
Advances in Parametric Real-Time Reasoning

Daniel Bundala and Joël Ouaknine

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. We study the decidability and complexity of the reachability
problem in parametric timed automata. The problem was introduced
20 years ago by Alur, Henzinger, and Vardi in [1], where they showed
decidability in the case of a single parametric clock, and undecidability
for timed automata with three or more parametric clocks.
By translating such problems as reachability questions in certain ex-
tensions of parametric one-counter machines, we show that, in the case
of two parametric clocks (and arbitrarily many nonparametric clocks),
reachability is decidable for parametric timed automata with a single
parameter, and is moreover PSPACENEXP-hard. In addition, in the case
of a single parametric clock (with arbitrarily many nonparametric clocks
and arbitrarily many parameters), we show that the reachability problem
is NEXP-complete, improving the nonelementary decision procedure of
Alur et al.

1 Introduction

The problem of reachability in parametric timed automata was introduced over
two decades ago in a seminal paper of Alur, Henzinger, and Vardi [1]: given a timed
automaton in which some of the constants appearing within guards on transitions
are parameters, is there some assignment of integers to the parameters such
that an accepting location of the resulting concrete timed automaton becomes
reachable?

In this framework, a clock is said to be nonparametric if it is never compared
with a parameter, and is parametric otherwise. Alur et al. showed that, for timed
automata with a single parametric clock, reachability is decidable (irrespective
of the number of nonparametric clocks). The decision procedure given in [1]
however has provably nonelementary complexity. In addition, Alur et al. showed
that reachability becomes undecidable for timed automata with at least three
parametric clocks.

The decidability of reachability for parametric timed automata with two
parametric clocks (and arbitrarily many nonparametric clocks) was left open
in [1], with hardly any progress (partial or otherwise) that we are aware of in the
intervening period. Alur et al. showed that this problem subsumes the question
of reachability in Ibarra’s “simple programs” [11], also open for over 20 years,
as well as the decision problem for a fragment of Presburger arithmetic with
divisibility.

Our main results are as follows: (i) We show that, in the case of two parametric
clocks (and arbitrarily many nonparametric clocks), reachability is decidable for
parametric timed automata with a single parameter. Furthermore, we establish
a PSPACENEXP lower bound on the complexity of this problem. (ii) In the
case of a single parametric clock (with arbitrarily many nonparametric clocks
and arbitrarily many parameters), we show that the reachability problem is
NEXP-complete, improving the nonelementary decision procedure of Alur et al.

Our results rest in part on new developments in the theory of one-counter
machines [7], their encodings in Presburger arithmetic [6], and their application
to reachability in (ordinary) timed automata [8, 4]. We achieve this by restricting
our attention to parametric timed automata with closed (i.e., non-strict) clock
constraints. As parameters are restricted to ranging over integers,1 standard
digitisation techniques apply [9], reducing the reachability problem over dense
time to discrete (integer) time. (Alternately, our results also apply directly to
timed automata interpreted over discrete time, regardless of the type of constraints
used.) The restriction to integer time enables us, among others, to keep track of
the values of two parametric clocks using a single counter, in effect reducing the
reachability problem for timed automata with two parametric clocks to a halting
problem for parametric one-counter machines.

Related Work The decidability of reachability for parametric timed automata
can be achieved in certain restricted settings, for instance by bounding the allowed
range of the parameters [12] or by requiring that parameters only ever appear
either as upper or lower bounds, but never as both [10]: in the latter case, if
there is a solution at all then there is one in which parameters are set either to
zero or infinity. The primary concern in such restricted settings is usually the
development of practical verification tools, and indeed the resulting algorithms
tend to have comparatively good complexity.

Miller [16] observed that over dense time and with parameters allowed to
range over rational numbers, reachability for parametric timed automata becomes
undecidable already with a single parametric clock. In the same setting, Doyen [3]
showed undecidability of reachability for two parametric clocks even when using
exclusively open (i.e., strict) time constraints.

A connection between timed automata and counter machines was previously
established in nonparametric settings [8], and exploited to show that reachability
for (ordinary) two-clock timed automata is polynomial-time equivalent to the
halting problem for one-counter machines, even when constants are encoded
in binary. Unfortunately, it is not obvious how to extend and generalise this
construction to parametric timed automata, specifically in the case of two para-
metric clocks and an arbitrary number of nonparametric clocks, as we handle
in the present paper. The reduction of [8] was used in [4] to show that halting
for bounded one-counter machines, and hence reachability for two-clock timed
1 Other researchers have considered variations in which parameters are allowed to range

over rationals, yielding different outcomes as regards the decidability of reachability;
see, e.g., [16, 3], discussed further below.

automata, is PSPACE-complete, solving what had been a longstanding open
problem.

Finally, parametric one-counter machines in which no upper bounds are
imposed on the value of the counter were studied in [7], where reachability was
shown to be decidable. The techniques used in that paper make crucial use of
the unboundedness of the counter and therefore do not appear applicable in the
present setting.

2 Preliminaries

We now give definitions used throughout the rest of the paper. A timed automa-
ton is a finite automaton extended with clocks; each clock measuring the time
since it was last reset. A parametric timed automaton is obtained by replacing
the known constants in the guards by parameters.

Formally, let P be a finite set of parameters. An assignment for P is a
function γ : P → N assigning a natural number to each parameter. A parametric
timed automaton A = (S, s0, C, P, F,E) is a tuple where S is the set of states,
s0 ∈ S is the initial state, C is the set of clocks, P is the set of parameters, F ⊆ S
is the set of final states and E ⊆ S × S × 2C ×G(C,P) is the set of edges. An
edge (s, s′, R,G) is from state s to state s′. And G(C,P) is the set of guards of
the form x ≤ v, x ≥ w where x is a clock and v, w ∈ N∪P . Set R specifies which
clocks are reset. A clock is parametrically constrained if it is compared to a
parameter in some transition. Let γ be an assignment to parameters then Aγ

denotes the automaton obtained by setting each parameter p ∈ P to γ(p).
A configuration (s, ν) of Aγ consists of state s and function ν : C → N

assigning a value to each clock. A transition exists from configuration (s, ν) to
(s′, ν′) in Aγ ,written (s, ν) → (s′, ν′), if either there exists t ∈ N such that
ν(c) + t = ν′(c) for every clock c ∈ C or there is an edge e = (s, s′, R,G) ∈ E
such that G is satisfied for current clock values and if c ∈ R then ν′(c) = 0 and
if c 6∈ R then ν′(c) = ν(c).

The initial clock valuation ν0 assigns 0 to every clock. A run of a machine is
a sequence π = c1, c2, . . . , ck of configurations such that ci → ci+1 for each i.
A run is called accepting if c1 is the initial configuration and ck is in a final
state. The existential halting problem , also known as parametric reachability
or the emptiness problem, asks whether there exists parameter valuation γ such
that Aγ has an accepting run. From here onwards, we omit “existential” and
write simply “halting problem”. We say that two automata A1 and A2 have
equivalent halting problem if A1 halts if and only if A2 halts.

Given a run π, we use start(π) = c1 and end(π) = ck to denote the first and
the last configuration of the run, respectively. If τ is a run, we write π → τ if the
runs can be connected by a transition, i.e., end(π)→ start(τ).

A parametric timed 0/1 automaton [1] A = (S, s0, C, P, F,E) is a timed
automaton such that each edge e ∈ E is labeled by a time increment t ∈ {0, 1}.
A transition from (s, ν) to (s′, ν′) is valid only if ν′(c)− ν(c) = t for each c ∈ C
not reset by the edge.

A one-counter machine is a finite-state machine equipped with a single
counter. Each edge is labelled by an integer, which is added to the counter
whenever that edge is taken. The counter is required to be nonnegative at all
times. E.g, subtracting c ∈ N in one transition and adding c in the next transition
leaves the counter unchanged but can be performed only if the counter is at least c.

A bounded one-counter machine also allows ≤ x edges. Such an edge
can be taken only when the counter is at most x. Reachability in these two
classes of counter machines are respectively known to be NP-complete [7] and
PSPACE-complete [4] if the numbers are encoded in binary.

Parametric machines are obtained by replacing the known constants by
parameters. Formally, a parametric bounded one-counter machine C =
(S, s0, F, P,E, λ) is a tuple where S is the set of states, s0 is the initial state,
F ⊆ S are the final states, P is the set of parameters, E ⊆ S × S is the set of
edges and λ : E → Op assigns an operation to each edge and has codomain Op:
{+c,−c,+p,−p,≤ c,= c,≥ c,≤ p,= p,≥ p,+[0, p],≡ 0 mod c : c ∈ N, p ∈ P}.
A parametric one-counter machine allows only operations: ±c,±p,≥ c,≥
p,= 0. Note that parametric one-counter machines are a subclass of parametric
bounded one-counter machines.

y ≥ 5 x ≥ 7

y ≤ p

x ≥ p, x← 0

+7 ≤ q ≥ q

+q +1

Fig. 1. A parametric timed automaton (left) and a parametric bounded one-counter
machine (right). The final states are reachable if, for example, p = 10 and q = 11.

A configuration (s, x) of C consists of a state s ∈ S and counter value
x ≥ 0, x ∈ N. Machine C starts in state s0 and counter equal to 0 and then takes
individual edges updating the counter. We use counter(s, x) = x to denote the
counter value in a configuration. We extend the definition to runs componentwise
and write counter(π) ≤ C (resp. counter(π) ≥ C) if the comparison holds for
every element: ∀i . counter(π(i)) ≤ C (resp. ∀i . counter(π(i)) ≥ C).

Let Z be a (nonparametric) one-counter machine. For configurations c,d of
Z and numbers x, y ∈ N, we write (c,d) ∈ Z(x, y) if there is a run π : c → d
such that the counter stays between x and y, i.e., x < counter(π) < y.

Let γ be a parameter assignment. A configuration (s′, x′) is reachable in
one step from (s, x) (written (s, x) → (s′, x′)) in Cγ if there exists an edge
e = (s, s′) ∈ E such that
– if λ(e) = ±c, c ∈ N then x± c = x′

– if λ(e) = ±p, p ∈ P then x± γ(p) = x′

– if λ(e) = ∼ c, c ∈ N then x = x′ and x ∼ c where ∼ ∈ {≤,≥}
– if λ(e) = ∼ p, p ∈ P then x = x′ and x ∼ γ(p) where ∼ ∈ {≤,≥}
– if λ(e) = +[0, p], p ∈ P then x ≤ x′ ≤ x+ γ(p)
– if λ(e) = ≡ 0 mod c, x ∈ Z then x = x′ and x ≡ 0 mod c

The existential halting problem asks whether there is a parameter valua-
tion γ such that Cγ has an accepting run.

2.1 Presburger Arithmetic

Presburger Arithmetic with Divisibility is the first-order logical theory of
〈N, <,+, |, 0, 1〉. The existential fragment (formulae of the form ∃x1, x2, . . . , xk.ϕ
where ϕ has no quantifiers) is denoted as ∃PAD . The satisfiability of ∃PAD
formulae was shown decidable in [14, 2] and in NP [15]. Given a set S ⊆ Nk
we say that S is ∃PAD definable if there is a finite set R of ∃PAD formulae2,
each formula with free variables x1, . . . xk such that (n1, . . . , nk) ∈ S ⇐⇒∨
ϕ∈R ϕ(n1, . . . , nk). Note that ∃PAD sets are closed under union, intersection

and projection. It was shown in [6, 7] that the reachability relation of parametric
one-counter machines is ∃PAD definable.

Lemma 1 ([6], Lemma 4.2.2). Given a parametric one-counter machine B
and states s, t, the relation Reach(B, s, t) = {(x, y, n1, . . . , nk) | (s, x)→∗ (t, y)
in Bγ where γ(pi) = ni} is ∃PAD definable.

2.2 Nonparametric Clock Elimination

Let A be a parametric timed automaton. By modifying the region construction,
we show how to build a parametric timed automaton with equivalent halting
problem without nonparametric clocks. Once the value of a nonparametric clock
c is above the largest constant appearing in A, the precise value of the clock does
not affect any comparison. Since the value of c is always a natural number, we
eliminate all nonparametric clocks by storing in the state space the values of clocks
up to the largest constant. However, we must ensure that the eliminated clocks
progress simultaneously with the remaining parametric clocks. This motivates
0/1 timed automata where the +1 updates correspond to the progress of time
whereas the +0 updates correspond to taking an edge in A. Formally:

Lemma 2 ([1]). Let A = (S, s0, C, P, F,E) be a parametric timed automaton.
Then there is a parametric 0/1 timed automaton A′ = (S′, s′0, C

′, P ′, F ′, E′) such
that C ′ ⊆ C contains only parametrically constrained clocks of C and A and A′

have equivalent halting problem. Moreover, |A′| = O(2|A|).

3 One Parametric Clock

For the rest of the section, fix a parametric timed automaton A with one paramet-
ric clock. We show how to decide the halting problem for A. By Lemma 2, there
is an exponentially larger parametric 0/1 automaton B with one (parametrically
constrained) clock such that A and B have equivalent halting problem.

In Lemma 4 we further show how to eliminate clock resets from B by intro-
ducing −1 transitions, thereby turning B into a parametric bounded one-counter
machine. Hence, to decide the halting problem for A it suffices to decide the halt-
ing problem for a parametric bounded one-counter machine with only −1, 0,+1
counter updates. We establish such a result in Theorem 5, which then yields:
2 A single formula would be logically sufficient, but would result in exponential blowup

Theorem 3. The halting problem for parametric timed automata with one para-
metric clock is decidable in NEXP time.

Decidability of the halting problem for the above class originally appeared
in [1], albeit with nonelementary complexity. We give a completely different proof
using one-counter machines yielding a NEXP algorithm. Later we show that the
problem is also NEXP-hard. In the appendix we prove a necessary lemma:

Lemma 4. Let B be a parametric 0/1 timed one-clock automaton. Then there
is a parametric bounded one-counter machine C such that B and C have equivalent
halting problem. Further, all updates in C are either −1, 0 or +1 and |C| = O(|B|).

3.1 Decidability For Counter Machines With Constant Updates

We reduced the halting problem for A to the halting problem for parametric
bounded one-counter machines with all counter updates either −1, 0 or +1. For
the rest of the section, fix a machine C of the latter type. To show that C halts,
we have to find an assignment γ and an accepting run π in Cγ . Even without
knowing γ, we show that π splits into subruns of a simple form independent of γ
the existence of which is reducible to satisfiability of certain ∃PAD formulae.

Let γ be a parameter assignment and assume that we guessed the order of
parameters, let’s say, γ(p1) < γ(p2) < . . . < γ(pk), but not their precise values.
Let c1 and c2 be arbitrary configurations of Cγ such that c1 →∗ c2 in Cγ and
consider a shortest run π : c1 → c2. There is a constant M ∈ N, determined in
Lemma 7, such that the run π can be factored into subruns between successive
parameters and subruns around individual parameters (see Fig. 2). Formally,
π = π0 → π1 → π2 → · · · → πl such that (π0 can be possible empty)
– Even-indexed runs: γ(p)−M ≤ counter(π2i) ≤ γ(p) +M for a parameter p,
– Odd-indexed runs: γ(pr) + M < counter(π2i+1) < γ(pr+1) −M for some

consecutive parameters γ(pr) < γ(pr+1),
– Even- and odd-indexed runs are joined by an edge end(πi)→ start(πi+1).

p1 −M
p1

p1 +M

p2 −M
p2

p2 +M

C0

C1

C2

π0

π1

π2

π3

π4

π5

π6

π7

π8

π9

π10

π11

π12

π13

π14

Fig. 2. Factoring of a run, which starts and finishes with the counter equal to 0.
The y axis shows the counter value, hypothetical values of the parameters and their
neighbourhoods. Label Ci marks the interval corresponding to counter machine Ci.

Notice that every transition in C changes the counter by at most 1. Hence,
counter(start(π2i+1)) = pr + M + 1 or counter(start(π2i+1)) = pr+1 −M − 1.

Thus, start(πi) is always of the form start(πi) = (si, pf(i) + x) for some state
si, some |xi| ∈ {M,M + 1} and parameter pf(i). Hence, start(πi) is uniquely
determined by the triple (si, f(i), xi). Similarly, end(πi) is uniquely determined
by some triple (ti, g(i), yi) with |yi| ∈ {M,M + 1}.

By minimality, π visits every configuration only once. Hence an odd-indexed
run can start in only one of 2nk configurations (n states, k parameters). Hence,
the number of odd-indexed runs, and hence the total number of runs is O(nk).

To show that there is a run from c1 to c2 we guess a factoring of the above
form. We shall show (justifying the choice of M) in Lemma 8 that the odd-
indexed runs π2i+1 correspond to runs in some one-counter machine Ch(2i+1).
By Lemma 1, the existence of a run in Ch(2i+1) is ∃PAD expressible as: ϕ2i+1 =
Reach(Ch(2i+1), s2i+1, t2i+1)(nf(2i+1) + x2i+1, ng(2i+1) + y2i+1, n1, . . . , nk).

In Lemma 9, we show that the even-indexed runs are independent of γ,
can be precomputed and the reachability relation can be hardwired into the
formula. Thus, we express the existence of a particular factoring from c1 to c2 as
ϕ =

∧
i ϕ2i+1∧ψ(f, g, h,−→s ,−→t ,−→x ,−→y)∧

∧
i(ni+M < ni+1) where the middle term

encodes that the odd- and even-indexed runs are adjacent (directly computable)
and that the even-indexed runs are valid (Lemma 9). The last conjunct encodes
the technical restriction γ(pi) +M < γ(pi+1) imposed in Lemmas 8 and 9.

The restriction is relaxed as follows. First, if the parameters are not in the
increasing order γ(pi) < γ(pi+1) then we relabel the parameters and build the
appropriate formula. If γ(pi) ≤ γ(pi+1) < γ(pi)+M then M depends only on |C|
(Lemma 7) and so only finitely many possibilities exist for γ(pi+1)− γ(pi). Hence
we replace each occurrence of pi+1 in C by pi + w for the appropriate w < M .

Theorem 5 (Appendix). Given states s, t ∈ C the set G(C, s, t) = {(x, y, n1, . . . , nk) |
(s, x)→∗ (t, y) in Cγ where γ(pi) = ni} is ∃PAD definable.

Recall that satisfiability of ∃PAD formulae is in NP [15] and that |C| is
exponential in |A| (Lemmas 2 and 4). Hence, Theorem 3 follows. We have also
proved the corresponding lower bound, in fact, already for a single parameter.

Theorem 6 (Appendix). The halting problem for parametric timed automata
with one parametric clock and one parameter is NEXP-hard.

The proof of ∃PAD definability relied on two lemmas that we prove now. First,
we show how to calculate the odd-indexed runs. Let c1, c2 be configurations of Cγ

between two successive parameters: γ(pi) < counter(c1), counter(c2) < γ(pi+1).
Consider a counter machine Ci, which is obtained from C by evaluating

all comparisons as if the counter was between γ(pi) and γ(pi+1). Formally, Ci
is obtained from C by removing all transitions of the form ≥ pj and ≤ pk for
k ≤ i < j. And all transitions ≤ pj and ≥ pk for k ≤ i < j are replaced by +0
transitions. Further, for i > 0 and c ∈ N we also remove all ≤c transitions from
Ci. Note that the definition of Ci’s depends only on the order of parameters in γ.

Consider some run π : c1 → c2 in Ci. During the run, the counter value
can become less than γ(pi) or greater than γ(pi+1). So π does not necessarily
correspond to a run in C. However, notice that Ci is a one-counter machine

without parameters or ≤x constraints, i.e. an ordinary one-counter machine. Thus
Ci has the following property [13]: If there is a run between two configurations
then there is a run between the same configurations such that the run does not
deviate much from the initial and the final counter value. Formally:

Lemma 7 ([13], Lemma 42). Let Ci be as above. There is a constant M (poly-
nomial in |Ci|) s.t. for any configurations c1 and c2 of Ci the following holds: let
U = min(counter(c1), counter(c2)) and V = max(counter(c1), counter(c2)). If
c1 →∗ c2 then there is a run π : c1 → c2 such that U−M ≤ counter(π) ≤ V + M .

So as long as γ(p1) +M < counter(c1), counter(c2) < γ(p2)−M , the runs
c1 → c2 in Ci correspond to runs in C. See the appendix for the proof:

Lemma 8. Let γ be an assignment with γ(pi) +M < γ(pi+1) for all i. Let c,d
be configurations with γ(pi) +M < counter(c), counter(d) < γ(pi+1)−M . Then

(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ c→∗ d in Cγi .

For the even-indexed runs, the reachability around individual parameters, i.e.
in intervals (γ(pi)−M,γ(pi) +M), can be precomputed. Suppose that γ(pi−1) <
γ(pi) −M < γ(pi) + M < γ(pi+1) so that the interval (γ(pi) −M,γ(pi) + M)
does not contain γ(pi−1) or γ(pi+1). Let −M < x, y < M and let π be a run from
(s, γ(pi) + x) to (t, γ(pi) + y) such that γ(pi) −M ≤ counter(π) ≤ γ(pi) + M .
Then for every component π(i), we can write counter(π(j)) = γ(pi) + zj for some
−M ≤ zj ≤M . But now, the run π is valid for any specific value of γ(pi) as only
zj determines which transitions are enabled in Cγ . (See the appendix)

Lemma 9. Let γ, δ be parameter assignments with γ(pi) +M < γ(pi+1), δ(pi) +
M < δ(pi+1) for all i. Let s, t ∈ c be states and −M < x, y < M integers. Then

((s, γ(pi) + x), (t, γ(pi) + y)) ∈ Cγ(γ(pi)−M,γ(pi) +M) ⇐⇒
((s, δ(pi) + x), (t, δ(pi) + y)) ∈ Cδ(δ(pi)−M, δ(pi) +M)

Furthermore, it is decidable in polynomial time whether ((s, γ(pi) + x), (t, γ(pi) +
y)) ∈ Cγ(γ(pi)−M,γ(pi) +M) for any (and all) such assignment γ.

4 Two Parametric Clocks

We show that the halting problem for parametric timed automata with two
parametric clocks is equivalent to the halting problem for parametric bounded
one-counter machines. The equivalence is used in Section 4.2 to show decidability
of the halting problem in certain cases.

First, observe that a counter can be stored as a difference of two clocks, which
can be used (see the appendix) to show the easier direction of the equivalence.

Theorem 10. Let C be a parametric bounded one-counter machine. Then there
is a parametric timed automaton A with two parametric clocks such that A and C
have equivalent halting problem. Moreover, if C has no ‘≡ 0 mod c’ transitions
then A has no nonparametric clocks. Otherwise, A has one nonparametric clock.

4.1 Reduction to Parametric Bounded One-Counter Machines

For the converse, fix A to be a parametric timed automaton with two paramet-
ric clocks. We reduce A to a parametric bounded one-counter machine C. To
begin, we construct (Lemma 2) a parametric 0/1 timed automaton B with two
parametrically constrained clocks, denoted x and y, with the halting problem
equivalent to A. We then transform B to C. Denote the counter of C by z.

For the time being, we need to relax the assumption that z stays nonnegative.
That is, subtracting 5 when the counter is 2 results in the counter being −3. In
Remark 12 we later show how to restore the nonnegativity of the counter.

The idea of the reduction is that, after a clock of B is reset, that clock equals
zero, so we use z to store the value of the other clock. We construct C in such a
way that after a reset of y, counter z stores the value of x and after a reset of x,
counter z stores −y. Initially C starts with the counter equal to 0.

Machine C then operates in phases. Each phase corresponds to a run of B
between two consecutive resets of some (possibly different) clock.

Suppose y was the last clock to reset. After the reset, the configuration of
B is (s, (z, 0)) for some state s ∈ B and the counter z = x. We show how C
calculates the configuration after the next clock reset in B.

After time ∆, the clocks go from configuration (z, 0) to (z +∆,∆). Based on
the guards, different transitions in Bγ are enabled as time progresses. Precisely,
suppose we know the order of the parameters p1 < p2 < . . . < pk. Then let
region R(i,j) be the set of clock valuations [pi, pi+1]× [pj , pj+1]. Then the set of
enabled transitions depends only on the region R(i,j) the clocks (x, y) lie in.3

Therefore, machine C guesses the regions R(i0,j0), R(i1,j1), . . . , R(im,jm) in the
order in which they are visited by the clocks (x, y) and it also guesses the states
s0, s1, . . . , sm of B when each region Rl is visited for the first time, the state t in
which the next reset occurs and which clock is reset next (see Fig 3).

Machine C checks that the sequence is valid as follows. First, C checks, that
(z, 0) lies in R0. Second, it checks that the regions are adjacent: il+1 − il =
1∧ jl+1 = jl or il+1 = il ∧ jl+1 − jl = 1 or il+1 − il = jl+1 − jl = 1. The last case
corresponds to the clocks hitting a corner of a region. Then, C checks that starting
in clock configuration (z, 0), the regions can be visited in the guessed order.

Consider region R(u,v) for some u, v. When the region is visited for the first
time, then either clock x equals pu or clock y equals pv. In the former case,
the clock configuration is (pu, pu − z), in the latter case, it is (pv + z, pv). The
configuration depends on the direction in which R(u,v) is visited. See Fig. 3.
– If il+1− il = 1 then C checks that clock x reaches pil+1 before clock y reaches
pjl+1. That is, pil+1 − z ≤ pjl+1. Equivalently, pil+1 ≤ z + pjl+1, which can
be easily tested by a parametric bounded one-counter machine. In Fig. 3 this
corresponds to region R(1,0), which is visited before R(2,0).

– Similarly, if jl+1 − jl = 1. E.g, in Fig. 3 region R(2,1) is visited before R(2,2).

3 Our definition of rectangular regions differs slightly from the one usually given in
the literature. However, as all inequalities are nonstrict the regions are sufficient. For
ease of presentation, we also use the convention p0 = 0 and pk+1 =∞.

We say that Rt was reached from left in the first and that Rt was reached
from bottom in the second case. See Fig. 3 for the intuition behind the names.

0 z p1p2 p3

p1

p2

p3

Fig. 3. Regions for three param-
eters p1 < p2 < p3. The dot-
ted line shows an en evolution of
clock configuration, which visits
R(0,0), R(1,0), R(2,0), R(2,1), R(2,2), R(3,2), R(3,3).

Finally, C checks reachability
within individual regions. Let cl be
the configuration in which the re-
gion Rl is visited for the first time.
Then C checks that a run from cl

to cl+1 exists in Rl.
Now, with each R(i,j), we intro-

duce a one-counter machine B(i,j)

obtained from B assuming clock x ∈
[pi, pi+1] and clock y ∈ [pj , pj+1], in-
stantiating all comparisons accord-
ingly and by removing all edges re-
setting a clock. Each B(i,j) corre-
sponds to the region R(i,j) in the

same way automata Ci corresponded to one-dimensional regions in Section 3.
Notice that B(i,j)’s are 0/1 automata without resets or comparisons, i.e, one-

counter machines. In particular, the reachability relation for B(i,j)’s is semilinear.
Formally, for a pair of states s and t of a one-counter machine X define Π(X, s, t)
to be the set of counter values reachable at t by a run starting in state s and
counter equal to 0: Π(X, s, t) = {v | ∃π ∈ X. start(π) = (s, 0) ∧ end(π) = (t, v)}.

Lemma 11 (Appendix). Let X be a one-counter machine with 0/1 updates.
Then for any states s, t ∈ X the set Π(s, t) is effectively semilinear: Π(X, s, t) =
C ∪

⋃
1≤j≤r{aj + bjN} where C ⊆ N is finite and aj , bj ∈ N.

Now, to check that a run from cl to cl+1 exists in Rl, machine C distin-
guishes whether Rl and Rl+1 are reached from bottom or from left and uses the
semilinearity of the reachability relation of the corresponding B(i,j).

The translation is mundane and is presented in full in the appendix. For
example, suppose Rl = R(px,py) for some parameters px and py. Then cl =
(sl, (px, px − z)) or cl = (sl, (py + z, py)) depending on the direction. If Rl was
reached from left and Rl+1 from bottom then C has to check that (sl+1, (py+1 +
z, py+1)) is reachable from (sl, (px, px − z)). That is, that z + py+1 − px ∈
Π(Bl, sl, sl+1). This and all other semilinear constraints can be checked by C
using ‘≡ 0 mod c’ transitions (cf. Fig. 4).

+px −py −a ≡ 0 mod b +a +py −px

Fig. 4. Gadget testing that for given a, b ∈ N there is k ∈ N such that z + px − py =
a+ kb,i.e., z + px − py − a ≡ 0 mod b. Letter z denotes the current counter value.

Finally note that once the value of a clock becomes larger than pk its exact
value is irrelevant to any future comparison. Hence, C tracks x and y only up to
pk and remembers which clocks exceed it. Hence, we can assume that the counter
of C is always inside [−pk, pk].

Next, we modify C to ensure that the counter is always nonnegative (and inside
[0, 2pk]). Let C ′ be obtained from C by adding a new initial state and a +pk edge
from the new to the original initial state. Further, any comparison edge (s,G, t)
(e.g., where G is ≤pi) is replaced by a gadget of three edges (s,−pk, q), (q,G, q′)
and (q′,+pk, t) which subtract pk from the counter, perform the original check
and then add pk to the counter thereby offsetting the counter by pk.

Remark 12. We can assume that the counter of C is always inside [0, 2pk].

Note that the construction depends on the order of parameters. However, we
can build an automaton for every possible order of parameters. Then check the
order of parameters and transition into the automaton for the appropriate order.

Theorem 13. For a parametric timed automaton A with two parametric clocks there
is a parametric bounded one-counter machine C with equivalent halting problem.

Our reduction was inspired by the work in [8] (see the Related Work section).
Performing one phase in a single stage of C and using semilinearity of reachability
in individual regions are the main differences from the reduction of [8].

4.2 The One-Parameter Case

Suppose that the parametric two-clock timed automaton A uses only a single
parameter p. Consider the corresponding counter machine C. It turns out that,
C has no ‘+[0, p]’ transitions, all ‘≡ 0 mod c’ transitions can be eliminated from
C and if there is an accepting run in C then there is one which is bounded
(Remark 12). This yields a decidable class of counter machines (Lemma 15).

Consider C. Inspecting the detailed proof of the reduction (as found in
the Appendix), observe that ‘+[0, p]’ transitions are introduced only when two
successive regions are visited from the same direction (both from left or both
from bottom). For a single parameter, only four regions exist [0, p]× [0, p], [0, p]×
[p,∞], [p,∞] × [0, p], [p,∞] × [p,∞]. Simple case analysis shows that this can
happen only when the counter starts at 0, which can be treated separately.

So C has no ‘+[0, p]’ transitions. Next, we also eliminate ‘≡ 0 mod c’ transi-
tions from C. Let K = {c1, . . . , cr} be the set of all constants appearing as ‘≡ 0
mod ci’ in C. Intuitively, we modify C to store in its state space the counter
modulo each ci. However, knowledge of p mod ci for each i is necessary for that.

Given D = (d1, . . . , dr), let CD be the one-counter machine which is obtained
from C and which tracks the counter modulo each ci assuming that p ≡ di mod ci.
Formally, the states of CD are S × Zc1 × . . .× Zcr

where S are the states of C
and Zci denotes the ring of integers modulo ci. The machine CD contains all
comparison transitions of C. Further, let (v1, . . . , vr) ∈ Zc1 × . . .×Zcr . Then CD
also contains the following transitions:
– ((q, v1, . . . , vr),±c, (q′, v1 ± c, . . . , vr ± c) if (q,±c, q′) is a transition in C,
– ((q, v1, . . . , vr),±p, (q′, v1 ± d1, . . . , vr ± dr) if (q,±p, q′) is a transition in C,
– ((q, v1, . . . , vr),+0, (q′, v1, . . . , vr)) if vi = 0 and (q,≡ 0 mod ci, q

′) is a tran-
sition in C.

Notice that there are no ‘≡ 0 mod c’ transitions in CD. By construction, runs in
CγD are equivalent to runs Cγ provided di ≡ γ(p) mod ci. That is:

Lemma 14. Let γ be an assignment such that γ(p) = di mod ci for each i. Let
(s, x), (t, y) be configurations of C. Then (s, x)→∗ (t, y) in Cγ if and only if ((s, x
mod c1, . . . , x mod cr), x)→∗ ((t, y mod c1, . . . , y mod cr), y) in CγD.

Suppose we guess D then, by Remark 12, to decide the halting problem in CD
it suffices to find an accepting run π such that counter(π) ≤ 2 ·γ(p). Now, for any
such run π and index i we can write counter(π(i)) = aγ(p) + b where a ≤ 2 and
b < γ(p). Since a is bounded, we can build a one-counter machine G keeping a in
the state space and b in the counter. We do not enforce b < γ(p) (or any other ≤x
constraint) in G. Instead, we use Lemma 7 on G and split π into subruns close
to and far from a multiple of γ(p). We write π = τ0 → π1 → τ1 . . . πl → τl such
that for every τi the value counter(τi) mod γ(p) ∈ [0, . . . ,M] ∪ [γ(p)−M,γ(p)).
And for every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M). Then we use
techniques on factoring of runs analogous to those used for one parametric clock
(Section 3.1). In general, we have: (See the appendix.)

Lemma 15. Given C with one parameter p, no ‘≡ 0 mod c’ and no ‘+[0, p]’
transitions, k ∈ N and states s, t ∈ C the set G(C, s, t, k) = {(x, y, q) | ∃π :
(s, x)→ (t, y) ∈ Cγ s.t. counter(π) ≤ k · q where q = γ(p)} is ∃PAD definable.

Theorem 16. The halting problem is decidable for parametric timed automata
with two parametric clocks and a single parameter.

This settles the case of parametric timed automata with two clocks and a
single parameter. The case of arbitrary many parameters, or even two parameters,
is left as an open problem. However, already for a single parameter, we establish
the following lower bound. (See the appendix.)

Theorem 17. The halting problem for parametric timed automata with two
parametric clocks and a single parameter is PSPACENEXP -hard.

Acknowledgments. This research was financially supported by EPSRC.

References

1. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proceedings of the 25th Annual Symposium on Theory of Computing. ACM Press,
1993.

2. A.P. Bel’tyukov. Decidability of the universal theory of natural numbers with
addition and divisibility. Journal of Soviet Mathematics, 14(5):1436–1444, 1980.

3. L. Doyen. Robust parametric reachability for timed automata. Information
Processing Letters, 102(5):208 – 213, 2007.

4. J. Fearnley and M. Jurdziński. Reachability in two-clock timed automata is PSPACE-
Complete. In Proceedings of the 40th International Conference on Automata,
Languages, and Programming - Volume Part II, ICALP’13, 2013.

5. S. Göller, C. Haase, J. Ouaknine, and J. Worrell. Model checking succinct and
parametric one-counter automata. In ICALP’13, volume 6199 of Lecture Notes in
Computer Science. Springer, 2010.

6. C. Haase. On the Complexity of Model Checking Counter Automata. PhD thesis,
University of Oxford, 2012.

7. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and
parametric one-counter automata. In CONCUR’09, volume 5710 of Lecture Notes
in Computer Science. Springer, 2009.

8. C. Haase, J. Ouaknine, and J. Worrell. On the relationship between reachability
problems in timed and counter automata. In RP, volume 7550 of Lecture Notes in
Computer Science. Springer, 2012.

9. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Automata, Languages and Programming, volume 623 of Lecture Notes in Computer
Science. Springer, 1992.

10. T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2031 of Lecture Notes in Computer Science. 2001.

11. O. H. Ibarra, T. Jiang, N. Q. Trân, and H. Wang. New decidability results concerning
two-way counter machines and applications. In ICALP’93, volume 700 of Lecture
Notes in Computer Science. Springer, 1993.

12. A. Jovanovic, D. Lime, and O. H. Roux. Integer parameter synthesis for timed
automata. In TACAS, volume 7795 of Lecture Notes in Computer Science, 2013.

13. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like equational
theories with homomorphisms. In Research Report LSV-04-16, LSV, ENS de Cachan,
2004.

14. L. Lipshitz. The Diophantine Problem for Addition and Divisibility. Transactions
of The American Mathematical Society, 235, 1978.

15. L. Lipshitz. Some remarks on the diophantine problem for addition and divisibility.
volume 33, 1981.

16. J. S. Miller. Decidability and complexity results for timed automata and semi-linear
hybrid automata. In Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes in Computer Science. 2000.

A Proof of Lemma 4

= 0

−1

Fig. 5. Gadget implementing a clock reset.

Proof. Counter machine C has the same states and +0,+1 transitions as B. By
modifying B if necessary, we can assume that all edges resetting a clock are +0
edges without any comparison. Each transition resetting a clock is then replaced
by a gadget (see Fig. 5) that subtracts 1 from the counter until the counter equals
0. ut

B Proof of Theorem 5

Proof. First, consider the case such that ni +M < ni+1 for every i. The variable
ni denotes the value of γ(pi) in the constructed ∃PAD formulae. We encode the
existence of a factoring π = π0 → π1 → π2 → · · · → πl as a ∃PAD formula.

Note that start(πi) is always of the form start(πi) = (si, pf(i) + x) for some
|xi| ∈ {M,M + 1} and parameter pf(i). Hence, start(πi) is determined by the
triple (si, f(i), xi). Similarly, end(πi) is determined by some triple (ti, g(i), yi)
with |yi| ∈ {M,M + 1}.

Now, by Lemma 8, the odd-indexed runs π2i+1 correspond to runs in some
Ch(2i+1), which by Lemma 1 are ∃PAD expressible as:

ϕ2i+1 = Reach(Ch(2i+1), s2i+1, t2i+1)(nf(2i+1)+x2i+1, ng(2i+1)+y2i+1, n1, . . . , nk)

where h(2i + 1) denotes the appropriate one-counter machine Ch(2i+1) the
run π2i+1 lies in. By taking a conjunction of the corresponding ∃PAD formulae
we obtain a single ∃PAD formula.

Precisely, given state s1, . . . , sl and t1, . . . , tl and offsets x1, . . . xl and y1, . . . yl
and indices f(1), . . . , f(l) and g(1), . . . , g(l) and h(1), . . . h(l), consider the for-
mula:

G(s, t,−→s ,−→t ,−→x ,−→y , f, g, h)(x, y,−→n) =
∧
i

ϕ2i+1

∧s = s1 ∧ nf(1) + x1 = x

∧t = tl ∧ ng(l) + yl = y

∧ψ(f, g, h,−→s ,−→t ,−→x ,−→y)∧
i

ni +M < ni+1

The formula asserts that there is a run from (s, x) to (t, y) with the particular
factoring. The conjunct ψ(f, g, h,−→s ,−→t ,−→x ,−→y) encodes that the even-indexed
subruns are valid (precomputed using Lemma 9) and that odd- and even-indexed
runs are adjacent (directly computable) and that the values of f(i), g(i) and h(i)
are consistent (directly computable). The last conjunct encodes the restriction
γ(pi) +M < γ(pi+1) from Lemmas 8 and 9.

This final restriction is relaxed as follows. If the parameters are not in the
increasing order γ(pi) < γ(pi+1) then we build appropriate formulae by relabelling
the parameters so that the resulting permutation of parameters is in increasing
order.

If γ(pi) ≤ γ(pi+1) < γ(pi) +M then note than M depends only on |C| and so
only finitely many possibilities exist for γ(pi+1)− γ(pi). Hence we replace each
occurrence of pi+1 in C by pi + w for the appropriate w < M .

Now, there are only finitely many possibilities for −→s ,−→t ,−→x ,−→y , f, g and h.
Hence, considering the set of all such formulae we conclude that the reachability
relation in C is ∃PAD definable. ut

C Proof of Lemma 8

Proof. Since Ci simulates C in the interval (γ(pi), γ(pi+1)) it is obvious that the
biimplication holds if we restrict to runs inside the interval (γ(pi), γ(pi+1)):

(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ (c,d) ∈ Cγi (γ(pi), γ(pi+1))

It thus suffices to show that

(c,d) ∈ Cγi (γ(pi), γ(pi+1)) ⇐⇒ c→∗ d in Cγi

The left-to-right implication is immediate. For the converse, suppose that
c →∗ d in Cγi . Since, γ(pi) + M < counter(c), counter(d) < γ(pi+1) −M , by
Lemma 7, there exists a run π in Cγi from c to d such that γ(pi) < counter(π) <
γ(pi+1). Hence (c,d) ∈ Cγi (γ(pi), γ(pi+1)) as required. ut

D Proof of Lemma 9

Proof. For any run π from (s, γ(pi) +x) to (t, γ(pi) + y)) in Cγ such that γ(pi)−
M < counter(π) < γ(pi) +M and for any index j we can write counter(π(j)) =
γ(pi) + zj for some −M ≤ zj ≤M . But now, the run π is valid for any specific
value of γ(pi) as only zj determines which transitions are enabled in Cγ .

Thus consider the graph G with vertices (s, z) where s is a state of C and
−M < z < M . There is an edge from (s, z) to (s′, z′) in G if and only if there
is an edge (s, z′ − z, s′) in C, which goes from s to s′ and updates the counter
appropriately. Now, any run in C completely contained in (γ(pi)−M,γ(pi) +M)
corresponds to a path in G and vice versa. Recall, Lemma 7, that M is polynomial
in |C|. Thus, |G| is also polynomial in |C|.

Therefore, for every pair of states s and t and values z, z′ in (−M,M), we can
calculate using a standard graph algorithm (e.g. breadth-first search), whether
there is a path from (s, γ(pi) + z) to (t, γ(pi) + z′). ut

E Proof of Theorem 6

Proof. The proof is by reduction from succinct SAT, a well-known NEXP-
complete problem. A similar construction was used in [5] to show that LTL
model checking of parametric one-counter machines is NEXP-hard.

The succinct SAT problem is the adaptation of the classical SAT problem in
which the input formula is not given explicitly but instead the input consists of
a Boolean circuit C encoding the formula.

We can assume that the input and output of the circuit C are bit strings—
the values on input and output wires. We use the notation u · v to denote the
concatenation of bit strings u and v.

Let b be an n bit number and i ∈ {0, 1, 2}. The circuit operates in such a
way that evaluating the circuit C(b · i) = v · w gives the index of the variable
v = f(b, i) in the ith literal in the bth clause. Moreover, if the literal is negated
then w = 1, otherwise, w = 0.

Let ϕ be a 3SAT formula encoded by circuit C. The variables of ϕ are denoted
by x1, x2, Indexing the clauses of ϕ by n bit strings, we thus write ϕ as

ϕ =
∧
b∈Bn

((¬)xf(b,0) ∨ (¬)xf(b,1) ∨ (¬)xf(b,2))

where f(b, i) is the index of the ith variable in the bth clause.
We shall construct a parametric timed automaton A with one parametric

clock using a single parameter p such that a final state of A is reachable for some
value of p if and only if the value of p encodes a satisfying assignment for ϕ.

An assignment v : {x1, x2, . . .} → {0, 1} is encoded in p as follows. Let
pk be the k-th prime. Then if pk|p then the variable xk in ϕ is set to true
in the assignment: v(xk) = 1. And if pk 6 |p then xk is set to false in the
assignment: v(xk) = 0. By choosing distinct primes as the basis of the encoding,
any assignment to variables in ϕ can be represented by a number and vice versa.

The timed automaton A then implements the algorithm that iterates over all
clauses and checks that each clause is satisfiable under the assignment encoded
in p (see Fig 6). Hence, ϕ is satisfiable if and only some value of p encodes a
satisfying assignment which holds if and only if a final state of A is reachable.

To implement the algorithm using a timed automaton, we provide various
gadgets: a gadget to calculate the kth prime number and gadgets to check
(non)divisibility of p by the calculated prime numbers.

Note that the problem of calculating the kth prime number is in PSPACE.
Now, it is well known that the reachability for nonparametric timed automata is
PSPACE-complete and so many different ways exist of using timed automata to
calculate PSPACE functions. A particular approach is sketched below.

for b← 0 to 1n do . Try all possible assignments

s← false . Denotes whether some literal evaluates to true

for i← 0 to 2 do . Try all three literals

v · w ← C(b · i)
x← Snthprime(v) . Calculate the corresponding prime number

if w = 0 ∧ Sdivides(p, x) then
s← true

end if
if w = 1 ∧ Snotdivides(p, x) then
s← true

end if
end for
if s = false then . If the current clause is not satisfied under the assignment; reject

reject
end if

end for
accept . All clauses are satisfies; accept

Fig. 6. Algorithm iterating over all clauses of ϕ and checking that each is satisfiable.
Sdivides(p, x) stands for subroutine calculating that x divides p and x← Snthprime(v)
assigns the nth prime to x.

Since A has no restrictions on the number of nonparametric clocks, we use
two clocks xa, xb to store a single bit; interpreting the bit as 1 when xa = xb and
as 0 otherwise. Note that clock comparisons and resets can be used to check and
set the bit, respectively4. So we use nonparametric clocks as a memory. Now,
A uses polynomially many clocks to store polynomially many bits. It is easy to
see that using the finite state control of A and polynomially many bits, timed
automaton A can calculate any PSPACE function. Similarly, we use n bits to
iterate over all possible values of b in the algorithm.

In our implementation of the algorithm in Fig. 6, we use m bits to store the
kth prime number in binary. Further, the algorithm uses subroutines to check
whether p is divisible by a given number. We use gadgets shown in Fig. 7 to
check (non)divisibility of p by the prime numbers. Notice that the gadgets and
hence the entire proof uses only a single parameter p. ut

F Proof of Theorem 10

Proof. A similar proof appeared in [8]. Timed automaton A tracks the state of C
and the counter value of C is stored as the difference x− y of two clocks. Since
the clocks progress simultaneously, the difference is constant.

4 Alternatively, resetting the clocks xa, xb whenever they reach 1 and checking for the
clocks being simultaneously 0 or 1, we can implement bits without direct comparison
of two clocks

w, c← 0 · · ·

accept

x0 = 1, w = 1, w ← 0

x0 = 0, w = 0

x1 = 1, w = 2, w ← 0

x1 = 0, w = 0

x2 = 1, w = 4, w ← 0

x2 = 0, w = 0

c < p,w = 0

w = 0 c = p

Fig. 7. PTA implementing x divides p. The bits x0, x1, x2, . . . , xm represent x =
P
i xi2

i

in binary. An auxiliary clock w is used to count to the powers of 2. The gadget is entered
on the left and one traversal through the gadget takes x time units. Clock c measures p.
Note that the transition to the accepting state can be taken only if x divides p. Gadget
checking x 6 |p is obtained by changing the final test w = 0, c = p to w = 0, c > p

Timed automaton A has the same set of parameters as C together with a
fresh parameter M . Now, whenever clock x or y reaches M the clock is reset.
Intuitively, M is an upper bound on counter values in an accepting run of C.
Further, counting modulo M allows us to implement counter operations in A.

For example, an update +p can be implemented by resetting y when y = p.
The test ≤ p can be implemented by checking y = 0 ∧ x ≤ p. And the update
‘+[0, p]’ can be implemented by resetting y when y ≤ p. All other counter updates
and comparisons can be implemented similarly.

To check ‘≡ 0 mod c’ we introduce a fresh clock z. Clock z resets together
with x when x = M . Thus, clocks x and z are zero at the same time. Then every
time z reaches c, the clock z is reset. So z counts modulo c and finally we just
need to check that when y = M then z = c.

Note that since at any single time we make at most one ‘≡ 0 mod c’ check,
the clock z can be reused in different gadgets for ‘≡ 0 mod c’ checks for different
constants. Hence only one clock suffices for all ‘≡ 0 mod c’ checks.

Finally, observe that x and y are parametrically constrained (by M and
parameters already in C) whereas z is not. ut

G Proof of Lemma 11

Proof. It was shown in [6], Lemma 4.1.18, that the reachability relation in non-
parametric one-counter machines is definable in existential fragment of Presburger
arithmetic (without divisibility). It is well known that this fragment defines effec-
tively semilinear sets. ut

H Reduction from Parametric Timed Automata with
Two Parametrically Constrained Clocks

We give here missing details on how to check that cl+1 is reachable from cl in
region Bl and how to simulate clock resets.

Consider region Rl = R(px,py) for some parameters px and py, i.e., Rl =
(px, px+1) × (py, py+1). Then, Rl is visited for the first time in configuration
cl = (sl, (px, px − z)) or cl = (sl, (py + z, py)). Then C checks that it is possible
to go from cl to cl+1 in Rl. The check distinguishes whether Rl and Rl+1 were
reached from bottom or from left.

– Rl reached from left, Rl+1 reached from left. Thus, C has to check
that (sl+1, (px+1, px+1 − z)) is reachable from (sl, (px, px − z)). That is, that
px+1 − px ∈ Π(sl, sl+1), which can be checked by C (similarly as in Fig. 4).

– Rl reached from left, Rl+1 reached from bottom. Thus, C has to check
that (sl+1, (py+1 + z, py+1)) is reachable from (sl, (px, px − z)). That is, that
py+1 + z − px ∈ Π(sl, sl+1), which can be checked by C (cf. Fig. 4).

– Rl reached from bottom, Rl+1 reached from left. Thus, C has to check
that (sl+1, (px+1, px+1 − z)) is reachable from (sl, (py + z, py)). That is, that
px+1 − py − z ∈ Π(sl, sl+1), which can be checked by C.

– Rl reached from bottom, Rl+1 reached from bottom. Thus, C has to
check that (sl+1, (py+1 + z, py+1)) is reachable from (sl, (py + z, py)). That is,
that py+1 + z− py − z = py+1− py ∈ Π(sl, sl+1), which can be checked by C.

s t
= pil +a ≤ pil+1

+1 +b

Fig. 8. A gadget implementing a reset of clock y in the left/left situation.

Finally, we show how to simulate in C a clock reset in B. Suppose that instead
of resetting the clock, we let the time evolve. Then eventually the clock valuation
transitions to another region. Denote that region by Rl+1.

By modifying B if necessary, we can assume that all edges resetting a clock
are +0 edges without any comparison. First, suppose that y is the next clock to
be reset. Then the first thing to check is whether there is a transition leaving t
that resets clock y.

Simulation of reset distinguishes whether Rl and Rl+1 were reached from
bottom or from left. By Lemma 11, the set Π(Bl, sl, t) is semilinear. So, C guesses
a generator (a, b) in Π(Bl, sl, t) that it will use to reach t. Then C checks whether
state t can be reached using the generator. There are four cases to consider
depending on the direction from which Rl and Rl+1 are reached. In all four cases,
automaton C nondeterministically chooses the counter value when t is reached.

– Rl reached from left, Rl+1 reached from left. Thus, B reaches Rl in
the configuration (sl, (px, px − z)). Since Rl+1 would be reached from left,
machine B resets when clock x < px+1. So C has to set the counter to a
value px + Π(sl, t) ∈ [px, px+1]. To do that, C first sets the counter to px.
Then C adds a to the counter and starts nondeterministically incrementing
the counter by b, checking that the counter stays below px+1. See Fig. 8.

– Rl reached from left, Rl+1 reached from bottom. Thus, B reaches Rl
in the configuration (sl, (px, px − z)). And B resets when clock x < py+1 + z.
Thus, the new counter value z′ = px + a+ kb ≤ z + py+1. So C increments
the counter by py+1. Then, it keeps subtracting 1 from the counter checking
that it is at least ≥ px + a. Then C nondeterministically terminates when
z′ − px − a ≡ 0 mod b.

– Rl reached from bottom, Rl+1 reached from left. Thus, B reaches Rl
in the configuration (sl, (py + z, py)). And B resets when clock x < px+1.
Now, C first increments the counter to py. Second, it adds a to the counter
and starts nondeterministically incrementing the counter by b, checking that
the counter stays below px+1.

– Rl reached from bottom, Rl+1 reached from bottom. Thus, B reaches
Rl in the configuration (sl, (py+z, py)). And B resets when clock x < py+1+z.
Thus C increments the counter by a number in the range py + [0, py+1 − py]
of the form a+ kb. This can be achieved, by first calculating z mod b using a
‘≡ 0 mod b’ transitions, then incrementing the counter using +[0, py−1 − py]
and then checking that the new counter value z′ satisfies z′ ≡ z + a mod b.

This finishes a reset of y. For the reset of x, we proceed analogously. Consider
the four cases:

– Rl reached from left, Rl+1 reached from left. Thus, B reaches Rl in
configuration (sl, (px, px − z)) and resets when clock y < py − z. Recall that
after reset, the new counter value z′ stores −y. Thus, z′ ∈ [z − px+1, z − px].
Analogously to (bottom, bottom) case above, B subtracts px from the counter
and then B subtracts a number of the form a+ kb ∈ [0, px+1 − px].

– Rl reached from left, Rl+1 reached from bottom. Thus, B reaches Rl
in configuration (sl, (px, px − z)) and resets when y < py+1.
So, z′ ∈ [−py+1, z − px]. So B subtracts py and then a from the counter and
then B keeps subtracting b checking that the counter is above −px+1.

– Rl reached from bottom, Rl+1 reached from left. Thus, B reaches Rl
in configuration (sl, (py + z, py)) and resets when clock y < px+1 − z.
So, z′ ∈ [z − px+1,−py]. Hence, B subtracts px+1 and then adds a to the
counter and then B keeps adding b checking that the counter is below −py.

– Rl reached from bottom, Rl+1 reached from bottom. Thus, B reaches
Rl in configuration (sl, (py + z, py)) and resets when y < py+1. So, z′ ∈
[−py+1,−py]. So B sets the counter to py − a and then it keeps subtracting
b checking that the counter is above −py+1.

This finishes the simulation of a single stage of B.

I Proof of Lemma 15

Proof. Let S be the set of states of C. We build a one-counter machine G with
states S × {0, . . . , k − 1}. Intuitively, if z < γ(p), the configuration ((s, i), z) of
G represents the configuration (s, iγ(p) + z) of C. Machine G has the following
transitions:
– ((s, i),±c, (t, i)) if (s,±c, t) is a transition in C,
– ((s, i),+0, (t, i± 1)) if (s,±p, t) is a transition in C,
– ((s, 0),+0, (t, 0)) if (s,≤ p, t) is a transition in C,
– ((s, i),+0, (t, i)) for i ≥ 1 if (s,≥ p, t) is a transition in C.

Intuitively, the “submachine” S × {i} should handle C when the counter of C
lies in [iγ(p), (i+ 1)γ(p)]. Now, the simulation is not perfect, as the counter of G
can be larger than γ(p) thereby incorrectly enabling/disabling various transitions.
However, note that G has no parameters or ≤ p transitions, i.e it is an ordinary
one-counter machine. Hence, by Lemma 7, there is M ∈ N such that we can
assume that runs deviate by at most M from the initial and the final counter
values.

Let c1 and c2 be two configurations of C. Even without the knowledge of
γ(p), we show that there is a run from c1 to c2 that splits into finitely many
subruns of a simple form. (The proof is analogous to the proof of Theorem 5.)

Consider a shortest run π : c1 → c2 in Cγ . We split π into subruns close to
and far from a multiple of γ(p). We write π = τ0 → π1 → τ1 . . . πl → τl such that
for every τi the value counter(τi) mod γ(p) ∈ [0, . . . ,M]∪ [γ(p)−M,γ(p)). And
for every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M). For a run ρ and a
subset S ⊆ N of natural numbers, the notation counter(ρ) ∈ S denotes the fact
that for every i we have counter(ρ(i)) ∈ S.

Notice that the configuration start(τi) is determined by the state of C,
bcounter(start(τi))/γ(p)c and counter(start(τi)) mod γ(p). Now, C has only
finitely many states, bcounter(start(τi))/γ(p)c ≤ k and counter(start(τi)) mod γ(p)
can have only one of 2M + 1 values. Thus, τi can start in only O(nkM) possible
configurations. Recall that π is a shortest run from c1 to c2. In particular, π visits
each configuration of Cγ at most once. Hence there are only O(nkM) different
initial configurations for τi’s and hence l = O(nkM).

The ∃PAD definability of the existence of such a split is analogous to the
proof for machines with only −1, 0 and +1 updates (Theorem 5). As in Lemma 8,
the existence of πi can be witnessed by G. Precisely, for configurations c1, c2 of
Cγ such that counter(c1) mod γ(p), counter(c2) mod γ(p) ∈ (M,γ(p)−M) we
have c1 →∗ c2 in G if and only if there is a run π′ : c1 → c2 in Cγ such that
counter(π′) mod γ(p) ∈ (M,γ(p)−M).

Further, as in Lemma 9, the existence of runs τi is independent of γ(p) and
can be precomputed5. Now, the runs in G are ∃PAD expressible (Lemma 1). By

5 Consider the graph with vertices {0, . . . , k} × {−M, . . . ,M}. Each vertex (i, j) corre-
sponds to counter value i · γ(p) + j in Cγ . The edges mimick the transitions in G.
Now, the graph is independent of γ(p) and so we can calculate rechability between
any pair of vertices. This gives τi’s.

taking a conjunction of the corresponding ∃PAD formulae we obtain a single
∃PAD formula(∧

i

Reach(D, start(πi), end(πi))(counter(start(πi)), counter(end(πi)), p)

)
∧ ψ

defining the reachability relation for a particular factoring where as in Theorem 5,
the formula ψ encodes that τi’s are valid (directly computable) and that τi and
πi can be connected by an edge (directly computable).

Since there are only finitely many initial and final states of πi’s and τi’s, which
uniquely determine the factoring, by taking the set of all such ∃PAD formulae,
we conclude that the reachability relation is ∃PAD definable. ut

J Proof of Theorem 16

Proof. Consider the corresponding counter machine C. By Remark 12, we can
assume that the counter of C remains in [0, 2p]. Lemma 15 above shows that
reachability up to any fixed constant multiple of p is ∃PAD definable.

So, the decision procedure guesses D ∈ Zc1 . . . × Zcr
and then checks the

satisfiability of G(CD, s0, f, 2)(0, y, p) ∧
∧
i(γ(i) ≡ di mod ci) where s0 is the

initial state and f is a final state of CD. The expression x ≡ y mod ci is expressible
using a ∃PAD formula ϕi(x, y) equal to ∃q . (x = ci · q + y) ∧ (y < ci). ut

K Proof of Theorem 17

Proof. We first describe the PSPACENEXP-hard problem we reduce from. Recall
from the proof of Lemma 6 that Succinct SAT, whereby a 3SAT formula is repre-
sented by a circuit, is a NEXP-complete problem. So consider a PSPACE Turing
Machine T that makes NEXP oracle calls by means of Succinct SAT. Precisely,
T is allowed to generate polynomial-size circuits encoding 3SAT formulae and
then pass them to a Succinct SAT oracle. It is clear that such machines can solve
PSPACENEXP problems.

Given such a machine T , we now describe how to build in polynomial time a
parametric timed automaton with two parametric clocks simulating T . As the
first step, we build a polynomial-size parametric timed automaton A with two
parametric clocks deciding Succinct SAT. This automaton is then used inside a
nonparametric timed automaton as a NEXP oracle. Hence, the PSPACENEXP-
hardness follows.

The construction of A is an extension of ideas from Lemma 6 for building
a parametric timed automaton with one parametric clock. Recall that in the
lemma we used a circuit C to encode a 3SAT formula ϕ. Further recall that in
lemma, we described how to use nonparametric clocks as memory. Automaton A
uses polynomially many clocks to represent polynomial-size memory. The input
to A is the description of circuit C encoded in this polynomial-size memory.

If C has n inputs then ϕ can have as many as 3 · 2n variables, which we
denoted by x1, x2, Further recall that we represented an assignment v to
variables in ϕ by a number Z ∈ N such that v(xk) = 1 if and only if πk|Z where
πk is the kth prime.

Now, πk ≤ 2k2. Hence, any valid assignment is represented by a number
at most lcm(1, 2, 3, . . . , 2(3 · 2n)2). On the other hand, πk ≥ k and so some
assignments are represented only by numbers greater than (3 · 2n)!, which is
doubly exponential in n. Thus, storing Z directly would require exponentially
many bits.

Let M be a parameter and suppose that M ≥ lcm(1, 2, 3, . . . , 2(3 ·2n)2). Then
instead of using exponentially many bits, automaton A stores the value of an
assignment as a difference x− y of two parametric clocks x and y. The clocks
operate modulo M . That is, whenever a clock reaches value M , the clock is
reset. With this convention, the assignment stored by clocks x and y is the value
of x when y equal 0. Notice that with this convention, resetting y when y = 1
increments the value of the stored assignment by one. The resetting trick is used
by A to iterate over all assignments. The initial values of x and y, and hence the
assignment, is 0.

Automaton A then checks whether an individual assignment satisfies ϕ sim-
ilarly as is done in Lemma 6. It iterates over all clauses and checks that each
is satisfied by the assignment. In order to check that an individual assignment
satisfies ϕ, automaton A needs to be able to extract the value of each variable
from the assignment. That is, A needs to be able to calculate the value of the kth
prime πk and to check whether πk divides the value of the assignment. In Lemma 6
we outlined how A can calculate and represent πk in binary πk =

∑
i vi2

i where
vi are bits.

Then checking whether πk divides the assignment is done by modifying the
gadget from Fig. 7 used for the divisibility in Lemma 6. We modify the gadget
so that it can be entered only when x is reset and it can be exited only when y
is reset. This guarantees that exactly x− y timeunits elapse during the traversal
of the gadget.

This way, timed automaton A can iterate over all assignments for ϕ and check
if at least one makes the formula true. Finally, to ensure that M is big enough,
the automaton iterates over all numbers k ∈ {1, 2, 3, . . . , 2(3 · 2n)2} and checks
that k|M . This is possible, without using any additional parameters, as only
polynomially many bits (clocks) are needed to store the value of k. The algorithm
that is hard-wired into A is shown in 9.

Notice that A uses only two parametric clocks (x and y). Further notice that
the only input to the algorithm is the circuit C. The function f which takes an
encoding of a circuit C, input x and returns f(C, x) = C(x) the value of C on
x, is PSPACE computable. So we can modify the algorithm in Fig. 9 to take
an encoding of a circuit and accept if and only if the corresponding formula is
satisfiable. Since Succinct SAT is NEXP-complete, the algorithm can be used as
a general NEXP oracle. The resulting automaton is constructible in polynomial

for i← 1 to 2(3 · 2n)2 do
if Snotdivides(p, i) then . Checks that lcm(1, . . . , 2(3 · 2n)2)|p

reject
end if

end for
ass← 0 . Stores the value of the assignment

while ass 6= p do . Try all possible assignments

for b← 0 to 2n do . Iterate over all clauses

ok ← true . Denotes whether the current assignment satisfies ϕ

s← false
for i← 0 to 2 do . Check if some literal is true under the current assignment

v · w ← C(b · i)
x← Snthprime(v)
if w = 0 ∧ Sdivides(p, x) then
s← true

end if
if w = 1 ∧ Snotdivides(p, x) then
s← true

end if
end for
if s = false then
ok ← false

end if
end for
if ok = true then . Accept if found a satisfying assignment

accept
end if

end while
reject . No assignment satisfies ϕ; reject

Fig. 9. Algorithm iterating over all valid assignments and for each assignment iterating
over all clauses of ϕ and checking that each is satisfiable. The automaton accepts if the
formula is satisfiable and rejects otherwise.

time and is of polynomial size in the input. Thus, we can use it as an oracle in a
PSPACE algorithm.

So the parametric timed automaton B simulating T works as follows. Au-
tomaton B uses polynomially many bits (clocks) to simulate T , making the same
transitions as T does. Then whenever T makes an oracle call, automaton B resets
x and y and then starts executing parametric timed automaton A on the circuit
encoding the corresponding 3SAT formula.

Hence, there is a reduction from PSPACENEXP problems to the halting
problem for parametric timed automata with two parametric clocks. Observe
that the value of the parameter M can be reused between the “oracle” calls, as
M is an upper bound on the largest valid assignment encoded by a circuit with
n inputs. ut

