
The Cost of Punctuality

Patricia Bouyer1,2,∗ Nicolas Markey1 Jöel Ouaknine2 James Worrell2

1 LSV, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

2 Oxford University, UK
{joel,jbw}@comlab.ox.ac.uk

Abstract

In an influential paper titled “The Benefits of Relaxing
Punctuality” [2], Alur, Feder, and Henzinger introduced
Metric Interval Temporal Logic (MITL) as a fragment of
the real-time logic Metric Temporal Logic (MTL) in which
exact or punctual timing constraints are banned. Their
main result showed that model checking and satisfiability
for MITL are bothEXPSPACE-Complete.

Until recently, it was widely believed that admitting even
the simplest punctual specifications in any linear-time tem-
poral logic would automatically lead to undecidability. Al-
though this was recently disproved, until now no punctual
fragment ofMTL was known to have even primitive recur-
sive complexity (with certain decidable fragments having
provably non-primitive recursive complexity).

In this paper we identify a ‘co-flat’ subset ofMTL that
is capable of expressing a large class of punctual specifi-
cations and for which model checking (although not satis-
fiability) has no complexity cost overMITL. Our logic is
moreover qualitatively different fromMITL in that it can
express properties that are not timed-regular. Correspond-
ingly, our decision procedures do not involve translating
formulas into finite-state automata, but rather into certain
kinds of reversal-bounded Turing machines. Using this
translation we show that the model checking problem for
our logic isEXPSPACE-Complete.

1 Introduction

In the formal study of real-time systems, it has long been
accepted that there is an unavoidable and substantial trade-
off between theexpressivenessof a specification formal-
ism and thefeasabilityof the associated verification task.
This tension figures most prominently in the case of Metric
Temporal Logic (MTL), a timed extension of Linear Tem-
poral Logic (LTL), in which the temporal operators are con-
strained by time intervals.

∗Partly supported by a Marie Curie fellowship.

MTL was introduced almost two decades ago by Koy-
mans [14], and has since been extensively studied. Unfor-
tunately, the model-checking and satisfiability problems for
MTL over dense time are undecidable [3, 20], an extreme
case of infeasibility. Researchers were therefore led to seek
relaxations of the framework in a search for tractability.
Alur and Henzinger, for example, proved that model check-
ing MTL over discrete time wasEXPSPACE-Complete [4].
Since untimedLTL model checking is alreadyPSPACE-
Complete, their result clearly sat towards the desirable end
of the feasibility spectrum. The price they paid, however,
was to renounce the density of time.

Accommodating time density, unfortunately, appeared to
be problematic: it was widely held at the time that any
formalism in which exact or punctual timing constraints
could be expressed would automatically be undecidable.
Such constraints correspond to allowing singleton intervals
in MTL temporal operators, and enable one to specify, for
example, that a particular event is to be followed exactly
one time unit later by another one. In their seminal pa-
per titled “The Benefits of Relaxing Punctuality” [2], Alur,
Feder, and Henzinger therefore considered a fragment of
MTL, called Metric Interval Temporal Logic (MITL), which
syntactically bans punctual timing constraints. Their main
achievement was to show that the model-checking and sat-
isfiability problems forMITL are EXPSPACE-Complete.
The proof they gave, in whichMITL formulas are first trans-
formed into timed automata, was quite complicated. Nev-
ertheless, this work was influential as it firmly established
MITL as the most important fragment of Metric Temporal
Logic over dense-time having a feasible model-checking
problem. In recent years, new or simplified proofs of the
EXPSPACE-Completeness ofMITL have appeared in the
literature (e.g., [23, 13, 16]).

Recently, it was discovered that punctuality and dense
time do not after all necessarily lead to undecidability,
although the complexity of the various decidable frag-
ments studied was either non-primitive recursive or non-
elementary [19, 21, 22]. From a feasibility point of view,
such improvements, while significant, remained unsatisfac-
tory.

1

The aim of the present paper was therefore to investigate
more thoroughly the intrinsic cost of allowing punctuality
in a dense-time setting. Our main reasults concern two new
‘punctual’ fragments of Metric Temporal Logic,Bounded-
MTL andcoFlat-MTL.

Bounded-MTL is derived fromMTL by requiring all
time-constraining intervals to have finite length. As a re-
sult, the truth or falsity of aBounded-MTL formula on a
given timed word is determined by an initial segment of
the word whose duration depends solely on the formula.
We are then able to show that the model-checking and sat-
isfiability problems forBounded-MTL over dense time is
EXPSPACE-Complete.

Bounded-MTL is therefore a punctual fragment of Met-
ric Temporal Logic having precisely the same complexity as
MITL. The two fragments, however, differ in important re-
spects. A first observation is that, at a syntactic level,MITL
restrictsMTL in banning constraining intervals that are ‘too
small’, whereasBounded-MTL prohibits intervals that are
‘too large’. Semantically,Bounded-MTL thus cannot ex-
press invariant properties, required to hold forever, contrary
to MITL. In that respect, the expressiveness ofBounded-
MTL is quite restricted.

Thankfully, it is possible to incorporate invariance into a
substantially larger fragment ofMTL. The principal contri-
bution of this paper concerns the logiccoFlat-MTL, which
subsumesLTL, Bounded-MTL, and is closed under invari-
ance. Our main result is that model checking this highly
expressive punctual fragment ofMTL is EXPSPACE-
Complete. Perhaps surprisingly, satisfiability ofcoFlat-
MTL, on the other hand, turns out to be undecidable.

Our proof of EXPSPACE membership proceeds by
translatingFlat-MTL formulas into alternating timed au-
tomata, and in turn simulating runs of these using special
kinds of reversal-bounded Turing machines, for which ter-
mination can be shown to be inEXPSPACE. By contrast,
MITL formulas are analysed by translation into timed au-
tomata, and, unlikeBounded-MTL andcoFlat-MTL, can
therefore only give rise to timed-regular languages.

MITL and coFlat-MTL have incomparable expressive-
ness. However, it can be argued thatcoFlat-MTL comprises
virtually all the specifications that one could reasonably be
interested to model check in practice. One might therefore
view the dense-time logiccoFlat-MTL as the first signifi-
cant fragment ofMTL to combine high expressiveness and
punctuality together with model-checking feasibility.

2 Channel Automata

Before presenting our real-time modelling framework,
we introduce a class of discrete machines that ultimately
underly our model-checking algorithm forcoFlat-MTL.

A channel automatonis a finite-state automaton

equipped with a single unbounded fifo channel (or queue).
The transitions of the automaton either write messages to
the tail of the channel or read messages from the head of
the channel. This model is easily seen to be Turing pow-
erful [8]. In this paper we consider a class of channel au-
tomata with two extra primitives:global renamingandoc-
currence testing. The former allows a transition to simulta-
neously rename all the letters on the channel according to
some renaming relation, including the possibility of delet-
ing letters. The latter allows a transition to be guarded by
the predicate that some letter not appear on the channel.

Given an alphabetΣ, let Σε denoteΣ ∪ {ε}, whereε
represents the empty word.

Definition 1. A Channel Automaton with Renaming
and Occurrence Testing(CAROT) is a tupleC =
(S, s0,Σ,∆, F), whereS is a finite set of control states,
s0 ∈ S is the initial control state,F ⊆ S is a set of ac-
cepting control states,Σ is a finite channel alphabet and
∆ ⊆ S × Op× S is the set of transition rules, with Op=
{σ!, σ? | σ ∈ Σ}∪{zero(σ) | σ ∈ Σ}∪{R | R ⊆ Σ×Σε}
the set of operations. Given a ruleτ ∈ ∆, we denote the
corresponding operation op(τ). Intuitively, zero(σ) ∈ Op
guards against the occurrence ofσ in the channel, and
R ∈ Op is interpreted as a global renaming (where renam-
ing toε corresponds to deletion).

A global stateof C is a pairγ = (s, x), wheres ∈ S is
the control state andx ∈ Σ∗ is the channel contents. The
rules in∆ induce a transition relation on the set of global
states according to the following table, where, givenx =
x1 . . . xn ∈ Σ∗ andR ⊆ Σ × Σε, R(x) def= {y1 · · · yn ∈
Σ∗ : xi R yi}.

Rule Transition
(s, σ!, t) (s, x) → (t, x · σ)
(s, σ?, t) (s, σ · x) → (t, x)

(s, zero(σ), t) (s, x) → (t, x), if σ 6∈ x
(s,R, t) (s, x) → (t, y), if y ∈ R(x)

Assume thatΣ always contains a special symbolB,
called theend-of-channel marker. A computation ofC is
a (finite or infinite) sequence of transitionsγ0 → γ1 →
γ2 → · · · with γ0 = (s0,B). A finite computation isac-
ceptingif it ends in an accepting stateγn.

To aid our analysis of computations, we make the follow-
ing (harmless) assumption aboutC. We suppose that given
consecutiverules (s,op1, t) and (t,op2, u), op1 = B? iff
op2 = B!: roughly speaking, this ensures that there is al-
ways a unique copy ofB on the channel. This restriction
allows us to use the end-of-channel marker to measure the
number ofcyclesof the channel during a computation. Intu-
itively a segment of the computation during whichB moves
from the tail of the channel to the head of the channel in-
volves a complete cycle of the channel. Formally we define

2

s b! s b! s R t B? u B! v
b? v c? s a! s b! s R t B? u B! v

a? v c? s b! s R t B? u B! v
c? s R u B? u B! v

Fig. 1. Computation table

s b! s b! s R t B? u u u B! v v v v v v v
v b? v c? s a! s b! s R t B? u B! v v v v v
v v v v v a? v c? s b! s R t B? u B! v v v
v v v v v v v v v c? s R u u u B? u B! v

Fig. 2. Computation table with sliding window

cycles(%) to be the number of transitions in% with operand
B!. This measure is similar to the notion of head reversals
for Turing machines.1

Definition 2. Thecycle-bounded reachability problemfor
CAROTs is as follows:
Instance: A CAROTC and a cycle boundN .
Question: DoesC have an accepting computation% with
cycles(%) 6 N?

In the channel automatonC below, letR be the relation
that nondeterministically renamesb to eitherb or c.

C : s t u v

a!,b!

R B? B!

a?,b?

c?

Figure 1 represents a computation ofC in tabular form.
Each row of the table represents a cycle of the channel, and,
reading left-to-right, it records the sequence of transitions
during that cycle. The most important property of the table
is that the spacing is arranged so that an operation that reads
a message is placed directly below the operation that origi-
nally wrote the message, necessarily in the previous cycle of
the channel.2 In Figure 1 matching pairs of reads and writes
are indicated by rectangular boxes. Because of global re-
naming, the corresponding read and write events need not
refer to the same element ofΣ. For instance, in Figure 1, a
write-eventb! is sometimes aligned with a read-eventc?.

The length of the computation table (i.e., the number
of columns) is at least the maximum length of the chan-
nel during the corresponding computation. It is easy to see
that this can be exponential in the value of the cycle bound.
(Consider a machine that repeatedly reads one copy ofσ

1Formally, it can be shown that anN -cycle-bounded CAROT can sim-
ulate anN -reversal-bounded single-tape Turing machine, andvice-versa.

2To accommodate global deletion in such a table (i.e., renaming toε),
we postulate a self-loop(s, ε?, s) for each control states of C.

and writes two copies ofσ.) However we describe a pro-
cedure to guess the existence of a computation table using
only polynomial space in the value of the cycle bound. The
first step is to fill in the blank spaces in the table by repeat-
ing the immediately preceding control state; for example,
starting from Figure 1 we obtain the table in Figure 2.

A nondeterministic procedure for guessing and verify-
ing such a table involves storing only part of the table in
memory at any one time. Imagine a sliding window of di-
mension3× h, whereh is the table height (i.e., the number
of rows). The window represents the part of the table in
view at any time; it starts at the left end and is moved one
place to the right with each phase of the procedure. Given
a particular view, a phase of the procedure checks that the
transitions therein are consistent with the control structure
of C. For instance, in Figure 2, while viewing the leftmost
window it is checked that(s, b!, s), (v, b?, v) ∈ ∆. Some-
what more subtly the corresponding read and write events
in the current view must be consistent with the zero testing
and renaming in the rest of the table. For instance, in Fig-
ure 2, again in the left-most window, the justification of the
vertically alignedb! andb? operations is that between the
occurrence of these two operationsb was neither renamed
nor zero-tested.

In general, what is required is to store in memory the
cumulative effect of the zero tests and renaming in the part
of the table not currently in view. To this end, we associate
with each ruleτ ∈ ∆ a relationRτ on Σε according to
the value ofop(τ). The table below shows this association,
whereId is the identity relation onΣε.

op(τ) σ!, σ? zero(σ) R

Rτ Id Id− {(σ, σ)} R ∪ {ε, ε}

Now suppose that on rowi of the computation table
the sequence of transition rules isτ1, τ2, . . . , τn, and that
τj is the transition currently in view. Then the sliding-
window procedure stores in memory a pair of relationsLefti
and Righti on Σε, where Lefti = Rτj ◦ · · · ◦ Rτ1 and
Righti = Rτn◦· · ·◦Rτj+1 . Note thatRighti must be guessed
since it refers to the part of the table to the right of the cur-
rent view, which has not been seen yet. The correctness
criterion on the current view is that ifσ, σ′ ∈ Σ are verti-
cally aligned, withσ! on row i andσ′? on row i + 1, then
σ (Lefti+1 ◦ Righti) σ

′. Finally, observe that it is straight-
forward to verify the consistency of the guessed value of
Righti from one view to the next.

Theorem 3. The cycle-bounded reachability problem for
CAROTs is solvable in polynomial space in the size of the
channel automaton and the value of the cycle bound.

3

3 Metric Temporal Logic

In this section we formally define the syntax and seman-
tics of Metric Temporal Logic. Following [10, 11, 12, 25, 4,
5], among others, we interpret the logic over timed words:
ω-sequences of events with associated timestamps.3

Definition 4. The syntax of Metric Temporal Logic
(MTL) [14] is defined by the following grammar:

MTL 3 ϕ ::= σ | ¬σ | ϕ∨ϕ | ϕ∧ϕ | ϕUI ϕ | ϕ ŨI ϕ

whereσ ranges over a finite set of eventsΣ and I is an
interval of R+ with bounds inN ∪ {∞}.

MTL formulas are interpreted over timed words: a timed
word w is an infinite sequence(σi, ti)i∈N whereσi ∈ Σ
andti ∈ R+ for eachi, and such that the sequence(ti)i∈N
is strictly increasing and diverges to infinity.

Definition 5. Letw = (σi, ti)i∈N be an infinite timed word,
and k ∈ N. The (pointwise) semantics ofMTL is defined
recursively as follows (we omit Boolean operations):

w, k |= σ ⇔ σk = σ

w, k |= ϕUI ψ ⇔ ∃i > 0. w, k + i |= ψ, tk+i − tk ∈ I
and ∀0 < j < i, w, k + j |= ϕ

w, k |= ϕ ŨI ψ ⇔ w, k |= ¬
(
(¬ϕ) UI (¬ψ)

)
.

If w, 0 |= ϕ, we writew |= ϕ.

Additional operators, such ast (true), f (false),⇒, ⇔,
F, G andX, are defined in the usual way:FI ϕ ≡ t UI ϕ,
GI ϕ ≡ f ŨI ϕ, andXI ϕ ≡ f UI ϕ. We also use pseudo-
arithmetic expressions to denote intervals. For example,
‘= 1’ denotes the singleton{1}.

Let us point out that the main results of this paper also
hold under a weakly monotonic semantics for time (in
which the timestamps are merely nondecreasing), as well
as under a non-strict semantics for temporal operators (in
which the present time point is included).

3.1 Satisfiability and model checking

We consider the following two fundamental questions
for MTL and various fragments thereof:

• The satisfiability problem, asking whether a given
MTL formulaϕ is satisfiable,i.e., whetherw |= ϕ for
some infinite timed wordw overΣ;

3This is the so-calledpointwisesemantics. Another semantics, interval-
based, is interpreted over continuous signals. See e.g. [11, 23] for details.
As noted in [11], the known complexity results forMITL hold both in the
interval-based and in the pointwise semantics.

• The model-checking problem, asking whether a given
timed automatonA satisfies a givenMTL formulaϕ,
i.e., whether all timed words accepted byA satisfyϕ
(see [1] for details). We writeA |= ϕ when the answer
is positive.

Among others, we identify the following syntactic frag-
ments ofMTL. Linear Temporal Logic(LTL) can be con-
sidered as the fragment ofMTL in which modalities are not
constrained (i.e., whereR+ is the only constraining inter-
val). Metric Interval Temporal Logic(MITL) is the frag-
ment ofMTL where punctuality is not allowed (i.e., where
interval constraints are not singletons).Bounded-MTL is
the fragment ofMTL in which all interval constraints have
finite length.

MITL was introduced in [2], motivated by the role played
by punctuality in the undecidability proof forMTL. The
main result of [2] was that model checking and satisfiability
for MITL areEXPSPACE-Complete. As we will see, these
problems are alsoEXPSPACE-Complete forBounded-
MTL. This is somewhat surprising in view of the following
example.

Example 6. Let thevariability of a timed word be the max-
imum number of events that occur in any one time unit. We
exhibit a family ofBounded-MTL formulas{ϕn}n∈N such
that the size ofϕn is linear in n, but the variability of any
timed word satisfyingϕn is at least22n

, i.e.,doubly expo-
nential in n. We defineϕn ≡ a ∧ ϕD ∧ G[0,2n] ϕD, where
ϕD ≡ (a → F=1 (a ∧ X 61b)) ∧ (b → F=1 (a ∧ X 61b)).
If % |= ϕn, then the variability of% must (at least) double
every time unit over the first2n time units.

Observe that whileBounded-MTL permits punctual for-
mulas, it disallows unconstrained modalities. In particular,
Bounded-MTL is not suitable to express invariance—the
most basic type of temporal specification—and it does not
subsumeLTL (either syntactically or semantically). Intu-
itively, Bounded-MTL is only suitable for expressing time-
bounded specifications. To remedy this deficiency we in-
troduceFlat-MTL as the fragment ofMTL generated by the
grammar:

Flat-MTL 3 ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕUJ ϕ | ψUI ϕ | ϕ ŨJ ϕ | ϕ ŨI ψ

whereJ ranges over the set of bounded intervals,I over
the set of all intervals, and the underlined formulaψ ranges
overLTL.

Notice immediately thatFlat-MTL subsumes bothLTL
andBounded-MTL, however it is not closed under nega-
tion. In fact, the most natural way to state our main results
is in terms of the dual logic, which we callcoFlat-MTL.
This consists of the duals (i.e., the negations) ofFlat-MTL

4

formulas. Correspondingly, the syntactic restriction deter-
miningcoFlat-MTL as a subset ofMTL is dual to that deter-
mining Flat-MTL: we require that, ifI is unbounded, then
formulas appearing on the right ofUI and on the left of̃UI

beLTL formulas.
Like Flat-MTL, coFlat-MTL includes bothLTL and

Bounded-MTL. However, crucially, it is also closed un-
der GI for unboundedI, sinceGI ϕ ≡ f ŨI ϕ. Thus we
have the slogan:

Bounded-MTL + Invariance⊆ coFlat-MTL .

This means that one can express a much more useful class
of specifications incoFlat-MTL than inBounded-MTL. In
particular, a wide variety of safety specifications can be ex-
pressed in the formGϕ, whereϕ is in Bounded-MTL.

The main result of this paper is that the model-checking
problem forcoFlat-MTL is EXPSPACE-Complete. This
last problem can be understood as a slight generalisation of
the satisfiability problem for the dual logicFlat-MTL.

Example 7. The formulaG (req⇒ F[0,1] (acq∧ F=1 rel))
says that every time the lock is requested, it is acquired
within one time unit, and released after exactly one fur-
ther time unit. This formula is incoFlat-MTL, but is not
in Bounded-MTL (due to the unconstrainedG) and is not
in MITL (due to the punctualF=1).

Given a timed automatonA, to find a violation of the
above formula one must search for a run ofA such that after
some request event, every acquire event in the subsequent
time unit fails to be followed after exactly one time unit by
a release event. Intuitively, over a dense-time semantics,
this task seems to require ‘remembering’ a potentially un-
bounded amount of information. Thus ourEXPSPACE-
Completeness result for model checkingcoFlat-MTL may
appear surprising.

For comparison with previous work we describe one
more fragment ofMTL, calledSafety-MTL [19, 21]. This
is determined by the restriction that the Until modality
only be constrained by bounded intervals. LikecoFlat-
MTL, Safety-MTL includesBounded-MTL and is closed
underG , but, unlikecoFlat-MTL, satisfiability is decid-
able for Safety-MTL whereas model checking is non-
elementary.

We summarise the relationships between the various log-
ics introduced above in the following diagram (where↪→
indicates a syntactic inclusion):

LTL

Bounded-MTL
Safety-MTL

coFlat-MTL

MITL

MTL

Model Checking Satisfiability
LTL PSPACE-C. PSPACE-C.

MITL EXPSPACE-C. EXPSPACE-C.
Bounded-MTL EXPSPACE-C. EXPSPACE-C.

Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL EXPSPACE-C. Undec.

MTL Undec. Undec.

Table 1. Complexity of fragments of MTL (in-
terpreted over infinite timed words)

3.2 Main results

Table 1 summarizes the complexity of the fragments
of MTL defined above. Dark gray boxes correspond to re-
sults stated and proved elsewhere, whereas light gray boxes
correspond to results that can be deduced straightforwardly
from other papers. The undecidability ofMTL is proved
in [20], whileMITL andSafety-MTL have been defined and
studied respectively in [2] and in [19, 21].

In this paper, we state the following results:

• The model-checking problem forcoFlat-MTL is in
EXPSPACE (see sections 4, 5), which immediately
implies the same result forBounded-MTL.

• The model-checking and satisfiability problems for
Bounded-MTL areEXPSPACE-Hard, which imme-
diately implies thatcoFlat-MTL model checking is
alsoEXPSPACE-Hard.

For lack of space, we refer to [7] for full details.

In addition, it is worth noticing that the undecidabil-
ity proof of [20] for the satisfiability ofMTL over infinite
words can also be used to prove that the satisfiability prob-
lem forcoFlat-MTL (and thus the model-checking problem
for Flat-MTL) is undecidable. The result that the satisfia-
bility problem forSafety-MTL is non-elementary is a con-
sequence of [6].

The proof that the model checking ofcoFlat-MTL is in
EXPSPACE can be sketched as follows:(i) if ϕ is the for-
mula that we want to verify, we first construct an alternating
timed automaton (ATA) which recognizes all models of¬ϕ
(Section 4.1);(ii) we then prove properties of that ATA
(Section 4.2);(iii) we construct a CAROT which will sim-
ulate joint executions of the automaton we want to model
check and the above-mentioned ATA (Section 5).

4 Alternating Timed Automata

In this section, we recall the definition of one-clock al-
ternating timed automata (ATA), a natural timed analog of

5

alternating automata [15, 19]. ATA generalise classical
(Alur-Dill) timed automata [1], and, unlike the latter, are
closed under complement. However language-emptiness is,
in general, undecidable for ATA.

Let L be a finite set of locations andx a clock variable.
We defineΦ(L, x) as the set of formulas defined by the
grammar ‘ϕ ::= t | f | ϕ ∧ ϕ | ϕ ∨ ϕ | ` | x ∼ c | x.ϕ’
where` ∈ L,∼ ∈ {<,6,=,>, >} andc ∈ N.

Definition 8. A (one-clock) alternating timed automatonA
is a tuple(L,Σ, δ0, δ, F) whereL is a finite set of locations,
Σ is a finite set of actions,δ0 ∈ Φ(L, x) is an initial con-
dition, δ : L × Σ → Φ(L, x) is the transition relation, and
F ⊆ L is a set of accepting locations.

Given a timed alternating automatonA, let M be the
maximum constant mentioned in the clock contraints inA.
Define the set of clock valuesVal to be [0,M] ∪ {⊥}.
Here⊥ represents any clock value strictly greater thanM .4

The set ofstatesof A is L × Val. A set of statesC and a
clock valuev ∈ Val defines a Boolean valuation on the set
of formulasΦ(L, x) as follows (we omit obvious cases):

C |=v x ∼ c ⇔ v ∼ c C |=v ` ⇔ (`, v) ∈ C
C |=v x.ϕ ⇔ C |=0 ϕ

We say thatC is a minimal modelof ϕ ∈ Φ(L, x) with
respect to the clock valuev if C |=v ϕ and if there is no
proper subsetC ′ ⊆ C such thatC ′ |=v ϕ.

Let S be a set of letters, andS∗ be the set of fi-
nite words overS. A tree τ over S is a subset ofS∗

such that(i) for every words0 s1 · · · sp ∈ τ , we also
haves0 s1 · · · sp−1 ∈ τ ; (ii) if s0, · · · sp ands′0, · · · s′q are
two words ofτ , thens0 = s′0. The words0 is theroot of τ .
An element of a tree is called anode. Let ν = s0 · · · sp be
a node. The depth ofν is p, its label issp, and its successors
have set of labelssucc(ν) = {s′ ∈ Σ | s0 · · · sp s

′ ∈ τ}.
A branchof a tree is a maximal (finite or infinite) sequence
of nodes(νi)i such thatνi is a prefix ofνi+1 for eachi.
A forestis a finite set of trees.

Definition 9. An executionof an ATA over a timed word
w = (σi, ti)i∈N is a forest{τ1, ..., τk} over the setL× Val,
such that(i) any root(`, v) is such thatv = 0, and the set
of roots satisfies the initial conditionδ0 under valuation0;
(ii) for each nodeν of the forest of depthp and label(`, v),
letting v′ = v + tp − tp−1 (wheret−1 = 0), we have that
succ(ν) is a minimal model ofδ(`, σp) with respect tov′.

We use a B̈uchi acceptance condition: an execution for-
est isacceptingif every infinite branch in the forest contains
infinitely many nodes whose labels are inF × Val.

4Such clock values are indistinguishable by clock constraints inA, so
this identification is harmless. We require⊥ to satisfy the obvious arith-
metic properties, e.g.,⊥+ t = ⊥ for all t ∈ R+.

Observe that any execution forest is finitely branching,
due to the minimality assumption onsucc(ν).

We say that an execution ismemorylessif for any two
identically labelled nodesν1 andν2 of same depth, the re-
spective subtrees rooted atν1 andν2 are identical. There
is no loss of generality in restricting to memoryless execu-
tions. If A has an execution on a timed wordw then, by
a result of Emerson and Jutla [9] on the memoryless deter-
minacy of parity games, it can also be shown thatA has a
memoryless execution onw. Details can be found in [7].

4.1 Translating Formulas into Automata

Following the construction given in [19], from anyMTL
formulaϕ, we can derive an ATABϕ that recognizes exactly
the set of infinite timed words satisfyingϕ. Rather than
recall the precise definition ofBϕ here, we axiomatise its
key properties for later use. We refer the reader to [7] for
full details.

The set of locations ofBϕ is the set Sub(ϕ) of modal
subformulas ofϕ. Moreover, the transition functionδ of
Bϕ satisfies the following three axioms.
(1) Linearity: if ψ,ψ′ ∈ Sub(ϕ) are such thatψ′ appears
in δ(ψ, σ), thenψ′ is a subformula ofψ. In particular, the
only loops inBϕ are self loops.
(2) Locality: every location appearing inδ(ψ, σ) other than
ψ appears under the scope of a reset ‘x.’. Furthermore,ψ
never occurs inδ(ψ, σ) under the scope of a reset.

If ϕ ∈ Flat-MTL, thenBϕ also satisfies the following
flatnessproperty:
(3) Flatness: If ψ ∈ Sub(ϕ) is an LTL formula, then
δ(ψ, σ) contains no clock constraints. Otherwise,δ(ψ, σ)
has the form((x 6 c)∧ϕ1)∨ϕ2 ∨ϕ3, whereϕ1, ϕ2, ϕ3 ∈
Φ(Sub(ϕ), x) are such thatϕ2 only mentions locations in
{ψ} ∪ LTL andϕ3 doesn’t mentionψ. This last condition
can be read as follows: after a certain amount of time, lo-
cationψ cannot make a simultaneous transition to itself and
another location in Sub(ϕ) \ LTL.

4.2 Ranking Flat-MTL

In this section, we analyse the structure of the execu-
tion forests of those ATA arising fromFlat-MTL formulas.
Roughly speaking, the main result of this section, Theo-
rem 12, says that the segments of such an execution forest
in which the automaton clocks areactivehave a short to-
tal duration. Here we say that a clock (value) is inactive
if it is greater than the maximum clock constantM of the
automaton, otherwise we say that it is active.

In the rest of this section letBϕ denote an ATA arising
from a Flat-MTL formulaϕ, and letM be the maximum
clock constant ofBϕ. Recall that the set of locations ofBϕ

is the set Sub(ϕ) of modal subformulas ofϕ. By extension,

6

we say that a state(ψ, v) of Bϕ is inactive ifψ is an LTL
formula or ifv > M .

Given an execution forest ofBϕ, its i-th configuration is
the set of states labelling the nodes at depthi. An execution
forest of an ATA thus generates a sequence of configura-
tions % : C0 → C1 → . . . → Ck → Next we define
a rank function on configurations based on the distinction
between active and inactive clocks.

Let < be a linear order on Sub(ϕ) such thatϕ1 < ϕ2

wheneverϕ1 is a subformula ofϕ2 (one such can always
be chosen). Furthermore, letΓ denote the set Sub(ϕ) ×
{⊥,>} ordered lexicographically, where⊥ < >. We think
of > as representing an active clock, whereas (following
the notation introduced in Section 4)⊥ denotes an inactive
clock.

Definition 10. Given a configurationC of Bϕ, let the non-
LTL formulas occurring inC be written{ϕi}k

i=1, where
ϕk > ϕk−1 > . . . > ϕ1. If none of theϕi is paired
with an active clock inC, then we definerank(C) to be
the word(ϕk,⊥) . . . (ϕ2,⊥)(ϕ1,⊥). Otherwise, letϕj be
the maximum among all formulas appearing inC that are
paired with an active clock, and definerank(C) to be the
word (ϕk,⊥) . . . (ϕj+1,⊥)(ϕj ,>). We order the ranks of
configurations according to the lexicographic order onΓ∗,
denoted�.

Example 11. Let the maximum clock constant inϕ be
M = 3 and letC = {(ϕ1, 2.4), (ϕ1,⊥), (ϕ2, 0.8), (ϕ2,⊥),
(ϕ3,⊥), (ϕ4,⊥)} be a configuration ofBϕ, whereϕ4 >
ϕ3 > ϕ2 > ϕ1. Thenrank(C) = (ϕ4,⊥)(ϕ3,⊥)(ϕ2,>),
that is, we record the maximum active state and all inactive
states above it.

Let % : C0 → C1 → . . . → Ck → . . . be a sequence of
configurations in a run ofBϕ on the timed word(σi, ti)i∈N.
Given an intervalI ⊆ N, write %[I] for the subsequence
of % consisting of thoseCi with i ∈ I. Furthermore, de-
fine theactive durationof %[I], denotedduration(%[I]), to
be0 if none of theCi, i ∈ I, contains an active clock, and
tsup(I)−tinf(I)+M otherwise, wheret∞ = ∞. Intuitively,
duration(%[I]) gives an upper bound for the amount of time
that an active clock is present in the run segment%[I]. (In
caseI = {i, . . . , j} is finite, this segment includes the time
delay between positionsj andj + 1 in %, hence the extra
termM in the expression forduration(%[I]).)

Theorem 12. Let % : C0 → C1 → . . . → Ck → . . . be
the sequence of configurations of a memoryless run ofBϕ.
Then there is a partitionI of N into at most|ϕ| · 2|ϕ| inter-
vals, where for each intervalI in I, %[I] has active duration
at most2M + 1, the last interval is (unbounded and) fully
inactive, and|ϕ| is the number of non-LTL modal subfor-
mulas ofϕ.

Proof. Define an equivalence≡ on N by n ≡ m iff
rank(Cn) = rank(Cm). Now Lemma 13 (below) says that
rank is non-increasing along%; it follows that the equiva-
lence classes of≡ are intervals. Furthermore, the index of
the equivalence relation is bounded by the number of ranks,
which is easily seen to be no more than|ϕ| · 2|ϕ|. Finally, it
follows from Lemma 14 (below) that the active duration of
any equivalence class is at most2M + 1. �

It remains to prove the two technical lemmas quoted in
the proof of Theorem 12.

Lemma 13. If % : C0 → C1 → . . . → Ck → . . . is the
sequence of configurations in a memoryless run ofBϕ, then
rank(Cn+1) � rank(Cn) for eachn ∈ N.

Proof. We split the transition fromCn to Cn+1 into two
steps: a time-elapse step, where each clock inCn increases
by some fixed amount, and a discrete step, where state
changes are performed according to the transition func-
tion of Bϕ. We show that neither of these steps is rank-
increasing.

For the time-elapse step, observe that for any configura-
tion C and time delayt ∈ R+, rank(C + t) � rank(C),
whereC + t = {(ψ, v + t) : (ψ, v) ∈ C}. This is because
the only possible difference betweenC andC + t is that
active clocks inC may become inactive inC + t; but this
cannot increase the rank (reflecting the fact that⊥ < >).

Write δ for the transition function ofBϕ, and letσ ∈ Σ.
For the discrete step, suppose thatC = {(ψi, vi)}i∈I is a
configuration and thatC ′ =

⋃
iDi, whereDi is a mini-

mal model ofδ(ψi, σ) with respect tovi for eachi ∈ I.5

Furthermore, for a contradiction, suppose thatrank(C) ≺
rank(C ′), with γ ∈ Γ the letter inrank(C ′) occurring in the
first position in whichrank(C) andrank(C ′) differ. Since
the letters inrank(C) appear in descending order we can as-
sume thatγ does not appear inrank(C) at all. We consider
two cases according to whetherγ is inactive or active.

The first case is thatγ = (ψ,⊥) for someψ ∈ Sub(ϕ) \
LTL. Then there existsi ∈ I such that(ψ,⊥) ∈ Di. By
locality of Bϕ (cf. Section 4.1), we must haveψi = ψ and
vi = ⊥. Thusγ = (ψ,⊥) appears inrank(C), contradict-
ing the assumption onγ.

The second case is thatγ = (ψ,>) for someψ ∈
Sub(ϕ) \ LTL. Then there existsi ∈ I and a clock value
v 6 M such that(ψ, v) ∈ Di. By linearity ofBϕ we have
ψ 6 ψi; if also vi 6 M then some active state at least
as high as(ψ,>) appears inrank(C). Sincerank(C) and
rank(C ′) agree on letters higher thanγ, this active state
can only beγ itself, which contradicts our hypothesis onγ.
Thus we may assume thatvi = ⊥.

5Since% is memoryless, the set of states at each configuration in% can
always be calculated from the set of states of the previous configuration in
this manner.

7

But then, sincevi 6= v, by locality of Bϕ it must hold
thatψ < ψi, and by flatness ofBϕ, we have thatψi does
not appear inDi. (Flatness dictates thatψ andψi cannot
both appear inDi.) In fact, we can conclude that(ψi,⊥)
does not appear inC ′ (by locality ofBϕ it cannot appear in
Dj for j 6= i). But then(ψi, vi) does not appear inrank(C ′)
and(ψi, vi) > γ, contradicting the assumption onγ.

�

Lemma 14. Suppose% : C0 → C1 → . . . → Ck → . . . is
the sequence of configurations in a memoryless run ofBϕ

on a timed word(σi, ti)i∈N. If Ci is active, j > i and
tj − ti > M , thenrank(Cj) ≺ rank(Ci).

Proof. Write rank(Ci) = (ϕk,⊥) . . . (ϕ2,⊥)(ϕ1,>)
and suppose, for a contradiction, thatrank(Ci) =
rank(Ci+1) = . . . = rank(Cj). In particular, for2 6
p 6 k, the node(ϕp,⊥) is present in each of the config-
urationsCi, Ci+1, . . . , Cj . This means that in the execution
tree underlying%, between depthsi andj, any node labelled
(ϕp,⊥), for 2 6 p 6 k, also has a child labelled(ϕp,⊥)
(by locality of Bϕ, no state can make a (discrete) transi-
tion to (ϕp,⊥) apart from(ϕp,⊥) itself). By flatness ofBϕ

we conclude that the only possible depth-j descendents of a
depth-i node labelled(ϕp,⊥), 2 6 p 6 k, are also labelled
by (ϕp,⊥), or byLTL formulas.

Now, sincerank(Ci) = rank(Cj), (ϕ1,>) occurs in
rank(Cj). Thus there is a state(ϕ1, v) ∈ Cj such that
v 6 M . From the above argument, the depth-i ancestor
of this state can only be labelled(ϕ1, u) for someu. Since
tj − ti > M , the clockx is reset somewhere on the path
from (ϕ1, u) to (ϕ1, v). But this contradicts linearity and
locality of Bϕ, since these conditions imply that any clock
reset on a path must be accompanied by a strict reduction in
the rank of the locations along the path. �

5 From ATAs to CAROTs

In this section, we define a simulation of ATAs by
CAROTs. This roughly corresponds to the powerset con-
struction used for transforming an (untimed) alternating au-
tomaton into a non-deterministic automaton [17], except
that we cannot bound the size of a configuration in the timed
case due to the presence of clock variables. Instead we use
the channel to store encodings of configurations, which are
levels in a run tree of the ATA being simulated. In this sim-
ulation, the cycling of the channel corresponds to the evo-
lution of time, and global renaming and occurrence testing
are used to simulate discrete transitions of the ATA.

Using Theorem 12, we show that an ATABϕ corre-
sponding to aFlat-MTL formulaϕ can be simulated by a
cycle-bounded CAROT. Then we use Theorem 3, concern-
ing the cycle-bounded reachability problem for CAROTs,
to prove anEXPSPACE upper bound for model checking.

We first fix some notation: letA = (LA, XA,Σ,
L0
A, δA) be the timed automaton under study, andB =

(LB,Σ, δ0B, δB, FB) be the ATA corresponding to¬ϕ (pre-
viously calledB¬ϕ) constructed in the previous section. We
call xB its single clock.

We noteREG = {0, 1, . . . ,M,⊥} whereM is the max-
imal constant appearing inA or in B. If γ ∈ R+ and
γ 6 M , we write reg(γ) for the largest integer inREG
which is smaller than or equal toγ. We writereg(⊥) = ⊥.
We also define the following two sets:

S = (LB × {xB} × Val) ∪ (LA ×XA × Val)
R = (LB × {xB} × REG) ∪ (LA ×XA × REG)

and their sets of subsetsV = ℘(S) andΛ = ℘(R).
A joint A/B-configuration is composed of a state(`, v)

of A with ` ∈ LA, v : XA → Val and a finite set of
states(`i, vi) of B, with `i ∈ LB andvi ∈ Val for i ∈ I.
Such a configurationC can be written as the element
{(`i, xB, vi) | i ∈ I} ∪ {(`, x, v(x)) | x ∈ XA} of V .

Now given a configurationC, partitionC into a sequence
of subsetsC0, C1, . . . , Cn, C⊥, such thatC⊥ = {(`, x, v) ∈
C | ` ∈ LTL or v = ⊥},

⋃n
i=0 Ci = C \ C⊥, and if i, j 6=

⊥, for all (`, x, v) ∈ Ci and (`′, x′, v′) ∈ Cj , frac(v) 6
frac(v′) iff i 6 j (so that(`, x, v) and(`′, x′, v′) are in the
same blockCi iff v andv′ have the same fractional part).
We assume in addition that the fractional part of elements
in C0 is 0 (even if it means thatC0 = ∅). Note thatC⊥
contains all inactive andLTL formulas of the configuration
(following the vocabulary of the previous section).

We then defineH : V → Λ∗ with H(C) = reg(C0) ·
reg(C1) · reg(C2) · · · reg(Cn) · reg(C⊥), wherereg(C)
is obtained by replacing each valuev that appears inC
with reg(v). In the following, we remove the superfluous
xB ’s and⊥’s in the letters, in order to ease readability.

The jointA/B-behaviour is then composed of transitions

C
σ−→ C ′ for σ ∈ Σ andC

t−→ C ′ for t ∈ R+ in the usual
way. Using the abstraction function, it is possible to define a
discrete transition system which abstracts away precise tim-
ing information, but which simulates jointA/B-behaviours,
see [18, 19].

Example 15. Consider for instance a configurationC en-
coded by the wordH(C) = {(`0, 2), (`, x, 3)} · {(`, y, 1)} ·
{(`1, 3), (`2, 1)} · {(`, z), `3}. We assume that the maxi-
mal constant is4. The encoding of the successor ofC
is obtained by cycling around the letters (except the last
one) of the word (and increasing the values of the re-
gions accordingly). Thus the first delay successor ofH(C)
is ∅ · {(`0, 2), (`, x, 3)} · {(`, y, 1)} · {(`1, 3), (`2, 1)} ·
{(`, z), `3} (all states with integral values are now just
above the integer), the next successor is{(`1, 4), (`2, 2)} ·
{(`0, 2), (`, x, 3)} · {(`, y, 1)} · {(`, z), `3} (the states with
maximal fractional part reach the next integer), the next one

8

is ∅·{(`2, 2)}·{(`0, 2), (`, x, 3)}·{(`, y, 1)}·{(`, z), `3, `1}
as the statè1 is now over the maximal constant4. Simulat-
ing discrete transitions is easy as it only consists in applying
the transition rules ofA andB to all states of the word (see
above-mentioned references for more details).

We will take advantage of this discrete abstraction to de-
fine a CAROTC which will ‘recognize’ the discrete joint
A/B-behaviours. The channel will be used to store the ‘un-
bounded’ part of the information, namely the successive
configurations ofB. SinceA must synchronize withB,
its timing information will also be stored on the channel.
The discrete states of the CAROT will store only a bounded
amount of information, namely the location ofA, the region
it lies in, the set of clocks ofA having integer values, and
theB-part of the setsreg(C0) andreg(C⊥). For instance,
a configurationC such that

H(C) = {(`1, r0), (`2, r4), (`, x, r2)}·
{(`, y, r1), (`1, r5), (`2, r3)} · {(`, z, r7)} · {`3}

is encoded by the discrete information(
`, %, {x}, {(`1, r0), (`2, r4)}, {`3}

)
where%(x) = r2, %(y) = r1 and%(z) = r7, and by the
channel content (where we read from the left):

〉y(`1,r5)(`2,r3)〈〉z〈

We construct the CAROTC = (Q, q0,Γ,∆) (without
accepting conditions for the moment) as follows:
• The channel alphabetΓ is the union ofLB×REG\{⊥},
the set of clocksXA, and the two brackets〈 and〉.
• The setQ of states is the product setLA × REGXA ×
℘(XA) × ℘(LB × (REG \ {⊥})) × ℘(LB). It stores the
current location ofA, the integral part of the clocks ofA,
the set of clocks ofA having integer value, the set of
states(`B, xB) of the current configuration ofB in which
the clockxB is an integer, and the set of inactive (orLTL)
formulas in the current configuration ofB.
• The initial states ofC are the states that correspond to
an initial state ofA with all clocks being equal to zero, and
to sets of states ofB satisfying the initial condition ofB.
• There are three kinds of transitions. First, from a
state (`A, rA, zA, λB, κB) where zA and/orλB are non-
empty, applying an (abstract) delay transition corresponds
to entering a state where bothzA andλB are empty, and to
pushingzA ∪ λB on the channel.

Symmetrically, from a state where bothzA andλB are
empty, an abstract delay transition reads the leftmost item
of the channel (corresponding to the set of states having the
highest fractional parts) and stores it in the discrete state of

the CAROT, updating the integral values of the correspond-
ing clocks.

Finally, action transitions consist in simultaneously ap-
plying a discrete step ofA and a discrete step ofB. Occur-
rence testing is used to determine (an overapproximation) of
the set of locations ofB that lie on the channel, and global
deletion is used to remove a letter(`, r) from the channel
when the clock corresponding to` is reset to0.

It is not difficult to prove that the constructed CAROT
simulates the jointA/B-behaviours, but also that any run
of the CAROT can be simulated by a jointA/B-behaviour.

The above construction thus encodes the synchronized
behaviour ofA andB, but it remains to encode the accep-
tance condition ofB. This is achieved through the Miyano-
Hayashi construction [17, 24]. This requires us to add some
extra structure toC in order to keep track of branches in
the execution forest ofB that are still ‘waiting’ to enter an
accepting state.

The most important aspect of the above simulation con-
cerns its relationship to Theorem 12. In particular, in any
segment of an execution ofB in which all clock values in
the states ofB are inactive, the simulating CAROTC has
at most|XA| items on the channel, corresponding to the
clocks ofA (recall thatXA is the set of clocks ofA). In
such a segment, the current configuration ofB is encoded
entirely in the control state of the CAROT. Otherwise, if
some of the clocks ofB are active, the simulating CAROT
requires one cycle of its channel to simulate one time unit
of B’s execution (since the active clocks ofB are stored on
the channel in order of their fractional parts). Theorem 12
then yields an upper bound on the number of cycles ofC’s
channel, as made precise below.

Proposition 16. Let A be a timed automaton with set of
clocksX, and ϕ ∈ coFlat-MTL. Let CA,¬ϕ denote the
CAROT that simulates joint executions ofA andBϕ, as de-
scribed above. Then,A |= ϕ iff there is an infinite compu-
tation% of CA,¬ϕ such that we can write% as%′ · %′′ where:
(1) the number of cycles of the channel during%′ is bounded
by an exponential in the sizes ofϕ andA,
(2) along%′′, the size of the channel is bounded by|X|,
(3) the B̈uchi condition ofCA,¬ϕ is satisfied along%′′.

Note that the number of control states of the CAROT
CA,¬ϕ is doubly exponential in the sizes ofA andϕ. Indeed,
the states consist of subsets ofREG, which is exponential in
the size of the encoding of the maximal constant. However,
we can apply the algorithm of Theorem 3 on-the-fly, with-
out explicitely building the CAROTCA,¬ϕ. This algorithm
will be applied on the first part%′ of %. Since the channel
is bounded along%′′, the CAROT can be transformed into
a Büchi automaton (still doubly exponential) for verifying
the second part, which can also be achieved on-the-fly using
exponential space. Finally:

9

Theorem 17. The model-checking problem forcoFlat-
MTL is EXPSPACE-Complete.

We refer the reader to [7] for the hardness proof.

6 Conclusion

In this paper, we have proposed the logiccoFlat-MTL
as a counterpart toMITL, until now considered to be the
only linear-time timed temporal logic having reasonable
complexity. Although both logics are incomparably expres-
sive,coFlat-MTL allows most specifications that are inter-
esting in practice, whilst retaining punctuality. Moreover,
its model-checking problem exhibits no cost over that of
MITL. As specifications tend to be relatively small, we feel
justified in considering the complexity of model checking
coFlat-MTL to be feasible, at least in theory. The real test
will consist in applying our results in practice.

References

[1] R. Alur and D. Dill. A theory of timed automata.Theoretical
Computer Science, 126(2):183–235, 1994.

[2] R. Alur, T. Feder, and T. A. Henzinger. The benefits of re-
laxing punctuality.Journal ACM, 43(1):116–146, 1996.

[3] R. Alur and T. A. Henzinger. Logics and models of
Real-Time: a survey. InReal-Time: Theory in Practice,
Proc. REX Workshop 1991, vol. 600 ofLNCS, pp. 74–106.
Springer, 1992.

[4] R. Alur and T. A. Henzinger. Real-time logics: Com-
plexity and expressiveness.Information and Computation,
104(1):35–77, 1993.

[5] R. Alur and T. A. Henzinger. A really temporal logic.Jour-
nal of the ACM, 41(1):181–204, 1994.

[6] P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and
J. Worrell. On the complexity of termination in faulty chan-
nel machines. 2007. Submitted.

[7] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The
cost of punctuality. Research report LSV-07-05, Lab.
Sṕecification & Vérification, ENS Cachan, France, 2007.

[8] D. Brand and P. Zafiropulo. On communicating finite-state
machines.Journal of the ACM, 30(2):323–342, 1983.

[9] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). InProc. 32nd Annual
Symp. on Found. of Computer Science (FOCS’91), pp. 368–
377. IEEE Comp. Soc. Press, 1991.

[10] T. A. Henzinger. The Temporal Specification and Verifica-
tion of Real-Time Systems. PhD thesis, Stanford University,
CA, USA, 1991.

[11] T. A. Henzinger. It’s about time: Real-time logics reviewed.
In Proc. 9th Int. Conf. on Concurr. Theory (CONCUR’98),
vol. 1466 ofLNCS, pp. 439–454. Springer, 1998.

[12] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are
digital clocks? InProc. 19th Int. Coll. on Automata, Lan-
guages and Programming (ICALP’92), vol. 623 of LNCS,
pp. 545–558. Springer, 1992.

[13] Y. Hirshfeld and A. M. Rabinovich. Logics for real time:
Decidability and complexity. Fundamenta Informaticae,
62(1):1–28, 2004.

[14] R. Koymans. Specifying real-time properties with Metric
Temporal Logic.Real-Time Systems, 2(4):255–299, 1990.

[15] S. Lasota and I. Walukiewicz. Alternating timed automata.
In Proc. 8th Int. Conf. on Found. of Software Science and
Computation Structures (FoSSaCS’05), vol. 3441 ofLNCS,
pp. 250–265. Springer, 2005.

[16] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed
automata. InProc. 4th Int. Conf. on Formal Modeling and
Analysis of Timed Systems (FORMATS’06), vol. 4202 of
LNCS, pp. 274–189. Springer, 2006.

[17] S. Miyano and T. Hayashi. Alternating finite automata on
omega-words.Theoretical Computer Science, 32:321–330,
1984.

[18] J. Ouaknine and J. Worrell. On the language inclusion prob-
lem for timed automata: Closing a decidability gap. In
Proc. 19th Annual Symp. on Logic in Computer Science
(LICS’04), pp. 54–63. IEEE Comp. Soc. Press, 2004.

[19] J. Ouaknine and J. Worrell. On the decidability of Met-
ric Temporal Logic. InProc. 19th Annual Symp. on Logic
in Computer Science (LICS’05), pp. 188–197. IEEE Comp.
Soc. Press, 2005.

[20] J. Ouaknine and J. Worrell. On Metric Temporal Logic
and faulty Turing machines. InProc. 9th Int. Conf. on
Found. of Software Science and Computation Structures
(FoSSaCS’06), vol. 3921 ofLNCS, pp. 217–230. Springer,
2006.

[21] J. Ouaknine and J. Worrell. Safety Metric Temporal Logic is
fully decidable. InProc. 12th Int. Conf. on Tools and Algo-
rithms for the Constr. and Analysis of Systems (TACAS’06),
vol. 3920 ofLNCS, pp. 411–425. Springer, 2006.

[22] J. Ouaknine and J. Worrell. On the decidability and com-
plexity of Metric Temporal Logic over finite words.Logical
Methods in Computer Science, 3(1), 2007.

[23] J.-F. Raskin.Logics, Automata and Classical Theories for
Deciding Real Time. PhD thesis, Université de Namur, Bel-
gium, 1999.

[24] M. Y. Vardi. An automata-theoretic approach to Linear Tem-
poral Logic. InProc. Logics for Concurr.: Structure versus
Automata, vol. 1043 ofLNCS, pp. 238–266. Springer, 1996.

[25] Th. Wilke. Specifying timed state sequences in power-
ful decidable logics and timed automata. InProc. 3rd
Int. Symp. on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’94), vol. 863 ofLNCS, pp. 694–
715. Springer, 1994.

10

