVT,

29 Event.ERR EVT, this);

30 else caller.restOfRun();

31 break;

32 default:

33 System.out.println(e.toString());

34 } } } }

Figure 2.1: Implementation of an event-driven writer
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register calls, and the portion of the run method after the wait call is placed

in a separate continuation method.

TaskJava allows programmers to define their own scheduler class, their

own event type and implementations, and their own type of event “tags” (e.g.,

WRITE RDY EVT). As long as the scheduler defines a register method for event

registrations, TaskJava allows the scheduler to be treated as if it has a corre-

sponding wait method. This approach allows existing scheduler frameworks to

obtain the benefits of TaskJava without any modification. For example, the

scheduler used in the manual version in Figure 2.1 may be reused in Figure 2.2.

This approach also allows multiple scheduler frameworks to be used in the same

program.

2.2.1.1 Asynchronous Methods

The TaskJava implementation of our writer also naturally supports procedural

abstraction. For example, Figure 2.3 shows a refactoring of our task whereby the

code to write the buffer is encapsulated in its own method, allowing that code

to be easily used by multiple clients. Implementing this write method in the

manual event-driven version of the code would be much more unwieldy, because

event-driven programming breaks the standard call-return discipline. To return

control back to caller, therefore, such a write method would have to take an

explicit continuation argument to be called upon completion of the write.

Figure 2.3 also shows that tasks are compatible with regular Java exception

handling. The write method throws an IOException when an error event is

signaled, allowing its caller to handle the error as appropriate. As in Java, the

TaskJava compiler ensures that all (checked) exceptions are caught. In contrast,

a manual event-driven version of the write method would have to signal the
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35 public class WriterTask implements Task {
36 ByteChannel ch; ...

37 /* The main body of our task */

38 public void run() {
39 // get the data to write

40 ByteBuffer buf = ...;

41 // write the buffer

42 do {
43 Event e =

44 Scheduler.wait(ch, Event.WRITE RDY EVT,

45 Event.ERR EVT);

46 switch (e.type()) {
47 case Event.WRITE RDY EVT:

48 ch.write(buf);

49 break;

50 default:

51 System.out.println(e.toString());

52 return;

53 }
54 } while (buf.hasRemaining())

55 /* the write is completed, so continue

56 with the rest of the method */

57 ...

58 } }

Figure 2.2: Implementation of the writer in TaskJava

error to its caller in an ad hoc manner, for example by setting a flag or invoking

a special error continuation method. This approach is tedious and loses the

static assurance that all exceptions are caught, resulting in the potential for lost

exception problems at run time.

Methods that directly or transitively invoke wait, like our write method, are

called asynchronous methods. Such methods (other than a task’s distinguished

run method) must have the async modifier. To programmers, this modifier

indicates that the method has the potential to block. To the TaskJava compiler,

this modifier indicates that the method must be translated into continuation-

28



Program P ::= CL return e;

Class List CL ::= class C extends C {T̄ f̄; K M̄}

Constructor K ::= C(T̄ f̄) { super(f̄); this.f̄= f̄;}

FJ+ Method M ::= T m(T̄ x̄) throws C̄ {return e;}

Type T ::= C | Bag<T>

Base ebase ::= x | e.f | e.m(ē) | new C(ē) | (C)e

expressions | {ē} | throw e

| try {e;} catch (C x) { e; }

e ::= ebase

EJ e ::= ebase | reg(e, e)

Async methods M ::= . . . | async C m(C̄ x̄) throws C̄

CTJ {return e;}

e ::= ebase | spawn C(e) | wait(e)

Table 2.1: Syntax of FJ+, EJ, and CTJ

passing style.

Asynchronous methods, like regular Java methods, interact naturally with in-

heritance. For example, a subclass of WriterTask can override the write method

to support a different or enhanced algorithm for writing a buffer. Making the

same change to the Writer class in Figure 2.1 is less natural due to the fragmen-

tation inherent in the event-driven style. For example, modifications to the logic

for writing the buffer would require a new subclass of the WriteReadyCB callback

class, and this modification then requires a new subclass of Writer whose run

method creates the new kind of callback.
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59 public class WriterTask implements Task{
60 ByteChannel ch; ...

61 /* The main body of our task */

62 public void run() {
63 // get the data to write

64 ByteBuffer buf = ...;

65 try {
66 write(ch, buf);

67 } catch (IOException e) {
68 System.out.println(e.getMessage());

69 }
70 }
71 public async void write(ByteChannel ch, ByteBuffer b)

72 throws IOException {
73 do {
74 Event e = Scheduler.wait(ch, Event.WRITE RDY EVT,

75 Event.ERR EVT);

76 switch (e.type()) {
77 case Event.WRITE RDY EVT:

78 ch.write(buf);

79 break;

80 default:

81 throw new IOException(e.toString());

82 } } while (buf.hasRemaining())

83 } }

Figure 2.3: Use of asynchronous methods in TaskJava

2.3 Formal Model

We formalize TaskJava and prove our theorems in a core calculus extending

Featherweight Java (FJ) [IPW01]. We do this in three steps: first, we define FJ+,

an extension to FJ with exceptions and built-in multiset data structures; second,

we define EventJava (EJ), a core calculus for event-driven programs into which

tasks will be compiled; and finally, we define the core features of TaskJava in

CoreTaskJava (CTJ).
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2.3.1 FJ+

The syntactic elements of FJ+ are described in Table 2.1. An FJ+ program

consists of a class table mapping class names to classes, and an initial expression.

As in FJ, the notation D̄ denotes a sequence of elements from domain D. A class

consists of a list of typed fields, a constructor, and a list of typed methods. The

metavariable C ranges over class names, f over field names, m over method names,

and x over formal parameter names. An expression is either a formal, a field

access, a method call, an object allocation, a type cast, a set, the throw of an

exception, or a try expression. We assume there exist built-in classes Object

and Throwable. The class Throwable is a subclass of Object and both have no

fields and no methods.

We define the operational semantics of FJ+ as additions to the rules of FJ 1

and then EventJava and CoreTaskJava as mutually exclusive additions to these

rules.

Program execution is modeled as a sequence of rewritings of the initial ex-

pression, which either terminates when a value is obtained or diverges if the

rewritings never yield a value. For all three languages, programs evaluate to ei-

ther non-exception values of the form v ::= new C() | new C(v̄) | {v̄} or exception

values of the form throw new Ce(v̄), where Ce <: Throwable. In the evaluation

and typing rules, we use v as shorthand for a non-exception value, v̄ for a sequence

of non-exception values, and ve for the non-exception value new C(v̄) (used as

the argument of a throw expression).

Figures 2.5 and 2.6 list the operational rules of FJ+. We use the symbol E to

represent an evaluation context, i.e., an expression where the next subexpres-

1We use the rules in chapter 19 of Types and Programming Languages [Pie02] rather than
those of the original FJ paper [IPW01], as they provide deterministic, call-by-value evaluation.
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T <: T′

T <: T
(S-Self)

T <: T′ T′ <: T′′

T <: T′′
(S-Trans)

CT (C) = class C extends D {...}

C <: D
(S-Cls)

T <: T′

Bag < T > <: Bag < T′ >
(S-Bag)

T|τ̄ <: T′|τ̄ ′

T <: T′ τ̄ ⊆: τ̄ ′

T|τ̄ <: T′|τ̄ ′ (S-Exc)

Figure 2.4: Subtyping rules for FJ+, EJ, and CTJ

sion to be evaluated (using a leftmost, call-by-value ordering) has been replaced

with a placeholder []. Formally,

E ::= [] | E.f | E.m(e) | v.m(v̄, E, ē) | new C(v̄, E, ē)

| {v̄, E, ē} | (C)E | throw E | try {E; } CK

We write E[e] to represent the expression created by substituting the subexpres-

sion e for the placeholder in the evaluation context E. Evaluation contexts are

used in the evaluation rules, the type soundness theorems, and the translation

relation.

As in Featherweight Java, the computation rules for cast only permit progress

when the type of the value being cast is a subtype of the target type. Otherwise,

the computation becomes “stuck”. The subtyping relation, defined in Figure 2.4,

is extended to include bags (rule S-Bag) and exception effects (rule S-Exc). Based

on the subtyping relation, we define a join operator ⊔ on types, where T ⊔ T′ is
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e −→ e′

fields(C) = T̄ f̄

(new C(v̄)).fi −→ vi

(E-1)
mbody(m, C) = (x̄, e0)

(new C(v̄)).m(v̄e) −→ [v̄e/x̄, new C(v̄)/this]e0

(E-2)

C <: C′

(C′)(new C(v̄)) −→ new C(v̄)
(E-3)

∀Ti ∈ T̄.Ti <: T

(Bag < T >){v̄} −→ {v̄}
(E-4)

new C(v̄, throw ve, ē) −→ throw ve (E-5) (throw ve).m(ē) −→ throw ve (E-6)

v.m(v̄, throw ve, ē) −→ throw ve (E-7) {v̄, throw ve, ē} −→ throw ve (E-8)

(throw ve).f −→ throw ve (E-9) (C)(throw ve) −→ throw ve (E-10)

throw throw ve −→ throw ve (E-11) try {v; } CK −→ v (E-12)

v = new C(v̄) C <: Ce

try {throw v; } catch (Ce x) {e; } −→ [v/x]e
(E-13)

v = new C(v̄) C 6<: Ce

try {throw v; } catch (Ce x) {e; } −→ throw v
(E-14)

Figure 2.5: Computation rules for FJ+

the least upper bound of types T and T′. It is extended to sets of types in the

obvious way. We write ⊔T̄ to denote the least upper bound of all types in the set

T̄. The join operator is undefined for joins between class types and bag types.

2.3.2 EventJava

EventJava (EJ) is a core calculus that extends FJ+ with support for events and

event registration. Table 2.1 gives the syntax for EJ, showing the extensions

from FJ+. The set of EJ expressions additionally contains a built-in function

reg, which registers a set of events and a callback with the scheduler. For use

with the reg function, we assume the system scheduler implementation includes

a class Event. Further, EJ provides a built-in class Callback:

class Callback extends Object {

Object run(Object retVal) { return new Object(); }

}
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e −→ e′

e0 −→ e′
0

e0.f −→ e′
0
.f

(E-15)
e0 −→ e′

0

e0.m(ē) −→ e′
0
.m(ē)

(E-16)

ei −→ e′i
v0.m(v̄, ei, ē) −→ v0.m(v̄, e′i, ē)

(E-17)
ei −→ e′i

new C(v̄, ei, ē) −→ new C(v̄, e′i, ē)
(E-18)

e0 −→ e′
0

(T )e0 −→ (T )e′
0

(E-19)
e0 −→ e′

0

{v̄, e0, ē} −→ {v̄, e
′
0
, ē}

(E-20)

e0 −→ e′
0

throw e0 −→ throw e′
0

(E-21)

et −→ e′t
try {et; } catch (Ce x) {e; } −→

try {e′t; }catch (Ce x) {e; }

(E-22)

Figure 2.6: Congruence rules for FJ+

The type signature of reg is Bag<Event> × Callback→ Object.

The operational semantics of EJ programs is given with respect to a program

state. An EventJava program state σe consists of (1) an expression representing

the in-progress evaluation of the currently executing callback, and (2) a bag E of

pending event registrations of type Bag<Event> × Callback. In the operational

rules, we write this state as e|E .

After the initialization expression has been evaluated, the program enters

an event processing loop. The event processing loop runs until the set of event

registrations E is empty. In each iteration of the loop, one event registration (s, c)

is nondeterministically removed from E . An event η is then nondeterministically

chosen from s, and the callback function c.run(η) is executed. A registration is

one-time; after the selection of an event η, the entire event set s is excluded from

further consideration, unless the set is explicitly re-registered with the scheduler.

If an empty set of events is passed along with a callback, the callback is guaranteed

to be called at some point in the future. An instance of NullEvent is then passed

to the callback. This semantics models a single-threaded event server.
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Note that the parameter of a callback’s run method has a type of Object, even

though it will be passed an Event. This slight discrepancy simplifies the trans-

lation between CTJ (which also uses callbacks for completion of asynchronous

method calls) and EJ. As a result, the body of each callback class must downcast

the retVal parameter to Event. Downcasts could be avoided by extending EJ

and CTJ with generics, as in Featherweight Generic Java [IPW01].

We define evaluation contexts for EventJava in the same manner as FJ+. The

grammar for evaluation contexts has the following extensions for syntactic forms

specific to EventJava:

E ::= . . . | reg(E, e) | reg({v̄}, E)

Figure 2.7 lists the operational rules unique to EventJava. In these rules, s

ranges over event sets and η ranges over events. We define two evaluation relations

for EventJava programs. The −→e relation extends the FJ+ −→ relation with

congruence rules to evaluate the arguments of a reg call. The =⇒e relation then

extends this relation to EventJava program states. Rule Ee-Con incorporates the

−→ relation into the context of a program state.

Each transition rule of the =⇒e relation has an associated observable ac-

tion, denoted by a label above the transition arrow. This action represents the

impact of the transition on the scheduler. A label may be either: (1) an event set,

representing a registration with the scheduler, (2) a single event, representing the

selection of an event by the scheduler, or (3) ǫ, representing a transition which

has no impact on the scheduler’s state.
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e −→e e′

Figure 2.5, rules E-1 - E-14.
Figure 2.6, rules E-15 - E-22.

e0 −→e e′
0

reg e0, e1 −→e reg e′
0
, e1

(Ee-23)
e0 −→e e′

0

reg v, e0 −→e reg v, e′
0

(Ee-24)

reg throw v, e −→e throw v
(Ee-25)

reg v0, throw v1 −→e throw v1

(Ee-26)

e|E
l

=⇒e e′|E ′

e −→e e′

e|E
ǫ

=⇒e e′|E
(Ee-Con)

E[reg v0, v1]|E
v0=⇒e E[v1]|E ∪ (v0, v1)

(Ee-Reg)

(s, vcb) ∈ E η ∈ s

v|E
η

=⇒e vcb.run(η)|E \ (s, vcb)
(Ee-Run)

(∅, vcb) ∈ E η0 = new NullEvent()

v|E
η0

=⇒e vcb.run(η0)|E \ (∅, vcb)
(Ee-η∅Run) throw ve|E

ǫ
=⇒e

throw ve|∅

(Ee-Throw)

Figure 2.7: Operational Semantics of EJ

2.3.3 CoreTaskJava

The syntax of CoreTaskJava (CTJ) extends FJ+ with three new constructs: the

spawn syntax for creating tasks; a wait primitive, which accepts a set of events

and blocks until one of them occurs; and asynchronous methods via the async

modifier. A task in CTJ subclasses from a built-in class Task:

class Task extends Callback {}

A task’s run method contains the body of the task and is called after a task is

spawned. 2

2In the implementation, Task does not subclass from Callback and its run method takes no
parameters. We subclass from Callback here to simplify the presentation of the formalization.
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Informally, tasks are modeled as concurrent threads of execution that block

when waiting for an asynchronous call to complete. We define evaluation contexts

for CTJ expressions in the same manner as FJ+. The grammar for evaluation

contexts has the following extensions for syntactic forms specific to CTJ:

E ::= ... | wait E | spawn E

As with EJ, the semantics is defined with respect to a program state. A CTJ

program state σc consists of: (1) an expression representing the in-progress eval-

uation of the currently executing task, and (2) a set B of (Bag<Event>, E[]) pairs

representing the evaluation contexts of blocked tasks and the events that each

task is blocked on. In the operational rules, we write this state as e|B.

After a CTJ program’s initialization expression has been evaluated, the pro-

gram nondeterministically selects a task from the blocked set, then nondetermin-

istically selects an event from the task’s event set, and evaluates the task until it

either terminates or blocks again. Another task is then selected nondeterministi-

cally. This process repeats until the program reaches the state where the current

expression is a value and the blocked set is empty. Tasks and the associated event

sets are added to B through calls to wait. In addition, the spawn of a task is

modeled by placing the task in B with an empty event set, ensuring that the task

will eventually be scheduled.

Figure 2.8 lists the operational rules for CoreTaskJava. As with Event-

Java, the rules are written using two relations. The −→c relation extends the

FJ+ −→ relation with congruence rules to evaluate the arguments of wait and

spawn calls. The =⇒c relation (defined in Figure 2.8) then extends this relation

to CoreTaskJava program states. The evaluation of the −→ rules in the context
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e −→c e′

Figure 2.5, rules E-1 - E-14.
Figure 2.6, rules E-15 - E-22.

e0 −→c e′
0

wait e0 −→c wait e′
0

(Ec-23)
wait throw v −→c throw v

(Ec-24)

e0 −→c e′
0

spawn e0 −→c spawn e′
0

(Ec-25)
spawn throw v −→c throw v

(Ec-26)

e|B
l

=⇒c e′|B′

e −→c e′

e|B
ǫ

=⇒c e′|B
(Ec-Con)

throw v|B
ǫ

=⇒c throw v|∅
(Ec-Throw)

w = wait {v̄}

E[w]|B
{v̄}

=⇒c new Object()|B ∪ ({v̄}, E[])
(Ec-Wait)

({v̄}, E[]) ∈ B η ∈ {v̄}

v|B
η

=⇒c E[η]|B \ ({v̄}, E[])
(Ec-Run)

(∅, E[]) ∈ B η0 = new NullEvent()

v|B
η0

=⇒c E[η0]|B \ (∅, E[])
(Ec-η∅Run)

E[spawn C(v̄)]|B
∅

=⇒c E[new C(v̄)]|B ∪ (∅, (new C(v̄)).run([]))
(Ec-Spn)

Figure 2.8: Operational Semantics of CTJ

of a program state is handled by Rule Ec-Con. Each transition of the =⇒ relation

is labeled with an observable action, as defined above for EventJava.

2.3.4 Type Checking

FJ+ and EJ Typing judgments for expressions in FJ+ have the form Γ ⊢ e :

T |τ̄ , where the environment Γ maps variables to types, T is a type (using the

type grammar in Table 2.1), and τ̄ is set of exception classes (Throwable or a
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subclass of Throwable). For checking exceptions, we introduce a new relation

τ̄ ⊆: τ̄ ′, which is true when, for each class C ∈ τ̄ , there exists a class C ′ ∈ τ̄ ′ such

that C <: C ′.

Figure 2.9 lists the typing rules for FJ+. These rules extend the typing rules

of FJ by adding typing of bags and tracking the set of exceptions τ̄ which may

be thrown by an expression. In particular, rule T-9 assigns an arbitrary type T

to a throw statement, based on the statement’s context.

The override function (rule T-11) is changed to check that the set of ex-

ceptions thrown by a method’s body is a subset of those declared to be thrown

by the method signature. The auxiliary function mtype(C,m) returns the type

signature of method m in class C. A method’s type signature has the form:

T̄f → Tr throws τ̄ , where T̄f represents the types of the formal arguments, Tr

represents the type of the return value, and τ̄ represents the exceptions declared

to be thrown by the method. EventJava extends the rules of FJ+ with an addi-

tional rule to assign a type to reg expressions (Figure 2.10).

CoreTaskJava Typing rules for CTJ are listed in Figures 2.11 and 2.12. Typ-

ing statements for expressions in CTJ have the form Γ, C,M ⊢ e : T |τ̄ , where C

is the name of the enclosing class and M the definition of the enclosing method.

The auxiliary function isaync(M) returns true if the method definition M has

an async modifier and false otherwise. Likewise, isasync(C,m) returns true if

the definition of method m in class C has an async modifier.

Rules Tc-3 and Tc-15 ensure that asynchronous calls and wait calls may

only be made by asynchronous methods or the run method of a task. Rules

T-11 and T-12 of FJ+ have each been split into two cases, one for asynchronous

methods and one for standard methods. This ensures that asynchronous methods
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Γ ⊢ e : T |τ̄

x : T ∈ Γ

Γ ⊢ x : T|∅
(T-1)

Γ ⊢ e0 : C0|τ̄ f ields(C0) = T̄ f̄

Γ ⊢ e0.fi : Ti|τ̄
(T-2)

Γ ⊢ e0 : C0|τ̄0 mtype(m, C0) = T̄f → Tr throws τ̄m Γ ⊢ ē : T̄a|τ̄a T̄a <: T̄f

Γ ⊢ e0.m(ē) : Tr|τ̄0 ∪ τ̄m ∪ τ̄a

(T-3)

fields(Cc) = T̄c f̄ Γ ⊢ ē : T̄e|τ̄ T̄e <: T̄c

Γ ⊢ new Cc(ē) : Cc|τ̄
(T-4)

Γ ⊢ e0 : T0|τ̄ T0 <: T

Γ ⊢ (T)e0 : T|τ̄
(T-5)

Γ ⊢ e0 : T0|τ̄ T <: T0 T 6= T0

Γ ⊢ (T)e0 : T|τ̄
(T-6)

Γ ⊢ e0 : T0|τ̄ T 6<: T0 T0 6<: T stupid warning

Γ ⊢ (T)e0 : T|τ̄
(T-7)

Γ ⊢ ∀ei ∈ ē . ei : Ti T = ⊔Ti τ̄ = ∪τ̄i

Γ ⊢ {ē} : Bag < T > |τ̄
(T-8)

Γ ⊢ e0 : C0|τ̄ C0 <: Throwable

Γ ⊢ throw e0 : T|τ̄ ∪C0

(T-9)

Γ ⊢ et : Tt|τ̄t

Ce <: Exception Γ ∪ x : Ce ⊢ ec : Tc|τ̄c τ̄ ′
t = {τ ∈ τ̄t | τ 6<: Ce}

Γ ⊢ try {et; } catch (Ce x) {ec; } : Tt ⊔ Tc|τ̄
′
t ∪ τ̄c

(T-10)

override(m, D, T̄c → Trc, τ̄ )

mtype(m, D) = T̄d → Trd throws τ̄d ⇒
T̄c = T̄d ∧ Trc = Trd ∧ τ̄ ⊂: τ̄d

override(m, D, T̄c → Trc, τ̄)
(T-11)

M OK in C

{x̄ : T̄|∅, this : C|∅} ⊢ e0 : Te|τ̄e Te <: Tr

τ̄e ⊂: τ̄ CT (C) = class C extends D {...} override(m, D, T̄→ Tr, τ̄)

Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(T-12)

C OK

K = C(T̄s f̄s, T̄c f̄c){super(f̄s); this.f̄c = f̄c; }
fields(Cs) = T̄s f̄s M OK in C

class C extends Cs {T̄c f̄c; K M} OK
(T-13)

P OK

⊢ e : T|∅ CL OK

⊢f CL return e OK
(T-14)

Figure 2.9: Typing rules for FJ+
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Γ ⊢ e : T |τ̄

Figure 2.9, rules T-1 - T-13.

Γ ⊢ es : Bag<Event>|τ̄s Γ ⊢ ec : Callback|τ̄c

Γ ⊢ reg es, ec : Event|τ̄s ∪ τ̄c

(Te-14)

P OK

⊢ e : T|∅ CL OK

⊢e CL return e OK
(Te-15)

E OK

⊢ {v̄e} : Bag < Event >
⊢ new C(v̄c) : C|∅
C <: Callback

⊢ {({v̄e}, new C(v̄c))} OK
(Te-16)

Figure 2.10: Typing rules for EJ

may only override asynchronous methods and non-asynchronous methods may

only override non-asynchronous methods. Rule Tc-12b also verifies that the run

method of a task has not been declared async.

Rule Tc-14 ensures that sets of blocked tasks are well-formed. If ⊢ B OK, then

B consists of a set of pairs, where the first element of the pair is a set of events

and the second element of the pair is an evaluation context E[]. The evaluation

context must be well-typed when [] is replaced with an event.

2.4 Properties of CoreTaskJava programs

We now describe the central formal properties of CTJ programs: subject reduc-

tion, progress, and soundness.

We start by defining normal forms for CTJ and EJ, special forms for expres-

sions obtained by rewriting until no rewrite rule from −→e or −→c is possible.

A CTJ expression e is in normal form if it matches one of the following forms:

E[spawn C(v̄)], E[wait v], E[(T )v] where the type of non-exception value v is not

a subtype of T , throw ve, or a non-exception value v. Similarly, an EJ expression
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Γ, C, M ⊢ e : T |τ̄

x : T ∈ Γ

Γ, C, M ⊢ x : T |∅
(Tc-1)

Γ, C, M ⊢ e0 : C0|τ̄ f ields(C0) = T̄ f̄

Γ, C, M ⊢ e0.fi : Ti|τ̄
(Tc-2)

Γ, C, M ⊢ e0 : C0|τ̄0

mtype(m, C0) = T̄f → Tr throws τ̄m Γ, C, M ⊢ ē : T̄a|τ̄a T̄a <: T̄f

isasync(m, C0) =⇒
(C <: Task ∧methname(M) = run) ∨ isasync(M)

Γ, C, M ⊢ e0.m(ē) : Tr|τ̄0 ∪ τ̄m ∪ τ̄a

(Tc-3)

fields(Cc) = T̄c f̄ Γ, C, M ⊢ ē : T̄e|τ̄ T̄e <: T̄c

Γ, C, M ⊢ new Cc(ē) : Cc|τ̄
(Tc-4)

Γ, C, M ⊢ e0 : T0|τ̄ T0 <: T

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-5)

Γ, C, M ⊢ e0 : T0|τ̄ T <: T0 T 6= T0

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-6)

Γ, C, M ⊢ e0 : T0|τ̄ T 6<: T0 T0 6<: T stupid warning

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-7)

Γ, C, M ⊢ ∀ei ∈ ē . ei : Ti T = ⊔Ti τ̄ = ∪τ̄i

Γ, C, M ⊢ {ē} : Bag < T > |τ̄
(Tc-8)

Γ, C, M ⊢ e0 : C0|τ̄ C0 <: Throwable

Γ, C, M ⊢ throw e0 : T|τ̄ ∪ C0

(Tc-9)

Γ, C, M ⊢ et : Tt|τ̄t

Ce <: Exception Γ ∪ x : Ce, C, M ⊢ ec : Tc|τ̄c τ̄ ′
t = {τ ∈ τ̄t | τ 6<: Ce}

Γ, C, M ⊢ try {et; } catch (Ce x) {ec; } : Tt ⊔ Tc|τ̄
′
t ∪ τ̄c

(Tc-10)

Γ, C, M ⊢ e0 : Bag<Event>|τ̄
(C <: Task∧methname(M) = run) ∨ isasync(M)

Γ, C, M ⊢ wait e0 : Event|τ̄
(Tc-15)

Γ, C, M ⊢ e0 : C|τ̄ C <: Task

Γ, C, M ⊢ spawn e0 : C|τ̄
(Tc-16)

Figure 2.11: Expression typing rules for CTJ
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override(m, D, T̄c → Trc, τ̄ )

mtype(m, D) = T̄d → Trd throws τ̄d ⇒
T̄c = T̄d ∧ Trc = Trd ∧ τ̄ ⊂: τ̄d

override(m, D, T̄c → Trc, τ̄ )
(Tc-11)

M OK in C

{x̄ : T̄|∅, this : C|∅}, C, M ⊢ e0 : Te|τ̄e

Te <: Tr τ̄e ⊂: τ̄ CT (C) = class C extends D {...}
override(m, D, T̄→ Tr, τ̄ ) ¬isasync(m, D)

Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(Tc-12a)

{x̄ : T̄, this : C}, C, M ⊢ e0 : Te|τ̄e

Te <: Tr τ̄e ⊂: τ̄ CT (C) = class C extends D {...}
override(m, D, T̄→ Tr, τ̄) isasync(m, D) ¬(C <: Task ∧ m = run)

async Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(Tc-12b)

C OK

K = C(T̄s f̄s, T̄c f̄c){super(f̄s); this.f̄c = f̄c; }
fields(Cs) = T̄s f̄s M OK in C

class C extends Cs {T̄c f̄c; K M} OK
(Tc-13)

P OK

⊢ e : T|∅ CL OK

⊢c CL return e OK
(Tc-14)

B OK

⊢ {v̄} : Bag < Event >
⊢ Ē[new Event()] : T̄

⊢ {({v̄}, E[])} OK
(Tc-17)

Figure 2.12: Method, class, program, and blocked task typing rules for CTJ
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e is in normal form if it matches one of the following forms: E[reg v1, v2], E[(T )v]

where the type of non-exception value v is not a subtype of T , throw ve, or a

non-exception value v.

Lemma 1 (Normal forms). If an (CTJ or EJ) expression e is in normal form,

either no reduction of the expression e by the =⇒ relation is possible, or the

reduction step must be an observable action.

Proof. Immediate from the structure of each normal form and the =⇒ relation.

2.4.0.1 Subject Reduction

We are now ready to relate the evaluation relation to the typing rules. Subject

reduction states that, if a CTJ program in a well-typed state takes an evaluation

step, the resulting program state is well-typed as well. We start first with a

theorem for the −→ relation and then extend this to the =⇒c relation.

Theorem 1 (−→c Subject Reduction). If Γ ⊢ e : Te|τ̄e and e −→c e
′, then

Γ ⊢ e′ : Te′ |τ̄e′ for some Te′|τ̄e′ <: Te|τ̄e.

The proof of this theorem is based on several technical lemmas. When the

given lemma is standard for soundness proofs, we omit the proof of the lemma

for brevity.

Lemma 2. If mtype(m,C) = T̄ → Tr throws τ̄ , then mtype(m,C ′) = T̄ →

Tr throws τ̄ ′, where τ̄ ′ ⊆: τ̄ , for all C ′ <: C.

Lemma 3 (Non-exception values). Non-exception values of the form v ::=

new C() | new C(v̄) | {v̄} have a type of the form T|∅.
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Lemma 4 (Term substitution preserves typing). If Γ ∪ x̄ : T̄ ⊢ e0 : T0|τ̄0, and

Γ ⊢ v̄ : T̄′|∅ where T̄′ <: T̄, then Γ ⊢ [v̄/x̄]e0 : T′0|τ̄0 for some T′0 <: T0.

Lemma 5 (Weakening). If Γ ⊢ e : T|τ̄ , then Γ ∪ x : T′ ⊢ e : T|τ̄ .

Lemma 6 (Return types). If mtype(m,C) = T̄ → Tr throws τ̄ and

mbody(m,C) = (x̄, e), then for some C ′ where C <: C ′, there exists some T′r

and τ̄ ′ such that T′r <: Tr, τ̄ ⊆: τ̄ ′, and Γ ∪ x̄ : T̄ ∪ this : C ′ ⊢ e : T′r|τ̄
′.

Lemma 7 (Subtyping of joined types). T <: (T ⊔ T′) for all types T, T′.

Lemma 8 (Subsets and the ⊆: relation). If τ̄ ⊆ τ̄ ′, then τ̄ ⊆: τ̄ ′.

Proof for Theorem 1. By induction on the derivation of e −→ e′, using a case

analysis on the evaluation rules. For space reasons, the full proof is omitted here.

It may be found in [FMM06].

We now extend subject reduction to CTJ program states.

Theorem 2 (=⇒c Subject Reduction). If ⊢ e : Te|τ̄e and B OK and e|B =⇒c

e′|B′, then ⊢ e′ : Te′|τ̄e′ and B′ OK.

Proof. By using a case analysis on the evaluation rules:

• Rule Ec-Con (step via −→c relation): By theorem 1, we have Te′|τ̄e′ <: Te|τ̄e.

The blocked task set remains unchanged and B OK is a premise of the

theorem.

• Rule Ec-Throw (throw): The expression e remains unchanged and, thus is

well-typed. B′ is the empty set, which is well-typed by rule Tc-17.
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• Rule Ec-Wait (wait): The value new Object() is well-typed by rule T-4.

By the premise of the theorem, E[wait {v̄}] is well-typed and, by type

rule Tc-15, the wait call has type Event|∅. Thus, E[new Event()] will be

well-typed and B′ OK by rule Tc-17.

• Rules Ec-Run and Ec-η∅Run (selection of an event): By rule Tc-17, E[] is

well-typed when the placeholder is replaced with an object of type Event.

Thus, E[η] and E[η0] are well-typed. B′ = B \ ({v̄}, E[]) and is OK by rule

Tc-17.

• Rule Ec-Spn (spawn): By type rules T-4 and Tc-16, new C(v̄) and

spawn C(v̄) both have type C|∅. Thus, substituting new C(v̄) for

spawn C(v̄) will result in a well-typed expression. From type rule Tc-16 we

know that C <: Task. Thus, the expression (new C(v̄)).run(new Event()) is

well-typed by rule T-3 and B’ OK by Tc-17.

Note that, when taking a step via the =⇒c relation, a subtype relationship

no longer holds between the original expression and the new expression. If the

evaluation context is of the form E[wait{v̄}], the current expression may be

replaced with one from the blocked set. This new expression need not have a

subtype relationship with the previous one. As we shall see in theorem 5, this

does not prevent us from making the usual claims about the type safety of CTJ

programs.

2.4.0.2 Progress

The progress theorem states that well-typed CTJ programs cannot get “stuck”,

except when a bad cast occurs.
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We first state a technical lemma needed for the proofs:

Lemma 9 (Canonical forms). The forms of values are related to their types as

follows:

• If ⊢ ν : C|τ̄ , and ν is a value, then ν has either the form new C(v̄), where

⊢ v̄ : T̄f , or the form throw new C(v̄), where C <: Throwable.

• If ⊢ ν : Bag < T >|τ̄ , and ν is a value, then ν has either the form {v̄}, where

⊢ v̄ : T̄|∅ and T = ⊔T̄, or the form throw new C(v̄), where C <: Throwable.

Theorem 3 (−→c Progress). Suppose ⊢ e : T |τ̄ . Then either e is a normal form

or there exists an expression e′ such that e −→c e
′.

Proof. We prove theorem 3 by induction on the depth of the derivation of ⊢ e :

T |τ̄ , using a case analysis on the last type rule for each derivation

The handling of exceptions in this proof is interesting due to the type rule

for throw (T-9) – it assigns an arbitrary type. If the exception type τ̄ , is non-

empty, we must consider values of the form throw ve whenever we consider values.

Thus, expressions that may step by a computation rule may also step to a throw

expression. This is reflected in our canonical forms lemma, which includes a

throw expression for each value form. The full proof is omitted here (it appears

in [FMM06]).

Theorem 4 (=⇒c Progress). Suppose ⊢ e : T |τ̄ and B OK. Then one of the

following must be true:

• e is a value and B = ∅.

• e is of the form E[(T )v], where E[] is an evaluation context and v is a value

whose type is not a subtype of T . We call this a runtime cast error.
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• There exists an expression e′ and set of blocked tasks B′ such that e|B =⇒c

e′|B′.

Proof. From theorem 3, we know that either e is a normal form or there exists

an expression e′ such that e −→ e′. If e −→ e′, then, by evaluation rule Ec-Con,

e|B
ǫ

=⇒ e′|B. If e is a normal form, we perform a case analysis over normal forms

and the contents of B:

• If e has the form E[spawn C(v̄)] or E[wait {v̄}], then e steps by rules

Ec-Spn and Ec-Wait, respectively.

• If e has the form E[(T )v] where v is a value whose type is not a subtype of

T , then a runtime cast error has occurred, and no step may be taken.

• If e is an exception value, and B is not empty, then e|B =⇒ e′|B′ by

evaluation rule Ec-Throw.

• If e is a non-exception value and B is not empty, then e|B =⇒ e′|B′ by

either evaluation rule Ec-Run or Ec-η∅Run.

• If e is a value and B = ∅, then the program has terminated and cannot

step.

2.4.0.3 Soundness

We now combine theorems 2 and 4 to extend our guarantee to entire program

executions. First, we need two lemmas regarding exceptions:

Lemma 10 (−→c Exceptions). If ⊢ e : T|τ̄ , and e −→∗
c throw new C(v̄), then

∃τi ∈ τ̄ | C <: τi.
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Proof. By induction over evaluation steps. By the inductive hypothesis, an ar-

bitrary expression from the sequence ei has type ⊢ ei : Ti|τ̄i, where τ̄i ⊆: τ̄ . If

ei −→ ei+1, then, by theorem 2, ⊢ ei+1 : Ti+1|τ̄i+1, where τ̄i+1 ⊆: τ̄i.

From type rule T-9, ⊢ throw new C(v̄) : T|C. If e −→∗ throw new C(v̄), then

C ⊆: τ̄ .

Lemma 11 (=⇒c Exceptions). If ⊢ e : T|∅, and e|∅ =⇒∗
c e

′|B′, then ⊢ e′ : T ′|∅.

Proof. From lemma 10, we know that evaluation of e through the −→c relation

cannot yield an exception value (there is no class C such that C ⊆: ∅).

During the program’s evaluation, new expressions may be created through

application of evaluation rule Ec-Spn (spawn) followed by evaluation rule Ec-

η∅Run (execution of a null event), but these expressions will be of the form

(new C(v̄)).run(η0), where C <: Task. Since the run method of C does not declare

any thrown exceptions, then, by type rule T-11, neither does the run method of

class C. By lemma 10, we know that such expressions will not evaluate to an

uncaught exception.

Now, we can state the main result for this section: a well-typed CTJ program

either terminates to a non-exception value, diverges, or stops due to a runtime

cast error.

Theorem 5 (Soundness). If Pc = CL return e is a CTJ program and ⊢c Pc OK,

then one of the following must be true:

• e|∅ =⇒∗
c v|∅, where v is a non-exception value.

• e|∅ ↑

• e|∅ =⇒∗
c E[(T )v]|B, where the type of v is not a subtype of T .
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Proof. By induction over evaluation steps. The initial state of P is e|∅. By

theorem 4, either e is a value, e is a runtime cast error, or there exists an e′|B′ such

that e|∅ =⇒c e
′|B′. By theorem 2, e′ is well-typed and B′ OK.

Next, we look at an arbitrary state ei|Bi such that e|∅ =⇒∗
c ei|Bi. By the

inductive hypothesis, ei|Bi is well-typed. By theorem 4, either ei is a value, ei is

a runtime cast error, or there exists an ei+1|Bi+1 such that ei|Bi =⇒c ei+1|Bi+1.

By theorem 2, ei+1 is well-typed and Bi+1 OK.

Thus, the program will either step forever, terminate, or become stuck due to

a runtime cast error. If the program terminates, by lemma 11, it cannot terminate

due to an uncaught exception.

2.4.0.4 No lost exceptions

Note that a CTJ program never evaluates to an uncaught exception. The type

system statically ensures that both the initialization expression and the run meth-

ods of any spawned tasks catch all exceptions thrown during evaluation. We state

this more formally as follows:

Corollary 1 (No lost Exceptions). If ⊢ e : T|∅, and e|∅ =⇒∗
c e

′|B′, then ⊢ e′ :

T ′|∅.

2.4.0.5 No lost continuations

As discussed in the overview, when one writes event-driven programs in a con-

tinuation passing style, it is possible to drop a continuation and thus never pass

the result of an asynchronous operation to its logical caller. This problem is

easily avoided in CTJ programs by using asynchronous methods and wait calls

instead of continuations. Such calls are evaluated in the same manner as standard
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method calls. More specifically, the language semantics ensure that, if program

execution reaches an asynchronous method call or wait call, either evaluation of

the calling expression is eventually resumed (with the results of the call), execu-

tion stops due to a runtime cast error, or the program diverges. More formally,

we can state:

Corollary 2 (No lost continuations). For any program state E[e0]|B, where e0 is

an asynchronous method call or a wait call, either:

• E[e0]|B =⇒∗
c E[v]|B′, where v is a value,

• E[e0]|B ↑, or

• E[e0]|B =⇒∗
c E

′[(T )v]|B′, where the type of v is not a subtype of T .

We first prove for the more general case where e0 is an arbitrary expression.

We do this using two lemmas:

Lemma 12 (−→c Evaluation to normal forms). An expression e either evaluates

to a normal form or diverges.

Proof Idea This can be proven by induction over evaluation steps using the-

orem 3 (at each step, either an evaluation rule can be applied or a normal form

has been reached).

Lemma 13 (=⇒c Evaluation to normal forms). For any program state E[e0]|B,

either:

• E[e0]|B =⇒∗
c E[v]|B′, where v is a value,

• E[e0]|B ↑, or

• E[e0]|B =⇒∗
c E

′[(T )v]|B′, where the type of v is not a subtype of T .
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Proof. By induction over evaluation steps. By lemma 12, either e0 −→
∗
c e

′
0, where

e′0 is a normal form, or evaluation diverges. We look at each possible outcome:

• If the evaluation diverges, the second case of the lemma is satisfied.

• If the normal form is a runtime cast error, the third case of the lemma is

satisfied.

• If the normal form is a spawn call, evaluation rule Ec-Spn replaces the call

with an expression of the form new C(v̄). Then, either the entire expres-

sion is a value, satisfying the first case of the lemma, or by the inductive

hypothesis, further evaluation either diverges, reaches a value, or reaches a

runtime cast error.

• If the normal form is a wait call, evaluation rule Ec-Wait can be applied

to add the current evaluation context Ew[] and the set of waited-for events

sw to the blocked set Bw, resulting in a new program state new Object|B ∪

(sw, Ew[]). The only evaluation rules that may be applied to this new

state are Ec-Run and Ec-η∅Run, which select a blocked evaluation context

for execution. If B = ∅, then (sw, Ew[]) must be selected. Otherwise,

induction over evaluation steps and theorem 4 can be used to show that

either (sw, Ew[]) is selected for evaluation through rule Ec-Run, evaluation

diverges, or a runtime cast error occurs. The second two cases satisfy this

lemma.

If (sw, Ew[]) is selected by rule Ec-Run, then an event η is selected from

sw and Ew[η] is evaluated. Either the entire expression is a value, satis-

fying the first case of the lemma, or, by the inductive hypothesis, further

evaluation either diverges, reaches a value, or reaches a runtime cast error.
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Proof of corollary 2. Immediate from lemma 13.

2.5 Translating CoreTaskJava to EventJava

A CTJ program is translated to EJ by rewriting tasks and asynchronous methods

to use a continuation-passing style. We describe this translation using a set of

syntax transformation rules. Informally, these rules:

• Change each asynchronous method to forward its result to a continuation

object passed in as an input parameter, rather than returning the result to

its caller.

• Methods containing asynchronous method calls are split at the first asyn-

chronous call. The evaluation context surrounding the call is moved to the

run method of a new continuation class. An instance of this class is added

to the parameter list of the call. The continuation class itself may need to

be split as well, if the new run method contains asynchronous calls.

• Methods containing wait calls are split in the same manner. The evalu-

ation context surrounding the call is moved to the run method of a new

continuation class. The wait call is replaced by a reg call, with the contin-

uation class passed as the callback parameter. As above, the continuation

class itself may need to be split as well, if the new run method contains

asynchronous calls.

• If the original body of an asynchronous method may throw exceptions to

its caller, the method is changed to catch these exceptions and pass them

to a special error method on the continuation object. This error method

contains the same body as the run method. However, it replaces the use of

53



retVal (the result of a call) with a throw of the exception.

2.5.0.6 Translation rules

For the formalization of the translation, we consider a dynamic translation strat-

egy where a CoreTaskJava program is translated as it executes. The original CTJ

program is run until it reaches an asynchronous call or normal form. Then, the

expression in the current evaluation context is translated to EventJava. If the

expression is an asynchronous method or wait call, the class table is augmented

with a new callback class which contains the evaluation context as its body.

In either case, evaluation then continues until another asynchronous method or

normal form is reached, upon which another translation is performed. We will

show that the executions of the original TaskJava program and the dynamically

translated EventJava program are observationally equivalent.

Definition 1 (→֒ relation). We use the symbol →֒ to represent the evaluation

relation created by this interleaving of execution and translation.

We use this approach to simplify the state equivalence relation and to avoid

creating extra classes to store partial results. Of course, the TaskJava compiler

implementation performs a static translation. There are also slight differences

in the translation strategy due to limitations in the core calculus (e.g., lack of a

switch statement).

We assume that the translation of a CTJ program occurs after a typechecking

pass, so that all expressions are elaborated with their types. We only show type

elaborations where they are pertinent to the rules. In particular, they are used

for distinguishing asynchronous from standard methods and for properly casting

the result of an asynchronous call.
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ec‖CL ; ee‖CL
′

ec = E[(v0 : Crcv).m(v̄a)]
τ̄ 6= ∅ CLrcv = class Crcv extends C′ {f̄ K M̄}

async Tr m(T̄a x̄) throws τ̄ {return eb; } ∈ M̄

e′b = try {cb.run(eb); } catch (Exception e) {cb.error(e); }
M̄′ = M̄ ∪ Object m′(T̄a x̄, Callback cb) {return e′b; }

CL′
rcv = class Crcv extends C′ {f̄ K M̄′} fresh Ccb

ec‖CL ∪ CLrcv ; v0.m
′(v̄a, new Ccb())‖CL ∪ CLrcv ∪ Callbackexc(Ccb, E[], Tr)

(TR-AC1)

ec = E[(v0 : Crcv).m(v̄a) CLrcv = class Crcv extends C′ {f̄ K M̄}
async Tr m(T̄a x̄) {return eb; } ∈ M̄

M̄′ = M̄ ∪ Object m′(T̄a x̄, Callback cb) {return cb.run(eb); }
CL′

rcv = class Crcv extends C′ {f̄ K M̄′} fresh Ccb

ec‖CL ∪ CLrcv ; v0.m
′(v̄a, new Ccb())‖CL ∪CLrcv ∪ Callbacknoexc(Ccb, E[], Tr)

(TR-AC2)

ec = E[wait {v̄}] fresh Ccb ecb = new Ccb()

ec‖CL ; reg {v̄}, ecb‖CL ∪Callbacknoexc(Ccb, E[], Event)
(TR-Wt)

E[spawn C(v̄)]‖CL ;

E[reg ∅, new C(v̄)]‖CL

(TR-Sp)
v‖CL ;

v‖CL

(TR-Val)

throw new Ce(v̄)‖CL ;

throw new Ce(v̄)‖CL

(TR-Th) ⊢ v : T′ T′ 6<: T

E[(T)v]‖CL ; E[(T)v]‖CL
(TR-Cst)

Figure 2.13: Translation rules for CTJ

The translation relation ; is defined in Figure 2.13. Rules TR-AC1 and TR-

AC2 perform a dynamic translation of asynchronous method calls. They rewrite

the asynchronous method about to be called, adding a continuation parameter

to which the result of the call is forwarded. In addition, if the original call may

throw exceptions, these are caught in the rewritten method and passed to the

continuation’s error method. Lastly, the evaluation context of the call is moved

to a newly created callback class, Ccb, based on the code templates listed in Figure

2.14.

Rule TR-Wt translates wait calls to reg calls, moving the evaluation context

to a new continuation class, which is then passed as a callback to reg. Rule
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Callbackexc(Ccb, E[], T) ≡
class Ccb extends Callback {
Object run(Object retVal) {

return E[(T)retVal];
}
Object error(Exception exc) {

return E[throw exc];
}

}

Callbacknoexc(Ccb, E[], T) ≡
class Ccb extends Callback {
Object run(Object retVal) {
return E[(T)retVal];

}
}

Figure 2.14: Code templates used by the CTJ to EJ transformation

TR-Sp translates a spawn call to a reg call with an empty event set. The last

three rules handle normal forms that do not need to be translated.

2.5.0.7 Soundness of Translation

We now prove observational equivalence between a CTJ program and the EJ

program obtained by evaluating the CTJ program under the →֒ relation. As

consequence of this equivalence, we prove the lost continuation property.

Mapping Relation First, we must establish a relationship between CTJ and

EJ program states.

Definition 2. We write e0 ←→ e1 for CTJ expression e0 and EJ expression e1

if there exists an e′0 and e′1, such that e′0 and e′1 are in normal form, e0 −→
∗
c e

′
0,

e1 −→
∗
e e

′
1, and one of the following is true:

• e′0 = e′1

• e′0 = E ′
0[(T )v] and e′1 = E ′

1[(T )v], where the type of v is not a subtype of T .

• e′0 = E ′
0[wait s] and e′1 = reg s, new CB(), where, for all η ∈ s, E ′

0[η]←→

(new CB()).run(η).
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• e′0 = E ′
0[spawn C(v̄)] and e′1 = E ′

1[reg ∅, new C(v̄)], where,

E ′
0[new C(v̄)]←→ E ′

1[new C(v̄)].

Definition 3. We define a relation ⇐⇒ between CoreTaskJava states and Even-

tJava states:

ec0|(s1, Ec1[])...(sn, Ecn[])⇐⇒ ee0|(s1, new CB1())...(sn, new CBn())

where:

• ec0 ; ee0 and

• For all η in si, Eci[η]←→ (new CBi()).run(η).

Lemma 14 (Evaluation to normal form). If ec ; ee, then ec ←→ ee.

Proof (outline). We prove this lemma by structural induction on the forms of

ec where a translation rule may be applied. For asynchronous method call rules

TR-AC1 and TR-AC2, evaluation leads to either another asynchronous method

call (for which we use the inductive hypothesis) or ee −→
∗ e′e, where e′e is a

normal form. For the second case, we show that ec −→
∗ e′c, where e′c is also in

normal form, and one of the following is true:

• e′c = e′e (both evaluate to a value)

• e′c = E ′
c[(T )v] and e′e = E ′

e[(T )v], where the type of v is not a subtype of T

(both encounter a bad cast)

• e′c = E ′
c[wait s], e′e = reg s, new CB(), where, for all η ∈ s, E ′

c[η] ←→

(new CB()).run(η).

• e′c = E ′
c[spawn C(v̄)] and e′e = E ′

e[reg ∅, new C(v̄)], where,

E ′
c[new C(v̄)]←→ E ′

e[new C(v̄)].
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For rule TR-Wt, both expressions are already in normal form. Thus, zero

−→ steps are required to reach normal form, ec = E[wait s], and ee =

reg s, new CB(). We then show that, for all η ∈ s, E[η]←→ (new CB()).run(η).

For rule TR-Sp, both expressions are already in normal form, Thus zero

−→ steps are required to reach normal form, ec = E[spawn C(v̄)], and ee =

E[reg ∅, new C(v̄)]. Upon completion of the spawn or reg call, the placeholder

will be replaced with the null event η0, leading to the same resulting expression

in both cases.

For the remaining rules, ec = ee, and the theorem is trivially true.

Lemma 15 (Observable steps). If ec and ee are in normal form, and ec|B ⇐⇒

ee|E , then either:

• ec|B
l

=⇒ e′c|B
′ and ee|E

l
=⇒ e′c|E

′, where e′c|B
′ ⇐⇒ e′e|E

′.

• Both ec and ee are of the form E[(T )v], where the type of v is not a subtype

of T .

• Both ec and ee are values and B and E are empty.

Proof Idea Case analysis on normal forms. Only the forms E[wait s] and

E[spawn C(v̄)] are non-trivial. In each case, there is a corresponding =⇒ evalu-

ation step for the translated expression which registers the same event set along

with a callback for which the ←→ relation holds.

2.5.0.8 Bisumulation

To relate executions of a CTJ program through the =⇒c and the →֒ relations,

we must precisely define equivalence. We use stutter bisimulation, which permits
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each relation to take an arbitrary number of non-observable steps (through the

−→ relation) before taking a matching pair of observable steps which interact

with the scheduler. This is necessary because the translated program may need

to take additional steps to reach the same execution state as the original program.

Definition 4. A relation r between program states is a stutter bisimulation

relation if σ1 r σ2 implies:

1. For all σ1
ǫ

=⇒
∗
σ′

1
o

=⇒ σ′′
1 , there exists a σ′

2, σ
′′
2 such that σ′′

1 r σ′′
2 and

σ2
ǫ

=⇒
∗
σ′

2
o

=⇒ σ′′
2 , where o is either an In or Out label.

2. For all σ2
ǫ

=⇒
∗
σ′

2
o

=⇒ σ′′
2 , there exists a σ′

1, σ
′′
1 such that σ′′

1 r σ′′
2 and

σ1
ǫ

=⇒
∗
σ′

1
o

=⇒ σ′′
1 , where o is either an In or Out label.

Theorem 6 (Bisimulation). The relation ⇐⇒ is a stutter bisimulation relation.

Proof. Consider an arbitrary pair of program states eci|Bi and eei|Ei from the

original and translated programs where eci ; eei. Suppose that the program

states are related by the ⇐⇒ relation. Then, by lemma 14, if eci steps to a

normal form, eei steps to a corresponding normal form. Once at a normal form,

if the original program takes an observable step, the translated program can take

a step with the same observation, by lemma 15. The resulting program states

satisfy the ⇐⇒ relation.

We have shown the proof for only one direction – if the CTJ program takes a

sequence of steps, the EJ program can take a corresponding sequence of steps. To

show the other direction, we use lemmas 16 and 17 below, which state that at most

one transition rule applies for each expression. Thus, once we have identified a

corresponding sequence of evaluation steps between the two executions, we know

that no other sequences are possible from the same initial states (assuming the

same choice of selected events).
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Lemma 16 (Deterministic execution of CTJ programs). If e|B =⇒c e
′|B′ and

e|B =⇒c e
′′|B′′, then e′ = e′′ and B′ = B′′.

Proof Idea From theorem 4, we know that, if e|B is well-typed, then, either

the program execution halts (due to normal termination or a runtime cast error),

or a step can be taking via the =⇒c relation. A case analysis for each rule of the

=⇒c relation shows that, if e is well-typed, then no other rule may be applied to

e.

Lemma 17 (Deterministic execution of EJ programs). If e|E =⇒e e′|E ′ and

e|E =⇒e e
′′|E ′′, then e′ = e′′ and E ′ = E ′′.

Proof Idea Same approach as used for lemma 16.

2.5.0.9 No lost continuations

We can now state the lost continuation property for translated CTJ programs.

Informally, in the dynamic translation of a CTJ program, if a callback is passed

to an asynchronous method call or reg call, either the program diverges, gets

stuck due to a runtime cast error, or the callback is eventually called.

Theorem 7 (No lost continuations). Consider a CoreTaskJava program Pc =

CLc return e0 such that ⊢c Pc OK. If e0|∅ →֒
∗ e′|E ′, where e′ has either the form

E[(new Cr(v̄)).m(v̄, new Ccb(v̄cb))] or the form E[reg({v̄}, new Ccb(v̄cb))] where

Ccb <: Callback, then either e′|E ′ diverges or e′|E ′ →֒∗ e′′|E ′′, where e′′ has either

the form E[(new Ccb(v̄cb)).run(v)] or the form E[(T )verr], where the type of verr is

not a subtype of T .

Proof. We use theorem 6 to construct a proof by contradiction. Consider an

arbitrary CTJ program fragment of the form E[e0], where e0 is an asynchronous
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call or wait call, and E[] contains an observable action based on the result of this

call. By corollary 2, the subexpression e0 either evaluates to a value, diverges, or

reaches a runtime cast error. By translation rules TR-AC1, TR-AC2, or TR-Wt,

the call will be translated to one of the EventJava forms listed in the theorem

above.3 The evaluation context containing the observable action will be moved

to a callback in the translated program. If this callback is never called (violating

theorem 7), the observable action in E[] will not occur, violating theorem 6.

2.6 Implementation

2.6.1 Compiling TaskJava Programs to Java

The TaskJava compiler implements a source-to-source translation of Task-

Java programs to (event-driven) Java programs. Invocations of wait and async

methods are referred to collectively as asynchronous calls. Note that this transla-

tion is only needed for methods containing asynchronous calls — all other meth-

ods are left unchanged.

In this section, I provide a high level overview of the compiler’s implementa-

tion, using a series of small examples.

CPS transformation of Tasks. The compiler uses continuation-passing style

to break up the run methods of tasks into a part that is executed up to an

asynchronous call and a continuation. Rather than implement the continuation

as a separate class, I keep the continuation within the original method. The

body of a task’s run is now enclosed within a switch statement, with a case

for the initial code leading up to the first asynchronous call and a case for each

3We assume that the Callback base class is not available to CTJ programmers. Thus,
subclasses of Callback appearing in a translated program must have been generated from one
of these three translation rules.
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continuation. Thus, the switch statement acts as a kind of structured goto. I

use this approach instead of separate methods to avoid building up the call stack

when a loop’s body contains an asynchronous call, since Java does not optimize

tail-recursive calls.

Task state. Any state which must be kept across asynchronous calls (e.g., the

next step of the switch statement) is stored in a new state field of the task. An

inner class is defined to include these new fields.

If local variables are declared in a block that becomes broken across continu-

ations, they must be declared in a scope accessible to both the original code and

the continuation. Currently, we solve this problem by changing all local variables

to be fields of the state object.

Calls to spawn. The spawning of a new task is implemented by creating a new

task object and then registering this object with the scheduler, which will then

call the task’s run method. An empty event set is provided to the scheduler,

which indicates that the task should be run unconditionally.

Calls to asynchronous methods. When an asynchronous method is called,

a callback object is created and passed to the callee. The run method of this

callback should be invoked upon completion of the callee method. The caller

returns immediately upon return from the callee, to be resumed later by the

callback. For example, consider the following asynchronous call which returns a

concatenated string:

...

x = concat(‘‘abc’’, ‘‘xyz’’);

This would be translated to:

case 1:
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...

concat(‘‘abc’’, ‘‘xyz’’, new run_callback(this, 2));

return;

case 2:

x = (String)this._state._retVal;

Here, concat is passed a third parameter, a new callback object. The callback

is initialized with a reference to the calling task (this) and the switch step to

resume upon completion of the call. The actual assignment of x now occurs in

the following switch step.

Callback classes are created by the compiler. To resume a task, the callback

simply assigns to two compiler-generated fields in the task and re-invokes the

task’s run method. The first compiler-generated field, state. step, indicates

the switch case to resume (2 in our example). The second field, state. retVal,

contains the result of the asynchronous call (the concatenated string, in our

example).

I introduce temporary variables in situations where breaking up an expression

at asynchronous calls becomes difficult. For example, a nested asynchronous call,

such as in concat(concat(x, y), z), is first assigned to a temporary variable,

which is passed to the outer call. Temporaries are also used when an asynchronous

call occurs inside an if or loop condition.

Calls to wait. Calls to wait may be translated in a similar manner to asyn-

chronous method calls, replacing the wait call itself with a scheduler event reg-

istration. In my implementation, I take a slightly different approach, described

in section 2.6.2.

Asynchronous methods. The signature of an asynchronous method is changed

to include an additional callback parameter. This callback is called upon comple-
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tion of the method. Any return value is passed to the callback, instead of being

returned to the asynchronous method’s caller.

The bodies of async methods are translated in a similar manner to tasks.

However, since simultaneous calls of a given method are possible, the state

object is passed as a parameter to the method, rather than added as a field to

the containing class. To achieve this, the main body of the method is moved

to a separate (private) continuation method. The original (externally callable)

method just constructs a state object, stores the method arguments in this state,

and then calls the continuation method. As with tasks, asynchronous methods

return immediately after calling an asynchronous method or register, and are

resumed through a callback.

Loops. If an asynchronous call occurs within a loop, the explicit loop statement

is removed and replaced with a “branch and goto” style of control flow, simulated

using steps of the switch statement. The entire switch statement is then placed

within a while loop.

For example, consider the following call to concat:

String s = ‘‘’’; int i = 0;

while (i<5) {

s = concat(s, ’a’); i = i + 1;

}

...

This would be translated as follows:

while (true) {

switch (_state._step) {

case 1:
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_state.s = ‘‘’’; _state.i = 0;

case 2:

if (!(_state.i < 5)) { _state._step = 4; break; }

concat(_state.s, ’a’, new run_callback(this, 3));

return;

case 3:

_state.s = (String)_state._retVal;

_state.i = _state.i + 1;

_state._step = 2; break;

case 4:

...

In the first case, we see the translated initialization assignments. The local vari-

ables have been made into fields of the the task’s state member. We fall through

to the second case, which implements the “top” of the original while loop. If

the original loop condition is false, we simulate a goto to step 4 by setting the

step variable to 4 and breaking out to the enclosing while loop. Otherwise, we

call concat, passing a new callback object, and then return. Upon completion

of concat, the callback will set the step to 3 and invoke the task’s run method.

This gets us back to case 3 of our switch statement. At the end of this case, we

simulate a goto back to the top of the loop by setting the step variable to 2 and

breaking out of the enclosing switch.

Exceptions. Due to the CPS translation, asynchronous methods cannot simply

throw exceptions to their callers. Instead, exceptions are passed from callee to

caller via a separate error method on the callback. The body of an asynchronous

method which may throw exceptions is enclosed in a try..catch block. If an

exception is thrown, the error method of the callback is called (instead of the

normal control flow’s run method), with the exception passed as a parameter.
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The callback’s error method assigns its exception to a compiler-generated

error field of the state object and then resumes the associated caller. When

an asynchronous call may have thrown an exception, the continuation code of

the task or asynchronous method then checks whether the error field has been

set. If so, it re-throws the exception. If the asynchronous call was enclosed in a

try..catch block, the try..catch is duplicated across each continuation.

Consider the following example:

try {

x = concat(‘‘abc’’, ‘‘xyz’’);

} catch (IOException e) {

System.out.println(‘‘error!’’);

}

...

This would be translated as:

case 1:

concat(‘‘abc’’, ‘‘xyz’’, new run_callback(this, 2));

return;

case 2:

try {

if (_state._error!=null) throw _state._error;

x = (String)_state._retVal;

} catch (IOException e) {

System.out.println(‘‘error!’’);

}

...

We initiate the concat asynchronous call as before. However, upon resump-
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tion of the caller, we check the error field to see if an exception occurred.

If so, we re-throw the exception. The continuation block is enclosed in a try

statement. Thus, if the callee throws an IOException, the appropriate catch

block is invoked.

2.6.2 The scheduler

An important design goal for TaskJava is to avoid making the language de-

pendent on a specific scheduler implementation and its definition of events. One

approach (used in the examples of section 2.2) is to specify one or more schedulers

to the compiler, perhaps as a command-line option. The compiler then replaces

wait calls with event registrations for this scheduler.

I chose a more flexible approach in my implementation. I do not include

a wait call at all, but instead provide a second type of asynchronous method

— asyncdirect. From the caller’s perspective, an asyncdirect method looks

like an asynchronous method with an implicit (rather than explicit) callback.

However, the declaration of an asyncdirect method must contain an explicit

callback. No translation of the code in the method’s body is performed — it is

the method’s responsibility to call the callback upon completion. Typically, an

asyncdirect method registers an event, stores a mapping between the event and

the callback, and then returns. Upon completion of the event, the mapping is

retrieved and the callback invoked.

This approach easily permits more than one scheduler to be used within the

same program. Also, existing scheduler implementations can be easily wrapped

with asyncdirect methods and used by TaskJava.

For our experiments, we implemented a single-threaded scheduler on top of
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Java’s nonblocking I/O package (java.nio). Clients may register a callback to be

associated with events on a given channel (socket). The scheduler then registers

interest in the requested events with the Java nio layer and stores an association

between the events and callbacks in a map. The scheduler’s main loop blocks

in the nio layer, waiting for an event to occur. Upon waking up, the scheduler

iterates through the returned events and calls each associated client callback.

I have also implemented a thread-pooled scheduler which can concurrently

process events. Event registrations are transparently mapped to threads by

hashing on the associated channel. This scheduler provides the same API as

our single-threaded scheduler, permitting applications which do not share data

across tasks to take advantage of thread-pooling without any code changes.

2.7 Case Study

Fizmez. As a proof-of-concept for TaskJava, I modified an existing program

to use interleaved computation. I chose Fizmez [Bon], a simple, open source web

server, which originally processed one client request at a time. I first extended the

server to interleave request processing by spawning a new task for each accepted

client connection. To provide a basis for comparison, I also implemented an

event-driven version of Fizmez.

Task version. In this version, each iteration of the server’s main loop accepts a

socket and spawns a new WsRequest task. This task reads HTTP requests from

the new socket, retrieves the requested file and writes the contents of the file to

the socket.

The original Fizmez server used standard blocking sockets provided by the

java.io package. To port Fizmez to TaskJava, I needed to convert the server
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to use our event scheduler. I used TaskJava’s asynchronous methods to build an

abstraction on top of our scheduler with an API that mirrors that of the java.io

package. This approach allowed me to convert I/O calls to TaskJava simply by

changing class names in field and method argument declarations.

Overall, I was able to maintain the same organization of the web server’s

code as was used in the original implementation. The main change I made was

to refactor the request-processing code out of the main web server class and

into a new class. This change was necessary since requests are now processed

concurrently, so each request must maintain its own state.

Explicit event version. The event-driven implementation required major

changes to the original Fizmez code. The web server no longer has an explicit

main loop. Instead, a callback re-registers itself with the scheduler to process the

next connection request. More seriously, the processing of each client request,

which is implemented in a single method in the original and TaskJava imple-

mentations, is split across six callback classes and a shared state class in the

explicit event implementation.

2.7.1 Performance Experiments.

I compared the performance of the TaskJava and explicit event-driven web

server implementations using a multi-threaded driver program that submits 25

requests per thread for a 100 kilobyte file (stored in the web server’s cache).

Latency is measured as the average time per request and throughput as the total

number of requests divided by the total test time (not including client thread

initialization).

The performance tests were run on a Dell PowerEdge 1800 with two 3.6Ghz

Xeon processors and 5 GB of memory. Table 2.2 shows the experimental results.
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Client Latency(ms) Throughput(req/sec)
threads Event Task Event Task

1 33.0 31.1 30.2 32.1
25 76.8 79.2 322.1 306.3
50 112.4 120.0 443.4 413.5
100 187.6 197.0 351.0 262.2
200 317.3 345.8 403.5 225.8
300 455.8 462.4 324.2 328.6
400 601.4 695.9 216.0 212.0

Table 2.2: Web server performance test results

The columns labeled “Event” and “Task” represent results for the event-driven

server and the TaskJava server, respectively.

The overhead that TaskJava contributes to latency is within 10%, except

at 400 client threads, where it reaches 16%. The throughput penalty for Task-

Java is low up through 50 threads, but then becomes more significant, reaching

44% at 200 threads. Above 200 threads, the total throughput of both implemen-

tations drops, and the overhead becomes insignificant.

These results are not surprising, as I have not yet made any efforts to optimize

the continuation-passing code generated by our compiler. There are two main dif-

ferences between the TaskJava compiler-generated code and the hand-optimized

event code. First, compared to the event version, each TaskJava asynchronous

call involves one extra method call, extra assignments (for the step, retVal,

and error fields), and an extra switch statement. Second, the event-driven

server pre-allocates and reuses callbacks. For example, in the event-driven imple-

mentation, I associate reused callbacks with each connection, as I know that, by

design, there will be only one read or write request pending on a given connection

at a time. In contrast, the TaskJava compiler currently allocates a new callback

for each asynchronous call.
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I am investigating approaches to reduce this overhead for a future version

of the TaskJava compiler. To reduce the cost of the switch statement and

extra assignments, I can embed the continuation code directly in a callback,

except when it occurs within a loop. Alternatively, I may achieve more flexibility

in structuring control flow by compiling directly to JVM bytecode. Without

an interprocedural analysis, one cannot remove all extra callback allocations.

However, I can allocate a single callback per enclosing method rather than per

called method. This will eliminate the majority of runtime allocations that occur

in the web server.

For many applications, the readability and reliability benefits of Task-

Java outweigh the downside of the performance cost. Over time, this group

of applications should grow larger, as I reduce the penalty by optimizing the

code generated from our compiler.

2.8 Related Work

Event-driven programming is pervasive in many applications, including servers

[PDZ99, WCB01], GUIs, and sensor networks applications [GLB03, HSW00]. In

[AHT02], event-based and thread-based styles are broken into two distinct differ-

ences: manual vs. automatic stack management and manual vs. automatic task

management. Threads provide automatic stack and task management, while

events provide manual stack and task management. By this classification, Task-

Java provides manual task management and automatic stack management. A

hybrid cooperative/preemptive approach to task management is also possible

in TaskJava by using a thread-pooled scheduler. Asynchronous methods in

TaskJava make explicit when a method may yield control, addressing the key

disadvantage of automatic stack management cited by [AHT02].
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Cooperative multitasking. The overview compared TaskJava’s approach

with the concept of cooperative multitasking. Many implementations exist for

cooperative multitasking in C and C++. (State Threads [SA] and GNU Pth

[Eng00], for example). In fact, [Eng00] lists twenty such implementations. Aside

from the differences discussed in the introduction, context switching in these

systems is typically implemented through C or assembly-level stack manipulation.

Stack manipulation is not possible for virtual machine-based languages, like Java,

so TaskJava uses the CPS approach instead. While this approach is more

complicated, it can be advantageous. In particular, the stack-based approach

requires a contiguous stack space to be allocated per thread, which may result in

a significant overhead when many tasks are created.

The C library and source-to-source compiler Capriccio [BCZ03] provides coop-

erative threading, implemented using stack manipulation. It avoids the memory

consumption problems common to most cooperative and operating system thread

implementations by using a whole-program analysis and dynamic checks to reduce

the stack memory consumed by each thread. This downside of this approach is

the loss of modular compilation. Capriccio also suffers from the other weaknesses

of cooperative threading — difficulty implementing on top of a VM architecture

and lack of scheduler flexibility.

Functional Programming Languages. The functional programming commu-

nity has explored the use of continuations to preserve control flow in the context

of concurrent programming. For example, [GKH01] and [Que03] describe the

use of Scheme’s first-class continuations to avoid the inversion of control in web

programs. Concurrent ML [Rep91] builds pre-emptive threads on top of con-

tinuations. Concurrent ML also adds first-class events to the SML language,

including a choose primitive, which can be used to build constructs equivalent
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to TaskJava’s wait.

TaskJava’s asynchronous methods can be viewed as a limited form of con-

tinuation. Although asynchronous methods do not support some programming

styles possible with continuations, providing a more limited construct enables

the TaskJava compiler to statically and modularly determine which calls may

be saved and later resumed. This limits the performance penalty for supporting

continuations (such as storing call state on the heap) to those calls which actually

use this construct.

The functional programming community has also worked to extend the Con-

tinuation Passing Style transformation to better serve the needs of concurrent

programs. Trampolined style [GFW99], a programming style and transforma-

tion, permits the interleaving of tail recursive functions. In [MFG04], web pro-

gram inversion of control issues are addressed via a sequence of code transfor-

mations, without requiring language support for continuations. However, neither

approach provides a limited, modular translation which can coexist with existing

codebases. In addition, both papers describe translations in the context of late-

bound, functional languages, as opposed to a statically-typed, object-oriented,

non-tail-recursive language like Java.

In [PCM05], a transformation for Scheme programs is described, which per-

mits the implementation of first class continuations on top of a non-cooperating

virtual machine. The transformation installs an exception handler around the

body of each function. When the current continuation is to be captured, a special

exception is thrown. The handler for each function saves the current function’s

state to a continuation. This approach avoids changing function signatures, per-

mitting some interoperability between translated and non-translated code. How-

ever, if a non-translated function appears on the stack when a continuation is
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captured, a runtime error is thrown. By using method annotations to direct the

translation, TaskJava avoids this issue while still permitting interoperability

between translated and non-translated code.

Languages and Tools for Embedded Systems. nesC [GLB03] is a language

for embedded systems with direct language support for writing in a continuation

passing style. As such, it suffers from the lost continuation problem — there is

no guarantee that a completion event will actually be called. This approach was

chosen by the designers of nesC because it can be implemented with a fixed-size

stack and without any dynamic memory allocation.

A source-to-source translator for Java Card applications is descibed in [LZ04].

Via a whole-program translation, it converts code interacting with a host com-

puter to a single large state machine. Like TaskJava, it must break methods up

at blocking calls (limited to the Java Card communication API) and must han-

dle classes and exceptions. However, the translator does not support concurrent

tasks or recursive method calls. In addition, rather than use method annota-

tions, method bodies are split at each method call, regardless of whether they

contain blocking calls. These limitations, appropriate to an embedded environ-

ment, significantly simplify the translation algorithm. Tasks in TaskJava are

more general and thus useful in a wider range of applications.

Simplifying event systems through meta-programming. The Tame frame-

work [KrK06] implements a limited form of CPS transformation through C++

templates and macros. The goal of Tame, like TaskJava, is to reuse existing

event infrastructure without obscuring the program’s control flow. Continuations

are passed explicitly between functions. However, the code for these continuations

is generated automatically and the calling function rewritten into case blocks of a

switch statement, similar to the transformation performed by the TaskJava com-
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piler. Thus, Tame programs can have the benefits of events without the software

engineering challenges of an explicit continuation passing style.

By using templates and macros, Tame can be delivered as a library, rather

than requiring a new compiler front-end. However, this approach does have

disadvantages: the syntax of asynchronous calls is more limited, exceptions are

not supported, template error messages can be cryptic, and the implementation

only works against a specific event scheduler. Tame favors flexibility and explicit

continuation management over safety. As such, it does not prevent either the lost

continuation or the lost exception problems.

Static analysis of event-driven programs. Techniques for analyzing and

verifying event-driven systems has been an active research direction (e.g.,

[DGJ98, GKK03]). Hybrid approaches are also possible. For example, [CK05]

implements a combination of library design with debugging and program un-

derstanding tools. TaskJava has the potential to greatly aid such techniques,

by making the dependencies among callbacks and the event flows in the system

syntactically apparent.

2.9 Recap

In this chapter, we have investigated the challenges of asynchronous program-

ming. For many reasons, it can be advantageous to break a computation into

an initialization call and a completion callback. Unfortunately, partitioning a

program’s control flow in this manner may increase the likely-hood of errors, in

particular the lost continuation and lost exception problems. To address this,

I defined the TaskJava programming model, which introduces three new ab-

stractions: tasks, asynchronous methods, and the event scheduler. By using these
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abstractions, one can create a program containing asynchronous calls without

disrupting the natural control flow of its source text. The TaskJava compiler

performs a modular translation of the task-based source to standard Java code

written in an event-driven style. This is achieved through the introduction of a

few simple annotations, which do not impose a significant burden on the pro-

grammer and which permit the reuse of existing Java libraries.
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CHAPTER 3

Consistency

3.1 Overview

When an application changes the state of other systems through service calls,

it should ensure that it always leaves those systems in a consistent state, both

internally and with respect to each other. Obviously, the meaning of consis-

tency is specific to a given system. Here, we consider the consistency of business

processes. Business processes are repeatable sequences of activities that span a

business’s functional organizations [Bet07]. Such processes have a definite begin-

ning and end. In addition, they generally involve multiple applications and are

long-running, as they require human intervention for approvals and other actions.

In the context of business processes, two important aspects of consistency are:

1. individual systems should not make incorrect assumptions about the states

of their peers (e.g. assuming that an action was successful when it may

have failed), and

2. persistent changes made by the individual systems may be correlated, pos-

sibly depending on the overall result of the process (e.g. two actions should

either both succeed or both be undone in the event of an error).

Let us now look at approaches to ensure or verify these two properties.
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3.1.1 Mechanisms for ensuring consistency

In some situations, (distributed) transactions may be used to ensure that either

all or none of a set of changes occur. However, traditional transactions, which re-

quire the holding of resources such as locks on each participating system, are not

appropriate for long-running activities. In addition, web services rarely expose

distributed transaction interfaces, due to organizational boundaries, protocol lim-

itations, and application limitations.

As an alternative to distributed transactions, compensation may be used to

simulate atomicity in long-running activities. Each service call becomes an inde-

pendent, atomic transaction, which commits immediately upon completion. Each

action of a service has an associated compensation action which reverts the effects

of the original action. If an error occurs midway through a sequence of service

calls, completed service calls can be undone by calling the compensation action

for each call. Flow composition languages support the development of long run-

ning transactions by tracking at runtime a stack of compensation operations to

be invoked in the event of an error. Examples include BPEL (Business Process

Execution Language for Web Services) [BPE03] and BPML (Business Process

Markup Language) [BPM].

As a running example, we will use an order management process that executes

in the back-end of an e-commerce website. This process might include actions

to make a credit reservation against a user’s account, gather the order items

from the warehouse, ship the order, and charge the user’s account for the order.

Each of these actions involves an interaction with an external system (e.g. the

customer’s bank or the warehouse management system) and is executed as a

separate transaction. If the order cannot be completed for some reason (e.g. some

of the items are not available), we should not charge the customer. In addition,
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we need some way to release the credit reservation. To do so, we introduce

a release credit action which acts as compensation for the reserve credit

action.

3.1.2 Existing notions of consistency

Cancellation semantics The compensation of all successfully invoked actions

in the event of an error is termed cancellation semantics [BHF04]. This notion of

correctness is easy for developers to understand. In addition, this property can be

checked with little additional input from the developer — only the relationship

between forward and compensation service calls must be specified. Unfortunately,

cancellation semantics are not sufficient to describe the consistency requirements

of many real-world transactions, where some actions need not be undone, some

actions cannot be undone, and other actions have alternatives for forward recov-

ery.

Whether our order process example has cancellation semantics depends on

the details of each action (e.g. Does it fail atomically? Can it be compensated?)

and on the overall control flow of the process. Here is one set of conditions which,

if all true, will ensure cancellation semantics:

• If the processing of the order fails, release credit is always called to undo

the credit reservation.

• Gathering and sending the order are implemented as a single, atomic action.

If this part of the process is instead multiple steps, then each sub-step will

need compensation.

• Billing the customer never fails (since the necessary credit has already been

reserved). If billing can fail, then all the previous steps will need compen-
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sating actions.

Checking for cancellation semantics can be done efficiently [HA00] and catches

important classes of errors (e.g. missing compensations). However, there are

many important properties of our order process that are not ensured by checking

for cancellation semantics. For example, one might want to specify that sending

the order and billing the customer always occur together. Also, if the credit check

fails, we might want to try an alternative account provided by the customer. In

such a situation, we allow actions to fail and use forward recovery instead of

compensation.

Temporal logics Alternatively, one may use temporal logics to specify the

consistency requirements of a process. However, such specification languages

can be difficult for developers to understand and specifications for long running

transactions can be tedious to write, given the number of possible error scenarios

for a given transaction. Finally, checking temporal properties of compensating

programs is undecidable [EM07], and checking even finite systems is expensive

(e.g. PSPACE-complete for LTL [SC85]).

Here is a possible LTL (Linear Temporal Logic) specification for our order

process example:

G(reserve credit→(F (send order) ∧ F (charge account) ∧G(¬release credit)) ∨

(F (release credit) ∧G(¬send order ∧ ¬charge account))) ∨

G(¬reserve credit)→(G(¬send order) ∧G(¬charge account) ∧G(¬release credit))

where the atomic propositions reserve credit, release credit send order,

and charge account are true only at the point in time immediately after the

corresponding action completes successfully. This specification says that:
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1. If reserve credit is successful, then either:

• send order is eventually successful, charge account is eventually suc-

cessful, and release credit is never run or fails, or

• send order and charge account are not run or fail, and

release credit is successful.

2. If reserve credit is never successful, then each of charge account,

release credit, and send order are either never called or unsuccessful.

This specification captures much more about the desired behavior of our pro-

cess than cancellation semantics. However, it is perhaps more complex than

necessary, for two reasons:

• Temporal logic operators encode statements about the relative order of

actions. However, we are really only interested in which actions have or

have not occurred when the process terminates. If multiple orderings are

possible, then all relevant orderings must be encoded in the specification.

• A compensated action has the same permanent effect as an action which

was never run. However, we must account for both possibilities in our

specification.

3.1.3 Set Consistency

To address these limitations, I propose a simple notion of correctness for long

running transactions, called set consistency. A set consistency specification cap-

tures the set of services which made observable changes, when viewed at the end

of a process’s execution. Such a specification can be compactly represented us-

ing propositional logic, and may be verified by tracking, for all traces, the set of
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actions which completed successfully and were not undone through compensa-

tion. Set consistency specifications can represent cancellation semantics, as well

as both stronger and weaker restrictions on processes. For example, they can

specify behaviors which relax the self-cancellation requirement.

Set consistency can capture many requirements currently modeled using tem-

poral logic. In most situations, a set consistency specification will be more com-

pact (and, I believe, easier to understand) than the corresponding temporal logic

specification. This is because: 1) it treats non-invocations, atomic failure, and

compensated invocations as equivalent, avoiding the need to specify each sepa-

rately, and 2) explicit order dependencies do not need to be specified. Moreover,

this restriction in input reduces the complexity of when verifying finite-state sys-

tems (co-NP complete rather than PSPACE-complete).

Here is a possible set consistency specification for our order process example:

(reserve credit∧ send order ∧ charge account)∨

(¬reserve credit∧ ¬send order∧ ¬charge account)

This specification states that either reserve credit, send order, and

charge account all complete successfully, or each of the three either fails, is

never run, or is compensated. For this process, we would also need to specify

that release credit is a compensation action for reserve credit. Clearly, this

specification captures our requirements better than cancellation semantics, while

being more concise than the temporal logic specification.

In general, set consistency makes it easy to describe required correlations

between the results of actions, the second property we proposed at the beginning

of this section. However, set consistency specifications cannot explicitly represent

the assumed states of each peer, the first property that I proposed. For some
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situations this is not important (e.g. when each action is an atomic transaction),

but for others it would be helpful to explicitly represent the message protocols

between a process and its peers. I address this through an extension to set

consistency that I call conversational consistency.

3.1.4 Conversational Consistency

The individual actions of a process may, in some situations, be part of a message

exchange with another long-running process. We can model these collaborators

explicitly as peer processes, grouping together the actions which relate to each

peer. The overall sequence of interactions between the two peers is called a

conversation. For example, our order process might have two peers: the bank,

which is called by the reserve credit, charge account, and release credit

actions, and the warehouse, which is called by the send order action. Each

peer maintains its own internal state and interacts independently with our order

process.

Given this view of the problem, we can break the order process’s specification

into two parts:

1. When our order process completes, each conversation must be left in a

consistent state. By consistent, I mean that neither participant is left wait-

ing for a message from the other. These consistent states usually corre-

spond to either a successful transaction (e.g. when the bank is called with

the sequence reserve credit and charge account) or a transaction that

failed and was cleaned up (e.g. when the bank is called with the sequence

reserve credit and release credit).

2. We also need to correlate the final states of the conversations. In our or-
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der example, we need to ensure that either both the bank and warehouse

conversations end in a successful state (the customer was changed and the

product was shipped) or both conversations end in a “not run” or com-

pensated state (the customer was not charged and the product was not

shipped).

More formally, conversational consistency is specified in two levels. First,

each pair-wise conversation is modeled using a finite automaton, called a con-

versation automaton. The state of an atomaton changes whenever a message is

exchanged between the two peers. As a first condition of conversational consis-

tency, we require that all runs of a process leave all conversation automata in

final (consistent) states.

Second, a process’s conversations are related using a consistency predicate,

much like the predicates used in set consistency specifications. However, in con-

versational consistency, the predicate is written over the final states of conversa-

tion automata rather than over individual actions. This approach can permit the

compact specification of processes which exchange multiple messages with their

peers. Note that it also explicitly address the two properties we wish to check

for in processes (consistent state assumptions and correlations between actions).

In this chapter, I develop the theory for both notions of consistency (set and

conversational), and in Section 3.6, discuss considerations for choosing between

the two approaches. Note that any set consistency specification can be mechani-

cally mapped to an equivalent conversational consistency specification by treating

each action as a separate peer.

84



3.1.5 Chapter organization

In Section 3.2, I first illustrate set and conversational consistency through two

extended examples. I provide semantics for a core process calculus in Section

3.3. This core language composes atomic actions using sequential and parallel

composition, choice, compensation, and exception handling constructs, and is

an abstraction of common flow composition languages such as BPEL. Then, in

Section 3.4, I define the set consistency verification problem, which checks that

all feasible executions of a process are contained in the set of executions defined

by the set consistency specification. I show that this problem is co-NP complete

and present an algorithm for verifying set consistency by constructing a predicate

representing all feasible process executions. This reduces the verification problem

to propositional validity which can be checked using an off-the-shelf SAT solver.

Next, in Section 3.5, I formally define the conversational consistency problem

and present a verification algorithm for conversational consistency. As with set

consistency, conversational consistency verification is reduced to propositional

validity.

In Section 3.6, I describe my experiences in using these consistency models to

find problems in real world processes. My collaborators and I have implemented

the algorithms for set and conversational consistency verification, including a

front-end for the BPEL language for the conversational consistency verifier. The

resulting tool, called BPELCheck, is available as a plug-in for the NetBeans

Integrated Development Environment.

I then apply the consistency verifiers to several case studies, including in-

dustrial examples and processes from the BPEL specification. The verification

problems resulting from my case studies can each be discharged within a second,

showing that the formalism provides an intuitive yet expressive formalism for
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real-world properties which is also tractable for real-world applications.

Finally, in Section 3.8, I place this work in the context of prior research.

3.2 Examples

3.2.1 Set Consistency

I now informally describe set consistency using an example inspired by a bug

actually seen in a production system. I previously worked for an enterprise ap-

plications vendor. Once, when visiting a customer (a large bank), I reviewed

a set of the customer’s business processes, which integrated a mainframe-based

financial application with a CRM (Customer Relationship Management) appli-

cation. When an account was created or changed in the financial application, a

message containing the account was sent to the CRM system via a transactional

queue. The CRM system took the message from the queue and updated its ver-

sion of the account accordingly. When examining the business process run by the

CRM system, the author found a consistency bug, which inspired the work in this

paper. Transactional queues provide lossless asynchronous message passing by

implementing two distributed transactions — one with the sender and another

with the receiver. This ensures that messages are not lost and that duplicate

messages are not sent.

Upon taking a message from the queue, the CRM system executed a business

process which transformed the message to its internal account representation,

performed other book-keeping, and saved the account. If the account was saved

successfully, the CRM system should commit its transaction with the queue, to

avoid duplicate messages. If the account was not saved, the CRM system should

abort its transaction with the queue, to avoid losing the update message. Upon

the abort of a message “take”, the message was automatically put back on the
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queue, unless a retry threshold was exceeded. In this case, the message went to

a special “dead-letter” queue, to be investigated by an administrator. One can

model the interactions of the CRM system with the queue using the following

process:1

AcctRecv = TakeMsg; (body � (LeaveOnQ; throw));CommitQ

Here, bold fonts represent atomic actions (the implementation of body is not

shown). The “;” operator composes two actions or processes sequentially: it

runs the first process, and if it is successful, runs the second. The “�” operator

catches exceptions: it runs the first process, and, only if it fails, runs the second.

throw is a special built-in action which throws an exception. The TakeMsg

process takes a message off the queue. The subprocess body handles each account.

If body fails, then the message transaction is aborted (by calling LeaveOnQ),

putting the message back on the queue. Otherwise, CommitQ commits the

message transaction, permanently removing it from the queue. Ignoring all the

implementation details of body, we want to ensure that, if the action SaveAcct

is called within body, then CommitQ is called, and if SaveAcct is not called,

then LeaveOnQ is called.

Deep within the body subprocess, I found the equivalent of the following code:

SaveAcct � LogErr

where SaveAcct performs the actual account write. Someone had added an ex-

ception handler which, in the event of an error in saving, logged a debug message.

Unfortunately, they left this code in their production system. The exception han-

dler “swallows” the error status — CommitQ will always be called, even if the

1The process calculus used here is an extension of CCS (Calculus of Communicating Systems)
and is described formally in Section 3.3.
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save fails, violating our correctness requirement. If, due to a data validation error

or a transient system problem, the CRM system rejects an account, bank tellers

will not be able to find the customer.

Traces Executing a process gives rise to a trace. A trace is the sequence of

successfully executed actions invoked by the process, along with the final status

of the run (either X or ×). For example, if the SaveAcct action fails, we get the

following trace:

T = TakeMsg,Preprocess,LogErr,CommitQ〈X〉

The Preprocess action represents the preprocessing which occurs in body before

SaveAcct is called. The error from SaveAcct is not propagated to the outer

process, and thus the queue transaction is committed. Note that the failed invo-

cation of SaveAcct does not appear between Preprocess and LogErr. Failed

invocations are left out as they have no permanent, observable effect on the sys-

tem.

Set Consistency Note that the bug in AcctRecv can be caught if we know

that there exists a feasible trace in which CommitQ is executed and SaveAcct

is either not called or is invoked, but failed. That is, we can abstract away the

relative order of individual actions, and only consider the set of actions that

executed successfully. Accordingly, an execution is defined as the set of actions

which appear in a trace. The execution E associated with the above trace is:

E = {TakeMsg,Preprocess,LogErr,CommitQ}

A set consistency specification defines a set of “good” executions. For example,

correct executions of our account process either:

1. include both SaveAcct and CommitQ, or
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2. include LeaveOnQ, but not SaveAcct.

Set consistency specifications are written in a predicate notation, where the literal

a means that action a is included in the execution, and ¬a means that action a

is not included in the execution and literals are combined using the boolean ∧

(and), ∨ (or), and ¬ (not) operators. A set consistency predicate is interpreted

over the actions which appear in the process. It represents a set consistency

specification which contains exactly those executions that satisfy the predicate.

To represent the above two conditions, we can define the specification predicate

ϕq1 as follows:

ϕq1 = (SaveAcct ∧CommitQ) ∨ (¬SaveAcct ∧ LeaveOnQ)

Any actions not included in the predicate are left unconstrained. Other consis-

tency predicates can be specified for our process. For example, we might want to

ensure that LeaveOnQ and CommitQ are never called in the same run:

ϕq2 = (LeaveOnQ ∧ ¬CommitQ) ∨ (¬LeaveOnQ ∧CommitQ)

Both requirements can be checked simultaneously by taking the conjunction of

the two predicates: ϕq3 = ϕq1 ∧ ϕq2.

3.2.1.1 Verification

The set consistency verification problem takes as input a process P and a con-

sistency predicate ϕ and asks if all feasible executions of P satisfy ϕ. If so, the

process satisfies the specification. Clearly, the process AcctRecv does not satisfy

the specification ϕq1 —a counterexample is the execution E above, which clearly

does not satisfy ϕq1. However, the process does meet the specification ϕq2.

One can check a specification by constructing a predicate φp that represents

all the feasible executions for the process P . Then, P satisfies the specification ϕ
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if φp implies ϕ, which is a propositional satisfiability check. If AcctRecv is verified

using this approach, using specification ϕq1 or ϕq3, the execution E above can be

identified as a counterexample.

Note that one can fix the problem by either removing the exception handler

in body or re-throwing the exception after calling LogErr. With either of these

fixes, the process passes verification.

3.2.1.2 Other Features

In practice, business process flows contain, in addition to sequencing and ex-

ception handling, parallel composition (where processes execute in parallel) and

compensations (processes that get executed to undo the effect of atomic actions

should a subsequent process fail). My process language (and verifier) allows one

to write both parallel composition and compensation actions.

As an example, consider an alternative version of body which saves the account

in two steps. First, it writes a header using the action SaveHdr and then writes

contact information using the action AddContact. Both of these actions can

fail. If SaveHdr succeeds, but AddContact fails, we undo the account change

through the compensating action DelHdr, which never fails. In my process

language, one specifies a compensation action using the “÷” operator. Our new

process is written as:

AcctRecv2 = TakeMsg; (body
2
� (LeaveOnQ; throw));CommitQ

body
2

=(SaveHdr ÷DelHdr);AddContact

A set consistency requirement for AcctRecv2 states that if both the account

header and contact actions are successful, then CommitQ should be run. Oth-
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erwise, LeaveOnQ should be run. That is,

(SaveHdr ∧AddContact ∧CommitQ)∨

(¬SaveHdr ∧ ¬AddContact ∧ LeaveOnQ)

The negated action ¬SaveHdr captures the scenarios where either SaveHdr

is not run, or it is run but subsequently compensated by DelHdr. The effects

of compensations are captured using a programmer-defined normalization set

C = {(SaveHdr,DelHdr)} that encodes that the effect of running SaveHdr

can be undone by running its compensation DelHdr. Given the predicate and

the normalization set, our verifier automatically expands the predicate to

(SaveHdr ∧ ¬DelHdr ∧AddContact ∧CommitQ) ∨

((¬SaveHdr ∨ (SaveHdr ∧DelHdr))∧

¬AddContact ∧ LeaveOnQ)

This expanded specification predicate is then used by the verification algorithm,

which shows that process AcctRecv2 satisfies this set consistency specification.

3.2.2 Conversational Consistency

I now illustrate how to extend consistency to conversations, using a simple e-

commerce example, inspired by the one in [BFH03]. As shown in Figure 3.1,

this example involves the interactions of four business processes: a store process,

which is attempting to fulfill an order, a bank process, which manages the funding

for an order, and two warehouse processes, which manage inventory. To process

an order, the store first authorizes with the bank the total value of the order.

If this fails, the processing of the order stops. If the authorization is successful,

the store checks whether the two warehouses have the necessary products in

stock. If not, the order processing stops. The inventory checks actually reserve
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Figure 3.1: Peers interactions for e-commerce example.

the products, so if the order fails at this point, any reserved inventory must

be released. If both checks succeed, the store confirms the orders with the two

warehouses. The warehouses then ship the goods and send a bill to the bank. The

bank responds to the bill messages with payments to the warehouses. Finally,

upon receiving payment, the warehouses each send a receipt to the store.

Conversation automata We will now focus on this scenario from the store’s

perspective. The store interacts with three peer processes: the bank and the

two warehouses. We can represent the conversation (exchange of messages) with
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Init Trans Ok authorize? ok!

fail!

nochange commit

Init Trans  Stocked 
 Ordered Failed nochange

nochange

commit
checkStock?

noStock!

inStock!

order?

Receipt cancel?

receipt!

Figure 3.2: Automata for store-bank conversation (top) and store-warehouse con-
versation (bottom).

each peer using an automaton. The top automaton of Figure 3.2 represents the

conversation with the bank. It has three states: Init, representing the initial

state of the conversation, Trans representing the conversation after an authorize

request has been sent to the bank, but before the bank has responded, and Ok,

representing a successful authorization. Transitions between states occur when

a message is sent or received between the process and the peer represented by

the automata. We write authorize? over the transition from Init to Trans,

indicating that the peer receives an authorize message sent by the process.

Likewise, ok! and fail! over transitions indicate when the peer sends ok and

fail responses, respectively, to the process.

We label the Init state with nochange and the Ok state with commit. This

labeling reflects the notion that a successful authorization changes the state of

the bank, but a failed authorization does not. The Trans state is unlabeled, as it

is an inconsistent state. The conversation between the store and the bank should
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not end in this state.

The bottom automaton of Figure 3.2 represents the conversation between

the store and one of the warehouses (both have the same conversation protocol).

This automaton is more complex, as it must encode a two-phase commit and then

account for the receipt message. The store initiates the conversation by sending

a checkStock message. If the product is available, the warehouse responds with

a inStock message. If the product is unavailable, the warehouse responds with

a noStock message, which terminates the conversation. In the successful case,

the store must then respond by either committing the transaction with a order

message or aborting it with a cancel message. The cancel is sent when the

other warehouse was unable to fulfill its part of the order. Finally, a successful

conversation will end with a receipt message from the warehouse. The Init and

Failed states are both labeled as nochange, while the Receipt state is labeled

as commit. All the other states are inconsistent.

Consistency predicates In addition to guaranteeing that the conversations

with the bank and the warehouses are always left in a consistent state, the de-

signer of the store process would like to ensure certain relationships between these

conversations. For the store, we wish to guarantee a correlation between the bank

and warehouse conversations. Specifically, either

1. the bank authorization is successful and both warehouse transactions occur,

or

2. the bank authorization fails or is undone and neither warehouse transaction

occurs.

We can specify these requirements using a conversational consistency predicate,

a predicate over the nochange/commit labels of the conversation automata.
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Figure 3.3: BPEL implementation of store process in NetBeans

comm(A) is true when the process terminates with peer A’s conversation in

a state labeled commit. nochange(A) is true when the process terminates with

peer A’s conversation in a state labeled nochange. A consistency predicate ψ,

built from these atomic predicates over the peer automata, is satisfied when ψ

evaluates to true for all executions of the process.

We can write our store process invariants as a consistency predicate:

(nochange(Bank) ∧ nochange(Warehouse1) ∧ nochange(Warehouse2)) ∨

(comm(Bank) ∧ comm(Warehouse1) ∧ comm(Warehouse2))
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Store process implementation Figure 3.3 shows an implementation of the

store process in the NetBeans BPEL designer. Each peer process is represented

by a partner link, appearing to the left of the flowchart. Thus, our approach of

defining conversations between pairs of peers is directly reflected in the BPEL

representation of the process. I extend the core language to include the peer

associated with each action: msg?p and msg!p mean that the process receives

message msg from peer p and sends message msg to peer p, respectively. The

store process is written in the core language as:

authorize!Bank;

((ok?Bank; (checkStock!Warehouse1;

((inStock?Warehouse1; (checkStock!Warehouse2;

((inStock2?Warehouse2;

((order!Warehouse1; receipt?Warehouse1) ‖

(order!Warehouse2; receipt?Warehouse2))) �

(noStock?Warehouse2; cancel!Warehouse1)))) �

(noStock?Warehouse1; skip)))) �

(fail?Bank; skip))

The store process first sends an authorize message to the bank. Then, it

waits for either an ok or fail message. If the authorization is successful, the

store checks the stock of the two warehouses sequentially. If the first is successful

but the second fails, the store must cancel the first warehouse’s stock reservation.

If both are successful, the store submits the two order confirmation messages and

waits for receipts in parallel. When we run this process through BPELCheck,

we find that it is indeed conversationally consistent: the process always terminates

with all peer conversations in a consistent state and with the consistency predicate
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Atomic Action A ::= skip | throw built-ins
| Ai ∈ A defined actions

Process P ::= A atomic actions
| P; P sequence
| P ‖ P parallel
| P � P choice
| P ÷ P compensation
| P � P exception handler

Figure 3.4: Syntax of process calculus

satisfied.

Bugs in our process can cause this verification to fail. For example, if the de-

veloper forgets to cancel the first warehouse’s stock reservation when the second

reservation fails, the first warehouse’s conversation will be left in an inconsistent

state, and BPELCheck will report an error. Processes which leave all conversa-

tions in consistent states but violate the consistency predicate will also fail. For

example, a process which runs both warehouse conversations in parallel avoids

leaving them in inconsistent states but violates the requirement that the two

conversations must succeed or fail together. BPELCheck will report an error

for this process as well.

3.3 Process Calculus

I use a simple process calculus, based on CCS (Calculus of Communicating Sys-

tems) [Mil80], to describe long-running transactions. I include extensions for

compensation and exceptions, which appear in web service orchestration lan-

guages like BPEL. The syntax and semantics of my notation is similar to other

formal models for such languages [BF00, BF04, BMM05].
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3.3.1 Syntax

Figure 3.4 defines the syntax for our language. Processes are constructed from

atomic actions, using a set of composition operations. Atomic actions are indivis-

ible operations which either succeed completely or fail and undo all state changes.

There are two built-in actions: skip, which always succeeds and does nothing, and

throw, which throws an exception. We use A for the set of atomic actions defined

by the environment and Σ for the set of all atomic actions: Σ ≡ A∪{throw, skip}.

A process is either an atomic action or a composition of atomic actions us-

ing one of five composition operators. The sequence operator “;” runs the first

process followed by the second. If the first fails, the second is not run. The

parallel operator “‖” runs two processes in parallel. The choice operator “�”

non-deterministically selects one of two processes and runs it. The compensation

operator “÷” runs the left process. If it completes successfully, the right process

is installed as a compensation to run if the parent process terminates with an

error. The exception handler “�” runs the left process. If that process termi-

nates with an error, the error is ignored and the right process is run. If the left

process terminates successfully, the right process is ignored. Our core language

does not include iteration operators —we will add iteration to our language in

Section 3.4.2.

In our examples, we also use named subprocesses — sub-processes which are

defined once and then appear as atomic actions in the overall process — as syn-

tactic sugar to enhance readability. Named subprocesses are not true functions —

they are simply inlined into their parent. Thus, recursive calls are not permitted.

We define |P |, the size of process P , by induction: the size |A| of an atomic

action in Σ is 1, and the size |P1 ⊗ P2| for any composition operation ⊗ applied

to P1 and P2 is |P1|+ |P2|+ 1.
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Process form Π
Γ ⊢ A : {X,×} {(A〈X〉, skip), (〈×〉, skip)}

Γ ⊢ A : {X} {(A〈X〉, skip)}

Γ ⊢ A : {×} {(〈×〉, skip)}

P; Q {(pq〈s〉, Q′; P ′) | (p〈X〉, P ′) ∈ Π(P ), (q〈s〉, Q′) ∈ Π(Q)} ∪
{(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P )}

P ‖ Q {(r〈s&t〉, P ′ ‖ Q′) | r ∈ p ⊲⊳ q, (p〈s〉, P ′) ∈ Π(P ), (q〈t〉, Q′) ∈ Π(Q)}
∪ {(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P )} ∪ {(q〈×〉, Q′) | (q〈×〉, Q′) ∈ Π(Q)}

P � Q {(p〈s〉, P ′) | (p〈s〉, P ′) ∈ Π(P )} ∪ {(q〈t〉, Q′) | (q〈t〉, Q′) ∈ Π(Q)}

P ÷ Q {(p〈X〉, Q) | (p〈X〉, P ′) ∈ Π(P )} ∪ {(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P )}

P � Q {(p〈X〉, P ′) | (p〈X〉, P ′) ∈ Π(P )} ∪
{(pp′q〈t〉, Q′) | pp′〈×〉 ∈ JP K, (q〈t〉, Q′) ∈ Π(Q)}

Figure 3.5: Trace semantics for core process language

3.3.2 Trace Semantics

We now define a trace-based semantics for processes. A run is a (possibly empty)

sequence of atomic actions from Σ. A trace is a run followed by either 〈X〉 or 〈×〉,

representing successful and failed executions, respectively. For example, if action

A1 is run successfully and then action A2 fails, the corresponding trace would

be A1〈×〉. In the following, we let the variable A range over atomic actions; the

variables P , P ′, Q, Q′, and R range over processes; the variables p, q, and r range

over runs, and the variables s and t range over X and ×.

We define an operator “&” which combines two process status symbols (X,

×). Given s&t, if both s and t are X, then s&t = X. Otherwise, s&t = ×. For

the parallel composition rules, we introduce an operator ⊲⊳: R×R → 2R, where,

given two runs p and q, p ⊲⊳ q produces the set of all interleavings of p and q.

99



We use the symbol Γ to represent an action type environment, which maps

each action to a set of possible results 2{X,×} = {{X}, {×}, {X,×}} from running

the associated action. This allows us to distinguish actions which may fail from

actions which never fail. The result set {×} is for the special action throw, which

unconditionally throws an error.

For each process form P , we define using mutual induction two semantic

functions Π(P ) and JP K. The rules for Π : P → 2(T ,P), found in Figure 3.5, define

a set of pairs. Each pair (p〈s〉, Q) ∈ Π(P ) consists of a trace p〈s〉, representing a

possible execution of the process P , and a process Q, representing a compensation

process associated with the trace that will get run on a subsequent failure.

The function JP K : P → 2T , maps a process P to a set of feasible traces of P .

To compute the actual traces possible for a top-level process, this function must

consider the successful and failed traces independently. Compensation processes

are dropped from successful traces. For a failed trace p〈×〉, one computes all

possible compensation traces for the associated compensation process P ′ and

appends these to p. JP K is defined as follows:

JP K = {(p〈X〉|(p〈X〉, P ′) ∈ Π(P )} ∪

{pp′〈×〉|(p〈×〉, P ′) ∈ Π(P ), p′〈s〉 ∈ JP ′K}

We now describe the rules in Figure 3.5 in more detail.

Atomic Actions For atomic actions, we enumerate the possible results for each

action. Individual atomic actions use skip as a compensation process, since no

compensation is provided by default. Compensation for an atomic action must

be explicitly defined using the ÷ operator.
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Sequential Composition For a sequential composition P ;Q, we consider two

cases. If P succeeds, we have a successful trace p〈X〉 for P , after which we con-

catenate a trace q from Q. The status for the overall trace is then 〈s〉, the status

from the trace q. The compensation process (if Q fails) invokes the compensation

for Q first, followed by the compensation for P . On the other hand, if P fails,

we have a failed trace p〈×〉 for P . The process Q is not run at all.

Parallel Composition For parallel composition, we first consider the case

where both sub-processes run. If both are successful, the entire process is suc-

cessful. If one fails, the process throws an error. We simulate the parallel seman-

tics by generating a possible trace for all interleavings of the two subprocesses.

The compensation for the two sub-processes is also run in parallel. Note that,

if a sub-process fails, the other sub-process runs to completion, unless it also

encounters an error. However, if the second sub-process has not started yet, and

the first fails, an implementation can avoid running the second at all. This is

handled by the last two sets in the union.

Choice Composition The traces for P �Q are simply the union of the traces

for P and Q.

Compensation The compensation operator P ÷ Q runs P and then sets up

process Q as compensation. If P is successful, Q overrides any previous com-

pensation for P — e.g., P ′ if Π(P ) = (p〈X〉, P ′). If P fails, then the original

compensation process returned by Π(P ) is instead returned. In this case, the

process Q is never run.
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Exception Handler The rule for the exception handling operator has two sce-

narios. Given P �Q, if P is successful, Q is ignored. If P fails, the compensation

for P is run and then process Q is run. To express this, we use JP K to obtain

a full trace for P , including compensation. This makes the J·K and Π functions

mutually recursive.

Example 1. To demonstrate these rules, we compute the set of feasible traces

for the SimpleOrder process defined as:

SimpleOrder =Billing;ProcessOrder

Billing =Charge÷Credit

This process first calls the Billing sub-process. This sub-process invokes the

Charge action to bills the customer’s action. If this fails, the process termi-

nates. If the charge succeeds, Credit is registered as a compensation action.

Next, ProcessOrder is run to handle the actual order. If ProcessOrder is

successful, the process terminates successfully. Otherwise, the Charge compen-

sation is run and the process terminates with an error.

We assume that the Charge and ProcessOrder atomic actions both can fail,

but the Credit compensation never fails. Thus, we obtain the following definition

for Γ:

〈Charge 7→ {X×}, Credit 7→ {X},ProcessOrder 7→ {X,×}〉

If we apply the rules for atomic actions to each action in this process, we get the
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following values for Π:

Π(Charge) ={(Charge〈X〉, skip), (〈×〉, skip)}

Π(Credit) ={(Credit〈X〉, skip)}

Π(ProcessOrder) ={(ProcessOrder〈X〉, skip), (〈×〉, skip)}

To compute the feasible traces for the Billing subprocess, we apply the rule for

compensation, with P = Charge and Q = Credit, obtaining the following:

Π(Billing) = {(Charge〈X〉,Credit), (〈×〉, skip)}

To compute the feasible traces for SimpleOrder we use the sequential composition

rule, using P = Billing and Q = ProcessOrder:

Π(SimpleOrder) ={(Charge ProcessOrder〈X〉, skip;Credit),

(Charge〈×〉,Credit), (〈×〉, skip)}

Finally, we compute the feasible traces JSimpleOrderK by dropping compensation

for successful traces and computing the compensation traces for failed traces:

{Charge ProcessOrder〈X〉,Charge Credit〈×〉, skip〈×〉}

3.3.3 Trace composition

We end this section by looking at how the composition of processes affects the

composition of traces. Given a process R and trace Tr = rfrc〈s〉, where Tr ∈ JRK,

(rf〈s〉, R
′) ∈ Π(R), and rc〈s

′〉 ∈ JR′K, we call the trace rf〈s〉 the forward sub-trace
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of Tr and rc〈s
′〉 the compensation sub-trace of Tr. We write rfrc〈s〉 for a trace r

with forward sub-trace rf and compensation sub-trace rc and status 〈s〉. Note

that the overall status of the trace is always equal to the status of the forward

sub-trace.

Let R = P⊗Q, where ⊗ is one of the composition operators. For each feasible

trace Tr of R, either P is not called (e.g., if ⊗ = � and Q is chosen), or there is

a trace Tp of P such that the forward subtrace of P occurs within the forward

subtrace of Tr and the compensation subtrace of Tp appears in the compensation

subtrace of Tr.

Theorem 8. Let R = P ⊗ Q, pfpc〈t〉 ∈ JP K, and rfrc〈s〉 ∈ JRK such that

rf = rf0pfrf1 (the run pf appears within rf), and rc = rc0pcrc1 (the run pc appears

within rc). The forward sub-trace rf1〈s〉 of R following the call to P depends only

on 〈t〉 (the forward status of P ), not on the individual actions in pf . Likewise,

the compensation sub-trace rc1〈s
′〉 of R following the call to P ′ depends only on

the compensation status of P ′, not on the individual compensation actions in pc.

Proof (outline). The proof is by induction on the derivation of JRK, using a case

analysis on the syntactic forms of each subprocess. For each composition opera-

tor, inspection of the corresponding rules of Figure 3.5 show that, in each case,

there is no dependency on the individual actions called by the subprocesses and

the status of the parent process depends only upon the status of the subpro-

cesses.

3.4 Set Consistency

We can now formalize our notion of set consistency with respect to the process

calculus.
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Executions For a trace p〈s〉 ∈ JP K, we define the execution for p〈s〉 as the

set πp ⊆ Σ of atomic actions that appear in p, that is, the execution e(p) =

{a ∈ Σ | ∃p1, p2.p〈s〉 ≡ p1ap2〈s〉}. For a process P , let execs(P ) ⊆ 2Σ represent

the set of all executions of P , defined by execs(P ) = {e(p) | p〈s〉 ∈ JP K}.

Example 2. If we drop calls to skip, the set of feasible executions

execs(SimpleOrder) for SimpleOrder is

{{Charge,ProcessOrder}, {Charge,Credit}, ∅}

Set Consistency Specifications A set consistency specification S ⊆ 2Σ is a

set of action sets representing the permissible executions for a given process. A

process P is set consistent with respect to a set consistency specification S if all

executions of P fall within the set consistency specification: execs(P ) ⊆ S.

Set consistency specifications are semantic objects. We use a boolean

predicate-based syntax for describing sets of executions. Given a set of atomic ac-

tions Σ, a set consistency predicate is an expression built from combining atomic

predicates Σ with the logical operators ¬ (not), ∧ (and), and ∨ (or). The

size |ϕ| of predicate ϕ is the defined by induction: |a| = 1 for a literal, and

|ϕ1⊗ϕ2| = |ϕ1|+ |ϕ2|+ 1 for a logical operator ⊗. To evaluate a predicate ϕ on

an execution e ∈ 2Σ, we assign the value true to all atomic actions that occur

in e and false to all the atomic actions that do not occur in e. If the predicate

ϕ evaluates to true with these assignments, we say the execution e satisfies the

specification ϕ, and write e |= ϕ. The set consistency specification S defined by

105



the set consistency predicate ϕ is the set of satisfying assignments of ϕ:

spec(ϕ) = {e ∈ 2Σ | e |= ϕ}

Normalization When defining set consistency specifications, we wish to treat

the compensated execution of an action as equivalent to an execution where the

action (and its compensation) never occurs. If A◦ is a compensation action for

A, then the term ¬A in the specification predicate should yield two executions

in the final, expanded specification: one with neither A nor A◦, and one with

both A and A◦. We call a specification that has been adjusted in this man-

ner a normalized specification. Normalization is performed with respect to a

programmer-specified normalization set C ⊆ {(a, a◦)|a, a◦ ∈ Σ} of atomic action

pairs, where the second action in each pair is the compensation action for the

first action. Given the consistency specification predicate ϕ and a normalization

set C, we apply the function spec norm(ϕ, C). This function uses DeMorgan’s

laws and the normalization set to convert the predicate to a form where (1) the

negation operator only appears in front of literals, and (2) given a pair (a, a′)

from C, each occurrence of ¬a is replaced with (¬a ∧ ¬a′) ∨ (a ∧ a′) and each

occurrence of a is replaced with a ∧ ¬a′.

For successful executions of an action, the normalized specification asserts that

the compensation action was not run. For failed executions, spec norm changes

the specification to treat equivalently the following three scenarios:

1. Actions a and a′ are never run.

2. Action a is executed but fails, undoing any partial state changes. Action a′

is never run.

3. Action a is executed successfully, but compensation a′ is later run to undo
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the effects of a.

Example 3. We consider a specification for the SimpleOrder process. We as-

sume the action typing Γso of Example 1 (in which the Credit action never fails)

and the normalization set Cso = {(Charge,Credit)}.

We wish to have cancellation semantics, where either both Charge and

ProcessOrder complete successfully, or, in a failed execution, any completed

actions are undone. Given the normalization set, we do not need to distinguish

between failure cases. Thus, we can write a set consistency predicate ϕso for

SimpleOrder as:

(Charge ∧ProcessOrder) ∨ (¬Charge ∧ ¬ProcessOrder)

We now expand ϕso to get spec norm(ϕso, Cso). It is already in the form we

need for substitution (negation only of literals). We replace all occurrences of

¬Charge with (¬Charge∧¬Credit)∨ (Credit∧Charge) and all occurrences

of Charge with (Charge ∧ ¬Credit):

(Charge ∧ ¬Credit ∧ProcessOrder) ∨

(

(¬Charge ∧ ¬Credit) ∨ (Charge ∧Credit)
)

∧ ¬ProcessOrder

Set consistency verification For a process P , a normalization set C, and a set

consistency predicate ϕ, the set consistency verification problem is to check if all

the executions of P w.r.t. C satisfy ϕ, that is, if execs(P ) ⊆ spec(spec norm(ϕ, C)).

Theorem 9. The set consistency verification problem is co-NP complete.

Proof (outline). Verification is in co-NP, as finding a counterexample is in NP. To
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find a counterexample, we nondeterministically enumerate feasible executions of

a process using the trace semantics. At each possible decision point (e.g. success

or failure of actions and the choice operator), we guess an outcome. We track only

the set of actions which were called successfully, and, upon termination, check

whether this execution is a satisfying assignment of the specification predicate.

An execution is polynomial in the size of the process, since it includes each action

at most once. Checking whether the execution satisfies the specification predicate

ϕ is polynomial with respect to |ϕ|.

To show that verification is co-NP hard, we reduce checking for tautology

to set consistency verification. To determine whether a predicate φ, consisting

of literals from the set Σφ, is a tautology, we first construct a process P whose

feasible executions are the powerset of Σφ. One such process is A1 ‖ A2... ‖ An

where A1, ...An ∈ Σφ and ∀i . Γ ⊢ Ai : {X,×}. Now, we interpret φ as a

set consistency predicate: If process P satisfies the specification φ, then φ is a

tautology.

3.4.1 Predicate-based verification

We now give an algorithm for verifying set consistency. We define a syntax-

directed analysis which takes a process as input and constructs a predicate φ

whose satisfying assignments precisely represent the feasible execution set. The

predicate, φ is composed from atomic predicates Σ using logical operators ¬, ∧, ∨,

→, and ↔. For the moment, we assume that a given action A is referenced only

once in a process. Later, we will extend our approach to remove this restriction.

A predicate φ over atomic predicates in Σ defines a set of executions E(φ) =

{e ∈ 2Σ | e |= φ}.
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Execution Predicate Construction We create the predicate φ by recursively

applying the rules of Figure 3.6, based on the form of each sub-process. These

rules define seven mutually-recursive functions: φX0, φXX, φX×, φ×0, φ×X, φ××,

and φ00, all with the signature P × G → Φ, where P is the set of all processes,

G is the set of all action type environments, and Φ the set of all predicates. The

two subscripts of each function’s name represent the forward and compensation

results of running the process, respectively, where X is a successful execution, ×

is a failed execution, and 0 means that the process was not run. For example,

φX×(P,Γ) returns a predicate representing all executions of process P where

the forward process completes successfully and the compensation process (whose

execution must be initiated by the failure of a containing process) fails, given a

type environment Γ. As a shorthand, we use terms of the form PX× to represent

the function φX×(P,Γ). We also leave out the conjunction symbol (“∧”) when it

is obvious from the context (e.g. PX0QX0 for PX0 ∧QX0).

Given these functions, we compute the predicate φ, representing the possible

executions of a process, using the function pred : P × G → Φ, defined as:

pred(P,Γ) ≡ φX0(P,Γ) ∨ φ×X(P,Γ) ∨ φ××(P,Γ)

Example 4. We illustrate the predicate generation algorithm by constructing a

predicate for the SimpleOrder process. We start from the execution predicate

definition:

pred(SimpleOrder,Γso) = φX0 ∨ φ×X ∨ φ××

and iteratively apply the appropriate sub-predicates from Figure 3.6. We show

the steps of the computation in Figure 3.7. We obtain step (2) from step (1) in

Figure 3.7 by substituting each term with the sub-predicates from the sequence
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rule, since the top-level process is a sequence. Next, from step (2) to step (3), we

use the atomic action rules to simplify the predicates for ProcessOrder. Notice

that the fourth conjunction in (3) can be dropped since it conjoins false. Now,

we expand the predicates for Billing using rules for the compensation operator to

get step (4). Finally, we expand the Charge and Credit predicates again using

rules for the atomic actions to get (5). Simplifying, we get (6), the execution

predicate for SimpleOrder.

Note that the three conjunctions in the final predicate correspond to the three

possible executions of SimpleOrder:

1. The actions Charge and ProcessOrder are successful, and the compen-

sation Credit is not run.

2. The action Charge completes successfully, but ProcessOrder fails. Then,

Credit is run to compensate for Charge.

3. The action Charge fails, and the actions ProcessOrder and Credit are

never run.

Memoization As usual, one can memoize each computation by giving names

to sub-predicates. While generating the execution predicate, we name each non-

atomic sub-predicate, using the names as literals instead of expanding the sub-

predicates of φ. The resulting execution predicate is then conjoined with a defi-

nition (n↔ φn) for each name n and its definition φn.

Using memoization, the execution predicate of our previous example be-
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comes:

(SimpleOrderX0 ∨ SimpleOrder×X)

∧ (SimpleOrderX0 ↔ BillingX0 ∧ProcessOrder)

∧ (BillingX0 ↔ Charge ∧ ¬Credit)

∧ (SimpleOrder×X ↔

(BillingXX ∧ ¬ProcessOrder ∨

Billing×X ∧ ¬ProcessOrder))

∧ (BillingXX ↔ Charge ∧Credit)

∧ (Billing×X ↔ ¬Charge ∧ ¬Credit)

Although the memoized execution predicate for this particular example is larger

than the non-memoized predicate, in general, the worst-case size of the memo-

ized predicate is polynomial in the size of a process, whereas the size of a non-

memoized predicate can be exponential.

Theorem 10. For any process P and action type environment Γ,

1. The execution set obtained from P ’s execution predicate is equal to the set

of all P executions: E(pred(P,Γ)) = execs(P,Γ).

2. |pred(P,Γ)| is polynomial in |P |.

Proof (outline). We prove the first assertion by induction on the derivation of

pred(P ), first considering direct generation of the execution predicate, without

memoization. The base cases are each of the atomic action rules. For each

rule, we show that the satisfying assignments to the predicates correspond to the

feasible executions. The inductive cases are the compositional operator rules.

We can simplify the proof for these cases using theorem 8, which shows that,

when composing subprocesses, one can compose the traces, only considering the
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status (success or failure) of the sub-traces. For each operator, we show that,

assuming that the component predicates (e.g. PXX, etc.) are correct, then the

predicate constructed for the operator has satisfying assignments corresponding

to the executions obtained from the associated trace semantics rule.

Memoization. To prove that our memoization algorithm is correct, we show a

more general property for an arbitrary predicate φ containing a sub-predicate ϕ.

An assignment A of values to the variables of φ is a satisfying assignment for φ,

if and only if it is satisfying assignment for (φ[C/ϕ]) ∧ (C ↔ ϕ), where C is a

literal not appearing in φ. To see this, we use several boolean algebra identities.

We convert φ[C/ϕ] to disjunctive normal form, yielding φdnf .

We assume without proving here that replacing each occurrence of C with ϕ

in φdnf would yield a predicate equivalent to φ. Given this, we only need to show

that conjoining φdnf with C ↔ ϕ is equivalent to performing this substitution.

We conjoin each term ti of φdnf with C∧ϕ ∨ ¬C∧¬ϕ, creating terms tCi and t¬C
i .

If C and not ¬C appear in ti, then tCi = ti ∧ ϕ and t¬C
i is unsatisfiable. When

considering satisfiability, we can ignore the term C in tCi , since it is a free variable

in φdnf . The case where ti contains ¬C but not C is similar. If ti contains C and

¬C, then ti and ti[ϕ/C] are unsatisfiable. Thus, φdnf ∧ (C ↔ ϕ) is equivalent to

φdnf [ϕ/C].

Execution predicate size. To show that the execution predicate’s size is poly-

nomial with respect to the original process, we use induction on the structure

of processes. The base causes are atomic actions which all have predicates of

one term. For the inductive case, we consider an arbitrary subprocess P ⊗ Q

where the predicates φX0(P ), ...φ00(P ) are all polynomial in the size of P and

the predicates φX0(Q), ...φ00(Q) are all polynomial in the size of Q. Using mem-

oization, we need only reference each of these predicates once. The predicates
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φX0(P ⊗ Q), ...φ00(P ⊗ Q) are thus independent in size from the sizes of P and

Q. The largest possible size is, in fact, 67 for φ××(P ‖ Q).

3.4.1.1 Checking Consistency

We check a specification by checking if the execution predicate pred(P,Γ) implies

the normalized specification predicate spec norm(ϕ, C). If the implication is valid,

then all executions satisfy the specification and the solution to the consistency

verification problem is “yes.” Otherwise, there is some execution that does not

satisfy the consistency specification. Therefore, to check a process for consistency,

we can build the execution and normalized specification predicates and check the

implication by a Boolean satisfiability query.

Theorem 11. For any process P and specification predicate ϕ, with action type

environment Γ and normalization set C,

1. execs(P,Γ) ⊆ spec(spec norm(ϕ, C)) iff pred(P,Γ) → spec norm(ϕ, C) is

valid.

2. The consistency verification problem can be solved in time exponential in

some polynomial function of |P |, |Γ|, |ϕ|, and |C|.

Proof (outline). This follows from the previous theorems. If the execution pred-

icate is a sound and complete representation of a process’s executions, then the

process satisfies a specification only if the execution predicate implies the speci-

fication.

The verification predicate can be generated in polynomial time with respect

to the algorithm’s inputs: only one pass must be made through the process and

the size of the generated predicate is polynomial with respect to |P |, |Γ|, |ϕ|,

and |C|. From theorem 10 we know that the execution predicate is polynomial
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in size with respect to P . |Γ| and |C| are not larger than the number of unique

actions in P and |φ| is independent from Γ. Finally, spec norm causes at most a

polynomial expansion of the specification predicate.

Example 5. Given the previously computed values of pred(SimpleOrder,Γso)

and spec norm(ϕso, Cso), the verification problem for process SimpleOrder may

be reduced to checking the validity of the following predicate:

(

Charge ∧ ¬Credit ∧ProcessOrder ∨

Charge ∧Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder
)

→

(

(Charge ∧ProcessOrder) ∨

(

(¬Charge ∧ ¬Credit) ∨ (Charge ∧Credit)
)

∧ ¬ProcessOrder
)

Multiple Calls to an Action So far, we have assumed that each action in

A is called at most once in a given process. If an action may be called multiple

times by a process, we do not distinguish the individual calls. Given an action

A, which appears more than once in the text of the process P , the specification

predicate A is true if A is called at least once, and false if A is never called. This

follows directly from our definition of a process execution, which is a set of called

actions, rather than a bag. These semantics are useful for situations where an

action may be called in one of several situations, and we wish to verify that, given

some common condition, the action is called. For example, in OrderProcess of

Section 3.7.1.1, the action MarkFailed must be called if the order fails, either

due to a failed credit check or to a failed fulfillment subprocess.
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If an action is called more than once, pred(P,Γ) may produce an unsatisfiable

predicate. For example, φX0(A � A) = (A ∧ ¬A) ∨ (¬A ∧ A), which is clearly

unsatisfiable. We solve this by applying the function trans calls : P → P ×

Φ, which takes as input a process P and returns a translated process P ′ along

with a predicate φtc. Given a set of actions {A1, ...An} ⊆ A, which occur more

than once in P , each occurrence of these actions the translated process P ′ is

given a unique integer subscript. For example, given the process P = (A;B) �

(A;B), trans calls(P ) will return the process P ′ = (A1;B1) � (A2;B2). The

predicate φtc = φ1
tc∧...φ

n
tc, where φi

tc uses the boolean↔ operator to associate the

atomic predicate Ai with the disjunction of the predicates for each subscript. For

example, φtc for P = (A;B)� (A;B) will be (A↔ (A1∨A2))∧ (B ↔ (B1∨B2)).

We now re-define our predicate function pred, to combine trans calls with predmem,

our original predicate generation function:

pred(P,Γ) = let (P ′, φtc) = trans calls(P ) in

predmem(P ′,Γ) ∧ φtc

Lemma 18. For any process P , which may contain multiple calls to the same

action, and atomic action typing Γ, the execution set obtained from applying pred

to P and Γ is equal to the set of all P executions: E(pred(P,Γ)) = execs(P,Γ).

Proof (outline). We show this through boolean algebra identities. Assume that

process P contains an action A which is called n times. Thus, trans calls(P ) =

(P ′, A ↔ (A1 ∨ A2... ∨ An)) and φp′ = predmem(P ′), where P ′ has actions

A1, A2, ...An substituted for each occurrence of A. We convert φp′ to disjunctive

normal form, yielding φdnf
p′ . We state, without proving here, that each term of

φdnf
p′ will contain all actions of P ′, either directly or in negated form. We conjoin
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each term ti of φdnf
p′ with A↔ (A1∨...An). This yields the terms tA1

i = ti∧A∧A1,

tA2
i = ti ∧ A ∧ A2, ... tAn

i = ti ∧ A ∧ An, and t¬A
i = ti ∧ ¬A ∧ ¬A1... ∧ ¬An. The

terms t
Aj

i are satisfiable if ti satisfiable, A is assigned true, and ti contains Aj as

a conjunct (and thus not ¬Aj). The term t¬A
i is satisfiable if ti is satisfiable, A is

assigned false, and ti contains ¬A1, ...¬An as conjuncts. If we view the terms ti

as possible executions for P , this matches our intuition: if any of the subscripted

actions Aj are included in the execution, then we include A.

Named subprocesses As mentioned in Section 3.3, named subprocesses are

simply expanded at each call point. This is done before running trans calls, since

expansion may introduce actions which are called more than once.

Counterexample traces As a consequence of Theorem 11, if a process does

not satisfy a specification, we can obtain a model for the execution predicate

which violates the specification predicate. This model corresponds to a coun-

terexample execution. Using the process definition and a model for the memoized

execution predicate, we can also obtain a counterexample trace — an ordered list

of actions called by the process, annotated with the success/failure status of each

action.

This is accomplished by walking the process definition, simulating its execu-

tion per the trace semantics of Section 3.3. When a choice process is encountered,

the model is checked to see which subprocess of the choice has a true value for its

φ00 predicate, indicating that it was not run. The traversal continues with the

other subprocess, ignoring the not-chosen subprocess. When an atomic action is

reached, the model is checked to see if that action completed successfully. If so,

it is added to the trace as a successful action. Otherwise, it is added to the trace

as a failed action, and result propagated up through its parent processes.
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The model is ambiguous — both non-execution and failure of atomic actions

are represented by mappings to false. We resolve this ambiguity by ensuring

that the traversal only reaches an atomic action if it was attempted. For example,

if the first action of a sequence fails, then the rest of the sequence is not traversed.

There are a few cases where either failure or non-execution will cause the same

future behavior of a process (e.g., the first action of the overall process). For these

cases, we assume failure rather than non-execution, unless a given action cannot

fail. The computation of a counterexample trace is polynomial with respect to

the process size — each subprocess and action is traversed only once.

3.4.2 Iteration

We now extend our core process language to support iteration by introducing two

new process composition operators, “∗∗” and “∗|”, with the following syntax:

Process P ::= ...

| ∗∗P sequential iteration

| ∗|P parallel iteration

The sequential iteration operator runs a process one or more times, one copy at

a time. The parallel iteration operator runs one or more copies of a process in

parallel. For both operations, the number of copies is not known a priori — this

is determined at runtime.

We define the trace semantics of these operators by taking the fixpoint of the

following two equations:

Π(∗ ∗ P ) = Π(P ) ∪ Π(P ; (∗ ∗ P ))

Π(∗|P ) = Π(P ) ∪ Π(P ‖ (∗|P ))
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The sequential iteration operator generates a sequence of traces from Π(P ), where

all but the last trace must correspond to successful executions. As with pairwise

sequential composition, the compensation process for sequential iteration runs

the compensation processes for each action sequentially, in reverse order from the

forward execution. Parallel set iteration interleaves traces of P arbitrarily. If any

of these traces fails, the parent has a failed status. As with parallel composition,

processes may not be interrupted in the event of a failure, but may be skipped if

they have not started. Compensation is run in parallel as well.

We wish to generalize set consistency predicates to processes with iteration.

We encounter two problems with iteration. First, the set of potential traces

for a given process now becomes infinite. Second, consider two atomic actions

A and B, which occur within an iterated subprocess. The specification A ∧ B

will be true for all traces where both A and B are called at least once, even if

A and B are never called in the same iteration. This is usually too weak. In

an executable process, an iterated subprocess would likely be parameterized by

some value (dropped when abstracting to our core language), which changes each

iteration. Thus, one is more likely interested in checking if, whenever A is called,

B is also called within the same iteration. We will see an example of such a

process in Section 3.7.1.1.

Quantified specification predicates We now generalize the semantics of

specification predicates to permit specifying that all iterations of an subprocess

obey a constraint. As a running example, we use the following process:

P = (∗ ∗ (A;B)); (∗|(C �D))
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First, we augment process traces to uniquely identify each call to an action within

iterative subprocesses. We number the iterations of each iterative subprocess,

starting at 1. We add this iteration number as a subscript to the actions called

within each iteration. For example, given an run of process P which executes the

A;B iteration twice and runs two copies of C and one copy of D for the parallel

iteration, we obtain the trace: A1 B1 A2 B2 C1 C2 D3. For parallel iteration,

since subprocesses may be interleaved, the mapping of subprocess executions to

iterations is arbitrary. If an iterative subprocess is nested within another itera-

tive subprocess, we subscript each inner subprocess’s actions with a sequence of

iteration numbers, starting with the outermost subprocess. We extend the trace

semantics function J·K to produce traces of this form for iterative subprocesses.

The execution for an iterative trace is simply the set of actions called, prop-

agating the iteration subscripts. Thus, the actions of each iteration are distin-

guished. For example, execution for the above trace of process P would be:

{A1, A2, B1, B2, C1, C2, D3}. We extend the execution function execs : P → 2A

to produce executions of this form.

Next, we extend the specification semantics function spec : Φ × P → E to

permit specification predicates over iterative executions. As discussed above, we

wish to consider whether a property holds over all iterations. Therefore, we forbid

the use of specific iteration subscripts in the specification predicate. Instead,

we assign a unique index variable to each iterative subprocess and universally

quantify the specification predicate over all index variables. For example, to

specify that, for each sequential iteration in process P , the execution of B implies

the execution of A, we write ∀i(¬Bi ∨Ai). We write ϕ∀ to represent a quantified

specification predicate. Predicates outside any iteration are not subscripted.

Thus, given the process P ′ = (∗∗ (X;Y ));Z, the predicate ∀i(¬Z ∨ (Xi∧Yi)),
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means “in all executions of the process where Z is called, X and Y are called

together for all iterations.”

We can now define the semantics of an execution predicate, given a universally

quantified specification predicate ϕ∀ and a process P :

spec∀(ϕ∀, P ) = {e ∈ execs(P ) | e |= ϕ∀}

Verification Clearly, if a quantified specification predicate is satisfied by all

possible iterations of a process, then any single iteration will satisfy the predicate

as well. More importantly, the reverse is also true. To show this, we first define

a function erase : P → P, which removes the iteration operators from a process,

replacing them with the underlying subprocess:

erase(P ) =











































erase(P ′) if P = ∗ ∗ (P ′)

erase(P ′) if P = ∗|(P ′)

erase(Q)⊗ erase(R) if P = Q⊗R

A if P = A

Given a specification predicate ϕ∀, we write ϕǫ for the predicate obtained by

removing the universal quantifier and any iteration subscripts on literals.

Theorem 12. Given a process P , a normalization set C, and quantified specifi-

cation predicate ϕ∀, iff erase(P ) is correct with respect to ϕǫ, then P is correct

with respect to ϕ∀.

Proof (outline). Assume that process P contains an iterative subprocess Q =

∗ ∗ (R) or Q = ∗|(R).

The function select iters : 2A → E takes an execution E of P and returns the
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set of executions E1, E2, ...En where each Ei substitutes the execution Eqi
of Q

iteration i for the execution Eq of all Q iterations. We can lift select iters to sets

of executions by applying it to each execution in the input set and accumulating

all resulting executions in a single set.

We may evaluate a feasible execution set execs(P ) of process P against

the quantified execution predicate ϕ∀ by evaluating each execution in

select iters(execs(P )) against ϕǫ. If all these executions satisfy ϕǫ, then P satisfies

ϕ∀.

Lemma 19.

∀e∈select iters(execs(P )) . (e |= ϕǫ)→ ∀e′∈execs(P ) . (e′ |= ϕ∀)

From the trace definitions for iteration, we can see that the possible traces

for an single iteration of Q are the same as if the subprocess R is run standalone.

In other words, iterations are “stateless.” Thus, the possible executions and

forward/compensation status pairs for any one iteration of Q are the same as

those for R. From theorem 8, we know that the trace of the process calling Q

depends only on the status of Q, not the individual actions. Thus, the set of

feasible executions we get when replacing Q with R are the same as when we

select each iteration from the executions of P . More formally:

Lemma 20. execs(erase(P )) = select iters(execs(P )).

Theorem 12 follows from lemmas 19 and 20.

Thus, we can check an iterative process by simply erasing the iterative oper-

ators, and checking against the associated unquantified specification.
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Predicate Γ ⊢ A : {X} Γ ⊢ A : {X,×} Γ ⊢ A : {×}
φX0 A A false

φXX A A false

φX× false false false

φ×0 false ¬A ¬A
φ×X false ¬A ¬A
φ×× false false false

φ00 ¬A ¬A ¬A

Predicate P;Q P‖Q P�Q

φX0 PX0QX0 PX0QX0 P00QX0∨ PX0Q00

φXX PXXQXX PXXQXX P00QXX∨ PXXQ00

φX× PX0QX×∨ PX×QX0 PX0QX×∨ PXXQX×∨ PX×QX0∨ P00QX×∨ PX×Q00

PX×QXX∨ PX×QX×

φ×0 PX0Q×0∨ P×0Q00 P00Q×0∨ PX0Q×0∨ P×0Q00∨ P00Q×0∨ P×0Q00

P×0QX0∨ P×0Q×0

φ×X PXXQ×X∨ P×XQ00 P00Q×X∨ PXXQ×X∨ P×XQ00∨ P00Q×X∨ P×XQ00

P×XQXX∨ P×XQ×X

φ×× PX0Q××∨ PX×Q×X P00Q××∨ PX0Q××∨ PXXQ××∨ P00Q××∨ P××Q00

∨ P××Q00 PX×Q×0∨ PX×Q×X∨ PX×Q××∨
P×0QX×∨ P×0Q××∨ P×XQX×∨
P×XQ××∨ P××Q00∨ P××QX0∨
P××QXX∨ P××QX×∨ P××Q×0∨
P××Q×X∨ P××Q××

φ00 P00Q00 P00Q00 P00Q00

Predicate P÷Q P�Q

φX0 PX0Q00 PX0Q00∨ P×XQX0

φXX PX0QX0 PXXQ00∨ P×XQXX

φX× PX0Q×X∨ PX0Q×× PX×Q00∨ P×XQX×

φ×0 P×0Q00 P×XQ×0

φ×X P×XQ00 P×XQ×X

φ×× P××Q00 P×XQ××∨ P××Q00

φ00 P00Q00 P00Q00

Figure 3.6: Inference rules for computing φ
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pred(SimpleOrder , Γso) = φX0 ∨ φ×X ∨ φ×× (3.1)

= BillingX0ProcessOrderX0 ∨ BillingXXProcessOrder×X ∨

Billing×XProcessOrder00 ∨ BillingX0ProcessOrder×× ∨

BillingX×ProcessOrder×X ∨ Billing××ProcessOrder00 (3.2)

= BillingX0 ∧ProcessOrder ∨ BillingXX ∧ ¬ProcessOrder ∨

Billing×X ∧ ¬ProcessOrder ∨ BillingX0 ∧ false ∨

BillingX× ∧ ¬ProcessOrder ∨ Billing×× ∧ ¬ProcessOrder (3.3)

= ChargeX0
∧Credit00 ∧ProcessOrder ∨

ChargeX0
∧CreditX0 ∧ ¬ProcessOrder ∨

Charge×X ∧Credit00 ∧ ¬ProcessOrder ∨

(ChargeX0
Credit×X ∨ChargeX0

Credit××) ∧ ¬ProcessOrder ∨

Charge×× ∧Credit00 ∧ ¬ProcessOrder (3.4)

= Charge ∧ ¬Credit ∧ProcessOrder ∨

Charge ∧Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder ∨

(Charge ∧ false ∨Charge ∧ false) ∧ ¬ProcessOrder ∨

false ∧ ¬Credit ∧ ¬ProcessOrder (3.5)

= Charge ∧ ¬Credit ∧ProcessOrder ∨

Charge ∧Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder (3.6)

Figure 3.7: Computing pred(SimpleOrder ,Γso) for Example 4
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3.5 Conversational Consistency

We now look at how to extend our formalization to model conversational consis-

tency.

3.5.1 Web Services

Processes We describe processes using the same core language as in Section

3.3, with two changes:

• Given a set Actions of atomic messages and a set Peers of peers, atomic

actions are of the form:

A ::=

| a?i a ∈ Actions, i ∈ Peers

| a!i a ∈ Actions, i ∈ Peers

• To simplify the presentation, we leave out the compensation operator. A

sketch of how to extend the algorithm to handle compensation is given in

Section 3.6.2.1.

Such processes can express many concrete BPEL implementations; we extend

the core language to additional features in the implementation.

Atomic messages are indivisible send or receive operations to peers. For an

action a ∈ Actions and a peer i ∈ Peers, we write a?i to denote a message a

received from peer i, and write a!i to denote a message a sent to peer i. We write

⊲⊳ for ? or !, and ⊲⊳ for the opposite of ⊲⊳, i.e., ⊲⊳ =? if ⊲⊳=! and ⊲⊳ =! if ⊲⊳=?.

We also write just a when the peer and whether it is a send or a receive is not

relevant.

Conversation Automata We also need to model the conversations with each

peer. A conversation automaton is a tuple (Q,Σ, δ, q0, F 1, F 2) where Q is a finite
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set of states, Σ = Actions×{?, !} is the alphabet, where Actions is the set of atomic

messages and ? and ! denote message receive and message send respectively,

δ ⊆ Q× Σ ×Q is the transition relation, q0 ∈ Q is an initial state, and F 1 ⊆ Q

and F 2 ⊆ Q are disjoint subsets of Q called the nochange and committed states

respectively. We call F 1∪F 2 the set of consistent states, and Q\(F 1∪F 2) the set

of inconsistent states. We write q
a?
−→ q′ (respectively, q

a!
−→ q′) for (q, (a, ?), q′) ∈ δ

(respectively, (q, (a, !), q′) ∈ δ).

We assume that a conversation automaton is complete, that is, for every state

q ∈ Q and every action a ⊲⊳∈ Σ, there is some state q′ with q
a⊲⊳
−→ q′. This can be

ensured in the standard way by adding “dead” states to the automaton.

Web Services We bring together a process definition and the associated

conversation automata in a web service. Formally, a web service WS =

(Actions, P, 〈C1, . . . , Ck〉) consists of a process P and an indexed set of conver-

sation automata 〈C1, . . . , Ck〉, one for each peer, where Σi = Actions × {?, !} for

each Ci, and each atomic action a ⊲⊳ i in P satisfies i ∈ {1, . . . , k}.

Semantics We assume the same trace semantics for processes as in Section

3.3. These semantics must be extended to track the state changes of conversation

automata. To do this, we use a small-step operational semantics, given in Figure

3.8. These semantics assume the structural congruence rules given in Figure 3.9.

Henceforth, we identify structurally congruent processes.

The state of a web service consists of a process P and the states s ∈ Q1 ×

. . .×Qk of the conversation automata of the peers. We write si to denote the ith

component of the state s, and write s[i 7→ q] for the state whose ith component

is q and all other components are the same as s.
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The (Msg) rule deals with a message send or receive to the ith peer. This

changes the state of the ith conversation automaton but leaves all other states

unchanged. The (Throw) rule replaces an exception with its handler, and the

(Normal) rule drops an exception handler for a process if the process terminates

normally (via skip).

The operational semantics defines a transition relation → on the states of a

web service, which synchronizes the atomic actions (message sends and receives)

of the process with the states of the peer automata. Let →∗ denote the reflexive

transitive closure of →.

A (complete) run of the web service WS = (P, 〈C1, . . . , Ck〉) is a sequence

〈P0, s
0〉, . . ., 〈Pn, s

n〉 such that (1) P0 ≡ P and for each i ∈ {1, . . . , k}, we have

s0
i = q0

i , i.e., each conversation automaton starts in its initial state; (2) for each

i ∈ {0, . . . , n− 1}, we have 〈Pi, si〉 → 〈Pi+1, si+1〉, and (3) there is no 〈P, s〉 such

that 〈Pn, sn〉 → 〈P, s〉.

The process at the last state of a complete run is always either skip or throw.

In case it is skip, we say the run terminated normally. In case it is throw, we say

the run terminated abnormally. The run is consistent if, for each i ∈ {1, . . . , k},

we have sn
i ∈ F

1
i ∪ F

2
i , i.e., each conversation automaton is in a consistent state

at the end of the run.

3.5.2 Consistency for Web Services

Let WS = (P, 〈C1, . . . , Ck〉) be a web service. Let AP =

{nochange(i), comm(i) | i ∈ {1, . . . , k}} be a set of atomic propositions. In-

tuitively, the proposition nochange(i) is true if the conversation automaton Ci

of peer i is in a nochange state, and the proposition comm(i) is true if the

conversation automaton Ci of peer i is in a committed state.
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δi(si, a⊲⊳, q) s′ = s[i 7→ q]

〈a ⊲⊳ i, s〉 → 〈skip, s′〉
(Msg)

〈P, s〉 → 〈P ′, s′〉

〈P ; Q, s〉 → 〈P ′; Q, s′〉
(Seq)

〈P, s〉 → 〈P ′, s′〉

〈P � Q, s〉 → 〈P ′, s′〉
(Choice)

〈P, s〉 → 〈P ′, s′〉

〈P ‖ Q, s〉 → 〈P ′ ‖ Q, s′〉
(Par)

〈throw � Q, s〉 → 〈Q, s〉
(Throw)

〈skip � Q, s〉 → 〈skip, s〉
(Normal)

〈P, s〉 → 〈P ′, s′〉

〈P � Q, s〉 → 〈P ′
� Q, s′〉

(Except)

P ≡ P ′ 〈P ′, s〉 → 〈Q′, s′〉 Q′ ≡ Q

〈P, s〉 → 〈Q, s′〉
(Cong)

Figure 3.8: Small-step operational semantics for core process language

P ≡ skip; P P ≡ P ; skip

throw; P ≡ throw throw ‖ P ≡ throw

(P0; P1); P2 ≡ P0; (P1; P2) P0 � P1 ≡ P1 � P0

P ≡ P ‖ skip P0 ‖ P1 ≡ P1 ‖ P0

P0 ‖ (P1 ‖ P2) ≡ (P0 ‖ P1) ‖ P2

Figure 3.9: Structural congruence axioms
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A conversational consistency predicate is a Boolean formula over AP . Let

s ∈ Q1 × . . .× Qk be a state and ψ a conversational consistency predicate. We

write s |= ψ if the Boolean formula ψ evaluates to true when each predicate

nochange(i) is replaced by true if si ∈ F
1
i (i.e., Ci is in a nochange state) and by

false otherwise, and each predicate comm(i) is replaced by true if si ∈ F
2
i (i.e.,

Ci is in a committed state) and by false otherwise,

A web service WS is consistent with respect to a conversational consistency

predicate ψ if every complete run of WS is consistent and for every complete run

with last state 〈skip, s〉 we have that s |= ψ. The conversation consistency verifi-

cation problem takes as input a web service WS and a conversational consistency

predicate ψ and returns “yes” if WS is consistent with respect to ψ and “no”

otherwise.

Theorem 13. The conversation consistency verification problem is co-NP com-

plete.

In case a web service is inconsistent, there is a violating execution that is poly-

nomial in the size of the service. This shows membership in co-NP. The problem

is co-NP hard by a reduction from Boolean validity, similar to the reduction for

set consistency in Theorem 9.

3.5.3 Consistency Verification

We now give an algorithm for the conversation consistency verification prob-

lem that reduces the problem to satisfiability checking. Given a web service

WS = (P, 〈C1, . . . , Ck〉) and a consistency specification ψ, we construct a for-

mula ϕ such that ϕ is satisfiable iff WS is not consistent w.r.t. ψ. We build ϕ

by induction on the structure of the process, in a way similar to bounded model
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checking. The only technical difficulty is to ensure ϕ is polynomial in the size of

the input; clearly, a naive encoding of the complete runs of the web service yields

an exponential formula.

We start with some definitions. Given a process P , define the function depth

by induction as follows:

depth(skip) = 1 depth(throw) = 1

depth(a?i) = 1 depth(a!i) = 1

depth(P1 ⊗ P2) = depth(P1) + depth(P2) ⊗ ∈ {; , ‖,�}

depth(P1 � P2) = max(depth(P1), depth(P2))

For a process P , the value depth(P ) gives the maximum number of message

exchanges on any run of the process P .

A process P can give rise to up to depth(P ) transitions. We call each evalua-

tion step of P a step in its run. We introduce symbolic variables that represent

the state and transitions of the web service for each step. A state variable is

a k-tuple taking values in the domain Q1 × . . . × Qk. In the following, we use

(superscripted) variables sj to stand for states. Each sj is a k-tuple taking values

over Q1 × . . . × Qk, and the element sj
i takes values over the set of states Qi of

the conversation automaton Ci and represents the state of Ci in the state sj. A

transition predicate is a formula over two state variables s and s′. A transition

predicate gives a relation between the old state s and a new state s′ that encodes

one or more steps of a process execution.

For each conversation automaton Ci, and each action a ⊲⊳∈ Σ, we define a

transition predicate, written ∆i(a ⊲⊳)(s, s
′), that encodes the transition relation

of Ci for symbolic states s and s′. The symbolic transition relation ∆i(a ⊲⊳)(s, s
′)

is a formula with free variables s and s′ that encodes the transition relation in
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the obvious way:
∨

(q,a⊲⊳,q′)∈δi

s = q ∧ s′ = q′

Constructing the Consistency Predicate. For simplicity of exposition, we

first give the construction of the consistency predicate for processes without ex-

ception handling, i.e., without throw and ·�·. We construct ϕ in two steps. First,

given a process P , we construct by induction a sequence of depth(P ) transition

predicates that represent the transitions in possible executions of P . Second, we

tie together the transitions, constrain the executions to start in the initial state,

and check whether at the end, the state is consistent according to the consistency

specification.

We introduce some notation. Let P be a process, let p = depth(P ). Let

(s1, t1), . . . , (sp, tp) be pairs of state variables. We shall construct a formula

transitions[P ](s1, t1, . . . , sp, tp) that encodes the sequence of transitions in an ex-

ecution of P . This formula can have additional free variables. We construct

transitions[P ](s1, t1, . . . , sp, tp) by induction on the structure of P as follows.

If P ≡ skip, then transitions[P ](s1, t1) is t1 = s1 (that is, the state does not

change on executing a skip).

If P ≡ a ⊲⊳ i, the formula transitions[a ⊲⊳ i](s1, t1) is

∧

j 6=i

t1j = s1
j ∧∆i(a⊲⊳)(s

1
i , t

1
i )

Intuitively, this specifies that the ith part of the state changes according to the

step of the automaton, while every other part of the state (i.e., the states of the

other conversation automata) remain the same.

Let P ≡ P1;P2, and p1 = depth(P1) and p2 = depth(P2).
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We construct recursively the formulas transitions[P1](s
1, t1, . . . , sp1, tp1) and

transitions[P2](u
1, v1, . . . , up2, vp2), where the free variables in the two for-

mulas are disjoint. Let x1, y1, . . . , xp1+p2, yp1+p2 be a fresh sequence of

state variables that we shall use to encode the transitions of P . Then

transitions[P ](x1, y1, . . . , xp1+p2, yp1+p2) is given by

transitions[P1](s
1, t1, . . . , sp1, tp1)∧

transitions[P2](u
1, v1, . . . , up2, vp2)∧

∧p1

j=1(x
j = sj ∧ yj = tj) ∧

∧p2

j=1(x
p1+j = uj ∧ yp1+j = vj)

Intuitively, the transitions for a sequential composition of processes consist of the

transitions of the first process followed by the transitions of the second process.

Let P ≡ P1 � P2, and p1 = depth(P1) and p2 = depth(P2). Without

loss of generality, assume p1 ≥ p2. We construct recursively the formulas

transitions[P1](s
1, t1, . . . , sp1, tp1) and transitions[P2](u

1, v1, . . . , up2, vp2), where the

free variables in the two formulas are disjoint. Let x1, y1, . . . , xp1, yp1 be a set of

fresh state variables. Then, transitions[P ](x1, y1, . . . , xp1, yp1) is given by





transitions[P1](s
1, t1, . . . , sp1, tp1)∧

∧p1

j=1(x
j = sj ∧ yj = tj)





∨




transitions[P2](u
1, v1, . . . , up2, vp2)∧

∧p2

j=1(x
j = uj ∧ yj = vj) ∧

∧p1−p2

j=p2+1 y
j = xj





Intuitively, the transitions of a choice are either the transitions of the first subpro-

cess or the transitions of the second (hence the disjunction), and we add enough

“skip” transitions to ensure that each side of the disjunction has the same number

of transitions.
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If P ≡ P1 ‖ P2, and p1 = depth(P1) and p2 = depth(P2).

We recursively construct formulas transitions[P1](s
1, t1, . . . , sp1, tp1)

and transitions[P2](u
1, v1 . . . , up2, vp2). We construct the formula

transitions[P ](x1, y1, . . . , xp1+p2, yp1+p2) as follows.

For i ∈ {1, . . . , p1 + 1} and j ∈ {1, . . . , p2 + 1}, let αi,j be fresh Boolean

variables. For each i ∈ {1, . . . , p1} and j ∈ {1, . . . , p2}, we introduce the following

constraints on αi,j:

αij ↔











(xi+j−1 = si ∧ yi+j−1 = ti ∧ αi+1,j)

∨

(xi+j−1 = uj ∧ yi+j−1 = vj ∧ αi,j+1)











For j ∈ {1, . . . , p2}, we introduce the constraint

αp1+1,j ↔ (xp1+j = uj ∧ yp1+j = vj ∧ αp1+1,j+1)

For i ∈ {1, . . . , p1}, we introduce the constraint

αi,p2+1 ↔ (xp2+i = si ∧ yp2+i = ti ∧ αi+1,p2+1

Finally, we set

αp1+1,p2+1 = true

Then, transitions[P ](x1, y1, . . . , xp1+p2, yp1+p2) is the conjunction of the constraints

above for all i, j, together with the constraint α1,1.

Intuitively, the construction above takes two sequences of transitions, and

encodes all possible interleavings of these sequences. A naive encoding of all in-

terleavings leads to an exponential formula. Therefore, we use dynamic program-
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ming to memoize sub-executions. The variable αi,j indicates we have executed

the first i − 1 transitions from the first sequence and the first j − 1 transitions

from the second sequence. Then the constraint on αi,j states that we can either

execute the ith transition of the first sequence and go to state αi+1,j, or exe-

cute the jth transition of the second and go to state αi,j+1. Conjoining all these

constrains encodes all possible interleavings.

Finally, we construct ϕ as follows. Let P be a process and depth(P ) = p. Let

Init(s) be the predicate
k

∧

i=1

si = q0
i

that states that each automaton is in its initial state, and Consistent(s) be the

predicate
k

∧

i=1

si ∈ F
1
i ∪ F

2
i

stating that each automaton is in a consistent state (note that we can expand

each set-inclusion into a finite disjunction over states).

Given the formula transitions[P ](s1, t1, . . . , sp, tp), we construct ϕ by “stitching

together” the transitions, conjoining the initial and consistency conditions:

Init(s1)∧

transitions[P ](s1, t1, . . . , sp, tp) ∧
∧p−1

i=1 t
i = si+1

∧(¬Consistent(tp) ∨ ¬ψ(sp))

Consistency Predicate with Exception Handling. We now extend the

above construction with throw and exception handling. In this case, we keep

an additional Boolean variable in the state that indicates whether an error has

occurred. Initially, this variable is set to 0. The variable is set to 1 by a throw
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statement, and reset to 0 by the corresponding exception handler. Additionally,

we modify the transitions function transitions to maintain the state once an error

has occurred in order to simulate the propagation of exceptions.

Formally, a state variable is now a (k + 1)-tuple, where the 0th element is

a Boolean variable indicating if an error has occurred and the 1st to the kth

elements are states of the k peer automata as before. We extend the constraints

to additionally track the error status. First, transitions[throw](s, t) below sets the

error status:

t0 = 1 ∧
k

∧

j=1

tj = sj

Second, let P be the process P1 � P2 with depth(P1) = p1 and

depth(P2) = p2. Let x1, y1, . . . , xp1+p2, yp1+p2 be new state variables. Then

transitions[P ](x1, y1, . . . , xp1+p2, yp1+p2) is given by

transitions[P1](s
1, t1, . . . , sp1, tp1) ∧

∧p1

j=1(x
j = sj ∧ yj = tj)∧

transitions[P2](u
1, v1, . . . , up2, vp2)∧

(yp1
0 = 1→





xp1+1
0 = 0 ∧

∧k

i=1 x
p1+1
i = u1

i∧
∧p2

j=2(x
p1+j = uj ∧ yp1+j = vj)



)

∧

(yp1
0 = 0→

∧p2

j=1(y
p1+j = xp1+j))

That is, the first p1 steps of P1 � P2 coincides with the steps of P1 (line 1), and

the next p2 steps are the steps of P2 if the error bit is set to 1 at the end of

executing P1 (line 3), in which case the error bit is reset to 0, or identity steps

(line 4) if the error bit is not set.

The constructions for sequential and parallel composition and choice are modi-

fied to stop executing once an error has been thrown. For example, the constraints
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for sequential composition are

transitions[P1](s
1, t1, . . . , sp1, tp1)∧

transitions[P2](u
1, v1, . . . , up2, vp2)∧

∧p1

j=1(x
j = sj ∧ yj = tj)∧

(yp1

0 = 0→
∧p2

j=1(x
p1+j = uj ∧ yp1+j = vj)∧

(yp1

0 = 1→
∧p2

j=1(x
p1+j = yp1+j))

We omit the similar modifications for � and ‖.

Finally, the initial condition Init(s) has the additional conjunct s0 = 0 and

the predicate Consistent(s) has the additional conjunct s0 = 0.

Soundness and Completeness. The following theorem states that our con-

struction is sound and complete. It is easily proved by induction on the run of

the web service.

Theorem 14. For any web service WS = (P, 〈C1, . . . , Ck〉) and consistency spec-

ification ψ, we have ϕ is satisfiable iff WS does not satisfy ψ. Further, ϕ is

polynomial in the size of WS.

Further, while we have used equality in our description of ϕ, since each vari-

able varies over a finite domain, we can compile ϕ into a purely propositional

formula.

Corollary 3. The consistency verification problem is in co-NP.

Relationship to Assume-Guarantee. A concrete web service is a collection

W = 〈P1, P2, . . . , Pk〉 of processes, whose semantics is given by the obvious mod-

ifications of the rules in Figure 3.8 (see e.g., [CRR02]). Stuck-freedom [RR02]

formalizes the notion that a concrete web service does not deadlock waiting for

messages that are never sent or send messages that are never received.
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An assume-guarantee principle would state that the local consistency checks

using our algorithm would imply that the concrete web service is stuck-

free. Assume-guarantee principles make strong non-blocking assumptions about

processes. Since our processes may not be non-blocking, we do not have

an assume-guarantee principle. Consider the three processes: process P1

is a?2; a!3, process P2 is a?3; a!1, and process P3 is a?1; a!2. These pro-

cesses are in deadlock. However, consider a conversation automaton A =

({q1, q2}, {a?, a!}, δ, q1, {q1, q2}, ∅) with δ(q1, a!, q2) and δ(q2, a?, q1). It is clear

that (Pi, A) is consistent for each i ∈ {1, 2, 3}. Thus, our local consistency checks

may not imply stuck-freedom.
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Process Spec Proc Spec Pred Time
size size size (ms)

AccountReceive ϕq1 13 8 124 70
OrderProcess ϕo1 26 21 247 112
OrderProcess ϕo2 26 20 236 130
BrokenOrder ϕo2 22 20 201 90
Travel ϕt1 13 24 181 90
Travel ϕt2 13 39 210 86

Table 3.1: Experimental Results for set consistency verifier. “Spec” is the con-
sistency specification, “Spec size” is the size of the specification, “Pred size” is
the size of the execution predicate.

3.6 Experiences

To demonstrate the viability of this approach, we have implemented verifiers for

set and conversational consistency, based on the core process language of Section

3.3. I then developed BPELCheck, a front-end to the conversational consistency

verifier that translates from the BPEL process language to our core language. I

have modeled several case studies, in either the core process language (for the set

consistency verifier), or BPEL (for conversational consistency) and verified them

using these tools.

3.6.1 Set Consistency Verifier

I implemented the set consistency verification algorithm of Section 3.4 in Objec-

tive Caml. To determine the validity of verification predicates, I use the MiniSat

satisfiability solver [ES03]. If an error is found, the solver returns a satisfying

assignment to the verification predicate. In the even that an error is found,

a counter-example analysis then maps the boolean variable assignment back to

steps in the process and generates a trace of a violating execution.
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3.6.2 Conversational Consistency Verifier

BPELCheck, which verifies BPEL processes against conversational consistency

specifications, is implemented as a plug-in for the Sun NetBeans Enterprise Ser-

vice Pack. The implementation has three parts: a Java front-end converts the

NetBeans BPEL internal representation into a process in our core language and

also reads in the conversation automata for the peers, an OCaml library compiles

the consistency verification problem into a satisfiability instance, and finally, the

decision procedure Yices [DM06] is used to check for conformance, and in case

conformance fails, to produce a counterexample trace.

3.6.2.1 Extensions to the Core Language

In addition to our core language, BPEL has a set of other source-level constructs

such as compensations, synchronizing flows, and (serial and parallel) loops. I now

show how we can extend the consistency verification algorithm to handle these

constructs. I sketch the intuition, but do not give the formal details.

Variables BPEL allows processes to have local variables. Our core language

can be augmented with state variables and assignment and assume constructs.

An assignment stores a computed value in a variable, and an assume statement

continues execution iff the condition in the assume is true. The operational

semantics of processes is extended in the standard way [Mit96] to carry a variable

store mapping variables to values. Assignments update the store, and assume

conditions continue execution if the condition evaluates to true under the current

store. Similarly, we can augment the construction of the consistency predicate

to track variable values in the state variables, and model their updates in the

transitions. We assume a finite-width implementation of integer data, which
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allows all constraints on integer variables to be reduced to Boolean reasoning.

Links BPEL allows processes executing in parallel to synchronize through links

between concurrently executing flows. A link between process P1 and process P2

means that P2 can start executing only after P1 has finished. We model links

using Boolean variables for each link that are initially false, then set to true

when the source activity terminates. We guard each target process with the

requirement that the link variable is true.

Loops BPEL processes can also have sequential or parallel loops. While in

general the presence of loops makes the theoretical complexity of the problem go

up from co-NP complete to PSPACE-complete, we have found that in practice

most loops can be unrolled a fixed finite number of times. For example, once

the peers are fixed, all loops over sets of peers can be unrolled. We plan to add

support for loops to our tool in the near future, using simple syntactic heuristics

to unroll loops a minimal number of times.

Compensations BPEL allows processes to declare compensation handlers that

get installed when a process completes successfully and get run when a down-

stream process fails. Our core language can be extended with compensations

by adding the syntax P1 ÷ P2 to denote a process P1 compensated by P2. The

semantics is modified by carrying a compensation stack: the semantics of P1÷P2

runs P1, and if it terminates normally, pushes the process P2 on the compensation

stack. If a process P terminates abnormally, the processes on the compensation

stack are executed in last-in first-out order [BF00, BF04, BMM05].

We can extend our construction of the consistency predicate by tracking com-

pensations. With each process, we now associate both a depth (the number of
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steps in a normal evaluation) and a compensation depth, the number of compen-

sation steps if the process terminates abnormally. The sum of the depth and the

compensation depth is polynomial in the size of the process, thus the consistency

predicate remains polynomial in the size of the process. The construction of the

consistency predicate becomes more complicated as there is a forward process

that encodes the transitions of the forward (normal) execution as well as con-

structs the compensation stack, and a compensation execution that executes the

compensation actions on abnormal termination. We have not yet implemented

compensations in our tool.

3.6.2.2 Optimizations

We also implement several optimizations of the basic algorithm from Section 3.5.

The main optimization is a partial-order reduction that only considers a partic-

ular interleaving for the parallel composition of processes. For a process P , let

Peers(P ) be the set of peers which exchange messages with P . Formally, Peers(P )

is defined by induction:

Peers(skip) = ∅ Peers(throw) = ∅ Peers(m ⊲⊳ i) = {i}

Peers(P1 ⊗ P2) = Peers(P1) ∪ Peers(P2) ⊗ ∈ {�, ; , ‖,�}

Define two processes P1 and P2 to be independent if (1) neither process has a throw

subprocess that escapes the scope of the process, and (2) Peers(P1)∩Peers(P2) =

∅. Independent processes talk to disjoint peers, so if they run in parallel, the

state of the conversation automata is the same for any interleaving. Thus, for

independent processes, instead of constructing the interleaved formula for par-

allel composition, we construct the sequential composition of the two processes.

This reduces the number of case splits in the satisfiability solver. In our expe-
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OrderProcess =SaveOrder;CreditCheck;

SplitOrder;FulfillOrder;CompleteOrder

CreditCheck =(ReserveCredit � (Failed; throw))

÷OrderFailed

OrderFailed =RestoreCredit;Failed

FulfillOrder = ∗ |(ProcessPOi)

ProcessPOi =(FulfillPOi � (MarkPOFailedi; throw))

÷CancelPOi

CompleteOrder =BillCustomer;Complete

Figure 3.10: Order management process

rience, most parallel composition of processes in BPEL web services satisfy the

independence property.

3.7 Case Studies

Next, we examine the case studies I performed using the two verifiers.

3.7.1 Set Consistency Case Studies

3.7.1.1 Order Process

Butler et al [BHF04] presents a simple order fulfillment transaction which has

cancellation semantics, and thus compensation is sufficient for expressing the

required error handling. Figure 3.10 shows a more complex order fulfillment

transaction, inspired by the example application in [SBM04], which does not

have cancellation semantics. The process OrderProcess receives a customer’s or-

der and makes a reservation against the customer’s credit (ReserveCredit). If

the customer does not have enough credit, the order is marked failed (Failed)
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and processing stopped. Otherwise, if the credit check was successful, the sub-

process OrderFailed is installed as compensation for the credit check. Then,

the order is broken down into sub-orders by supplier, and these sub-orders are

submitted to their respective suppliers in parallel (subprocess FulfillOrder). If

all sub-orders complete successfully, the subprocess CompleteOrder finalizes the

credit transaction with a call to BillCustomer and marks the order as complete

(Complete).

Failure semantics There are two types of errors that may occur in the order

transaction. If the ReserveCredit call fails (e.g., due to insufficient credit), the

order is marked as failed and execution is terminated before submitting any

purchase orders. Alternatively, one or more purchase orders may be rejected

by the associated suppliers. If any orders fail, the credit reservation is undone

and the order marked as failed. Note that neither error scenario causes the entire

transaction to be undone. This is consistent with real world business applications,

where many transactions have some notion of partial success and records of even

failed transactions are retained. We assume the normalization set

{(ReserveCredit,RestoreCredit), (FulfillPO,CancelPO)}

and that the actions SaveOrder, RestoreCredit, CancelPO, Failed, and

Complete never fail.

The order should always be saved. If the order process is successful, the cus-

tomer should be billed, all the purchase orders fulfilled, and the order marked

complete. If the order process fails, the order should be marked as failed, the cus-

tomer should not be billed, and no purchase orders fulfilled. These requirements

142



are written as the following set consistency predicate ϕo1:

SaveOrder ∧

(

(BillCustomer ∧ FulfillPO ∧Complete ∧ ¬Failed) ∨

(¬BillCustomer ∧ ¬FulfillPO ∧ ¬Complete ∧ Failed)
)

When checked with the verifier, OrderProcess does indeed satisfy this specifi-

cation.

Next, consider an alternative, orthogonal specification. Assume that the

ReserveCredit, RestoreCredit, and BillCustomer actions all belong to

an external credit service. We wish to ensure that our process always leaves

the service in a consistent state: if ReserveCredit succeeds, then either

RestoreCredit or BillCustomer (but not both) must eventually be called.

Also, if ReserveCredit fails, neither should be called. We model these require-

ments with the predicate ϕo2:

(¬ReserveCredit→ (¬RestoreCredit ∧ ¬BillCustomer)) ∧

(ReserveCredit→ (RestoreCredit ⊕BillCustomer))

where→ and⊕ are syntactic sugar for logical implication and logical exclusive-or,

respectively. Since we are referencing RestoreCredit directly in our specifica-

tion, we remove the pair (ReserveCredit,RestoreCredit) from our compen-

sation set. Our verifier finds that OrderProcess satisfies this specification.

Finally, we consider the process BrokenOrder, a variation of OrderProcess

where the OrderFailed compensation is left out of the CreditCheck subprocess:

CreditCheck = ReserveCredit � (Failed; throw)
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When checking this process, the verifier finds that the ϕo2 specification is not

satisfied and returns the following counter-example execution:

{SaveOrder,ReserveCredit,SplitOrder,Failed}

This execution corresponds to a trace where the process runs successfully until

it reaches FulfillPO, which fails. The exception handling for FulfillPO runs

Failed, but RestoreCredit is never run to undo the effects of ReserveCredit.

3.7.1.2 Travel Agency

Many real world applications involve mixed transactions. A mixed transaction

combines both compensatable and non-compensatable subtransactions [ELL90].

Frequently, these processes involve a pivot action [SAB02], which cannot be com-

pensated or retried. To obtain cancellation semantics, actions committing before

the pivot must support compensation (backward recovery) and actions commit-

ting after the pivot must either never fail or support retry (forward recovery).

Set consistency specifications can capture these requirements and our verifier

can check these properties. To illustrate this, I use a travel agency example from

[HA00]. It can be modeled in the core language as follows:

Travel = ((BookFlight ÷CancelFlight;

(RentCar÷CancelCar)) � ReserveTrain);

(ReserveHotel1 � ReserveHotel2)

In this transaction, a travel agent wishes to book transportation and a hotel

room for a customer. The customer prefers to travel by plane and rental car.

These reservations can be canceled. If a flight or rental car is not available,
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then the agent will book a train ticket to the destination. Once made, the train

reservation cannot be canceled. There are two hotel choices at the destination.

The first hotel may be full and a reservation may fail, but the second hotel

reservation is always successful. We can model the failure and compensation

properties of these services as follows:

Γt = 〈BookFlight 7→ {X,×},CancelFlight 7→ {X},

RentCar 7→ {X,×},CancelCar 7→ {X},

ReserveTrain 7→ {X,×},

ReserveHotel1 7→ {X,×},ReserveHotel2 7→ {X}〉

C = {(BookFlight,CancelFlight), (RentCar,CancelCar)}

The ReserveTrain action is a pivot action, as it has no compensation or ex-

ception handler. From inspection, we see that the requirements for cancellation

semantics are met:

• If ReserveTrain is called, then the actions BookFlight and RentCar

have been compensated by CancelFlight and CancelCar, respectively.

• If ReserveHotel1 fails, we recover forward by calling the alternate action

ReserveHotel2, which cannot fail.

We can check this with the verifier using the following specification predicate:

ϕt1 = (((BookFlight ∧RentCar) ∨ReserveTrain)∧

(ReserveHotel1 ∨ReserveHotel2)) ∨

¬(BookFlight ∨RentCar ∨ReserveTrain∨

ReserveHotel1 ∨ReserveHotel2)

The process does indeed satisfy this specification. We can use consistency speci-
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fications to check stronger properties as well. For example, we can alter the spec-

ification predicate to check that the process does not book both the flight/car

and the train and that it only books one hotel:

ϕt2 = (((BookFlight ∧RentCar)⊕ReserveTrain)∧

(ReserveHotel1 ⊕ReserveHotel2)) ∨

¬(BookFlight ∨RentCar ∨ReserveTrain∨

ReserveHotel1 ∨ReserveHotel2)

3.7.1.3 Performance Results

Table 3.1 shows the results of running this verifier on the example of Section

3.2.1 and the two case studies above. The run times are for a 1.6Ghz Pentium

M laptop with 512 MB of memory, running Windows XP. The runs all complete

in less than 130 milliseconds. The verification predicates are approximately 10

times larger than the original processes. Since process languages are intended for

composing lower-level services, the size of real-world processes are usually quite

small (in my industrial experience, not more than an order of magnitude larger

than these examples). This is well within the capabilities of current SAT solvers.

3.7.2 Conversational Consistency Case Studies

To evaluate BPELCheck, we ran it on several example BPEL processes. Store

implements the store process example of Figure 3.3. We also implemented the

two error scenarios described at the end of Section 3.2.2.

Travel is the same travel agency example described above in Section 3.7.1.2.
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Process Result Proc States Spec Time
size size (ms)

Store 1 pass 31 18 14 408
Store 2 fail 31 18 14 339
Store 3 fail 31 18 14 384
Travel pass 38 12 22 375
Auction pass 15 9 11 245
ValidateOrder fail 51 17 1 448

Table 3.2: Experimental Results for BPELCheck. “Result” is the result re-
turned by BPELCheck, “States” is the total number of states across all peer
automata, and “Spec size” is the size of the consistency predicate.

In this version, calls to make reservations for transportation and a hotel become

message exchanges with three peer processes. The consistency predicate for the

conversational version of this process checks that either all conversations were

left in a nochange state or the hotel reservation succeeded along with one of the

two transport reservations.

Auction is from the BPEL specification [BPE03]. The process waits for two

incoming messages — one from a buyer and one from a seller. It then makes an

asynchronous request to a registration service and waits for a response. Upon

receiving a response, it sends replies to the buyer and seller services. Each in-

teraction in this process is a simple request-reply pair. Our specification checks

that every request has a matching reply.

V alidateOrder is an industrial example provided by Sun Microsystems. It

accepts an order, performs several validations on the order, updates external

systems, and sends a reply. If an error occurs, a message is sent to a JMS queue.

Using BPELCheck, we found an error in this process. In BPEL, each request

activity should have a matching reply activity, enabling the process to implement

a synchronous web service call. However, the V alidateOrder process does not

send a reply in the event that an exception occurs.
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3.7.2.1 Performance Results

Table 3.2 lists the results of running these examples through BPELCheck. In

each case, we obtained the expected result. We measure the size of a process as

the number of atomic actions plus the number of composition operators, when

translated to our core language. We compute the size of consistency predicates

by summing the number of atomic predicates and boolean connectives. These

experiments were run on a 2.16 Ghz Intel Core 2 Duo laptop with 2 GB of memory

using MacOS 10.5. The running times were all less than a second, validating that

this approach works well in practice. In general, the running times were roughly

linear with respect to input size.

3.7.3 Comparing set and conversational consistency

A comparison of the set and conversational consistency case studies demonstrates

the trade-offs between these two approaches. For processes that make indepen-

dent synchronous calls or where there is a one-to-one mapping between forward

and compensation actions (e.g. the CRM, travel, and order examples of Sections

3.2.1 and 3.7.1), set consistency is more appropriate. A conversational consis-

tency specification for such processes will be larger but not any more precise. On

the other hand, it is awkward to describe more complex compensation protocols

(e.g. the two-phase commit used in warehouse example of Section 3.2.2) using

set consistency. In addition, set consistency cannot capture the implied relation-

ship between asynchronous request and reply messages in BPEL processes. For

example, in the V alidateOrder example of Section 3.7.2, the entire process ap-

pears as a synchronous call to the peer which initiates the process via a request.

The relationship between the receive call which spawns the process its associated

response can be succinctly captured using a conversation automaton. Finally, if
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conversation automata are included in a web service’s definition (e.g. as done

with the Web Services Conversation Language [BBB02]), then these automata

can be reused by all processes calling a web service, reducing the effective size of

a process’s specification.

Since any set consistency specification can be encoded in a conversational

consistency specification (by treating each action as a separate peer), it makes

sense to build BPELCheck on conversational consistency. As a future enhance-

ment, we plan to add better support for creating default automata, based on the

relationships between activities encoded in BPEL process definitions. This will

allow users to avoid the need for conversation specifications except where relevant

to the properties they want to guarantee.

3.8 Related Work

Flow Composition Languages. Many formalizations of flow composition lan-

guages that support composition and compensation have been proposed in the lit-

erature [BF00, BF04, BMM05]. These formalisms such as StAC [BF00], the saga

calculus [BMM05], and Compensating CSP [BHF04] formalize process orchestra-

tion using atomic actions and composition operations similar to ours. They differ

mostly in the features supported (e.g., whether recursion is allowed, whether par-

allel processes can be synchronized, or whether there are explicit commit mecha-

nisms), in assumptions on atomic actions (whether or not they always succeed),

and in the style of the semantics (trace based or operational).

I chose a core language that includes only the features relevant to my expo-

sition. However, I borrowed extensively from the above languages and believe

that similar results hold in the other settings. Like the Saga Calculus [BMM05],
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I assume that atomic actions can succeed or fail, as this more closely matches

the semantics of industrial languages such as BPEL [BPE03]. I support all the

composition operators of the Saga Calculus and Compensating CSP [BHF04],

except that I automatically apply compensation in the event of an error, rather

than requiring a transaction block. Our sequential and parallel iterations are in-

spired by StAC’s generalized parallel operator. However, my core language does

not support interruptible recovery of parallel processes or recursion.

Notions of Correctness Sagas [GS87] model a long-running, two-level trans-

action, where the first level consists of atomic actions and the second level pro-

vides atomicity, but not isolation, through compensation. The usual notion of cor-

rectness is cancellation semantics [BHF04]. One can ensure that a process is self-

canceling by restricting processes to have a compensation action for each forward

action where compensations cannot fail and are independent of any other com-

pensations running in a parallel branch [BHF04]. Although order-independence

between compensations is a realistic restriction, requiring a compensation for

each action seems limiting. Verification becomes more involved when this restric-

tion is relaxed. For example, [HA00] describes an algorithm which checks that an

OPERA workflow, potentially containing non-compensatable actions and excep-

tion handling, satisfies cancellation in O(n2) time. In [YCC06], cancellation is

checked on collections of interacting processes by creating an atomicity-equivalent

abstraction of each process and checking the product of the abstractions.

Set consistency specifications can capture cancellation semantics. In addition,

such specifications can model scenarios where self-cancellation is not desired (e.g.,

the order case study of Section 3.7.1.1) and can capture stronger requirements

than cancellation (e.g., mutually exclusive actions in the travel agency case study

of Section 3.7.1.2).
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Other specification approaches have been suggested for composing web ser-

vices, independent of compensation and transactional issues. For example,

[BCH05] proposes consistency interfaces, which define, for a method m of the

service and result o of calling that method, the methods called by m and their

associated results which lead the result o. The specification language for method

calls includes union and intersection, thus providing similar capabilities as a set

consistency specification. Consistency interfaces do not treat non-execution of

an action the same as atomic failure, and there is no compensation. This pre-

cludes the use of negation in specifications and the interpretation of satisfying

assignments as executions of the process. Our algorithm can be applied to check

processes against consistency interfaces.

Finally, temporal logic specifications, frequently used by model checking tools,

can also be used for compensating processes. While temporal logic is a more pow-

erful specification language, set consistency can already model many properties

of interest, and provides a more compact representation.

The problem of checking recursive processes against regular sets of traces is

undecidable [EM07]. Note that any program with compensation and potentially

infinite traces (e.g., due to loops or recursion) can have an infinite state space,

even when no program variables are modeled. Thus, model checkers usually

bound recursion depth and loop iterations (e.g., XTL for StAC [JLB03]). This is

less of an issue for set consistency verification, since the number of loop iterations

can be abstracted without sacrificing soundness. In addition, as discussed in the

introduction, the complexity bound for the verification of finite systems is lower

for set consistency (co-NP complete vs. PSPACE complete).
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Global Process Interactions Specifications may also focus on the messages

exchanged between processes. Such specifications can be global, tracking mes-

sages from the perspective of an omniscient viewer of the entire composition, or

local, specifying only the requirements for a single process. Conversation specifi-

cations [BFH03, FBS04a, FBS05] are an important example of the former case:

such specifications consist of an automata representing the sequence of message

sends across all the processes in a composition. Each peer in a composition can

be checked to see whether it conforms to its role in the global conversation. In

addition, temporal logic specifications can be checked against the conversation.

Web Services Analysis Tool (WSAT) [FBS04b] checks BPEL processes against

conversation specifications and was the initial inspiration for our work. WSAT

compiles processes into automata, which are then model checked using SPIN.

Our approach is local: we avoid building the product space using conversation

automata. This is also a practical requirement as the source code for all peer pro-

cesses may not be available. Finally, instead of an enumerative model checker, our

analysis reduces the reachability analysis to SAT solving. In addition to confor-

mance checks, WSAT can perform checks for synchronizability (the conversation

holds for asynchronous as well as synchronous messaging) and realizability (a

conversation which fully satisfies the specification can actually be implemented.

The BPEL standard uses WSDL to describe the interfaces of each service, which

assumes a synchronous transport (HTTP). However, vendor-specific extensions

permit the use of asynchronous transport layers, such as JMS. Thus, this is a

relevant issue for our tool. We hope to define compositional algorithms for deter-

mining synchronizability and realizability which can be used by BPELCheck.

Message Sequence Charts, although less expressive than automata, can also

be used to specify global process interactions. In [FUM03], process interactions
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are specified using Message Sequence Charts and individual processes specified

using BPEL. Both definitions are translated to automata (the BPEL translation

obviously over-approximating the actual process’s behavior) and checked against

each other.

Global specifications make it easier to check for non-local properties such as

deadlock and dependencies across multiple processes (e.g. process A sends a

request to process B, which forwards it to C, which sends a response back to

A). However, such specifications limit the ability to abstract the details of a

given process, particularly the interactions a service has with peers to complete

a request. For example, in the store scenario of Section 3.2.2, each warehouse

may need to coordinate with other services in order to ensure the delivery of a

requested product. However, this may not be of interest to the store and bank,

and ideally should be left out when verifying their conversations. In addition,

many services may be implemented locally and not have external dependencies.

In this situation, a global specification is overkill and reduces the re-usability of

a service specification.

Local Process Interactions Message exchanges can also be specified with

respect to a single process. On the practical side, Web Services Conversation

Language (WSCL) [BBB02] describes web services as a collection of conversa-

tions, where a conversation is an automata over interactions. Interactions repre-

sent message exchanges with a peer and can be either one-way, send-receive, or

receive-send. This language is very similar to our conservation automata, and we

could conceivably use WSCL instead of our chosen automata format (with the

addition of nochange/commit labels for the states).

On the more theoretical side, the interactions of a web service can be specified
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using session types [THK94, HVK98], which provide a core language for describ-

ing a sequence of interactions over a channel and a type system for checking

compatibility between the two sides of a conversation. The interaction language

includes the passing of values and channel names, which are not currently mod-

eled by our conversation automata. Compositional proof principles have been

studied for message passing programs modeled in the π-calculus and interactions

coded in CCS [CRR02, RR02]. They introduce a conformance notion that ensures

services are not stuck.

Web service contracts [CCL06, CGP08] specify the allowable iterations of a

web service using a subset of CSS (Calculus of Communicating Systems). These

contracts have a flexible subtyping relation for determining when a service satis-

fying a given contract can be used where a different contract is specified.

3.9 Recap

In this chapter, we looked into specifications for the consistency of web services,

particularly those implemented using flow composition languages. Reasoning

about the changes made by a long-running transaction can be difficult, partic-

ularly when considering asynchronous calls, non-deterministic interactions with

remote services, parallelism, and exceptions. I have introduced two new abstrac-

tions to address these issues: executions which are sets of actions that, at the

end of a transaction, have completed successfully and were not undone through

compensation, and conversations, which represent the exchange of messages be-

tween two peer services. From these abstractions, I obtained two specification

languages for web transactions: set consistency and conversational consistency.

Such specifications can capture key requirements for a service’s implementation

while being more compact (and probably easier to understand) than similar re-
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quirements expressed in temporal logics. I then created verification algorithms

for each approach, which reduce the verification problem to Boolean satisfiabil-

ity. Finally, I implemented BPELCheck, a tool which verifies conversational

consistency specifications for BPEL processes.
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CHAPTER 4

Access policy interoperability

4.1 Overview

Each application in a service-based architecture may implement its own security

framework. This usually includes authentication, where a user’s identity claim is

verified and authorization, which determines whether a user can call an individual

service. Applications may access a common service to perform authentication

(single sign-on) or use identity federation to correlate users across systems.

Relating authorization rules across systems, which I will call the access policy

integration problem, is more difficult. In particular, two problems may occur:

• In the processing of a request, a service may call other services. Even

though the user had access rights to the original service, they might not

have access to the called services, leading to indirect authorization errors.

Such errors are difficult to prevent through testing, since access rights are

usually assigned uniquely to each user.

• When confidential data is passed between services, the receiver could po-

tentially disclose that data to users and services which do not have the

necessary access rights in the source system. This may violate the intent of

the source system’s security policy.

In addressing these issues, I will focus on systems that use Role Based Ac-
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cess Control (RBAC) [FK92], is a frequently-used access control mechanism for

enterprise systems [FK92]. In RBAC, roles represent functions within a given or-

ganization; authorizations for resource access are granted to roles rather than to

individual users. Authorizations granted to a role are strictly related to the data

needed by a user in order to exercise the functions of the role. Users “play” the

roles, acquiring the privileges associated with the roles, and administrators grant

or revoke role memberships. RBAC simplifies access control administration: if a

user moves to a new function within the organization, the appropriate role mem-

berships are granted or revoked, rather than access permissions on resources. In

other words, RBAC is an abstraction over the underlying permission system.

While RBAC provides an elegant and scalable access control mechanism for

a single system, organizations frequently deploy many interacting applications,

each with its own RBAC policy, thus introducing the access policy integration

problem.

4.1.1 Existing solutions

Current industrial practice is to independently manage the access control policies

of each application. Indirect authorization errors may be resolved only when

encountered in production, and perhaps only for those users with enough visibility

to demand the attention of the IT department. Attempts to pro-actively address

such issues may lead to violations of least privilege, when administrators attempt

to fix issues by indiscriminately granting access rights. Without any systematic

analysis of the information flows between an organization’s systems, it is unlikely

that inter-application disclosure issues are addressed at all.

Recently, tools have emerged to support a global role schema which is cen-
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trally managed and enforced across an organization.1 However, it can be difficult,

or impossible, to centralize role management due to technical issues (legacy ap-

plications may not be amenable to external access controls) and organizational

issues (each application may be locally administered by different groups). The

enforcement of a centralized policy does not preclude the use of the original

application-level access enforcement mechanisms (in fact, it may be impossible

to remove an application’s original access infrastructure). Thus, local policies

must be kept synchronized with the global policy, to avoid indirect authorization

errors. Finally, external enforcement approaches are necessarily implemented at

a coarse-grained level (e.g. for entire web pages) and might not capture all the

places where an application discloses sensitive data (e.g., data included in other

pages or disclosed through integrations).

4.1.2 Global Schema Inference

To address these issues, I have developed an algorithm that computes, if possible,

a global RBAC policy from the RBAC policies of the different applications. I call

this process global schema inference. A global schema is a system-wide notion of

roles, and a mapping from local roles to (possibly multiple) global roles, such that,

with these global assignments of roles to users, there are no indirect authorization

errors (the global roles are sufficient) or information leaks (the global roles are

non-disclosing).

Global schemas are created and used as follows. Most applications manage

RBAC in a metadata-driven manner, and one can use automated tools to extract

this metadata and construct role interfaces for each application. Information flow

1Products in this space include Aveksa Role Management, Bridgestream SmartRoles (ac-
quired by Oracle in September 2007), Securent Entitlement Management (acquired by Cisco in
November 2007), and Vaau RBACx (acquired by Sun in November 2007).
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data can be obtained through static analysis techniques [SM03] or by manual an-

notation, as schema inference requires only coarse-grained inter-service flow. A

constraint-based algorithm is then used to infer, given the local role assignments

for a set of components, whether there exists a sufficient and non-disclosing global

schema that is consistent with the local roles in each component. This schema

is then used by administrators as a guide in assigning roles to end users. For

example, one might assign sets of global roles to users, based on their job func-

tion and required access rights. An automated tool would then grant the user

the associated local roles for each application. The resulting assignment thus

guarantees sufficiency and does not permit the user to access beyond the rights

implied by their global roles.

4.1.3 Chapter organization

In Section 4.2, I illustrate the access policy integration problem and global schema

inference through an example. In Sections 4.3 and 4.4, I formalize the notion of

role interfaces and present an algorithm for inferring sufficient global role schemas.

This algorithm is shown to be NP-complete and works by reducing schema in-

ference to Boolean satisfiability. Next, in Section 4.5, I augment role interfaces

to model information flow between services. I extend the global schema infer-

ence algorithm to produce global role schemas that are sufficient as well as non-

disclosing. Section 4.6 describes the implementation of a tool incorporating the

schema inference algorithm and its use on several case studies. Finally, related

research work is evaluated in Section 4.7.
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Application Service Roles
Clinical Scheduling C:Receptionist,
Management C:Nurse, C:Doctor

C:Doctor
Vitals C:Nurse, C:Doctor

CareOrders C:Doctor

Laboratory TestOrders L:Clinician,
L:Billing

TestResults L:Clinician

Patient PatientHistory P:Clinician
Records

Figure 4.1: Services used in our examples.

4.2 Example

I demonstrate these techniques on a hypothetical healthcare information system

at a medical clinic. The clinic has three applications:

• Clinical management: this application manages the scheduling of patients

and captures the actions performed by doctors and nurses.

• Laboratory information system: this application tracks the tests to be per-

formed and their results.

• Patient records: this application maintains historical data about each pa-

tient’s health.

Each system provides one or more web services, which expose a set of callable

methods and encapsulates access to the underlying data and application func-

tionality. These services are protected by Role-Based Access Control (RBAC).

A set of roles is associated with each service and with each user. To access a
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Web Portal

PatientMedData

Clinical Management

Vitals

CareOrders

Laboratory

TestOrders

TestResults

Patient Records

PatientHistory

Clinical Management

Vitals

CareOrders

Laboratory

TestOrders

TestResults

Patient Records

PatientHistory

DataSync

Process

Information flow

Information flow

Information flow

Figure 4.2: (a) Services of the web portal application. Boxes denote applications with

their own notions of roles. Inner boxes show services available for each application. Di-

rected arrows show other services that are called by a service. (b) Data synchronization

between applications. Wide arrows denote direction of information flow.

service, the set of active roles for the current user must include at least one of

the roles required by the service.

Unfortunately, each application has its own RBAC schema, so integrating

these systems requires reconciling multiple schemas. Figure 4.1 lists the services

provided by each application and the roles required for accessing these services.

We prefix application-local role names with a unique letter for each application

(C, L, or P). We call the roles defined within a given application local roles.

4.2.1 Web Portal Application

Suppose the clinic adds a new web portal which provides convenient web access

across the other three applications (Figure 4.2(a)). The application does not

store any confidential data locally. Instead, when the user requests a page, the

portal makes service calls to the other applications using the requesting user’s
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login.

Consider the PatientMedData service of the portal which permits doctors and

nurses to see the relevant medical information for a patient. Figure 4.2(a) shows

the services called by PatientMedData: the Vitals and CareOrders services of Clini-

cal Management, the TestResults service of Laboratory, and the PatientHistory ser-

vice of Patient Records. The CareOrders service, in turn, calls the TestOrders ser-

vice to retrieve details of tests that have been ordered. This service is accessible

to users with either the W : Doctor or W : Nurse roles.

Global Roles Since each application has its own notion of roles, it is difficult

to determine whether a given user will have all the access permissions needed

to retrieve the data for each page. This is the global role compatibility problem:

does there exist some global set of roles that represent sets of local roles from

the different applications that can be used to maintain consistent user to role

mappings? The global role compatibility problem takes as input the applications

and their role requirements, and produces, if possible, a set of global roles and

a mapping from each global role to a set of local roles such that the following

constraints are satisfied:

1. [Separation] No two local roles from the same application should be

mapped to the same global role. This ensures that the semantics of au-

thorization within an application is not changed by the global map. Other-

wise, administrators will be unable to independently assign the two roles to

users. Also, this restriction prevents degenerate solutions, such as assigning

all local roles from a given application to the same group.

2. [Sufficiency] For each service of the web portal application, services that

it (transitively) calls must be accessible by all of the global roles required
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by the web portal service. Thus, if a user has any one of the required roles

for the PatientMedData service, they will have a required role for each called

service. This ensures no indirect authorization failures.

3. [Ascriptions] Administrators may optionally specify sets of local roles

that must map to the same global role. This permits the representation

of semantic constraints specific to an application domain.

A global role mapping is the minimal mapping which satisfies the constraints: if

there are no calls combining two roles on separate systems, then the roles should

be mapped to two separate global roles. For example, the C : Receptionist and

L : Billing roles are unrelated to each other or any other roles through calls. Thus,

they should be mapped to unique global roles. Minimality ensures a form of least

privilege — a global role mapping should not give users any more access rights

than strictly necessary to accomplish their objectives.

Note that a given local role can map to more than one global role. This may

occur when one system has a less precise security model than the others. In our

example, the Laboratory system has only a clinician role for both doctors and

nurses, while the Clinical Management application distinguishes between doctors

and nurses. By requirement 1 above, we need to maintain two separate global

roles for doctors and nurses. If the Vitals service of Clinical Management is used in

conjunction with the TestResults service of Laboratory, we need to map Clinician

to both of these global roles.

Global Schema Inference We solve the global schema inference problem by

formulating it as a Boolean constraint satisfaction problem. Notice that require-

ment 1 constrains W : Doctor and W : Nurse to be in different global roles (Con-

straint (1)), and similarly C : Doctor and C : Nurse must be in different global
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Global Role Local Roles

G:Doctor W:Doctor, C:Doctor,
L:Clinician, P:Clinician

G:Nurse W:Nurse, C:Nurse,
L:Clinician, P:Clinician

(a)

Global Role Local Roles

G:Doctor C:Doctor, P:Clinician,
L:Clinician

G:Nurse C:Nurse, L:Clinician

(b)

Figure 4.3: Role Mappings: (a) Separation, sufficiency, and ascription constraints (b)

With information flow

roles (Constraint (2)). Since PatientMedData invokes CareOrders, the set of

global roles for PatientMedData must be included in the set of global roles for

CareOrders (Constraint (3)). To reflect the idea that doctor and nurse roles

should be common across applications, we add an ascription to force the roles

W : Doctor and C : Doctor to map to the same global role (Constraint (4)) and,

similarly, an ascription to force the roles W : Nurse and C : Nurse to the same

global role (Constraint (5)).

Surprisingly, it is not possible to find a mapping which satisfies all these

constraints. From Constraints (1) and (2), the Doctor and Nurse roles within

each service must be mapped to different global roles. Constraint (3) forces

C : Doctor to map to both W : Doctor and W : Nurse. However, this violates the

ascription constraints, as W : Nurse should be mapped to role C : Nurse. Thus,

our initial portal design does not admit global role schemas. With a tool to

infer global role schemas, we can catch such problems at design time rather when

users are assigned to roles and attempt to use the system (as common with ad

hoc approaches to access control integration).

Now consider an alternative design of the web portal where we split the Pa-

tientMedData service into two services: PatientMedDataD, which contains all the

data from the original PatientMedData, but is only accessible to the W:Doctor

role, and PatientMedDataN, which does not include data from the CareOrders ser-

vice, and is accessible to the W : Nurse role. In this case, we obtain the (global)
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role mappings from Figure 4.3(a) that maintains consistent global authorization

across applications.

4.2.2 Roles and Information Flow

We now extend the role mapping algorithm in the presence of information flow. If

one application keeps a copy of protected data from another application, it must

control access to this copied data. Otherwise, a user that does not have access

to the original application may be able to retrieve the same data through the

target application. In our example, the Patient Records application maintains

an archive of data from the Clinical Management and Laboratory applications.

Thus, Patient Records must deny access to any users which do not have access

to both the Clinical Management and Laboratory applications.

As shown in Figure 4.2(b), the Patient Records application is populated with

data in the following manner. The DataSync process periodically calls the Vi-

tals and CareOrders services to retrieve patient clinical data older than a certain

age, saves this data to the PatientHistory service, and then deletes the original

copies from Clinical Management. This DataSync process runs as a super user on

both systems, and thus does not have any issues with accessing the appropriate

services. The TestResults service periodically connects directly to PatientHistory as

a super user and saves any new test results since the last update. Finally, as with

the web portal example, the CareOrders service makes a call to the TestOrders,

but only relays the resulting data to its caller, without saving it locally. When

computing the global roles for this scenario, we enforce the same properties as

listed before. In addition, we want to ensure that the users which can access the

target service of a data synchronization are always a subset of the users which

can access the source service. To implement this, we use sets of roles as a proxy
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for sets of users and thus add a new requirement:

4. [Information Flow] Whenever data flows from one service to another, the

target service’s global roles must be a subset of the source service’s roles.

This ensures that the target service provides at least the same level of access

control for the data as its originating service. Note that information may flow

in the opposite direction as a call (e.g., the calls to Vitals and CareOrders by

DataSync).

For the data synchronization scenario, we obtain the following additional con-

straints for the doctor and nurse related roles from information flow considera-

tions:

1. From the information flow from Vitals to PatientHistory, the global roles

for P : Clinician must be a subset of the global roles for the set {

C : Nurse,C : Doctor }.

2. From the information flow from CareOrders to PatientHistory, the global

roles for P : Clinician must be a subset of the global roles for C : Doctor.

3. From the information flow from TestResults to PatientHistory, the global

roles for P : Clinician must be a subset of the global roles for L : Clinician.

If we solve these constraints to find a set of global roles, we obtain the mapping

from Figure 4.3(b). Note that this mapping shuts nurses out from accessing the

PatientHistory service (by excluding role P : Clinician) — it exposes data from

CareOrders, which is only visible to doctors. A naive mapping of roles that allows

both doctors and nurses to access PatientHistory would subvert the access controls

applied to CareOrders. This could be a serious issue, violating privacy regulations

(such as HIPAA) and opening the system to abuse.
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4.3 Semantics of Roles

I now define an interface describing an application’s services, the roles which may

access each service, and the possible outbound calls made by each service. I then

describe the runtime behavior of these interfaces using a small-step operational

semantics. This allows us to prove properties relating the static structure and

dynamic behavior of such systems.

4.3.1 Services and their Semantics

Let Names be a set of web service names and Users a set of users. A web appli-

cation A = (Roles, Services,Perm) consists of a set of roles Roles, a set of services

Services, and a user permission mapping Perm : Users → 2Roles from the (global)

set of users to subsets of roles in Roles. A (web) service S = (n,R, C,M) in

Services consists of a name n ∈ Names, a subset of roles R ⊆ Roles denoting the

required permissions to call n, a set of called service names C ⊆ Names, and a

mapping M : C → 2R from the services in C to subsets of R. We write A.Roles,

A.Services, and A.Perm to refer to the roles, services, and user maps of A, re-

spectively, and for a service S, we write S.n, S.R, S.C, and S.M to reference the

components of a service. We assume that there is exactly one service with name

n, and we write Svc.n for that service. With abuse of notation, we identify a

service S with its name S.n, and say, e.g., that a service n is in an application A.

The required roles are disjunctive — one of the roles must be satisfied to call

the service. The mapping M represents a more precise subset of the roles known

to be active when calling a service.

A system Sys consists of a set of applications, where we assume that the

services and roles of the applications are pairwise disjoint. With abuse of notation,
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we speak of a service or role in a system for a service or role in an application in

the system. Thus, we speak of a service S ∈ Sys if there is an application A ∈ Sys

such that S ∈ A.Services. We write AllRoles = ∪A∈SysA.Roles for the set of all

(local) roles in system Sys.

We say that a system Sys is well-formed if, (a) [service names are unique] for

each n ∈ Names, there is at most one service S in Sys with S.n = n, (b) [all called

services exist] for each application A ∈ Sys, each service S ∈ A.Services, and each

called service name n ∈ S.C, there exists an application A′ ∈ Sys and a service

S ′ ∈ A′.S such that S ′.n = n. We say that a system has non-redundant roles if no

two roles are assigned to the same subset of the services, formally, if there does

not exist an application A and roles r1, r2 ∈ A.Roles such that for all services

S ∈ A.S, we have r1 ∈ S.R iff r2 ∈ S.R. Well-formedness and non-redundancy

are syntactic checks, and henceforth we assume all systems have both properties.

4.3.2 Operational Semantics

A system represents the composition of several web service applications, each

with its own notion of roles and web services. Users can invoke a service in the

system. The roles determine if the user has sufficient permissions to use the

service as well as services transitively invoked by the called service. That is,

before executing a user-invoked service request, every service S first checks if the

initiator of the request (the user, or the service invoking the call) has appropriate

permissions (roles) —determined by the roles S.R— to execute the request. If

the initiator has permissions to call the service, it is executed to completion

(this might involve calls to other services), otherwise there is an authentication

failure. We formalize the runtime behavior of service invocations using service

call expressions and their operational semantics.
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e −→ e′

S ∈ Ai (S.R ∩Ai.Perm.u) 6= ∅

Call(S.n, u) −→ Eval(S.n, u)
(E-CallEval)

S ∈ Ai (S.R ∩Ai.Perm.u) = ∅

Call(S.n, u) −→ AuthFail
(E-CallFail)

S ∈ Ai c ∈ S.C (M [c] ∩Ai.Perm.u) 6= ∅

Eval(S.n, u) −→ Call(c, u)
(E-EvalCall)

S.C 6= ∅

Eval(S.n, u) −→ Eval(S.n, u); Eval(S.n, u)
(E-EvalSeq)

Eval(S.n, u) −→ Done
(E-EvalDone)

e1 −→ e′
1

e1; e2 −→ e′
1
; e2

(E-SeqRed)

Done; e2 −→ e2

(E-SeqDone)

Figure 4.4: Operational semantics for service calls

Service call expressions are generated by the following grammar:

e ::= Call(n, u) | Eval(n, u) | Done | AuthFail | e; e

A Call expression represents a service call before being checked for permissions; an

Eval expression represents the evaluation of a service, the symbol Done represents

the successful completion of a service call; the symbol AuthFail represents early

termination of a service call due to an authentication failure. The sequential

composition of two expressions is represented by e1; e2. The variable n ranges

over service names and u ranges over users. For clarity, we omit other control

structures from this core language, they do not introduce additional conceptual

difficulties.

Figure 4.4 defines the small step operational semantics of service calls, for-

malized by a binary relation −→ on service call expressions.

Evaluation starts with a single Call expression. Rules E-CallEval and E-
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CallFail represent the checking of the user’s roles against those required for

the service. If the check is successful, the call steps to the evaluation of the ser-

vice. Otherwise, evaluation stops with the AuthFail symbol. An Eval expression

may step to a service call (rule E-EvalCall), successful termination of the sub-

computation (rule E-EvalDone), or a sequence of two Eval expressions (rule

E-EvalSeq). Duplication of Eval expressions captures the nondeterministic na-

ture of services: a service can call any service in its call set zero or more times.

In addition, a service call is not guaranteed to terminate. The E-SeqRed and

E-SeqDone rules permit reduction of expression sequences by evaluating the

first expression in the sequence.

We write −→∗ for the reflexive transitive closure of the −→ relation. A direct

service invocation is an expression of the form Call(n, u) representing the direct

call of a service by a user.

Proposition 1 (Evaluation). Let Sys be a well-formed system, n ∈ Names a

service in Sys, and u ∈ Users a user. Then, the evaluation via −→∗ of the call

Call(n, u) either diverges or eventually terminates with Done or AuthFail.

4.3.3 Accessibility and Sufficiency

Let Sys be a system, n ∈ Names a service in Sys, and u ∈ Users a user. The

call Call(n, u) is accepted by Sys if there is a service S ∈ Sys with S.n = n

and S.R ∩ Ai.Perm.u 6= ∅. Otherwise Call(n, u) is rejected. Intuitively, a call to

service n by user u is accepted if the user has at least one of the roles required

to execute the service named n. In this case, the call evaluates in one step (by

rule E-CallEval) to Eval(n, u).

For a system Sys, the function rolesOf : Users → 2AllRoles maps each user u

to the set of roles available to u, that is, rolesOf.u = ∪A∈SysA.Perm.u. A set of
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services Services is accessible to a set of roles R if for each service S ∈ Services,

there exists an r ∈ R such that r ∈ S.R. Similarly, a set of services Services is

accessible to a user u ∈ Users if Services is accessible to rolesOf .u. In this case,

all calls by u to any service in Services will be accepted; however, transitive calls

made by these services may cause authentication failures.

We wish to ensure that if a call is accepted by a system, no further autho-

rization errors can occur. This is provided by the stronger notion of sufficiency.

We say that a set of roles R is sufficient if, for every user u with rolesOf.u = R

and service S accessible to R, there is no trajectory Call(S.n, u) −→∗ AuthFail. A

system is sufficient if for all users u ∈ Users, we have that rolesOf.u is sufficient.

4.3.4 Role Compatibility

For systems with a single application, sufficiency can be checked by a dataflow

analysis [PFF07]. In general though, each application in a system comes with its

own notion of local roles, and a call in application A1 to service S in application

A2 only provides information about roles in A1 held at the call point, not the

roles in application A2. Thus, in order to check sufficiency, we must somehow

“convert” the local roles in each application to a global set of roles. We introduce

global role schemas to do this.

Global Role Schema Let Sys be a system. A global role schema Grs = (R, G)

consists of a set R of global role names and a mapping G : R 7→ 2AllRoles that

maps global role names to sets of local roles in the system Sys. This schema

guides role assignments for individual users: if a user is assigned to a global role

g ∈ R, then that user must also be assigned all local roles in the set G.g.

We can also take an existing set of user assignments and see whether it
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corresponds to our global role schema. We say that the assignment of roles

{A.Perm | A ∈ Sys} conforms to a global role schema Grs if there exists a user to

global role assignment Perm : Users→ 2R such that for all users u

⋃

g∈Perm.u

G.g = rolesOf.u

That is, there is a mapping of users to global roles such that the set of local roles

designated by the global role schema to each user u is exactly the set of local

roles rolesOf.u assigned to the user.

Sufficiency A global role schema Grs is fully sufficient if, for each global role

g ∈ R, the set of local roles G.g is sufficient. Given a user-role assignment that

conforms to a fully sufficient role schema, any service call by an arbitrary user

will either be rejected or execute without authentication failure.

Separation A global role schema Grs = (R, G) has role separation if no two

roles from the same application map to the same global role, that is, for all g ∈ R

and A ∈ Sys, we have |G.g ∩ A.Roles| ≤ 1.

Role separation ensures that the roles of each application can be assigned to

users independently. If multiple roles of an application appear in the same global

role, these roles are effectively combined, potentially violating the intent of the

original roles (e.g., allowing users access to data they should not see).

Minimality Minimality encodes the requirement that a global role schema

should not grant access to more services than necessary to ensure sufficiency.

A set of local roles R is minimal if it is sufficient and there exists an l ∈ R such

that any subset of R containing l is not sufficient. We extend minimality to
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global role schemas as follows: a global role schema is minimal if there exists an

injective mapping µ : R → AllRoles from global roles to local roles AllRoles such

that (a) for all g ∈ R we have µ.g ∈ G.g, and (b) any subset of G.g containing

µ.g is not sufficient. These conditions ensure that each global role g has unique

local role which requires the local role set G.g for sufficiency. Note that there

may be more than one minimal global role schema.

4.3.5 Global Schema Inference

The global schema inference problem (GSI) takes as an input a system Sys and

asks if there is a minimal global schema Grs which has separation and is fully

sufficient.

Theorem 15. GSI is NP-complete.

Proof (outline). Given a global schema and a witness for minimality, one can

check the properties in polynomial time. The hardness is by a reduction from one-

in-three 3SAT. One-in-three 3SAT is a variant of 3SAT which determines whether,

for a list of three-literal causes, there exists an assignment to the referenced

boolean variables such that every clause contains exactly one true literal.

Given an instance of one-in-three 3SAT with N clauses, we first create an

application AL which defines a special local role L and contains a single service

SL that is accessible to role L. For each distinct boolean variable v, we create an

application Av with local roles v+ and v−, corresponding to the literals v and ¬v,

respectively. Each of these applications contains three services: S+
v , accessible to

role v+, S−
v , accessible to role v−, and Sv, accessible to both roles. Service Sv is

called by service SL. These calls represent the constraint that each variable is

either true or false.
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For each clause i, we also define an application Ai with three local roles and

four services. The local roles are created using the following naming convention:

• If the clause i contains the positive literal v, we define a local role v+
i .

• If the clause i contains the negative literal ¬v, we define a local role v−i .

The first service is named Si, is accessible to all three local roles, and is called by

the service SL. These calls represent the constraint that only one literal is true

in each clause. The other three services correspond to the local roles as follows:

• If the local role v+
i is defined, then a service S+

vi
is created and protected by

this local role.

• If the local role v−i is defined, then a service S−
vi

is created and protected by

this local role.

Finally, each service S+
v calls any services S+

vi
defined above and each service S−

v

calls any services S−
vi

above.

If we solve the global role schema for a group containing global role L, we

obtain a set of local roles that includes one of v+ or v− for each boolean variable

v in the original one-in-three 3SAT problem. If we assign true to those variables

for which role v+ is in the group and false to those variables for which role v−

is in the group, we obtain a solution to the one-in-three 3SAT problem. If no

global role schema is found, then no solution exists to the satisfiability problem

either.
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4.4 Constraint-Based Inference

We solve the global schema inference problem through Boolean constraint solving.

First, notice that, due to our minimality requirement, the number of global roles

is at most the total number of roles in AllRoles. Although each local role can be

in one or more global roles, each global role must be sufficient for at least one

local role. If the number of global roles is larger than the number of local roles

AllRoles, then global roles can be eliminated while still ensuring a sufficient global

role for each local role.

We generate a set of global roles that include a local role in the following way.

Fix a global role g. For each local role r ∈ AllRoles, we define an atomic predicate

rg which is true if the role r is included in the global role g and false otherwise.

The predicates rg satisfy the following constraints.

1. [Separation Constraints] No two local roles from the same application

should be mapped to the same global role. That is, for each A ∈ Sys,

at most one local role r ∈ A.Roles can be in g. Thus, for each application

A ∈ Sys, we have (considering each rg to be a 0-1 variable)
∑

r∈A.Roles r
g ≤ 1,

or equivalently,
∧

A∈Sys

∧

r1,r2∈A.Roles,r1 6=r2

(¬rg
1 ∨ ¬r

g
2)

2. [Sufficiency Constraints] The sufficiency constraints dictate that for each

service S and each service c ∈ S.C called from S, if one of the roles in S.M.c

is mapped to the global roles g, then one of the roles in Svc.c.R must also

be mapped to g. That is,

∧

A∈Sys

∧

S∈A.Services

(
∨

r∈S.M.c

rg)→ (
∨

r̂∈Svc.c.R

r̂g) (4.1)
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Algorithm 1 solve full and minimize
function solve full
input System Sys

R← {r | r ∈ A,A ∈ Sys}
φSys ← constraint pred(Sys)
G← Map.empty
while R 6= ∅ do

r ← choose(R) {Pick a role to solve}
g ← makename(r) {Name the group
for r}
Rg ← SAT(φSys ∧ rg)
if Rg 6= ∅ then

G.g ← minimize(Sys,Rg, {r})
R← R \G.g

else

return no solution

end if

end while

return G

function minimize
inputs System Sys, Role group Rg,

Required Roles Rreq

Rmin ←Rreq

Rnew ←Rreq

Smin ← accessible(Rg)
repeat

Snew = callable(Rnew) \ Smin

Rnew = roles for(Snew,Rg)
Rmin = Rmin ∪Rnew

Smin = Smin ∪ Snew

until Rnew = ∅
return Rmin

Let φSys be the conjunction of the constraints from Equation 1 and Equation 4.1.

Clearly, φSys is polynomial in the size of Sys. A satisfying assignment for φ is a

function mapping each rg to true or false such that φ evaluates to true.

Theorem 16. Let ρ be a satisfying assignment to φSys. Then the set of roles

{r | ρ.rg = true} is a global role which is fully sufficient and has role separation.

Given the constraints, we can find a global group containing local role r by

conjoining φSys with rg. To construct a global role schema G, we iterate through

the set of local roles AllRoles, finding a global role group for each local role. This

is done in Algorithm solve full.

The function SAT(φ) returns a set of local roles which are assigned true in a

satisfying assignment for the constraint φ. The resulting set of roles is then passed

to minimize (described below), which removes any local roles not required for full

sufficiency, while keeping r in the group. The roles from the resulting minimized
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group are then removed from the workset R, and another role is selected for

solving. When R is empty, all the necessary global groups has been created.

If there is no satisfying assignment to φSys∧r
g, where r is one of the local roles

in R, then SAT(φSys ∧ r
g) will return ∅ and solve full will stop with no solution.

The minimize function is called with the role group Rg, computed from the

boolean constraints in solve full, and Rreq, a subset of Rg roles which must be

present in the final minimized group Rmin. Three sets are maintained: Rmin is

the minimized group, initialized to Rreq, Rnew contains the roles added by the

previous iteration, initialized to Rg, and Smin contains the services accessible,

given the set of roles Rmin. For each iteration, the services directly callable from

Snew (the services added the previous iteration) are added to Smin. Then, any

roles needed to makes these callable services accessible are added to Rmin. These

roles are selected from the role group Rg by taking the intersection between

Rg and each service’s role set. At the fixpoint, Rg is both fully sufficient and

minimal.

Theorem 17. If solve full returns a global role schema G for Sys, then G has

role separation, is fully sufficient, is minimal with respect to the role signatures of

Sys, and each local role appears in at least one global role. If solve full terminates

with no solution for Sys, then no such global role schema exists for Sys.

Solving ascribed roles The administrator can specify a subset R′ of local

roles such that there must be a global role g with R′ ⊆ G.g. The above algorithm

does not address these role ascriptions. To extend solve full for ascribed roles, we

define the following constraints.

• [Ascription Constraints] For each ascription {r1, . . . , rk}, we have rg
1 ↔

rg
2 ↔ . . .↔ rg

k.
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Figure 4.5: Example requiring relaxed sufficiency

We first solve for each of the ascribed roles, conjoining the associated ascrip-

tion constraint with φSys. minimize is called for ascribed groups with Rreq =

{r1, . . . , rk}, keeping the ascribed roles in the minimized group. After solutions

are found for each ascribed group, we then solve for the remaining roles without

any ascription constraints.

Note that we permit ascribed groups to be extended as needed to achieve

sufficiency. Due to minimize, we will not unnecessarily add roles. If all local roles

are ascribed, then the problem is reduced to global schema checking, rather than

global schema inference.

4.4.1 Relaxing Full Sufficiency

Requiring that G.g is sufficient for each global role g may be too strict for some

situations. For example, consider the system of Figure 4.5, which has two appli-
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cations, app1 and app2. app1 has services S1 and S4, S1 requires the role ra, and

S4 the role rc. app2 has services S2 and S3, both require the role rb. S1 calls S2,

and S3 calls S4. There is no fully sufficient global role schema with separation for

this system. Since S1 calls S2, a global role containing role ra must also contain

role rb. However, if a user has role rb, then service S3 is accessible. Since S3 calls

S4, which requires role rc, the global role must also contain rc. But this violates

separation.

In many situations, we only require a relaxed version of sufficiency. For exam-

ple, in a “bottom-up” approach to role assignment, the systems are administered

based on local roles and global roles are used to ensure interoperability. Each

local role has an associated global role containing any remote roles needed to

avoid indirect authorization errors. When a user needs access to a system, the

administrator picks a local role for that system and then assigns to the user all

the roles included in the associated global group. We model this scenario using

subset sufficiency.

We say that global role g is subset sufficient for local role set Rs if Rs ⊆ G.g

and Rs is sufficient. In this case, users requiring local roles in Rs can be assigned

group g. With this role assignment, all direct calls to services accessible to Rs

will not have authorization errors. Of course, any direct call to a service not

accessible to Rs (but accessible to G.g) is not guaranteed to execute without

authentication failure. Thus, instead of looking for fully sufficient solutions, we

can look for global role schema such that for each user u, there is some set of

global roles that is subset sufficient for rolesOf .u. Using subset sufficiency, and

assuming the role sets {ra}, {rb}, and {rc} for users, the above system has the

solution: G1 = {ra, rb} (subset sufficient for {ra}), G2 = {rb, rc} (subset sufficient

for {rb}), and G3 = {rc} (subset sufficient for {rc}).
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We adjust our definition of minimality to account for subset sufficiency. A

set of local roles R is subset minimal if it is subset sufficient for a Rs ⊆ R and

any subset R′ ⊂ R where Rs ⊆ R′ is not subset sufficient for Rs. We extend

this definition to global role schemas as follows: a global role schema is subset

minimal if there exists an injective mapping µ : R → AllRoles from global roles

to local roles AllRoles such that (a) for all g ∈ R we have µ.g ∈ G.g, and (b) any

R′ such that µ.g ∈ R′ and R′ ⊂ G.g is not subset sufficient for {µ.g}.

To infer a global role schema that only has subset sufficiency, we must adjust

the boolean constraint φSys. For each service S in the system, we introduce

an atomic predicate Sg which is true if S is transitively callable from a service

accessible from a group’s required roles. The sufficiency constraints are modified

in the following way:

2’ [Subset Sufficiency Constraints] For each called service c in the signa-

ture of a service s, we add:

(Sg ∧
∨

r∈S.M.c

rg)→ c

Additionally, to ensure that callable services are accessible, for each service

S, we add Sg →
∨

r∈S.R r
g.

To find a group for a specific role r, we call SAT with φSys ∧ r ∧
∧

S|r∈S.R S
g. We

then minimize the result, using a modified version of minimize, which only adds

those services callable from the services added in the previous iteration, rather

than all services accessible to the newly added roles.
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e −→ e′

S ∈ Ai (S.R ∩ Ai.Perm.u) 6= ∅

Call(S.n, u) −→ Eval(S.n, u)
(E-CallEval) S ∈ Ai (S.R ∩ Ai.Perm.u) = ∅

Call(S.n, u) −→ AuthFail
(E-CallFail)

(c, n) 6∈ S.I (n, c) 6∈ S.I S ∈ Ai c ∈ S.C S.M[c] ∩ Ai.Perm.u 6= ∅

Eval(S.n, u) −→ Call(c, u)
(E-EvalCall)

(S.n, c) ∈ S.I S ∈ Ai c ∈ S.C S.M[c] ∩ Ai.Perm.u 6= ∅

Eval(S.n, u) −→ Send(c, u, Data S.n)
(E-EvalSend)

S ∈ Ai

n1 ∈ S.C M[n1] ∩ Ai.Perm.u 6= ∅ n2 ∈ S.C M[n2] ∩ Ai.Perm.u 6= ∅ (n1, n2) ∈ S.I

Eval(S.n, u) −→ Send(n2, u, Request(n1, u))
(E-EvalMove)

(c, S.n) ∈ S.I S ∈ Ai c ∈ S.C S.M[c] ∩ Ai.Perm.u 6= ∅

Eval(S.n, u) −→ Save(S.n, Request(c, u))
(E-EvalSave)

S.C 6= ∅

Eval(S.n, u) −→ Eval(S.n, u); Eval(S.n, u)
(E-EvalSeq)

Eval(S.n, u) −→ Done
(E-EvalDone)

e1 −→ e
′

1

e1; e2 −→ e
′

1
; e2

(E-SeqRed)
Done; e2 −→ e2

(E-SeqDone)

Figure 4.6: Semantics for service calls with information flow (part 1)

4.5 Services with Information Flow

We now extend our results to services and systems where we model flow of sen-

sitive data between applications. We must now ensure that information that can

only be accessed under some role constraints is not “disclosed” to applications

that do not hold the required roles.

To model information flow, we extend the services to include a directed in-

formation flow graph. Thus, a service is now a 5-tuple (n,R, C,M, I), where

(n,R, C,M) are as before, and I ⊆ (C ∪ {n,Callerin}) × (C ∪ {n,Callerout}) is

a set of pairs of service names (or the special symbols Callerin and Callerout de-

noting the entry and exit points respectively of a caller of the service). A pair

(n1, n2) ∈ I represents an information flow from n1 to n2, which may occur when

the service is called, and self-links of the form (c, c) are not permitted. The

information flow graph models two forms of information flow: synchronization,

where data from one service is saved in another service, and disclosure, where
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e −→ e′

S ∈ Ai (S.R ∩ Ai.Perm.u) 6= ∅

Send(S.n, u, Data ns) −→ Recv(S.n, u, ns)
(E-SendRecv) S ∈ Ai (S.R ∩ Ai.Perm.u) = ∅

Send(S.n, u, Data ns) −→ AuthFail
(E-SendFail)

Send(S.n, u, NoData) −→ Done
(E-SendNoData) e −→ e

′

Send(S.n, u, e) −→ Send(S.n, u, e
′
)
(E-SendRed)

(Callerin, c) ∈ S.I c ∈ S.C

Recv(S.n, u, ns) −→ Send(c, u, Data ns)
(E-RecvSend)

(Callerin, S.n) ∈ S.I

Recv(S.n, u, ns) −→ Save(S.n, Data ns)
(E-RecvSave)

Recv(S.n, u, ns) −→ Eval(S.n, u)
(E-RecvEval)

Recv(S.n, u, ns) −→ Recv(S.n, u, ns); Recv(S.n, u, ns)
(E-RecvSeq)

(S.n, Callerout) ∈ S.I S ∈ Ai (S.R ∩ Ai.Perm.u) 6= ∅

Request(S.n, u) −→ Eval(S.n, u); Reply(S.n, Data S.n)
(E-ReqData)

S ∈ Ai (S.R ∩ Ai.Perm.u) = ∅

Request(S.n, u) −→ AuthFail
(E-ReqFail)

(n, Callerout) ∈ S.I S ∈ Ai (S.R ∩ Ai.Perm.u) 6= ∅

Request(S.n, u) −→ Eval(S.n, u); Reply(S.n, Request(n, u))
(E-ReqReq)

6 ∃n ∈ {S.n} ∪ S.C . (n, Callerout) ∈ S.I S ∈ Ai (S.R ∩ Ai.Perm.u) 6= ∅

Request(S.n, u) −→ NoData
(E-ReqNoData)

e → e
′

Save(nd, e) −→ Save(nd, e
′
)
(E-SaveRed)

Save(nd, Data ns)
ns⊲⊳nd−→ Done

(E-SaveDone)

Save(nd, NoData) −→ Done
(E-SaveNoData)

Reply(nd, Data ns)
ns�nd−−−−−−→ Data ns

(E-ReplyDisc)

Reply(nd, NoData) −→ NoData
(E-ReplyNoData) e −→ e

′

Reply(nd, e) −→ Reply(nd, e
′
)
(E-ReplyRed)

Figure 4.7: Semantics for service calls with information flow (part 2)

data from a service is made available to callers of a (potentially different) service.

Given a service S and callee c ∈ S.C, the callee-to-self link (c, S.n), represents a

synchronization of data from service c to S. The callee-to-caller link (c,Callerout)

represents a disclosure of data from c by S.

Synchronization and disclosure are distinguished from benign non-disclosing

transfers, where a service moves data between two other services without sav-

ing or disclosing it. Callee-to-callee and caller-to-callee links, where there is no

additional link from the source to the current service or its caller, are all non-

disclosing. For example, if the information flow graph for service S contains

(c1, c2) ∈ S.I, where c1, c2 ∈ S.C, and there are no links from c1 or c2 to S.n in
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S.I, then S facilitates an information flow from c1 to c2 without disclosure.

4.5.1 Operational semantics

To extend the dynamic semantics of services to include information flow effects,

we extend the grammar of expressions as follows:

e ::= . . . | Send(n, u, e) | Recv(nd, u, ns) | Request(n, u)

| Reply(n, e) | Save(nd, ns) | Data n | NoData

where n, ns, and nd range over service names and u ranges over users. The

source of an information flow is represented by an expression of the form Data n

where n is the name of the originating service. This expression may be passed

between services until a call to Save is made, creating a synchronization, or a call

to Reply is made, creating a disclosure.

Figures 4.6 and 4.7 list the inference rules which define our operational se-

mantics with information flow. Each step of the −→ relation may now include an

optional information flow effect, which is written above the arrow, if present. We

write e
ns⊲⊳nd−−−−→ e′ to indicate that the expression e steps to expression e′ and as a

side-effect, data from service ns is saved in service nd. We write e
ns�nd−−−→ e′ to in-

dicate that expression e steps to expression e′ and service nd discloses information

from service ns.

A service invocation may take the form of an Call, Send, or Request expression.

As before, Call does not assume any information flow between the caller and

callee. A Send expression represents the flow of information from the caller to

the callee. The source of the flow is represented by the third parameter of the

Send, which is an expression that should eventually step to a Data expression
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(by rule E-SendRed). For direct user invocations of Send, we use the current

service’s name as the data source (e.g. Send(n, u, n)). A Request expression

represents an information flow from the callee to the caller. This expression

should eventually step to a Data expression. In the event that the callee does not

have a corresponding information flow to its caller, a special NoData expression

is returned instead (rule E-ReqNoData).

Invocations of Call, Send, and Request all require an authorization check before

evaluation of the service is performed. If these checks fail, evaluation stops with

AuthFail (rules E-CallFail, E-SendFail, and E-ReqFail).

If authorization is successful, Call steps to Eval (rule E-CallEval). An

Eval expression may step immediately to Done (rule E-EvalDone), duplicate it-

self (rule E-EvalSeq), or call other services (rules E-EvalCall, E-EvalSend,

E-EvalMove, and E-EvalSave). The form of service invocation depends on

the information flow graph and whether a given call is permitted for the user

(based on the callee map M). If more than one invocation is possible, then one

is chosen nondeterministically.

A Send expression steps to Recv upon successful authorization (rule E-

SendRecv). A Recv expression may step immediately to Done (rule E-

RecvDone), duplicate itself (rule E-RecvSeq), or step to Eval (rule E-

RecvEval). If the information graph contains a caller-to-callee link, then the

Recv may step to a Save of the incoming data (rule E-RecvSave). If the infor-

mation graph contains a caller-to-callee link, then the Recv may step to a Send of

the incoming data to the associated callee (rule E-RecvSend).

If a Send occurs within a service invocation, the associated data source ex-

pression is first reduced (rule E-SendRed). If this steps to a NoData expres-

sion, the Send steps directly to Done without invoking the target service (rule
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E-SendNoData).

A Request expression, upon successful authorization, steps to an Eval followed

by a Reply (rules E-ReqData and E-ReqReq), assuming the service has an

information flow link terminating at the caller. If no such link is present, the

Request steps to NoData (rule E-ReqNoData).

Information flow effects are represented using the Save and Reply expressions.

First, the data source parameter must be reduced to a Data expression by rules

E-SaveRed and E-ReplyRed. Then, Save reduces to Done and Reply reduces

to Data, emitting an information flow effect — either a synchronization from the

data source to the current service (Save, via rule E-SaveDone) or a disclosure of

the data source by the current service (Reply, via rule E-ReplyDisc). If the data

source expression reduces to NoData, then the enclosing Save or Reply reduces

with no information flow effect (rules E-SaveNoData and E-ReplyNoData).

We write −→∗ to represent the transitive closure of the −→ relation. A

direct service invocation is an expression of the forms Call(n, u), Send(n, u, n), or

Request(N, u) representing the direct call of a service by a user.

Proposition 2 (Evaluation). Let Sys be a well-formed system, n a service in

Sys, and u ∈ Users a user. The evaluation via −→∗ of a direct service invo-

cation of the forms Call(n, u) or Send(n, u,Data n) either diverges or eventually

terminates with Done or AuthFail. The evaluation via −→∗ of a direct service in-

vocation Request(n, u) either diverges or terminates with Done, AuthFail, Data n,

or NoData.
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4.5.2 Sufficiency

We now extend our definition of sufficiency to include Send and Request service

invocations. We say that a direct service invocation Call(n, u), Send(n, u,Data n),

or Request(n, u) is accepted if Svc.n ∈ Ai for some Ai ∈ Sys and Svc.n.R ∩

Ai.Perm.u 6= ∅, i.e., if it does not evaluate in one step to AuthFail.

We say that a set of roles R is sufficient for Sys if, for every user u with

rolesOf.u = R, any direct service invocation in Sys by user u that is accepted

does not evaluate, via −→, to AuthFail.

4.5.3 Non-disclosing Global Schema

Informally, we say that a global role schema Grs is non-disclosing for a conforming

user assignment, if it does not permit the disclosure to a user u ∈ Users of

data originating at a service S for which the user does not have access. This

is the requirement that a user cannot subvert access control rules by exploiting

information flow between services. To state this precisely with respect to our

operational semantics, we define the following predicates (where n, n′ ∈ Names

are service names and u ∈ Users is a user). The predicate Disclose(n, n′) is

true if there exists a direct service invocation which, when evaluated via −→∗,

emits the information flow disclosure n�n′. The predicate Sync(n, n′, u) is true

if there exists a direct service invocation which, when evaluated via −→∗, emits

the information flow synchronization n⊲⊳n′. Finally, Flow is the reflexive and

transitive closure of the union of Disclose and Sync: Flow = (Disclose ∪ Sync)∗. If

Flow(n, n′), then there exists a sequence of direct service invocations which will

result in the disclosure of data from n at service n′.

A global role schema Grs is non-disclosing if there does not exist services S
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and S ′, a global role g, and a user u with rolesOf .u = G.g such that (a) role g

does not have access to service S: G.g ∩ S.R = ∅, (b) role g has access to service

S ′: G.g ∩ S ′.R 6= ∅, and (c) Flow(S.n, S ′.n) is true.

A global information flow (GIF) graph Ig for a system Sys is a directed graph

constructed from the local information flow graph of each service. For each

service S, the GIF graph has the set of nodes S.C ∪ {S.n, S.Callerin, S.Callerout},

consisting of a node for each service called by S, a node S.n for the service S

itself. The set of all nodes in Ig is the disjoint union of the set of nodes for each

service. To distinguish a node v from service S, we write S.v. For a service S, we

create an edge (S.v1, S.v2) if (v1, v2) ∈ S.I. For different services S and S ′ (with

names n and n′), we create the following additional edges:

• S sends to S ′: there is a link (S.n, S ′.Callerin) if (n, n′) ∈ S.I (service S

sends data to S ′) and (Callerin, v
′) ∈ S ′.I for some v′.

• S ′ requests from S: there is a link (S.Callerout, S
′.v) if (n, v) ∈ S ′.I and

there is a v′ with (v′,Callerout) ∈ S.I.

We can now define a static version of (dynamic) information flow, based on the

global information flow graph: StatFlow(S.v, S ′.v′) is true if there exists a path

in Ig from S.v to S ′.Callerout. This function is an over-approximation of Flow:

Flow(n, n′) implies StatFlow(n, n′), but it is possible to have a path in the global

information flow graph that is not feasible due to authorization errors. However,

there is no loss in precision if the role schema is sufficient.

Theorem 18. [Disclosure] Given a sufficient global schema Grs for system Sys,

for any two services S and S ′ in Sys, Flow(S.n, S ′.n) iff StatFlow(S.n, S ′.n).

To compute global role schemas that are non-disclosing, we conjoin additional

constraints with φSys to ensure only permitted information flow. For each pair of
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services S, S ′ such that StatFlow(S.n, S ′.n) is true, we add the constraint:

(
∨

r∈S.R

rg)→ (
∨

r̂∈S′.R

r̂g).

We now modify the function constraint pred, called from solve full in algorithm

1, to include these extra information flow constraints. The resulting version of

solve full will infer non-disclosing global role schemas.

Theorem 19. If the modified solve full returns a global role schema Grs for

Sys, then Grs has role separation, is non-disclosing, is fully sufficient, and is

minimal with respect to the role signatures of Sys. If solve full terminates with

no solution for Sys, then no such global role schema exists for Sys.
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System Num Num Num Max Time
svcs calls grps pred (ms)

portal1 8 5 N/A 96 4
portal2 9 8 5 92 5
data sync 8 5 6 69 5
it mgt 7 6 5 94 5

Table 4.1: Performance results for RoleMatcher

4.6 Experiences

To evaluate our approach, I have implemented RoleMatcher, a tool to infer

global role schemas, and applied it to two case studies, one which models an

industrial problem and a second which involves extracting role metadata from an

electronic medical records application. RoleMatcher takes as input a textual

representation of the Sys definition described in Section 4.3. It produces a global

role schema via Algorithm 1, using the MiniSat [ES03] satisfiability solver to re-

solve the boolean constraints. Both fully sufficient and subset sufficient solutions

may be obtained.

Table 4.1 summarizes the results of running our tool on several small exam-

ples, using a Dell PowerEdge 1800 with two 3.6Ghz Xeon processors and 5 GB of

memory. The “Num svcs” and “Num calls” columns represent the total number

of services in the system description and the total number of service calls, respec-

tively. “Num grps” lists the number of groups in the inferred schema (or N/A if

no solution was possible). “Max pred” is the size of the largest predicate passed

to the solver and “Time” the elapsed time in milliseconds. portal1 and portal2

correspond to the clinic web portal of Figure 4.2(a), data sync corresponds to the

data synchronization example of Figure 4.2(b), and it mgt represents the case

study described below. Since the problem is NP-complete, the use of an expo-

nential procedure is inevitable. Even though the algorithm involves SAT solving,
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Figure 4.8: A role integration scenario

this has not been a bottleneck. This is because the constraints are a combina-

tion of 2-literal clauses (for separation) and Horn clauses (for sufficiency), and

Boolean constraint propagation and unit resolution heuristics in a modern SAT

solver are particularly tuned for these types of clauses.

4.6.1 Case Study: IT Management Applications

In my first case study, I considered a real-world scenario described to me by

an industrial colleague. An IT management applications company had several

independently-developed products from companies it had acquired. The company

wished to integrate these applications (including their security models) in order

for customers to use them as an end-to-end solution to their IT management

needs.

Figure 4.8 shows a (simplified) view of how two such applications might in-

teract. The IT System Management (ITSM) application includes modules for

incident, problem, and change management, as well as a database to track a

company’s hardware and software assets. The Patch Management application

gathers an inventory of the patches currently installed on the company’s comput-
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ers and manages the application of new patches. The integrations between these

systems are straightforward: the patch inventory data should be included in the

ITSM asset database (the arrow from Discovery Data to Asset Management) and

the application of patches should be controlled via the ITSM change management

module. (the arrow from Change Management to Apply Patch).

Both systems use role-based access control, but with very different role mod-

els. The Patch Management application has a very simple model with three fixed

roles: User, PowerUser, and Admin. The ITSM application allows system admin-

istrators at the customer to define their own roles and mappings to data/service

access permissions. The roles shown in Figure 4.8 for the ITSM application are

only representative of a typical customer configuration. Thus, it is not feasible

for the application vendor to ship a fixed role mapping. A better solution is to

build a tool to extract role interfaces from the ITSM system’s role metadata and

infer a global role schema as a part of application deployment and configuration.

The role schema for a simple system definition, like the one in Figure 4.8, can

be computed by hand. A quick inspection shows that the Asset and Change ITSM

roles should be mapped to either the Admin or PowerUser patch management

roles. However, a real system is more complicated. Customers can add new

integration points between the two applications (e.g. the dotted line from Asset

Management to Discovery Reports). Also, the asset database is likely to contain

data from several discovery applications. Thus, I believe that such customers

would benefit from the use of a global role inference tool.

4.6.2 Case Study: OpenMRS

In my second case study, I examined the issues involved in applying global schema

inference to an open source application. OpenMRS [OPE] is a open source elec-
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tronic medical records system created to support medical providers in the de-

veloping world. Implemented in Java, it provides a metadata-driven, role-based

access control model, which is configurable through administration screens.

OpenMRS RBAC implementation The runtime configuration of Open-

MRS access control policies is achieved by adding a layer of indirection, called

Privileges, between roles and the objects to be protected by the access control

infrastructure. To protect an object, checks for privileges must be inserted by the

programmer into the relevant method calls (this is done using an Aspect-Oriented

Programming framework). By convention, privileges are created for each combi-

nation of object type (e.g. patient, observation, order, etc.) and access operation

(add, view, edit, and delete). Example privileges include Add Patients, View En-

counters, and Edit Orders. The application database is then seeded with the list

of privileges created by the Java programmers. From an administration screen,

one can then create new roles and assign privileges to roles. Roles are arranged in

a hierarchy (changeable by the administrator), with child roles inheriting all the

privileges of their parents. Finally, when a new user is created, they are assigned

a set of roles. This grants the user any privileges associated with their roles.

By default, OpenMRS comes configured with the following roles:

• Anonymous — this role represents an unauthenticated user and only has

one privilege, to access the navigation and login screen.

• Authenticated — this role represents a user which has authenticated. How-

ever, it is not, by default, configured with any privileges.

• Provider — a provider has read-only access to the patient dashboard, en-

counters (a record of a patient visit), observations (notes from the doctor,

test results), and orders (directions from the doctor).
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• System Developer — developers have full access to the entire system. This

role bypasses the usual privilege checks.

Note that, by default, OpenMRS does not contain a role to create and edit

patient data. It is expected that each installation will define a customized role

schema to implement access control policies for users who can create and edit

patient data.2

Experiment configuration OpenMRS can receive patients, encounters, ob-

servations, and orders via HL7 messages [HL7], a standard format for medical

record data. However, it does not come with any pre-configured integrations. To

evaluate RoleMatcher with OpenMRS, I considered a simple system involving

two instances of OpenMRS: Main hospital, a master system, and Satellite clinic,

a slave system. Patient data originates at the main hospital and is sent to the

satellite clinic via HL7. When patients are seen at the satellite clinic, new en-

counter, observation and order records are created, which are then uploaded to

the main hospital system.

To support this scenario, I configured additional roles for both systems. For

the main hospital, I created three new roles: Doctor, Patient Admissions, and

System Administrator. The Doctor role has read/write privileges on patients, en-

counters, observations, and orders. The Patient Admissions role can read/write

patients and encounters, but not observations or orders. The System Administra-

tor role has all privileges and is for system administrators. For the satellite clinic,

I created two new roles: Provider2 and all. The Provider2 role inherits from the

default Provider role and adds the privileges to create and edit encounter, obser-

vation, and order records. Users with the Provider2 role cannot create or edit

2New records can also be entered via offline forms (created using Microsoft’s InfoPath),
which are uploaded to OpenMRS as XML data.
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patient records, since those are not uploaded back to the main hospital system.

The all role is for system administrators and has all privileges.

Extracting a system description Programmatically extracting RBAC meta-

data from OpenMRS is straightforward. This is done by reading the metadata

directly from the OpenMRS database. Mapping roles to our model requires that

the role hierarchy be flattened — this is done by added to each role all the per-

missions of its (transitive) parent roles. Unfortunately, determining the services

and information flow for OpenMRS is not as straightforward. Services and the

interactions between systems are not described via metadata. To get a complete

system definition for our analysis, one would have to build a static analysis of the

OpenMRS source code. Although this type of static analysis is well-understood

[BC85, PFF07], it is 1) not simple to implement, particularly since any analysis

must take into account the transformations made by the Aspect-Oriented Pro-

gramming framework used by OpenMRS, and 2) not currently the focus of our

project. Instead, we looked at an alternative means of obtaining the data we

need for our system representation.

High level model Rather than a full static analysis, we defined an abstract

model of the application, capturing its key entities (patient, observation, order,

etc.) as services and access methods (view, add, edit, deleted) as operations on

these services. Each operation is associated with a specific permission (e.g. view

on the patients entity is associated with the View Patients permission). Informa-

tion flow is fixed, based on the type of access represented by each operation. For

example the view operation on the patient service causes a flow from the service

to its caller. The roles for each operation are determined by mapping the permis-

sion assigned to the operation to a set of roles, based on the role-to-permission
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mapping obtained from the application database.

Since no metadata is available to describe intra-application calls, this must be

manually provided by an administrator. Descriptions of intra-application calls

can be stored in a new table added to the application database and then ex-

tracted by the same tool which obtains the role metadata. This table stores an

association between each local service and any remote services it calls, along with

the information flow between these services.

Role inferencer changes This new model required a change to the design of

RoleMatcher. In the model presented in Sections 4.3 – 4.5, the entry points of

an application are services, and information is passed between these entry points

only through explicit intra-service calls. This approach is insufficient to capture

our desired model of OpenMRS: we want several entry points (e.g. view, edit,

etc.) to share the same self node of the information flow graph, representing

the service’s persistent state. To accomplish this, I extended RoleMatcher to

support operations. A service contains one or more operations, which are the

entry points of the service. In the information flow graph, each operation has

its own Callerin and Callerout nodes, but the operations of a service all share a

common self node.

Example 6. Figure 4.9 shows the information flow graph for a typical service

S. This service supports four operations: create, edit, view, and delete. There

are edges from the Callerin nodes of the create and edit operations, representing

an information flow from the caller to the service’s persistent state. There is an

edge from the self node to the Callerout node of the view operation, representing

an information flow out of the service. There is no information flow associated

with the delete operation.
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Figure 4.9: Information flow graph for a service with operations
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Figure 4.10: Graph of full OpenMRS case study

The introduction of operations also changes information flow constraints. In

the extended model, if an operation discloses data from another service, each of

its roles must be mapped to a role which discloses data directly at the originating

service.

Results The extraction of RBAC metadata from each instance of OpenMRS

takes less than a second. Figure 4.10 shows a program-generated visualization of

the extracted model. Unfortunately, it is too large to fit on a single page without

the details being unreadable. Figure 4.11 shows just the subgraph involving the
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Global group name Local role members

Doctor Main hospital.Doctor
Satellite clinic.Provider

Patient Admissions Main hospital.Patient Admissions
Satellite clinic.Provider

Provider Main hospital.Provider
Satellite clinic.Provider

System Administrator Main hospital.System Administrator
Satellite clinic.all

Satellite Provider Main hospital.Provider
Satellite clinic.Provider2

Hospital Anonymous Main hospital.Anonymous

Clinic Anonymous Satellite clinic.Anonymous

Hospital Authenticated Main hospital.Authenticated

Clinic Authenticated Satellite clinic.Authenticated

Table 4.2: Role mappings for OpenMRS case study

Patient services on the two applications. In these graphs, the outermost boxes

represent the applications Main hospital and Satellite clinic. The boxes directly

inside the outermost boxes represent the services (e.g. Patient, Encounter, etc.).

Inside services, boxes represent operations and gray octagons represent the ser-

vice’s self node. Operation nodes are labeled with the operation’s name and the

set of roles which can access the operation. Arrows with dotted lines represent

calls made by the source operation to the target operation. Solid arrows (red, if

you are viewing a color version of this thesis) represent information flow from the

arrow’s source to its destination. In cases where the operation that causes the

information flow is not obvious, information flow arrows are labeled with their

associated operations.

From the patient subgraph of Figure 4.11, we can see the following:

1. The SyncPatients service, which copies patient data from the Main hos-

pital application to the Satellite clinic, is accessible only to the System
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Administrator role. To copy the data it calls the create operation of the

Satellite clinic’s Patient service. This service is accessible only to the all

role. Thus, to ensure sufficiency, any global group containing the System

Administrator role must also contain the all role.

2. The Patient service of Satellite clinic discloses data from the Patient service

of Main hospital. Each user which can access Satellite clinic patients should

have similar access rights in the Main hospital application. Thus, each role

associated with the view operation of the Satellite clinic’s Patient service

(all, Provider, and Provider2) must be associated with a role which can

access the view operation of the Main hospital’s Patient service (System

Administrator, Patient Admissions, Provider, or Doctor).

In Table 4.2, we see the schema inferred for this case study by

RoleMatcher. In order to satisfy sufficiency for the SyncPatients service, the

System Administrator and all roles are placed in the same global group. In order

to satisfy information flow constraints, the roles which can access patient data

(the Patient, Encounter, Observation, and Order services), have been paired: each

local role has been placed in a group also containing a role from the other system.

Finally, the roles which are not involved in intra-application calls (Anonymous

and Authenticated) are left in singleton groups, thus following the principle of

least privilege.
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Figure 4.11: Patient subgraph of OpenMRS case study
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4.7 Related work

4.7.1 Access control for web services

The eXtensible Access Control Markup Language (XACML) [ext05] defines an

access control policy language for web services which is flexible enough to express

many access control models, including RBAC [And04]. However, XACML policy

definition and enforcement are not tied to the underlying access policies of in-

dividual services. Thus, while clearly a useful tool for defining security policies,

XACML does not address the basic issues addressed by global role schema infer-

ence. XACML policies could be generated from a global role schema. This would

enable centralized enforcement while avoiding the problems associated with two

independent policy layers.

As an alternative, [SIM07] proposes an access policy language which can ref-

erence the past history of service invocations, using pure-past linear temporal

logic (PPLTL). Like XACML, it uses a centralized approach to policy specifica-

tion and enforcement. In order to reason about access policies across systems,

the administrator must provide a role mapping. Thus, it can be used as a layer

on top of global schema inference.

Other approaches to ensuring access control constraints are possible, e.g.,

in situations where multiple providers for a service are available, a broker can

dynamically select among the available providers to satisfy security requirements

[CFH06].

Other standards address orthogonal issues to access control: Security Asser-

tions Markup Language (SAML) provides a framework for querying authentica-

tion and authorization statements across security domains, WS-Security defines

how encryption and digital signatures may be applied to web service messages,
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and WS-Policy establishes a format for services to advertise their security re-

quirements.

4.7.2 Theory of access control policy interoperation

The interoperability between ACL (Access Control List) based security models

was first addressed from a theory perspective in [GQ96]. The desired interopera-

tion between systems is specified as a set of accessibility links between principals

of the individual systems and a set of restrictions between principals. It is shown

that finding a maximal subset of the accessibility links, such that the security

constraints of the individual systems are not violated, is NP-Complete. A similar

result for the interoperation of partial order based security models is shown in

[BSS96].

The Ismene policy language [MP02] uses a predicate-based notation for spec-

ifying general security policies. When a collection of entities wish to interact in

a distributed system, their individual policies are reconciled to create a policy

instance which governs the current session. Reconciliation involving finding a

satisfying assignment to the conjunction of the individual policies. The access

control policies implied by role interfaces could be represented in Ismene. How-

ever, the reconciliation of Ismene policies occurs at runtime, and the transitive

nature of role composition makes runtime evaluation an impractical approach.

A related problem is decentralized trust management [BFL96], where creden-

tials from independent systems are combined according to a well-defined policy.

Trust management has been implemented using a role-based model in the policy

language RT [LMW02, LWM03].
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4.7.3 Relation to standard RBAC models

Three RBAC models, which form the basis of American National Standard 359-

2004 for RBAC, are defined in [SCF96]. RBAC0 models users, roles, permissions

and sessions. The model described in this paper captures all of RBAC0, except for

sessions. A session is a map from a user to a subset of their roles and captures that

idea that user need not activate all of their roles for a given task. Since the roles

of a session are at the user’s discretion, they are not relevant to the computation

of global role schemas. However, if a session does not activate all of a users roles,

indirect authorization errors can still occur. Thus, the role schema may be a

useful guide to the user on which roles need to be activated to accomplish a given

task.

RBAC1 models a hierarchy of roles, where granting a role gives a user all the

permissions associated with any role dominated by the granted role. While we

do not currently include role hierarchies, it is straightforward to represent such

a hierarchy in our boolean constraints and to extend the inference algorithm to

find the lowest role in a hierarchy which satisfies a given constraint, keeping with

the principle of least privilege. This is left as future work.

RBAC2 extends RBAC0 by adding constraints on the sets of roles assigned to

users. These constraints include mutual exclusion constraints (e.g., a user may

not be assigned roles A and B together), prerequisite roles (e.g., to have role B,

a user must also be assigned role A), and cardinality constraints (e.g., a user may

be assigned at most one role). Clearly, a global role schema should not violate

any role assignment constraints. Our separation constraints are just a form of

mutual exclusion constraint. It is trivial to extend our model to represent ar-

bitrary boolean role constraints, including mutually exclusive and prerequisite

roles. Cardinality constraints are less critical to global role schemas, as they
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mainly concern user-role and role-permission associations, rather than the rela-

tions between roles.

4.7.4 Role mapping

A role-based access control policy may be seen as an abstraction of an underlying

ACL security policy. Role mapping [VAG07, ZRE07] attempts to find this ab-

straction automatically by finding a minimal set of roles for a single system which

captures the underlying relationship between users and the resources they may

access. In [VAG07], it is shown that this problem is NP-Complete. Algorithms

for both full and approximate solutions are provided. Alternatively, roles may

be constructed using data mining techniques which attempt to infer the func-

tional responsibilities of users, based on patterns in a organization’s access rights

[KSS03].

Role mapping may be extended to address the interoperability of RBAC sys-

tems. In this context, it is assumed that an inter-system call will include the

set of underlying permissions required on the target system. Inter-domain role

mapping (IDRM) attempts to find the minimal set of target system roles which

satisfy the requested permissions [PJ05, DJ06, CC07]. A static version of IDRM

where roles are directly mapped between systems is presented in [BGJ05]. Links

between roles are determined by grouping similar objects across systems (e.g.,

accounts, insurance claims, etc.) and then linking their underlying permissions

(e.g., access to accounts on system A implies access to accounts on system B).

Mappings between roles attempt to satisfy as many of these links as possible while

avoiding the subversion of the individual systems’ access policies. This problem

is formulated as a system of integer programming constraints.

When inferring a global schema, we use each service interface’s set of called
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services as a proxy for required access permissions. This is appropriate and

necessary for systems whose internals are encapsulated by services. Our approach

globally optimizes the role mappings to minimize the number of mappings needed

while preserving interoperation.

4.7.5 Static analysis of RBAC systems

The Enterprise Security Policy Evaluator [PFF07] implements a static analysis

for roles within a single Java Enterprise Edition application. This analysis checks

for three types of errors: indirect authorization errors, redundant role definitions,

and the subversion of an RBAC policy by exploiting unchecked intra-component

calls. Our work can be viewed as extending these static checks across systems.

4.7.6 Information flow

In [ML97], a static program analysis is described which computes information flow

in a modular fashion. All variables, arguments, and procedure return values are

labeled with a lattice element. Each lattice element represents the set of owners

for data flowing into a variable and the set of readers to which the variable may

eventually flow. Distributed communication is modeled using channels, which are

also labeled with their information flow properties. This work has inspired the

use of decentralized information flow security in programming languages [ML00],

operating systems [KYB07], and web service compositions [ONS07]. Rather than

use information flow as the access control mechanism, we use information flow

to inform a standard access control policy, leveraging the use of existing RBAC

infrastructure. Information flow constraints can be viewed as an instantiation of

the standard lattice model [Den76] by defining a lattice whose elements consist

of sets of global roles, where the top element is the set of all global roles and
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the bottom element is the empty set. Each service is assigned a lattice element

corresponding to the set of global roles by which it is accessible. If a service

B discloses data from a service A, it must have an element equal to the lattice

element computed for A or an element lower in the lattice. Information flow has

also been studied in the context of RBAC. [Osb02] computes the information

flow for a single system’s RBAC policy due to two causes: 1) the ability to

pass data between two objects protected by the same role, and 2) the ability to

pass data between objects protected by different roles, when those roles may be

simultaneously activated.

4.8 Recap

In this chapter, we looked at issues that occur when attempting the integration

of disparate access control policies. Three specific issues were identified: indirect

authorization errors, unintended disclosures due to data copying, and violations

of the least privilege principle. I defined a new abstraction, the global role schema

to capture relationships between local roles on different applications. By gener-

ating constraints based on the access control policies of each application and the

calls between web services, a global role schema can be inferred which prevents

the three problems I identified. This schema can then be used as a guide for

administrators to systematically assign local roles to users. As shown in the

OpenMRS case study, developing an adapter to automatically extract role inter-

faces from an application is straightforward. This work can then be amortized

over all deployments of that application.
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CHAPTER 5

Secure composition

5.1 Overview

Modern computing tasks of end-users involve the frequent use of customized

web services and device applications, interconnected with each other through the

sharing of computation results and user preferences. In practice, users have to

customize each of these lifestyle software applications by hand, and enable sharing

of computation results through some variation of the cut-and-paste operation.

The problem is exacerbated on small form factor devices like mobile phones, where

such frequent user manipulation is costly. For example, consider the number of

steps required to plan a movie outing, perhaps involving the use of separate

websites to find which movies are playing, read movie reviews, purchase tickets,

and notify one’s friends.

Software to address these issues has been slow in arriving, due to three prob-

lems. First, the specific tasks and objectives vary greatly from user to user. One-

size-fits-all applications do not address user needs, and thus it is important for

mobile applications to be configurable and composable. Second, security issues

cause vendors to limit the access applications have to their platforms. In addi-

tion, software developers are frequently unclear about what security guarantees

they should provide for lifestyle software and therefore employ ad hoc solutions.

Third, mobile software platforms (e.g. Java Mobile Edition or BREW [Bre])
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provide only low-level programming interfaces, which discourage casual program-

mers, and offer no clear notion of software composition. Easier-to-use, web-based

technologies can be re-purposed for mobile applications, but such technologies do

not provide access to device features, largely due to security issues.

I believe that this situation can be improved by providing a higher level pro-

gramming model based on components that 1) have a simple, parameter-based

mechanism for composition (permitting reuse and semi-automatic composition),

and 2) externalize their information flow properties (permitting flexible security

policies).

5.1.1 Existing approaches

Two recent categories of applications demonstrate how these three qualities can

be used to improve user experience. Mashups combine multiple web applications

into a single UI, correlating content from the constituent applications. For ex-

ample, packagemapper.com superimposes the route taken by a user’s package

on a Google Map. This combines Google Maps with package tracking services

from FedEx and UPS, along with a Yahoo service which converts addresses to

latitude/longitude coordinates.

Widgets or gadgets [App, Goo, Wid] are small mini-applications that can be

embedded into a larger web page or downloaded to a mobile phone. These ap-

plications usually provide a simple interface to a subset of an external website

(e.g. BBC News, Wikipedia, Facebook, etc.). They can be customized by the

user through a page of settings or parameters. In addition, most widget frame-

work providers offer a website to facilitate the creation, sharing, and adapting of

widgets.

Unfortunately, both mashups and widgets suffer from security issues which
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limit the types of applications deployed using these new approaches. To be use-

ful, mashups and widgets must have the user’s access rights to the underlying

applications they rely on for content. However, the user has no control over what

the mashup/widget does with those rights. In addition, these applications are

built on top of existing web platforms, with limited device access and, in general,

little support for application-level composition.

5.1.2 Monents

I propose to address these issues through a new class of application components,

called monents (mobile components). Like widgets, monents provide simple user

interfaces to external services. They can be customized through settings — persis-

tent parameters adjustable by the end user. Like mashups, monents can correlate

data from multiple websites/services. Unlike mashups, this capability is achieved

without custom programming: monents provide a simple, automatic composition

paradigm where data is exchanged through shared settings. Only the desired set

of monents to be composed must be provided by the user — the rest is done by

automatically matching inputs and outputs by name/type.

A monent is comprised of three elements: customizable wrappers around ex-

isting services, categorized settings for communicating data to other monents and

to the environment in a controllable way, and a UI layer for customizable user in-

teraction. The connections between these components are specified declaratively,

and “glue” code is automatically generated to provide event-driven propagation

of data changes.

Monents interact with the external (potentially unsafe) world through their

settings and services, and all such interaction is controlled by a security manager.

The security manager decides whether to activate the monent by evaluating the
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information flow between the monent’s inputs and outputs, using a security policy

that categorizes data sources and sinks according to a user-defined labeling.

Monents promote software reuse in several ways. First, the simple composition

model encourages the building of applications from smaller components. Second,

the external services of a monent are not hard-coded, and can be dynamically

changed by the user. Finally, a monent can be used in more or less restrictive

environments, depending on a user’s level of trust in the services interacting with

the monent.

5.1.3 Information flow interfaces

I model the composition and security of monents through information flow in-

terfaces. This formalism describes components as a collection of inputs, outputs,

and an information flow relation. My model is not specific to monents, but can

be applied to any component system where inter-component interactions can be

controlled and the information flow within a component externalized. This first

class, declarative treatment of information flow is novel for component models.

Using information flow interfaces, one can represent both the internal connec-

tions within a single monent, as well as monent composition. I use an optimistic

approach to composition: each input and output is matched independently, and,

if a composition does not provide an value for an input, the environment is as-

sumed to provide the value. Of course, this value may be later provided through

a subsequent composition. Security policies are evaluated with respect to a mo-

nent’s runtime environment. Thus, the same component may satisfy the security

policy of a permissive environment but not of a more restrictive environment. Ex-

ecution in a restrictive environment is analogous to sandboxing, but our model

permits fine-grained control over permitted interactions.
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My composition algorithm respects the intent of security policies. In partic-

ular, I demonstrate formally that the security policy of a single component has

the same effect when the component is used in a composition, and rights are not

granted or lost through composition.

5.1.4 Chapter organization

In Section 5.2, I informally present monents, monent composition, and my ap-

proach to security. Then, Sections 5.4 and 5.5 formally define information flow

interfaces, describe the properties I wish to guarantee with respect to this model,

and show how monents can be represented as information flow components. In

Section 5.6, I describe a prototype implementation of the monent framework

which includes a compiler, a monent composer, runtime infrastructure, and a

server-side monent sharing application. My compiler accepts a declarative de-

scription of a monent’s services, settings, and UI components. From these, it

generates an Adobe FlashTM application. The composer accepts the source de-

scriptions of two or more monents and creates a combined monent. Finally, I

compare this work to existing research and frameworks in Section 5.7.

5.2 Monents

5.2.1 Motivating example

To motivate the architecture for monents, consider a scenario where a user wants

to schedule a movie outing via her mobile phone. To do so, she might look up

which movies are playing, read movie reviews for a subset, pick a movie and

showtime, buy the tickets, add an entry for the movie to her calendar, and email

the details to her friends. Each of those six sub-tasks might involve several
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Figure 5.1: The movie monent

interactions (clicks, entries) at a website or application. She might very well lose

patience and give up on the exercise altogether.

To address this problem, a monent should provide a task-focused UI which

avoids unnecessary levels of navigation. Context should be used to further econ-

omize the user interactions. For example, once our user selects a theater and

movie at one website, she should not have to re-select the theater and movie at

each subsequent site. Our user has some security expectations for this monent:

she must be confident that these sites are not malicious and that the monent will

not pass her credit card number to the other websites. In addition, she must be

confident that the monent will not spam everyone in her address book.

Figure 5.1 shows how this monent might work. The monent is composed of

five logical sub-applications, which may be monents themselves. Each of these

sub-applications represents a step involved in completing the movie outing task

and corresponds to an interaction with a website or service. Due to limits on
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the mobile device display size, only one step is presented to the user at a time.

Navigation between sub-applications is accomplished using a tab metaphor: each

sub-application has a tab at the top of the display and selecting an application’s

tab causes it to be displayed.

Solid arrows in figure 5.1 represent the links between the logical sub-

applications and external services. Dashed arrows represent the passing of con-

text between sub-applications. The user-selected movie theater is passed to the

movie selection, ticket purchase, and calendar/email sub-applications. The se-

lected movie and show time is passed to the movie review, ticket purchase, and

calendar/email sub-applications.

To see how this movie monent can be built, we first look in more detail at the

three elements of monents: services, settings, and UI controls.

5.2.2 Elements of a monent

Services A service represents a callable entity which provides content for a

monent. Services may include external websites, web services, or device features

(hardware or applications) that have been wrapped in a service interface. A

monent may contain an arbitrary number of service clients/wrappers. In our

movie example, each external website will be represented as a service, along

with the user’s email application. Like websites, a service is identified through

its URL. We divide this URL into two portions: a location, which is evaluated

by the security policy, followed by a query, which contains data specific to a

particular request. This division is specific to each website and is decided by the

service developer based on the URL structure of the website and the granularity of

security policies needed for a given site. The result of a service call is structured

content, such as XML, HTML, or JSON. We will refer to a monent’s service
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clients/wrappers simply as “services”.

Settings Settings are key/value pairs used to facilitate communication within

and between monents. In our movie example, we will use settings for the

current location (e.g. a zip code or latitude/longitude), the selected the-

ater/movie/showtime, and the user’s credit card information. Each setting is

either an input, an output, or internal to the monent – the categorization corre-

sponds to how its values can be set and shared. Input settings can obtain their

values from direct user input, other monents, or the environment. The environ-

ment is a collection of settings representing information available from the local

device (e.g. location or personal information) or enclosing application context

(e.g. bookmarks or email recipients).

Output and internal settings obtain their values from services or UI controls

within the monent. The values of output settings are made available to other

monents.

UI Controls The user interface controls provided for monent developers are

designed to allow the quick implementation of simple front-ends to external con-

tent. The supported controls include labels, buttons, text input boxes, data grids

(which display record-like content from a service), and tabs. Other controls can

be easily accommodated.

5.2.3 Connecting monent elements

The connections between the various elements of a monent are specified declara-

tively. Settings can obtain their values from the data in UI controls or by extract-

ing a value from the result of a service call. Likewise, UI controls can obtain their
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Figure 5.2: Connections between elements of the movie monent

values from settings, services, and other UI controls. For example, if the user’s

zip code is an input setting, then a UI label might include the value of this set-

ting as follows: Current movies for zip code ${ZipCode}. The ${ZipCode}

string is replaced with the value of the ZipCode setting.

The location and query of a monent’s service can be parameterized by settings

or values from UI controls, using a similar template notation. For example,

the service which calls Google Movies to obtain the listings for a specific zip

code might use a location of google.com/movies (for Google Movies, this part

of the URL remains constant and is evaluated as a data sink in the security

policy) and a query of ?near=${ZipCode} (this part of the URL changes with

each request and is not considered in the security evaluation). When making

the request, the service first replaces the ${ZipCode} string with the value of

the ZipCode setting and then concatenates the location and query to obtain

a URL. Thus, given a zip code of 94304, the monent would send a request to
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google.com/movies?near=94304.

Example 7. Figure 5.2 shows element interconnections for a subset of our movie

monent. We use arrows to show the flow of data between elements. The Zip-

Code setting is used by the Google Theater service and by a UI label on

the Theaters tab. The results of the Google Theater service are then dis-

played by a data grid on the same tab. Each record displays the name and address

of a particular theater. The user-selected theater’s name is stored in the The-

ater output setting. This setting is used by the Google Movie service to build

a second query, which retrieves movies playing at the specified theater. In ad-

dition, the Theater setting is included in a UI label on the Movies tab. The

results returned by the Google Movie service are displayed using a second data

grid. The name of the selected movie is output via the Movie output setting.

The details of the selected movie are passed to the Movie Tickets service,

along with the quantity to be purchased, which is input from the Purchase tick-

ets tab. The credit card number for the purchase is passed from an input setting

to the service. The Movie Tickets service is not actually called until the user

presses the “Buy” button.

5.2.3.1 Responding to changes

If the user happens to change the ZipCode input setting or the selected theater,

we would like the change to be reflected in our monent as well. The monent

framework assumes that any setting, service result, or user-selection may change.

To address this, it tracks the connection dependencies between monent elements

and automatically generates the event-driven code to refresh dependent elements
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when a change occurs. For, example, if the user selects a different theater, the

Theater setting is changed and any previously selected movie is invalidated.

In some situations (e.g. making a purchase), we do not wish to initiate a

service request without explicit input from the user. To address this situation,

a UI button control may be provided as the only connection to a service. If a

button is connected to the service, the call is not initiated until the button is

pressed and the service has valid inputs.

5.2.4 Monent composition

Rather than build a single monent which interacts with multiple ser-

vices/websites, we can build several smaller monents and then compose them

into the monent we need. For example, each tab of the movie monent of Figure

5.1 could be implemented as a separate monent. If monents are small and general

enough, they can be reused in new contexts. Here are some examples of reuse

involving the components of our movie monent:

• Perhaps we have another website we prefer to use to select movies. If we

build monents to select movies for that site, we can use them with our

existing movie review and ticket purchase monents.

• The calendar monent could be used with any other monents providing a

date, time, and location.

• A map and directions monent could be composed with the movie monent

to provide directions to the theater.

Implicit linking Composition should be easy to understand: we would like

end users to compose their own monents. In addition, if composition is to occur

216



on mobile devices, it must require only simple UI actions. Ideally, users only need

to select the set of monents they wish to compose.

To achieve these goals, we implicitly link the input and output settings of

monents, matching by name and datatype. For example, if one monent provides

a Theater output setting of type string and another monent provides a The-

ater input setting of type string, these settings are connected in the composite

monent. In addition, Theater is no longer an input in the composite monent, as

it obtains its value internally. In the event that two monents have incompatible

settings (e.g. two outputs of the same name or an input/output pair with the

same name but different data types), the appropriate elements are kept separate

and renamed to avoid a conflict.

The individual UI controls and services of the source monents are not linked

directly. Since monent user interfaces are organized by tabbed navigation, user

interfaces can be combined by simply taking the union of the individual tab sets.

This implicit approach to composition requires some planning and forethought

in the design of monent “libraries” in order to ensure reusability. We lose some

flexibility to gain a simplified user interface for composition, which is important

for small form-factor devices. Future work will look at ways to better address

name mismatches and conflicts in composition, perhaps through renaming or

scoping operations (cf. Section 6.4).

Static versus dynamic composition A set of monents can be composed

statically, at compile time, or dynamically, at runtime. We have chosen to imple-

ment static composition, as it does not require a dynamic linking mechanism or

runtime loading of code. Dynamic composition of monents should certainly be

possible as well.
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5.2.5 Security model

Monents interact with the external world through settings and services. Mon-

ents cannot deny service through the UI or by consuming too much CPU: they

are composed from trusted components which are only invoked in response to a

user action. Thus, the primary security issues of monents are their interactions

with the outside world. To address such issues, we implement a security model

with three components: an information flow analysis, a security policy, and the

security manager.

5.2.6 Information flow

At compile time, an information flow analysis is performed, and the results sum-

marized in a flow relation, which is compiled into the monent. This flow relation

associates each input with the possible outputs to which incoming data may flow.

The inputs of a monent include its input settings and the responses from service

calls. The outputs of a monent are its output settings and service requests.

5.2.7 Security policies

A security policy independently assigns tags to the inputs and outputs of a mo-

nent. These tags categorize data according to its sensitivity and intended recipi-

ents, and should have an intuitive meaning to users (e.g. categories like public

and financial). A partial ordering is defined between tags, based on relative

sensitivity and size of a category. For example, we write financial ⊑ public

to say that the tag financial appears before public in our ordering, and repre-

sents more sensitive data. Any data that can comes from a source labeled public

can be passed to a destination labeled financial, but the converse is not true.
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Special tags nobody and everyone are defined to represent the empty set of cat-

egories and the set of all categories, respectively. In addition, we allow users to

associate a collection of tags, not just a single tag, with an input or output.

To specify a security policy, users can manually apply tags to services and

settings. This gives them the most control over the operation of their monents.

Alternatively, reputation services can return tags for services based on white- or

black- listing. One might imagine other approaches to defining security policies.

For example, services might return their own tags, cryptographically signed by

a trusted third-party authority, or a rule based policy language could be used to

determine tags, based on a combination of the other approaches.

Note that users do not have to understand the mathematics behind our se-

curity model to define and use security policies. The tag-based model should

be no more difficult for users to understand than, say, the hierarchical expense

categories of Intuit’s QuickenR© home accounting application.

5.2.8 Security manager

The security manager is a run-time infrastructure component which evaluates the

security policy with respect to the monent’s flow relation. If (according to the

flow relation) the monent never permits data to flow beyond its intended scope

(as defined by the security policy), the security manager activates the monent.

Otherwise, it leaves the monent disabled and pops up an error message to the

user.

By separating the tagging of a monent from the compile-time information

flow analysis, monents can be reused in different security contexts. This allows

users to personalize their security policies. For example, a mobile service provider

might define a default security policy which is not very permissive. Users can
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then adjust the policy to suit their needs, based on their understanding of the

security framework and their trust of different websites and people.

In addition, a security policy can be reused across different monents. Thus,

a user can have a global policy for all monents running on their device.

5.3 Security and composition

One should not be able to circumvent a monent’s security policy by composing it

with other monents. Since the monents of a composition can only communicate

through shared settings, this cannot happen. Given a collection of monents which

satisfy a security policy, the composition of these monents will also satisfy the

policy. In addition, the composition of monent that violates a policy with other

monents will always violate the original policy. These properties are presented

more formally in section 5.5.3.

5.4 Information Flow Interfaces

To describe monents and their properties precisely, I define a formal model called

information flow interfaces.

An information flow interface C is a triple (I,O, F ), where I is a set of input

identifiers, O is a set of output identifiers, and F is a relation over input-output

pairs. F (i, o) is true if there exists an information flow from input i to output

o. We write C.I, C.O, and C.F to refer to the input, output and flow relation

components of interface C.

Identifiers are opaque in the abstract model, but may be compared using the

equality relation =. Each identifier in I ∪O must be unique.

220



5.4.0.1 Dynamic behavior

The components described by information flow interfaces are opaque: we cannot

see into their implementation. The inputs and outputs of a component may be

viewed as named channels, in the sense of the π-calculus [Mil99]. A component

may receive messages on any of its inputs, store them, and forward them to

any output channel, subject to the restrictions imposed by the information flow

relation F . In other words, a message originating from input i can be sent to any

output o for which F (i, o) is true. Components may also drop messages or create

new messages, which can be sent on any output. We can implement this model

in the π-calculus by using disjoint namespaces for variable names and channel

names. As a result, the set of channels is static and the information flow relation

can be computed via a syntactic analysis.

Note that, in a real system, messages may also be transformed and combined.

However, it is not necessary to model changes to messages to capture the infor-

mation flow properties of a component. For example, if messages from inputs i1

and i2 are combined and sent to output o3, then we model this as two paths in

the flow relation: F (i1, o3) = F (i2, o3) = true.

5.4.1 Composition

The function compose(C,Oh) composes a set of information flow interfaces C,

given a set of hidden outputs Oh ⊆
⋃

(Ci.O|Ci ∈ C). We say that a composition

is well-formed if each output identifier in the composition is unique. The result

of a composition will be a new information flow interface Cc, which describes the

information flow for the interconnected components.
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Topology graph We connect the inputs and outputs of component interfaces

by matching on identifiers. More precisely, the semantics of a composition are

defined via a component topology graph, which describes the interconnections of

the combined interfaces. The component topology graph Gc = (Vc,Ec) contains

a vertex v ∈ Vc for each interface c ∈ C and a set of labeled, directed edges

Ec. We write C(v) as a shorthand for the interface C ∈ C associated with vertex

v ∈ Vc. An edge e ∈ Ec from vertex v1 to vertex v2 and labeled with l is created

if there exists an o1 ∈ C(v1).O and an i2 ∈ C(v2).I where o1 = i2 = l.

The dynamic behavior of a composition is defined by considering each edge

labeled l to be a named channel l. We use a broadcast semantics — if there are

multiple outgoing edges from an interface’s vertex with the same label, then each

message is sent on all the edges.

We say that there is an information flow path in Gc from input i ∈ I to output

o ∈ O if there exists a sequence of identifiers l1...ln such that:

1. l1 = i and there is a vertex v ∈ Gc such that i ∈ C(v).I.

2. ln = o and there is a vertex v ∈ Gc such that o ∈ C(v).O.

3. For each consecutive pair (li, li+1) in the identifier sequence, there is a vertex

v ∈ Gc such that li ∈ C(v).I, li+1 ∈ C(v).O, and C(v).f low(li, li+1) = true.

Proposition 3. Given a composition compose(C,Oh) and its topology graph Gc,

the composition permits an information flow from an input i to an output o if

and only if there exists an information flow path from i to o in Gc.

Information flow graph From a component topology graph Gc, we can con-

struct an information flow graph Gf = (Vf ,Ef), representing the information

flow between component inputs and outputs. First, we create a vertex for each
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input and output of each interface. We refer to these vertices as C.n, where C

is the associated interface and n the name of the input or output. We create

edges for both intra- and inter-component information flow. For each component

C, we create an edge from C.i to C.o if C.F (i, o) is true. For each edge in the

component graph labeled l from vc1 to vc2 , we create an edge in the information

flow graph from C(vc1).l to C(vc2).l. Finally, we take the transitive closure of the

edge relation: if there is an edge from C1.n1 to C2.n2 and an edge from C2.n2 to

C3.n3, we add an edge from C1.n1 to C3.n3, if one does not already exist.

Proposition 4. Given a composition compose(C,Oh) with a topology graph Gc

and an information flow graph Gf , there exists an edge from C.i to C′.o in Gf if

and only if there is an information flow path from i to o in Gc.

We can now define a new information flow interface Cc = (Ic,Oc, Fc) resulting

from composition compose(C,Oh) as follows:

• Ic is the union of the inputs of the constituent interfaces, with any inputs

removed that are also referenced as outputs in the constituent interfaces:
⋃

(i|i ∈ C.I ∧ C ∈ C) \
⋃

(o|o ∈ C.O ∧ C ∈ C)

• Oc is the union of the outputs of the constituent interfaces, with any outputs

removed that are in the hidden set Oh:
⋃

(o|o ∈ C.O ∧ C ∈ C) \Oh

• The relation Fc, defined over Ic×Oc, is true for (i, o) if, in the information

flow graph Gf for our composition, there exists an edge from C.i to C′.o for

some pair of interfaces C, C′ in the composition.

Proposition 5 (Information flow). Given a composition (Ic,Oc, Fc) =

compose(C,Oh), the relation Fc(i, o) is true if and only if a message arriving

at input i may flow to output o, given the assumptions of the individual flow

relations.
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In other words, the composite flow relation Fc describes the possible informa-

tion flows of the overall system.

Proposition 6. Given a well-formed set of interfaces C, composition of these

interfaces is associative and commutative, providing that no outputs are hidden

until the last composition of any sequence.

As a consequence of Proposition 5, composing information flow interfaces in

any order will result in the same final component. However, this is not always

true if an output is hidden, as subsequent compositions will leave an input of the

same name unconnected.

5.4.2 Security

We wish to ensure that components do not permit sensitive data to reach unin-

tended recipients. We can use an interface’s flow relation to track the potential

flow of data. However, we need a means of deciding whether a given flow should

be allowed. To do so, we model the sensitivity of data using a partially ordered

set PO = (Θ,⊤,⊥,⊑), where Θ represents the elements of our partial order, ⊤

represents the last (least sensitive) element of our order, ⊥ the first (most sen-

sitive) element of our order, and ⊑ is an ordering relation. If θ1 ⊑ θ2 is true for

some θ1, θ2 ∈ Θ, then θ1 is equivalent to or more sensitive than θ2. The exact

meaning of sensitivity is defined by each instantiation of our framework.

To specify the security requirements for an information flow interface, one

provides a security policy P = (PO,T), where PO is a partial order and T : I ∪

O→ Θ is a mapping from an interface’s input and output identifiers to elements

of the partial order. To evaluate the security policy, one uses the interface’s

information flow relation F . Data should never flow from a more sensitive input
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to a less sensitive output. We state this more formally as follows:

Definition 5 (Soundness). We say that an information flow interface (I,O, F )

is sound with respect to a security policy (PO,T) if, whenever F (i, o) is true,

then T(o) ⊑ T(i).

5.4.2.1 Security and composition

Composing information flow interfaces should not change their security proper-

ties. We can explore this by considering an interface set C and a security policy

P. We assume that the policy’s mapping T is total with respect to the inputs

and outputs of the components. If not, we can extend a policy by assigning ⊥ to

every unmapped input and ⊤ to every unmapped output.

Proposition 7. If a set of information flow interfaces C are individually sound

with respect to a security policy P, then the composition of these interfaces will

also be sound.

We prove this by contradiction. For the composition to be unsound when the

individual interfaces are sound, there must be an identifier pair (l1, ln) such that

F (l1, ln) is true in the composition and T(l1) ⊑ T(ln) = false but F (l1, ln) is

false for each individual interface. This requires a new information flow path in

the graph starting at l1 and ending at ln. An arbitrary sequence of two identifiers

on the path (li, li1) must have F (li, li+1) = true for some component in the

composition. However, if that interface is sound, then we know that T(li) ⊑

T(li1) = true. By induction, this must also be true for the endpoints: T(l1) ⊑

T(li+1) = true. This contradicts our original assumption that T(l1) ⊑ T(li+1) =

false.

Proposition 8. Given a set of information flow interfaces C, which are in-
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dividually sound with respect to a security policy P, and a second set C′ of

interfaces which are not individually sound with respect to P, the composition

compose(C ∪C′, ∅) is not sound with respect to P.

If an interface Ci is unsound, then there exists an input i and output o such

that Fi(i, o) = true and T(i) ⊑ T(o) = false. If no outputs are hidden in the

composition, then F (i, o) = true for the composition’s flow relation as well.

Note that we can make a composition sound by hiding the offending outputs.

This suggests three approaches for handling a security policy violation:

1. we can disallow the entire composition,

2. we can exclude any components which individually fail the soundness check,

or

3. we can hide any offending outputs and allow the composition (potentially

with reduced functionality).

5.5 Representing Monents

In this section, we look at how to represent monents as information flow inter-

faces. By doing this, we can obtain all the guarantees provided by Propositions

5 through 8 of Section 5.4.

5.5.1 Monent elements

To represent an individual monent, we define an information flow interface for

each monent element. As shown in Figure 5.3, we can create information flow

interfaces for settings (both input and output), services, and UI controls (la-

bel, text input, and data grid). In the graphical depiction, the arrows into
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Figure 5.3: Modeling the elements of a monent

a box represent inputs, the arrows out of a box represent outputs, and the

dashed lines represent information flow from inputs to outputs. Identifiers have

the form (k, t, n), where k is a kind, t is a datatype (e.g. string, integer, zip-

code), and n is a name. Kinds are used to encode rules about which inputs

and outputs may be interconnected. Valid kinds include ExternalSetting,

SettingValue, ServiceReq, ServiceResp, and ExternalServiceResp. When

the kind is ExternalSetting, the name n represents the name of a monent

setting. When the kind is ServiceReq or ExternalServiceResp, the name rep-

resents the URL of a service.

We now look in more detail at the individual element types of Figure 5.3. An

input setting has a single input of kind ExternalSetting and a single output

of kind SettingValue. Output settings are a mirror of inputs. This ensures

that only output settings may connect to an input setting. Services take as their

inputs one or more setting values. These values are used to form a request,
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of kind ServiceReq. The response, of kind ExternalServiceResp, enters the

service and is parsed, resulting in a parsed response, of kind ServiceResp, and

zero or more response settings, of kind SettingValue. Text input controls have

a single output, whose value comes from the user. Label controls have a single

input and display this value to the user. Finally, data grid controls accept a

parsed service response as input and, based on a user’s record selection, provide

one or more settings, of kind SettingValue, as output.

Give a set of element interfaces E, we can build a monent by taking the

composition compose(E, hide(E)), where hide(E) is a function which returns the

output identifiers for E which have kinds of either SettingValue or ServiceResp.

This has the effect of hiding the internal connections of a monent. We say that

a monent is well-formed if the following conditions are met:

1. Each output identifier in the composition is unique (inherited from the

requirements for well-formed information flow interfaces).

2. All element inputs of kinds SettingValue and ServiceResp have corre-

sponding outputs. This ensures that these inputs are connected internally

within the monent and are not visible outside the composition.

3. The request output and response input of each service element must

have identifiers with matching names — identifiers of the forms

(ServiceReq, d, n) and (ExternalServiceResp, d′, n), respectively. This

ensures the request and response correspond to the same external web ser-

vice. In addition, it restricts monents to have only one service element for

a given URL.

Proposition 9 (Monent information flow). Given a set of monent elements E,

if the composition (Ie,Oe, Fe) = compose(E, hide(E)) is well formed, then:

228



ZipCode

(input setting)

Theater

(output setting)

Movie

(output setting)

Google

theater service

(response)

Google

movie service

(request)

Google

movie service

(response)

Google

theater service

(request)

Inputs Outputs

public

everyone

public

public

public

public

Movie tickets

 service

(request)

financial
Credit Card

(input setting)
financial

everyone

Figure 5.4: Information flow relation for a monent

1. The sets Ie and Oe only include kinds ExternalSetting, ServiceReq, and

ExternalServiceResp.

2. The relation Fe(i, o) is true for (i, o) if and only if a message arriving at

input i may flow to input o, given the definitions of monent elements in

Figure 5.3.

The first condition follows from the well-formed monent requirements and

the hide function. The second condition is a restatement of Proposition 5 for

monents — since we are only restricting the set of valid element compositions,

all the propositions for information flow interfaces apply to monents as well.

Example 8. Figure 5.4 shows the information flow relation for the monent of

Figure 5.2. To depict this relation, we create a vertex for each input or output

and an edge from source s to destination d if F (s, d) is true. We see that the two
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Google services each have two nodes, one for requests and one for responses. The

two edges starting at the Google Theater service response represent indirect

information flow paths which pass through the Theaters data grid control.

The Movie Tickets service has only an output node, as it does not return

any data, only a status response. The Credit Card setting has only one out-

bound edge, connecting it to the Movie Tickets service. Thus, we can conclude

that the credit card number is not passed to any of the other websites.

5.5.2 Monent composition

Given a collection M of monents composed from monent elements, we can com-

pose these monents into a single monent: (M, F ) = compose(M, ∅). We say

that this composition is well-formed if each output identifier in the composition

is unique. Since monents can be described using information flow interfaces, the

propositions of section 5.4.1 apply to monent compositions as well.

Proposition 10. Given a collection of monents M, if the composition

(Im,Om, Fm) = compose(M, ∅) is well formed, then the relation Fm(i, o) is true

for (i, o) if and only if a message arriving at input i may flow to input o, given

the definitions of monent elements in Figure 5.3.

This follows from Propositions 5 and 9.

Proposition 11. Monent composition is associative and commutative, provided

the compositions are all well-formed.

This follows from Proposition 6.
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5.5.3 Security

We now consider the evaluation of security policies for monents.

5.5.3.1 The tag partial order

Monent security policies are specified by associating tags with each input

and output. We assume that we are given a partial order POtag =

(Θtag, everyone, nobody,⊑tag) which describes the set of tags, the least-sensitive

and most-sensitive tags, and an sensitivity ordering relation between tags. We

write JθK to represent the set {θi ∈ Θtag|θi ⊑tag θ} of tags dominated by θ. In

other words, JθK is the set of user categories represented by θ.

From POtag, we define a partial order for tag sets: POset = (Θset,Θtag, ∅,⊑set

). Each element of Θset is a set of tags, with the least-sensitive element ⊤ = Θtag

(the set of all tags) and the most-sensitive element ⊥ = ∅. For consistency, we

equate the set containing the nobody tag with the empty set: {nobody} ≡ ∅, and

the set containing the everyone tag with the set of all tags: {everyone} ≡ Θtag.

We define our element ordering operator ⊑set in terms of the single tag lattice

comparison operator ⊑tag as follows:

T1 ⊑set T2 =











true if ∀θ1 ∈ T1 . ∃θ2 ∈ T2|θ1 ⊑tag θ2

false otherwise

In other words, for tag set T1 to be less than or equal to tag set T2, each element

of T1 must be dominated by or equal to an element in T2. We extend J·K to tags

sets in the natural manner: JT K = {θi ∈ Θtag|∃θj ∈ T . θi ⊑tag θj}

Example 9. The information flow analysis of Example 8 has shown that our
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user’s credit card number will not be passed to other websites. However, how do

we know that we can trust the movie ticket site itself? As shown in Figure 5.4,

each input and output of the movie monent have been labeled (by a security policy)

with tags. The inputs of the Google Theater and Google Movie services

have been labeled as public, meaning that we are willing to trust them with

some non-identifying personal information (e.g. our zip code). We do not place

any restrictions on the responses from these services and thus label them with

everyone. We trust the Movie Tickets service with our credit card and thus

label it with financial. All the settings, except for Credit Card , have been

labeled public.

To evaluate whether to activate this monent, we compare the tags associated

with the source and target of each edge. If, for each edge, with source tag set

Ts and target tag set Tt, JTtK ⊆ JTsK, then the monent is sound. This is true

for all the edges in Figure 5.4, and thus the monent is sound with respect to our

input/output labeling.

5.5.3.2 Sound composition

Given the tag set partial ordering POset, we can formally state the consequences

of soundness with respect to a security policy.

Proposition 12. If a monent M = (Im,Om, Fm) is sound with respect to a

security policy (POset,T), then there does not exist an output o ∈ Om such that

there is an information flow path from i to o in M and JT(o)K ⊆ JT(i)K is false.

In other words, if a monent is sound with respect to the policy, then it does

not permit information to flow outside the bounds established by the labeling of
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public

financial
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Figure 5.5: Relationships between tag elements

each input. This is a consequence of Proposition 9 and our partial ordering.

Since monents are describable using information flow interfaces, Propositions

7 and 8 apply as well:

Proposition 13 (Sound composition). 1. If a set of monents M are individu-

ally sound with respect to a security policy (POset,T), then the composition

compose(M, ∅) of these monents will also be sound.

2. Given a set of monents M, which are individually sound with respect to a se-

curity policy (POset,T), and a second set M′ of monents which are individu-

ally not sound with respect to the policy, the composition compose(M∪M′, ∅)

is not sound with respect to (POset,T).
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Figure 5.6: Compilation process

5.5.3.3 Tagging contacts

In addition to facilitating interactions with external websites, tags should facili-

tate interactions with a user’s friends and colleagues. To do this, we treat contacts

as categories for data and incorporate the user’s contact list into the partial or-

dering of tags. Furthermore, users can label each contact with additional tags

to indicate the membership of that contact in specific categories. For example,

one might have tags such as friends or coworkers. If a contact is labeled with

one of these categorization tags, the contact appears before the category in the

partial ordering of tags.

Example 10. Our user has three contacts: Steve, a friend, Mary, a coworker,

and Sally, who is both a friend and a coworker. Figure 5.5 shows the partial

ordering of tags if we create new tags friend and coworker and then label the

contact entries for these people accordingly.
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5.6 Implementation

I have implemented a prototype version of the monent framework, using the

Adobe FlashTM player as a target platform. Figure 5.6 shows how monents are

compiled. A monent is specified in two files: a metadata file, which describes

the settings and services used by the monent, and a UI description file, which

describes the monent’s UI controls. The UI description file uses a subset of

Adobe’s Flex XML language (without any embedded code). This allows the UI

to be built using Adobe’s visual designer. In addition, image files may be included

in the monent. Settings, services, and UI controls may reference each other as

described in Section 5.2.

Once completed, the monent is translated into a Adobe FlexTM application.

Each setting and service becomes an object in this application, and event-driven

code is added to refresh/invalidate objects based on downstream data changes.

Client-side infrastructure, including the security manager, is implemented in Ac-

tionScript (Adobe’s version of JavaScript for the Flash player) and copied into

the monent. An extra tab called settings is added to each monent, to enable users

to change the values of the monent’s input settings.

Next, Adobe’s Flex compiler is run to create a compiled Flash file. This

compiled file can be executed by any Flash player, such as a browser plug-in.

Composition A separate program implements monent composition. It takes as

its inputs an arbitrary number of monent source definitions. These are combined

into a single output definition using the approach described in Section 5.2.4. The

resulting monent can then be compiled as described above.
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Figure 5.7: The movie monent running on a Nokia N810 Internet Tablet

5.6.1 The movie monent

To demonstrate the framework, I implemented a subset of the movie monent,

including reading live data from Google Movies and the Internet Movie Database

(see Figure 5.7). Tickets are purchased by calling a simulated e-commerce

web service. Extracting the relevant structured data from the unstructured

HTML/JavaScript returned by Google and the IMDB is beyond the capabilities

of the XPath-like notation I use to navigate structured documents. To address

this, I have a separate proxy server which extracts the appropriate content using

XSLT and Java and then returns an XML document to the monent.

The hostname of the proxy service is an input setting for the monent. This

setting is part of the location for each service which uses the proxy. Thus, when

the proxy is changed, the security policy is automatically reevaluated to see

whether the monent can use that proxy. If the security check fails, the monent
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is disabled, except for the settings tab.

I ran the movie monent on a Nokia N810 Internet Tablet. The performance

was acceptable – the security policy evaluation, request for movie data from

Google, and rendering of the results all occurred within a few seconds.

Composition I originally built the movie monent in a monolithic manner, in-

cluding all of the functionality directly within a single monent. I then partitioned

it into three separate monents: one for Google Movies, one for the IMDB, and

one for ticket purchasing. Using the monent composer, I combined these into a

single monent with equivalent functionality. Performance of the composition was

identical to that of the original monent, as the generated code is the same.

5.6.2 Monent sharing application

Developers at DoCoMo also built a simple web application to facilitate the shar-

ing, configuration, and composition of monents. A list of available monents is

maintained in the application’s database and displayed as a selection of icons

for the user. A user can choose to run, configure, or compose a monent. Run-

ning a monent causes the associated Flash file to be downloaded to the user’s

browser. Users can edit values and tags for a monent’s settings (these are local

to each user). Finally, a user can select two or more monents for composition.

This causes the composer and compiler to be run on the server, generating a new

monent. This new monent is then made available on the sharing application.
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5.7 Related work

5.7.1 Formal models for components

Information flow interfaces were inspired in part by Interface Automata [AH01]

and Reactive Modules [AH99]. Interface automata describe components as a set

of input, output, and internal actions, along with an automata specifying the

ordering requirements between actions. Composing two such interfaces yields

a new interface which combines the requirements of the two source automata.

Composition is successful as long as there exists some environment that can make

the two source automata work together. Reactive modules can be used to model

components with synchronous or asynchronous interactions using a hardware-like

model for computation. Of particular interest are the three “spacial” operations

defined on reactive modules: variable renaming, variable hiding, and parallel

composition.

Our open approach to composition, where inputs and outputs are matched

individually, and any unmatched inputs are sourced from the environment, comes

from these models. We replaced the action ordering restrictions of interface au-

tomata with information flow properties. Clearly, these aspects of specification

can be combined, if desired. From reactive modules, we took the “wire-like” na-

ture of our interconnections and the hiding operator, which is necessary to ensure

Proposition 13.

5.7.2 Security and process models of computation

Much work has focused on investigating the security aspects of process-based

computation models. For example, the security π-calculus [HR02] extends the

asynchronous π-calculus with a type system to enforce access control and infor-
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mation flow requirements, the box-π-calculus [SV99] models the use of program

wrappers to mediate the interactions of untrusted programs, and [HW01] de-

scribes a type system for the π-calculus to ensure that untrusted data is not

used in a trusted context. We use a restricted form of the π-calculus to de-

scribe the dynamic behavior of information flow interfaces. Given our focus on

component-level composition, we chose to address security issues at the interface-

level rather than in the behavioral model. Our security manager, which interprets

and enforces security policies, assumes a similar role as the wrappers of the box-

π-calculus.

The Ambient calculus [CG98] was created to model mobile code, such as code

running on mobile devices or code that may be passed over a network. As such, it

is particularly well suited for investigating approaches to address security issues

for mobile code [LS00, BC01, BCC04]. Instead of explicitly modeling mobility of

code, we defer evaluation of security policies until runtime and evaluate policies

with respect to each component’s current environment. Thus, we can simulate

the mobility of components by evaluating them in each environment in which

they execute, but we cannot model any restrictions in the movement of com-

ponents. Without restricting code movement, it may be possible to circumvent

an information flow policy by moving a component to an environment where

the internal state of a monent can be accessed directly. To avoid this problem,

our components either must not contain any internal persistent state or must be

run only in an environment which prevents malicious access. We plan to extend

our model to include component mobility, with a “sanitizing” step that removes

sensitive data when crossing untrusted boundaries.
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5.7.3 Information flow

Denning [Den76] first proposed using a lattice to model the security requirements

of an information flow analysis. This approach was implemented in a modular

program analysis by Myers and Liskov [ML97]. Each element of their lattice

is a set of pairs, where the first of the pair is an owner and the second of the

pair is a set of allowed readers for that owner. Data is permitted to flow from a

source to a destination if the destination’s label has fewer owners and/or fewer

readers per owner. Our tag lattice simplifies this model by only tracking the

allowed readers. This is reasonable for a lattice that is intended for the end

user. Two interesting ideas originating in [ML97] are declassification and label

polymorphism. Declassification is a reduction on information flow restrictions by

a trusted component. We intend to investigate approaches to declassification as

future work. Label polymorphism can be implemented by a security policy in

the monent framework, if it is extended to permit the extraction of tags from

runtime values.

Recently, the operating systems community has investigated the use of infor-

mation flow as a process-level security mechanism [KYB07, EKV05]. However,

labels in these frameworks are more like capabilities: they are created dynami-

cally and are not visible to the end user.

5.7.4 Application isolation

The monent security model relies on the security manager’s ability to identify

and control the external interactions of each monent. Other work has focused

on isolating untrusted components within a composition. Subspace [JW07] and

MashupOS [WFH07] describe approaches to isolating JavaScript-based applica-

tions within a web browser. We avoid the need to use these techniques since
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monents are compiled from a high level description. However, the monent se-

curity model could be adapted to applications written directly in HTML and

JavaScript using these techniques.

5.7.5 Presentation-layer integration

Key issues when designing a UI integration tool include the level of integration

between components (e..g completely independent, separate but interlinked, or

directly interlinked), the approach for handling update dependencies, and the

security model. [YBS07] describes a presentation layer integration framework

for web applications. Linking of components is specified in an XML composition

model. At runtime, this model is interpreted by middleware, which automatically

calls dependent components based on event notifications. The level of UI integra-

tion is similar to that provided by monents: each component’s UI elements are

distinct (in this case on a single web page), but components respond to changes

in dependent components.

MashMaker [EG07] provides a high level programming language and end user

development environment for building composite web applications. Composition

in MashMaker requires more user involvement than our approach, but permits

the merging of presentation elements from the constituent web services. Data

dependencies are tracked by the underlying language, and dependent values are

updated automatically.

Neither integration framework provides security guarantees. Compared to

these frameworks, our approach sacrifices tight coupling of the UI elements (com-

pared to MashMaker) and flexibility in component linking to achieve a much

simpler composition model.
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5.7.6 Automatic service composition

The web services community, has investigated the automatic (or semi-automatic)

composition of web services (e.g. [RS05, SHP02, NBM07]). The automatic com-

position of presentation-layer components is considered in [DI05]. These ap-

proaches focus on either the matching and adaptation of complex arguments and

protocols or the selection of services and links using semantic information. I

avoid these challenges by using simple argument datatypes (with no subtyping

or adaptation) and an open composition model, where each setting is matched

independently, and unmatched settings are left as inputs.

5.8 Recap

In this chapter, we looked into issues related to secure end user composition.

Certain classes of service-based applications, such as those handling sensitive

financial or personal data, require security guarantees in order to be accepted by

users. I defined the information flow interface as a new abstraction to externalize

the information flow properties of a component. Such interfaces are used by a

security manager to evaluate whether a composition satisfies a security policy.

I have instantiated this model in monents, which are simple user interfaces

on top of external services, and can securely share/correlate data from different

sources. Monents can be build by casual developers and composed by end users,

without having to worry about many of the security issues faced when building

on top of lower-level abstractions.
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CHAPTER 6

Conclusion and Future Work

In this dissertation, we have seen how formal models case be used to understand

important problems in service-based systems. Specifically, we looked at lost mes-

sages in asynchronous programming, inconsistent end-states in flow composition

languages, in-sufficient privileges and unintended disclosures in access policy in-

tegration, and unintended disclosures in end-user composition.

For each issue, I defined new abstractions which limit the possible system

behaviors in exchange for easier reasoning about the issue being addressed.

These new abstractions convert issues which are difficult to detect in isolation to

properties which can be enforced through compositional, syntax-directed anal-

yses. These analyses have been implemented in four prototypes: TaskJava,

BPELCheck, RoleMatcher, and Monents.

In this section, I recap my contributions and look at potential future work

in each area. Then, I briefly consider how the approach I have taken can be

broadened as a methodology to support the development of robust software.

6.1 Asynchronous Programming

In Chapter 2, I described the task programming model and its instantiation in

the TaskJava extension to Java. This approach provides three advances over

prior work: 1) a modular translation enabled by method annotations, 2) the idea
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of a linkable scheduler, which has been formalized through a two-level operational

semantics and implemented in our TaskJava compiler, and 3) the design of a

CPS translation that works with Java language features including exceptions and

sub-classing.

TaskJava is the first step toward my goal of writing robust and reliable

programs for large-scale asynchronous systems. I plan to improve our compiler

implementation and extend the TaskJava language. For example, I would like to

add Tame’s fork and join constructs to TaskJava, in a manner that is compatible

with exceptions, and supports the static guarantees currently provided by our

language.

I also plan to investigate how the explicit control flow of TaskJava programs

can improve static analysis tools. I expect analyses for TaskJava programs to

be more precise when compared to analyses of general event-driven programs,

which must reason about event flow through function pointers and objects. In

addition, TaskJava’s translation approach may also yield insights about how

event-programming frameworks may better support analysis tools. For example,

a TaskJava program interacts with the scheduler in two ways: through spawn

and through wait. These interactions are both translated into event registrations.

In a program written directly using callbacks, making the distinction between

these cases explicit yields more information about the programmer’s intent, which

may help static analyses.

Finally, I plan to investigate a version of the TaskJava compiler for embed-

ded systems. Many very-small embedded systems (e.g. those used for sensor

networks) cannot use threads as a concurrency abstraction due memory usage

and non-deterministic scheduling. TaskJava’s async annotations will help in

analyzing stack usage. If we restrict the TaskJava language by disallowing
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(non-tail) recursion and local variables used across asynchronous calls, we can

establish a static memory bound for each task’s continuation. Possible targets

for an embedded version of TaskJava include Virgil [Tit06], a Java-like language

with static memory allocation, and Squawk [SCC06], a Java Virtual Machine de-

signed for small systems used in Sun Microsystems’ SunSpot embedded processor

boards [sun].

6.2 Consistency

I made two contributions in Chapter 3. First, I formalized a notion of consistency

for interacting web services that can be locally checked, given the code for a

process and conversation automata specifying the interactions with its peers.

Second, I developed BPELCheck, a tool for BPEL process developers that

statically checks BPEL processes for consistency violations.

I am pursuing several future directions to make BPELCheck more robust

and usable. First, I currently abstract the data in the services to only track

local variables of base type. Services typically interact through XML data, and

processes query and transform the XML through XPath and XSLT. I plan to

integrate reasoning about XML [FBS04a] into BPELCheck. Further, I assume

synchronous messaging, but certain runtimes can provide asynchronous (queued)

messages, for which an additional synchronizability analysis [FBS05] may be re-

quired.

Finally, I would like to investigate how our notion of consistency can be ap-

plied to systems which are not described using flow composition languages. For

example, how can one capture the notion of consistency for systems like Amazon’s

service-oriented architecture? If consistency requirements are specified by devel-

245



opers, is a dynamic monitoring facility useful? Or, is a static program analysis

needed to provide value to developers?

6.3 Relating Access Frameworks

Access control integration for systems interacting via service calls is an important

industrial problem. Current solutions (e.g., from Securent, Vaau, and Aveksa)

either perform expensive and error-prone manual integration, or ad hoc mining

of access control rules from logs that are then centrally managed and enforced.

In contrast, our global constraint analysis, together with our precise formulation

of the semantics, allows us to make precise claims of correctness with respect to

sufficiency and confidentiality.

In the course of doing this work, we encountered a number of subtle issues

where the formal model gave us important insights into the problem. Examples

include the definition of sufficiency and minimality as well as a categorization of

the situations where data can be disclosed. We do not expect that this thesis will

be the final word on this topic, but serve as a description of the problem and a

starting point for refined solutions which come out of attempts to address these

issues in real world situations.

6.3.1 Limitations

I am addressing some limitations in current work. In the event that no global

role schema satisfying our constraints exists for a given system, I currently just

report an error. Going forward, I would like to provide more guidance to the

user, e.g., by providing feedback about which services and constraints actually

cause the infeasibility. This information can be obtained as an unsatisfiable core
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from the SAT solver.

I can also attempt to relax constraints or drop inter-system calls and return

to the user a solution which satisfies as many of the constraints as possible. This

approach has been proposed for other access control interoperability situations

[GQ96]. For example, upon finding that no full solution is possible, one might

selectively relax the role separation constraints until a sufficient global schema is

found. This variation of the global role schema inference problem can be reduced

to pseudo-boolean constraints.

In a large collection of systems, the appropriate mappings between roles may

not be obvious. If several candidate roles can satisfy the constraints for a given

group, the system arbitrary picks one of them. The administrator may influence

this process by using role ascriptions. In fact, our approach permits the adminis-

trator to pick any point on the spectrum from full role inference to the validation

of a completely specified global role schema. However, manually providing as-

criptions for all the roles in a large enterprise may be quite tedious. One solution

is to use existing role mining techniques [VAG07, ZRE07, BGJ05], which look

at the underlying object permissions, to automatically compute an initial set of

ascriptions and run our algorithm using this initial guess. If these ascriptions do

not admit a global role schema, the solver could relax them and consider other

role mappings as needed.

6.3.2 Applications of global schema inference

As described in Section 4.6, global role schema inference is useful in situations

where a packaged enterprise application must integrate with a number of other

applications, the full set of which is not known in advance.

As shown by the data synchronization example of Section 4.2, global role
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schema inference should also be useful as a security management tool, permitting

IT managers to define and implement a global access control policy for their

unique set of deployed systems. A number of companies have recently introduced

applications to manage enterprise-wide RBAC policies. These applications are

based on a centrally defined and enforced policy, possibly defined with help from

a role mining tool. In contrast, my approach leverages each application’s existing

RBAC infrastructure and simply tries to find a global policy consistent with

the collection of individual policies. I believe that this is more practical, as local

access policy enforcement in each application is not going away and can introduce

problems if the global policy is inconsistent with respect to local policies. I

envision a collection of tools to extract role interfaces from each application’s

metadata, maintain the global role schema, and keep the user-role assignments

in each application consistent with the global schema.

Finally, global role schemas should be useful in the definition of access poli-

cies for enterprise web portals, such as the patient information portal described

in Section 4.2, which combine content from several applications in a single web

interface. Portal frameworks generally provide their own RBAC policy enforce-

ment, which must be manually configured to be consistent with the individual

applications being displayed in the portal. Our global schema tool could auto-

matically populate the portal’s RBAC database with an inferred schema based

on the policies of the displayed applications.

6.4 Secure Composition

In Chapter 5, I presented monents, a framework for usable, safe, and composable

mobile applications. Monents empower the end user by giving them control

over customization, composition, and the sharing of their data. Software writers
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can focus on the creation of new components, specify their intended composite

application declaratively, benefiting from a clear security model. The compiler

then handles the generation of the final application that is runnable on mobile

devices, and respects all security policies.

My formal interface model provides a very general framework for reasoning

about information flow and admits a provably secure automatic composition al-

gorithm. In addition, by separating the security policy from the definition of

an interface, we allow security policies that are tailored to the environment of

a component. Similarly, the same security policy may be applied to multiple

components.

From my experiences with the movie monent, and other proposed examples,

I believe that this approach to composition is sufficient to meet the expectations

of mobile users in the real world. DoCoMo hopes to validate this through user

experience studies.

To facilitate an ecosystem of reusable monents, we plan to provide developers

with guidelines on naming conventions and a collection of predefined, domain-

specific datatypes (e.g. for addresses, phone numbers, and other common set-

tings). For the small fraction of the cases where this is not sufficient, we also

could provide developers with more powerful composition tools that support re-

naming and mapping inputs/outputs. These tools would be used offline to build

“adapter” monents bridging incompatible monents. Such adapters would then be

composed by end users just like any other monents. Another tool might support

better integration of monent user interfaces by specifying the visual layout of UI

elements across a composition.

We would also like to simplify the extraction of structured content from web

pages, borrowing ideas from MashMaker [EG07] and Koala [LLC07], a tool which
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captures web navigation actions into a descriptive and modifiable language.

Finally, we are looking into the integration of monents with communication

applications like email and instant messaging. We believe that the context and

shared state provided by monents can be a useful supplement to less structured

message exchanges.

6.5 Beyond Design Patterns

Design Patterns are “descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context” [GHJ95]. As

such, design patterns provide guidance on how to address recurring issues, either

due to language limitations (e.g. the singleton pattern) or due to fundamental

design trade-offs (e.g. the visitor pattern as a solution to the expression prob-

lem). Patterns have been described to address architectural organization [SG96]

and specific domains such as concurrent networked software [SSR00], enterprise

applications [Fow02], and application integration [HW03].

The lightweight formal models described in this thesis, which might be called

design models, combine the best aspects of design patterns and formal modeling

approaches. This is achieved by modeling a class of systems rather than a specific

instance of a system type. For example, in Chapter 3, we formalize languages for

flow composition and consistency specifications, rather than a specific business

process.

Like design patterns, the lightweight formal models presented in this thesis

highlight important design decisions and are reusable in different contexts. Key

aspects of each area were elucidated through the modeling process (e.g. the

formalization of Chapter 2 made issues regarding error handling in event-driven
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programs clearer). The effort of formal modeling can be amortized over many

system instantiations. Reusable formal models have been proposed in the past

(e.g. [GD90]). However, these proposals largely focus on creating specialized

models via refinement. In my approach, the model remains abstract, but key

properties of well-formed systems are distilled for use by developers.

In fact, developers do not need to understand the formal model to take advan-

tage of a design model and tools derived from such models. Two classic examples

of formal models which see widespread use in industry are the relational data

model [Dat82] and role-based access control [FK92], both based on set theory.

Design models go beyond design patterns in linking a system’s static descrip-

tion to guarantees about its dynamic behavior. This is achieved by defining new

abstractions (represented in the model by mathematical objects and properties)

to be used by the programmer. I believe that, although better static analysis

techniques and type systems can help for specific issues (e.g. concurrency), much

of the progress in software robustness will occur through better abstractions and

design models.

My thesis has shown how modern techniques in programming language se-

mantics can be applied to create concise and meaningful models. Going forward,

I would like to build on this work, creating a more systematic and practitioner-

friendly approach to defining design models. Perhaps this may involve building a

framework for Domain Specific Languages (DSLs), where design models can be

implemented on top of (or mapped to) existing general purpose languages. I also

hope to begin a catalog of design models which fully address the key issues faced

by developers of enterprise software and service-based systems.
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