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Abstract. The popularity of handheld devices has created a flurry of research ac-
tivity into new protocols and applications that can handle and exploit the defining
characteristic of this new environment – user mobility. In addition to mobility,
another defining characteristic of mobile systems is user social interaction. This
paper investigates how mobile systems could exploit people’s social interactions
to improve these systems’ performance and query hit rate. For this, we build a
trace-driven simulator that enables us to re-create the behavior of mobile systems
in a social environment. We use our simulator to study three diverse mobile sys-
tems: DTN routing protocols, firewalls preventing a worm infection, and a mobile
P2P file-sharing system. In each of these three cases, we find that mobile systems
can benefit substantially from exploiting social information.

1 Introduction

Recent news articles are reporting a dramatic increase in the use of battery-powered,
mobile, lightweight, handheld devices often equipped withwireless interfaces [13,4].
Examples of such ubiquitous devices include cell-phones and PDAs, music players like
Zune, and gaming devices like PSP. The number of mobile systems for these devices
is also quickly growing. Their key challenge is providing functionality in a dynamic
and often unreliable network environment. This need has ledto a flurry of research on
the design and implementation of new protocols and applications that can handle (and
perhaps exploit) the primary characteristic of this new environment – user mobility.

In addition to user mobility, another defining characteristic of mobile systems is
user social interaction. A variety of new applications focus on facilitating social activ-
ities in pervasive systems. For example, new Internet dating services allow clients to
use their cell-phones’ Bluetooth radios to detect when theyare in the proximity of a
person that matches their interests [18]. Other companies are offering file-sharing soft-
ware for mobile phones that allows users to share ring-tones, music, games, photos,
and video [28,17]. In these new mobile systems, informationexchange is driven by the
users’ social interactions: friends use their cell-phonesto share photos or song collec-
tions; strangers with similar dating profiles are notified when they are near each other.

In this paper, we examine how these mobile systems could exploit people’s social
relations to make more informed decisions, potentially leading to substantial perfor-
mance gains and higher query hit rates. We start by classifying social interactions in
two categories. One category is interactions between friends, that is people who meet
more regularly and for longer periods of time. The other category is interactions be-
tween strangers, that is people who meet sporadically, by passing each other by. Note
that in practice, the spectrum of social interactions is quite complex. For instance, a
pair of people could be classified as “familiar strangers” [22] – two people encoun-
tering regularly without ever interacting or forming an explicit relationship of a social
nature. Nevertheless, in this paper, we classify all relationships only as friends or as
strangers; based on our simple definitions, we classify familiar strangers as friends. We
leave a more complex social classification to future work.

We investigate the potential of incorporating social information in three mobile sys-
tems with diverse characteristics. First, we study the performance of routing protocols
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in delay tolerant networks (DTNs) when a sender and a receiver are friends, and when
they are strangers. Our findings show that incorporating social information in routing
decisions significantly improves the performance of several DTN routing protocols.
Second, we examine whether firewalls that discriminate between traffic sent by friends
and traffic sent by strangers can slow down the propagation ofa worm or virus in a mo-
bile network. We find that worms spread significantly slower if a small fraction of nodes
reject traffic sent by strangers. Third, we examine the performance of file exchange pro-
tocols in a P2P file-sharing application. We find that sharingfiles only among friends
drastically reduces the rate of successful requests in suchsystems. To maintain a high
query hit rate, mobile P2P systems must allow their users to exchange content with
strangers. In summary, we show that separating people’s interactions only as friends
and strangers leads to a more efficient routing protocol, a more effective security mea-
sure, and a higher query hit rate in a mobile application.

We build a trace-driven simulator that enables us to re-create the behavior of mobile
systems in a social environment. Our simulator recreates all encounters between a large
population of mobile users. To build our simulator, we analyze a 101-day trace of en-
counters between people equipped with Bluetooth-enabled cell-phones collected by the
“Reality Mining” project at the MIT Media Lab [23]. To generate encounters between
friends, we use a well-known social networking model – the Watts-Strogatz model [33].
To generate encounters between strangers, our simulator uses a heavy-tailed model in-
spired from the well-known preferential attachment model [3]. By combining encoun-
ters between friends and encounters between strangers, we can accurately simulate how
social information can lead to performance gains and higherquery hit rates in our three
mobile systems.

The paper is organized as follows. Section 2 presents our trace-based analysis of
people encounters. Section 3 uses our observations and analysis to develop a social
networking-based simulator of people encounters. In Section 4, we use our simulator
to study the effect of incorporating social information to three mobile systems: DTN
routing, the spread of worms in a mobile network, and the performance of file-sharing
applications. Section 5 summarizes our results and presents conclusions.

2 Characterizing People’s Encounters

To perform an evaluation of using social information in mobile systems, we need a data
trace of a mobile environment together with information about the social relationship
among the participants. Unfortunately, we are unaware of any such previously gathered
traces. Instead, we perform a social-based analysis of a trace of Bluetooth activity to an-
notate it with the required information. For this, we use a 101-day trace of encounters
between people equipped with Bluetooth-enabled cell-phones collected by the “Reality
Mining” project at the MIT Media Lab [23]. By studying the frequency of encounters,
we can annotate this trace with social information by classifying pairs of people who
encounter frequently as “friends”, whereas pairs of peopleencountering sporadically
are classified as “strangers”. The Reality Mining group has also used this trace to in-
fer social relationships between participants. Their analysis is focused on identifying
different contexts in which social relationships are formed. Instead, our goal is to char-
acterize the key temporal and social parameters of people’sencounters from this trace.

2.1 Trace Description

Gathering a suitable trace to analyze the properties of people encounters is very chal-
lenging. Such a trace requires tracking many people simultaneously while recording
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participantsnon-participants

Fig. 1. The type of encounters present in the trace.One arrow represents one en-
counter. Each pair of people could have more than one encounter. Encounters between
non-participants are not captured in the trace.

all interactions among them. Collecting the data must not inconvenience the individ-
uals being monitored and tracked. The privacy concerns raised by such experiments
makes it particularly difficult to gather the data at scale. For all these reasons, very few
large-scale traces of people encounters are available.

We use a trace collected by the Reality Mining project at the MIT Media Lab [23].
This project equipped 100 students with Bluetooth-enabledcell-phones. The phones
were instrumented to probe and discover all nearby Bluetooth devices every five min-
utes. Data was collected for the entire 2004 – 2005 academic year producing a trace
with over 285,000 Bluetooth-to-Bluetooth contacts.

We use this data as a rough approximation of people encounters since most of
the Bluetooth-to-Bluetooth contacts involve people encounters. Many participants used
the instrumented devices as their primary cell-phones. Consequently, these cell-phones
were able to capture these individuals’ encounters across abroad range of their day-to-
day activities; the trace is not limited to the time that participants spent on campus or in
their lab only.

While the trace captures all encounters between participants themselves, the major-
ity of encounters present in the trace are between participants and non-participants. A
non-participant appears in the trace whenever their cell-phone responded to Bluetooth
probes from a participant’s instrumented phone. This data gives us only a partial view
into the behavior of non-participants: we lack additional information on how they en-
counter each other. While all encounters with non-participants are included in the study,
our analysis’s findings are restricted to the set of participants only. Figure 1 illustrates
the type of encounters present in the trace.

The use of only one trace in our analysis restricts the applicability of our conclusions
to the general population. This problem is further exacerbated by the limited scope of
the sample population; it consists entirely of students, professors, and other academic
staff. We hope to validate our findings with larger scale traces conducted in a variety of
contexts as they become available.

2.2 High-Level Trace Statistics

In all our analysis, we use a trace of people encounters that spans the Fall school term
only. Table 1 shows the summary statistics of the trace we used. The trace contains
over 155K encounters made by 88 participants over 101 days. On average, there is one
encounter every 7 seconds. The peak rate of encounters in thetrace is 370 encounters
over 10 minutes, while the longest period with no encountersreported is 4 hours and 24
minutes.
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Bluetooth cell-phonesdata source

1,970median # encounters per participant

28,166# of pairs of people encountering

155.321total # of encounters

10,739non-participants

88participants

101 days, 0 hours, 49 minstrace length

Table 1. Summary statistics for trace of people encounters, 09/08/2004 to
12/17/2004.Each participant encounters other people, either participants or non-
participants. One pair of people can encounter each other multiple times.
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Fig. 2. The number of encounters over a two week period.Encounters show diurnal
and weekly patterns. This two week period includes a U.S. statutory holiday.

Figure 2 shows the number of encounters per hour for a typicaltwo week period.
As expected, encounters show diurnal and weekly patterns. The two week period shown
includes a statutory U.S. holiday (Columbus Day) that showsthe same level of activity
as a typical day on a week-end. We checked the MIT school calendar; the school is
officially closed during Columbus Day.

2.3 Two Types of People Encounters: Friends and Strangers

We would like to investigate how people’s social relations affect their encounters. For
this, we use the number of days on which two people encounter as a first-degree approx-
imation of their social relation. Intuitively, people encountering on many different days
are likely to have a strong social relation (i.e., they are friends) as opposed to people
who rarely encounter (i.e., they are strangers.)

Figure 3a shows the percentage of pairs of people with encounters as a function of
their encounters frequency. The graph shows that most pairsof people (71%) encounter
on only one day. Less than 7% of pairs encounter on 10 or more days. We classify
encounters into two groups: between pairs of people who encountered on fewer than 10
days in our trace, and between pairs of people who encountered on at least 10 days. We
chose the value 10 days as a reasonable lower bound for the number of days on which
two friends encounter in the trace if they were to meet weekly. Our trace spans 14 full
weeks.

Figure 3b shows the number of pairs and the number of encounters broken down
by their types: friend versus stranger encounters. While only 6.9% of pairs of people
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Fig. 3. There are two types of pairs of people: friends and strangers. (a) CDFs of
number of pairs of people as a function of the pairs’ encounter frequency, and (b) num-
ber of pairs and number of encounters as a function of the pairs’ encounter frequency,
split in two groups.

were friends, these pairs account for two-thirds (65.3%) ofall encounters in the trace.
This demonstrates that while most pairs of people encountering are strangers having no
social relation, most encounters made are between friends.Thus, if our concern is to
propagate information quickly across a mobile network, we need to focus on stranger
encounters since they are rare opportunities for differentpeople to exchange informa-
tion. However, if our concern is to provide more stable and predictable network links
for an application, then we must focus on friend encounters.

The stark difference between friend encounters and stranger encounters lead us to
study their properties independently for much of the analysis that follows.

2.4 Weekly and Diurnal Patterns

As previously shown in Figure 2, people encounters present weekly and daily patterns.
In this subsection, we take a closer look at the day-of-the-week and time-of-the-day
effects present in the trace.

Figure 4 shows the average number of daily encounters brokendown by the day-of-
the-week when they occur. While more encounters occur on week days than on week-
end days, the number of encounters is roughly the same acrossall week days. This
suggests that people’s behavior is consistent across each day of the week and across
each day of the week-end. Figure 4 also separates friend encounters from stranger en-
counters. For each day of the week, two thirds of encounters (between 61 and 68%)
are friend encounters and one third are stranger encounters. Over the week-end, this
behavior is more balanced, only 50 to 55% of encounters are friend encounters.

We also examine the number of daily encounters by hour-of-the-day for both week
days and week-end days (these results are not graphed for lack of space.) We find that
most people’s encounters occur on afternoons during week days with a peak at 4:00pm.
There are 50% more encounters on afternoons (2-5pm) compared to mornings (9am-
12pm). The diurnal pattern of week-end days is different than that of week days: week-
ends have high activity during late afternoons and even latenights, but relatively little
activity during mornings.

To understand whether people’s encounter rates are predictable, we first calculated
each participant’s rate of encounters for each hour of the day. For each individual, we
measured how consistent their encounter rate is during the same hour across all week
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Fig. 4. Daily encounters.The average number of encounters per day broken down by
day-of-the-week. People have more encounters during week days than week-end days.
Two thirds of the daily encounters are with friends.

days and across all week-end days. For example, we measure how often the number
of encounters between 1pm and 2pm on Monday through Fridays change. We consider
Saturday and Sunday separately since week-ends have a different dynamic of how peo-
ple encounter. For each pair of consecutive hour slots, we compute the difference in the
number of events for each individual.

Figure 5 shows the distribution of the differences of an individual’s number of en-
counters for the same hour-of-the-day for week days and week-end days. From this
graph, we can see that people’s encounter rates are predictable. On average, an indi-
vidual’s encounter rate remains the same during two consecutive hour slots 64% of the
time Monday through Friday and 76% of the time on Saturdays and Sundays. Also,
the changes in the rate between consecutive hour slots are very small; this rate changes
by more than 5 encounters less than 7% of the time. These results show that people’s
encounter rates are very predictable during the same hour ofthe day.

2.5 The Friend and the Stranger Networks Are Scale-Free

Many social networks have been previously found to be scale-free [2]. One of the dis-
tinguishing characteristics of scale-free networks is that their node degree distribution
follows a power-law relationshipP (k) = k−γ . In power-law networks, a small number
of nodes are highly connected, while most nodes have low connectivity.

Figure 6 shows the distributions of the number of friends andthe number of strangers
encountered by the 88 participants on a log-log scale. Both curves appear to follow a
similar power-law distribution for most participants (a power-law distribution appears
as a straight line on a log-log plot). We further examined these curves’ tails since they
do not seem to follow a power-law distribution. We found thatmany of these partic-
ipants are not fully active over the entire trace duration; we believe that their lack of
activity makes them encounter fewer friends and fewer strangers, respectively.

2.6 The Friend Network Has High Local Clustering

Many social networks have been shown to have a high local clustering coefficient [2].
In this section, we examine whether the friend and the stranger networks are highly
clustered.
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Unfortunately, the trace methodology prevents us from measuring the clustering co-
efficient in both the friend and the stranger networks. Whilewe have full information
about participants, we lack complete information about their friends or their strangers.
Instead, we measure the similarity of the participants’ neighbor sets in these two net-
works. We use the Jaccard’s coefficient to measure similarity as a first order approxi-
mation of the degree of clustering present in these networks. The Jaccard’s similarity
coefficient of two sets is the size of their intersection divided by the size of their union
– J(A, B) = |A∩B|/|A∪B|. Two identical sets have a Jaccard’s coefficient of 1, and
two completely disjoint sets have a coefficient of 0.

Figure 7 shows the distribution of the Jaccard’s coefficientfor all pairs of friends and
strangers in our data. The data suggests that there is a substantial difference between
these two networks. In the friend network, the neighbor setsappear similar, with a
median Jaccard’s coefficient of 0.43, over five times higher than the median Jaccard’s
coefficient of the stranger network (0.08). In the friends graph, over 90% of all pairs
have more similar neighbor sets than almost all (95%) pairs of strangers.
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2.7 Summary

This section used trace data to identify key properties of people encounters. From this
data, we find several important observations:

• While most pairs of people encounter sporadically, most encounters are gener-
ated by pairs of people encountering often. This suggests the presence of two types of
encounters in the data: encounters between friends and encounters between strangers.

• People encounters are driven by diurnal and weekly cycles. Once we account
for time-of-day and day-of-the-week effects, the number ofencounters of an average
person is consistent. People’s encounter rates are predictable during the same hour of
the day for week days and week-end days.

•Both the friend and the stranger graphs are scale-free. The node degree distribution
in these networks follow a power-law distribution, suggesting that while few nodes have
many friends (or strangers), most nodes have few friends (orstrangers, respectively).

• In the friend network, the participants’ neighbor sets are similar, where in the
stranger network, they are not. This suggests that the friend network has a high degree
of clustering.

3 A Social Networking-Based Simulator of People’s Encounters

The premise of our work is that the performance of mobile applications and protocols
can improve if they incorporate information about people’ssocial relations. This section
presents a simulator of a mobile environment that enables usto explore our premise.
Our simulator captures key social and temporal aspects of mobile environments, such
as friend encounters, stranger encounters, and how the number of encounters varies
with the time-of-the-day and the day-of-the-week. From these parameters, it produces
a large-scale synthetic trace of people encounters over time.

3.1 Simulator Description

As previously discussed, a person’s friend encounters are different from their stranger
encounters in important ways. To capture this distinction,our simulator uses two differ-
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(0.15, 0.15, 0.09, 0.03, 0.02, 0.03, 0.02, 0.02,
0.05, 0.06, 0.08, 0.16, 0.19, 0.3, 0.34, 0.34,
0.33, 0.31, 0.19, 0.29, 0.26, 0.25, 0.2, 0.18)

hourly rate of encounters (vector with 24
values one for each hour of a week-end day)

!week-end
day

hourly rate of encounters (vector with 24
values one for each hour of a week day)

probability of encountering a friend

Zipf parameter for stranger encountersÕ
distribution

# of friends per node (Watts-Strogatz)

# of nodes

Meaning Base valueSymbol

(0.1, 0.06, 0.06, 0.04, 0.05, 0.06, 0.03, 0.02,
0.07, 0.5, 1.03, 0.97, 1.58, 1.37, 1.52, 1.73,

1.76, 1.37, 1.62, 0.76, 0.46, 0.37, 0.24, 0.15)
!week day

63.1%p

1.129"

20f

20,000N

Table 2.Simulator structure and notation. These parameters’ settings reflect the val-
ues seen in the trace we analyzed.

ent models to generate friend and stranger encounters. We use the Watts-Strogatz small-
world model [33] when generating encounters between friends, while we use a version
of the Barabasi scale-free model [3] when generating encounters between strangers.

The Watts-Strogatz small-world model captures the high clustering property spe-
cific to the friend social networks. A clustered friend graphpreserves the transitive
nature of friendships: an individual’s friends must be related to each other in a realis-
tic manner. Our simulator captures this transitive nature of friendships: if A and B are
friends, and B and C are friends, then the probability of A andC being friends is higher
than a random chance. This transitivity property of friendships is important to the flow
of information in social networks [9].

The Watts-Strogatz model placesN nodes on a ring and connects each withK of
its neighbors (K/2 on each side). To randomize the graph, each edge is rewired toa
random node with a small probability. The resulting graph has a small average path
length and a high clustering coefficient relative to a completely random graph with the
same number of nodes and edges, as desired [33]. When the simulator generates a friend
encounter, it selects a node at random and then selects another node at random from the
first node’s set of friends. An encounter will then be generated between these two nodes.
Each node’s friend set remains fixed over the course of the simulation, since the friend
network is not altered once the simulation begins to run.

This model’s main limitation is that the nodes’ degree distribution is not a power-
law, but more similar to that of a regular graph. Several extensions to this model address
this limitation [15,11,8]; we plan to examine more sophisticated small-world models in
future work. However, since friends on average compose lessthan 7% of each individ-
ual’s unique contacts, the overall degree distribution of the encounter network is driven
almost entirely by stranger encounters.

We generate stranger encounters using an approach inspiredby the preferential at-
tachment model proposed by Barabasi et al. [3]. Barabasi’s model grows a scale-free
network by adding one node at a time. Each new node attaches itself to a fixed num-
ber of existing nodes with a probability proportional to each existing node’s degree.
Although each node enters the network with a fixed number of edges, the node may ac-
quire additional edges as new nodes link to it when they are added to the network. One
side-effect of Barabasi’s model is that the last opportunity for two nodes to be linked
by an edge is when the second node of the pair is added to the network. Once added
without a link between them, two existing nodes can never encounter each other.

Our simulator makes a small modification to this model. Instead of growing the
network one node at a time, it assumes a closed population. Each node is pre-assigned
a Zipf-based popularity score that determines the probability of selecting this device
when generating stranger encounters. The Zipf law is a type of a power-law commonly
found in nature. To generate a stranger encounter, the simulator randomly selects two
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Fig. 8. Encounters produced by our simulator.The number of encounters per hour
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the day), each week day and each week-end day appear indistinguishable on the left.
However, individual persons do not have cyclical behaviors. On the right, we show how
an average person’s number of encounters per hour varies.

nodes with a probability proportional to their respective Zipf scores. An encounter will
then be generated between these two devices. The simulator is careful not to pick a pair
of friends when generating a stranger encounter.

Our method of generating stranger encounters ensures that at any time, the proba-
bility of two nodes meeting each other in a stranger encounter is non-zero, except when
the two nodes are friends. While in the long-run this violates the power-law property of
nodes’ degrees, we believe that it captures adequately the behavior of a closed popula-
tion: in a fixed set of people, everybody eventually meets everybody else. However, we
never experience this saturation regime in any of our simulations.

Table 2 summarizes the parameters used in our simulations. We use our simulator
to generate a two week synthetic trace of encounters. We chose parameter values from
a two week period of the MIT Reality Mining trace. We do not simulate the encoun-
ters’ durations and we assume a fixed number of people in the system. Our simulator
generates requests as follows. On average, 63.1% of a person’s daily encounters are
with friends and 36.9% with strangers. To generate an encounter, our simulator cre-
ates a friend encounter with probability0.631 and a stranger encounter with probability
0.369. We hypothesize that the underlying stranger popularity isdriven by Zipf’s law.
We estimated the Zipf’s parameter from a two week portion thetrace to beα = 1.129.
The encounter rates vary according to the time-of-the-day and the day-of-the-week.
Since the number of encounters remains constant on an hourlybasis, we use 24 hourly
rates during a week day and another 24 hourly rates during a week-end day.

Despite our ability to estimate many of the input parametersfrom the trace data, it is
not possible to directly estimateN (the number of people) with any confidence. For that
reason, we leaveN as a free parameter, adjusting it to obtain as tight a correspondence
between the simulator and the data trace as possible. Figure8 illustrates the encounter
patterns captured by our simulator.

3.2 Simulator Validation

Our simulator’s main goal was to capture the specific characteristics of friend and
stranger encounters. Many of these properties are built-in: the rate of encounters, the
fraction of friend versus stranger encounters, the heavy-tailed distribution of friend and
stranger popularities, and the heavy clustering of the friend network. We validated our
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model by measuring the speed of information propagation in our synthetic trace and
comparing it to the data trace. The data trace is restricted;it does not capture encoun-
ters between non-participants. In contrast, our synthetictrace captures all encounters
between all people. To match the data trace’s environment, we selected a set of nodes
from our synthetic trace to serve as our instrumented participants. We matched the
number of participants selected to the two week Reality Mining trace we used to pa-
rameterize our model. We did not choose the participants randomly. Instead, we chose a
subgraph in the friend network and we marked all nodes as participants in our validation
experiment. In this way we ensured that participants have strong friendship ties among
them, similar to the the data trace’s participants, who comefrom a single environment
and are likely to be socially related.

Next, we removed all encounters between unselected nodes inour synthetic trace
since these correspond to encounters between non-participants. Thus, we were able to
produce a synthetic trace with an experimental restrictionsimilar to the original trace.
We used the number of encounters in our restricted synthetictrace to calibrate how to
scale up the rate of encounters in our simulator. Initially,we scaled up the rate of en-
counters linearly with the size of the population. However,this led to an unrealistically
high number of encounters. Instead, we calibrated the scaling factor so that the number
of encounters in the restricted synthetic trace matches thenumber of encounters in the
real trace. The same scaling factor also led to an accurate distribution of encounters
between participant-to-participant and participant-to-non-participant encounters.

Figure 9 shows how information propagates through our restricted synthetic trace
and through the original trace. For this, we simulated how a message sent by a random
participant spreads through the network over time. When thetotal number of people in
the simulation (N ) is set to 20,000, the rate of information propagation in thesynthetic
network is close to the real trace.

4 Exploiting Social Interactions in Mobile Systems

In this section, we use our social networking-based simulator to investigate the potential
benefits of using social networking information to three mobile systems: (1) the perfor-
mance of DTN routing protocols, (2) slowing down the propagation of mobile worms,
and (3) improving the query hit rate of a mobile file-sharing application. We examine
each of these applications in turn.
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4.1 Routing in Delay Tolerant Networks (DTN)

In this section, we examine the performance of DTN routing protocols from a social
networking perspective. After presenting a brief primer onDTN routing protocols, we
study their performance in the presence and in the absence ofsocial information. Our
findings will show that, by using social information, routing protocols can achieve sub-
stantial performance gains.

A Brief Primer on DTN Routing

Various DTN routing protocols make different assumptions about the knowledge avail-
able to network nodes. While some assume that nodes have no knowledge about the
state of the network, others assume that nodes have access todifferent types of infor-
mation, such as the topology of the network, the average timebetween successive en-
counters of two nodes, who the congested nodes are, or the network traffic matrix [14].

Most protocols assuming no knowledge about the network are based on epidemic
routing [14,31,26]. These algorithms are optimal – theyalways deliver the message
over theshortest available path. They are also well-understood and relatively easy to
implement and deploy. Although optimal, epidemic routing is expensive and unscalable
since a message can potentially reach all nodes in the network.

To control the flooding of packets, epidemic protocols typically associate a time-
to-live field with each packet or they restrict their forwarding decisions. For example,
in the First Contact protocol [14], a node only forwards along the first available link.
While these techniques reduce the cost of epidemic routing,they also reduce the pro-
tocols’ performance, and they sometimes fail to deliver thepacket. In fact, the First
Contact protocol has been known to perform poorly in generalsince the chosen next-
hop is essentially random [14]. In summary, the DTN routing protocols that assume
no knowledge about the network perform poorly: they are either unscalable in prac-
tice (uncontrolled epidemic routing) or their delivery success rates are low (first contact
routing) [16].

Other DTN routing protocols assume some knowledge about thestate of the net-
work [19,14,16,30]. All these protocols try to compute shortest paths to the destination
assuming that certain network information is available. Some assume little extra infor-
mation, such as the average waiting time until the next contact for an edge, while others
assume that all nodes know the entire network topology at alltimes. The performance of
these DTN routing protocols varies depending on the amount of information available
and the network dynamics. A comprehensive evaluation of these protocols for several
DTN scenarios is presented in [14].

Incorporating Social Networking in DTN Routing

Social information is another type of information that is often readily available to nodes
in a DTN scenario. This information can help DTN routing protocols make more in-
formed decisions to whom to forward a specific message. For example, when routing
between friends, a protocol could prefer selecting intermediaries who are friends with
either the source or the destination. Friends are more likely to be clustered and to en-
counter one another. To quantify the performance of incorporating social networking in
DTN routing, we used our simulator to evaluate several protocols in the presence and
in the absence of social information.

While we evaluated a suite of DTN protocols, in this paper, wepresent only four
protocols: “direct contact”, “forward-to-1-person”, “forward-to-2-persons”,and “forward-
to-all” [32]. In “direct contact”, the sender does not forward the message to any interme-
diary; instead it waits to encounter the destination. In “forward-to-1-person”, the sender
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Fig. 10. The performance of DTN routing protocols. In the “direct contact” proto-
col, the sender does not forward the message to any intermediary; instead it waits to
encounter the destination. In “forward-to-k-persons/friends”, the sender forwards the
message to the first k persons (or friends). The sender and theintermediaries do not
subsequently forward the message unless they encounter thedestination. “Forward-
to-all” forwards to all persons encountered by the sender. Epidemic routing floods the
message to all nodes. On the left, the distribution of a message’s delivery times between
100 pairs of random people is shown. On the right, the same distribution between 100
pairs of friends is shown; in this experiment, all forwarding decisions are restricted to
friends only. The routing protocols perform significantly better in the presence of social
information.

forwards the message only to the first person encountered. There is no subsequent for-
warding; the message is delivered only when the sender or theintermediary encounters
the destination. The “forward-to-2-persons” works similarly, the sender forwarding to
the first two persons encountered. Finally, in “forward-to-all” the sender forwards the
message to all persons it encounters. Note that this is different than epidemic routing,
since in “forward-to-all”, none of the intermediaries forward to any nodes other than
the destination. We also implemented the optimal, epidemicrouting protocol to serve
as a baseline of comparison.

On the left, Figure 10 shows the distribution of delivery times of 100 messages sent
between 100 pairs of people randomly chosen. With epidemic routing, all messages
are successfully routed in less than 16 hours. However, the cost of epidemic routing is
immense: over half a million messages are being forwarded throughout the network.
On the other hand, the other four DTN routing protocols perform very poorly. In two
weeks, “direct contact” is unable to deliver even one singlemessage.

On the right, Figure 10 shows how these routing protocols perform in the presence
of social information. For this, the simulator selected 100random pairs of friends and it
restricted all the protocols to only forward to a friend of the source or the destination. To
capture the optimal delivery times, we left the epidemic routing protocol to forward to
any person. As Figure 10 shows, “direct contact” delivers 50% of the messages in less
than 19 hours, taking only an extra 7 hours over the optimal epidemic routing protocol.
Forwarding to one friend reduces the delivery times of half of the messages by two
hours and 45 minutes, and forwarding to two friends adds an additional two hours of
savings to the delivery times. By forwarding the message to all friends of the source or
the destination, 98% of all messages are delivered in less than 17.5 hours. These routing
protocols’ performance is close to optimal without the hugeoverhead of flooding the
entire network – each message is forwarded a small number of times only, at most on the
order of the number of friends of the source and the destination. We also evaluated these
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protocols when routing between people with no social relation and forwarding to the
source or the destination’s friends; the protocols’ performance is much more modest.

In summary, our findings show that social information leads to substantial perfor-
mance gains for DTN routing protocols. While our experiments only separated friend
from stranger encounters, we believe that a more refined treatment of social information
(e.g., identifying social groups and social behavior) is likely to further improve these
protocols’ performance. We plan to investigate this in future work.

4.2 Slowing the Spread of Worms

In this section, we examine whether firewalls that discriminate between traffic sent by
friends and traffic sent by strangers can slow down the propagation of a worm in a
mobile network. We use the propagation speed of a worm infection as a lens to measure
the effectiveness of firewall rules based on social networking.

The research community has already started to investigate the feasibility and the
propagation dynamics of worms in mobile networks [5,6,34,29]. While no large-scale
mobile worm outbreak has been reported so far, several reports of worms spreading over
the Bluetooth protocol in a cell-phone environment exist [7,12]. The consequences of
a malicious program infecting a large number of cell-phonescan be disastrous. For ex-
ample, such a worm could launch a DoS attack by overloading a segment of the cellular
network. Similarly, a spyware program infecting cell-phones could collect personal in-
formation. By slowing the propagation of a worm in a mobile network, security experts
can have more time to create and distribute a software patch repairing the vulnerability
exploited by the worm.

An effective way of slowing the propagation of a worm is to firewall devices to
prevent them from receiving traffic from all other devices. While such a measure would
be very effective, this solution is also unappealing – it will prevent devices from using
their radio interfaces for legitimate applications. Instead, a firewall that allows traffic
only from a select set of devices could greatly slow the spread of a worm but allow
many applications to function normally. For example, a firewall that accepts traffic only
from friends would not prevent people from using their devices to exchange data with
people they know. In this way, several applications, such asexchanging chat messages
or files with friends, can still function in the presence of such firewalls.

We use our simulator to investigate the effectiveness of such firewalls in a mobile
network. In our experiments, a worm outbreak occurs by initially infecting one ran-
domly chosen node. We randomly select 5% of the population tobe vulnerable; our
fraction of vulnerable devices is low since the most virulent known worms, such as
Internet worms, only infected a relatively small fraction of all Internet nodes [25,24].
We select 30% of the vulnerable devices (1.5% of the entire population) to be equipped
with a social networking firewall. We measure the number of infected devices with and
without social networking firewalls.

Figure 11 shows our results. Without a firewall, a worm can infect half of the vulner-
able devices in 9.5 days. While the worm does not propagate very quickly for the first
five days, over 30% of vulnerable devices are infected in one week. The rate of propaga-
tion is also influenced by the network’s temporal properties– the worm “slows-down”
during nighttime, but it then resumes a quick infection paceon the next day.

Even when a small fraction of devices (1.5%) turn on a social networking firewall,
the worm infection slows down significantly. Only a small fraction of vulnerable devices
(10%) are infected in the first week of the outbreak. It takes over two weeks to infect
half of the vulnerable devices, a delay of over five days when compared to the time it
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Fig. 11.The propagation of a mobile worm over time.In this experiment, 5% of de-
vices (out of 20,000) are vulnerable. The rate of infection is presented when no firewalls
are present in the system and when 30% of vulnerable nodes (1.5% of the entire popu-
lation) are firewalled. We show the results when running a firewall rejecting all traffic
and when running a firewall rejecting traffic from strangers only. The two firewalls are
almost as effective suggesting that social based firewalls can provide a good compro-
mise between preventing a worm from infecting devices and allowing some network
applications to still function.

takes to infect half of the population in the absence of such firewalls. The effectiveness
of the social networking firewall is almost close to optimal –a perfect firewall would
only prevent an additional 27 devices from becoming infected in one week.

These results suggest that social networking firewalls can slow down the spread of
a worm allowing for extra time to distribute a patch to the uninfected but still vulner-
able devices. At the same time, devices running such firewalls can continue to use the
network to communicate with their friends. These findings show that social networking
firewalls can provide an attractive solution to both users and security experts in the face
of a large-scale worm outbreak.

4.3 File-Sharing in Mobile P2P Systems

Recently, several companies have started to offer file-sharing software for mobile phones
that allow users to share ring-tones, music, games, photos,and video [28,17]. In mobile
P2P systems, content exchange is driven by the users’ socialinteractions – people en-
counter each other in social settings and they use their cell-phones to exchange content.
To understand these systems’ behavior, we need to understand to what extent content
propagation is driven by friend versus stranger encounters. In this section, we examine
the performance of several file exchange protocols in a mobile P2P file-sharing system
from a social networking perspective.

P2P systems must provide incentives for participants to upload and share content.
In the absence of such incentives, many peers offer little orno data to the system. Such
peers are known as “free-riders” [1]. Creating a suitable incentive mechanism in a P2P
system and enforcing it in a decentralized manner is a challenging problem and an
active area of research [21,20,27]. On the other hand, much of the content exchange
in a mobile network occurs in social settings: friends sharecontent among themselves.
Such environments offer a natural set of incentives: friends are likely to share data
or even forward data on each other’s behalf. If exchanging content between friends,
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Fig. 12. The fraction of successful requests over time in mobile P2P systems.We
implemented three file exchange policies: “no wish-lists exchanged”, “1-hop wish-lists
exchanged”, and “2-hops wish-lists exchanged”. A peer downloads a file if either it
wants it or it has previously received a wish-list containing this file. On the left, content
is exchanged between all peers. On the right, content and wish-lists are exchanged
between friends only. When restricting content exchanges to friend encounters only,
the rate of successful requests decreases drastically.

without involving strangers, can satisfy most people’s requests, the need for an explicit
incentive mechanism design is greatly diminished.

To examine whether content exchange is driven by friend encounters or by stranger
encounters in a mobile P2P system, we performed the following experiment. We started
with a trace of P2P file exchanges in Kazaa, a popular InternetP2P system, collected
at the University of Washington [10]. Each of the 24,578 nodes in this trace has a
“wish-list” and a “have-list”. The wish-list corresponds to all of the files that the node
downloads from its peers over the course of the trace, while the have-list is the set of all
files that this node is willing to provide to its peers. From this trace, we selected 20,000
peers and we mapped them to the 20,000 people whose encounters are generated by
our simulator. The mapping is done according to peers’ popularities: the peer having
the largest have-list is mapped to the participant with the highest number of encounters
in our simulator. When two peers encounter, a file-exchange policy dictates which files
and wish-lists the peers should exchange. Since our simulator does not capture contact
durations, we assume that file transfers occur instantaneously.

We implemented three file-exchange policies by varying the number of hops wish-
lists are exchanged in the network. In the first policy, “no wish-lists exchanged”, a
content exchange occurs only if one peer wants a piece of content present on the other
peer. No content is downloaded on behalf of others. In the “1-hop wish-lists exchanged”
policy, wish-lists are exchanged between neighbors only (wish-lists are flooded with a
time-to-live (TTL) of 1.) A peer downloads a file if either it wants it, or it has previ-
ously received a wish-list containing this file. In this way,content is replicated on peers
who have previously encountered someone wanting the file. The “2-hops wish-lists ex-
changed” policy behaves similarly, except the wish-lists’TTL is set to 2.

To evaluate whether peers can find content among their friends, we conducted two
sets of experiments: one in which all peers share content among themselves, and one
in which content sharing is restricted to friend encountersonly. Figure 12 shows our
findings. On the left, we show the fraction of requests satisfied over time when all peers
exchange content. In two weeks, only 27% of requests are satisfied when no wish-lists
are exchanged. On the other hand, if wish-lists are exchanged between neighbors, 54%
of requests are satisfied. Exchanging wish-lists between peers can substantially improve
the users’ query hit rate in the system.
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On the right, Figure 12 shows the fraction of requests satisfied over time when only
friends exchange content. In two weeks, less than 1% of requests are satisfied when
wish-lists are not exchanged. Even if wish-lists are exchanged along two hops, only
15% of requests are satisfied over two weeks. These findings suggest that restricting
content exchange only to friend encounters drastically reduces the rate of successful
requests. In our experiments, peers find three times fewer files when restricting their
content exchange to friend encounters only.

Our findings illustrate that mobile P2P systems cannot rely on friend encounters
to deliver content to their users. Although such a scheme could provide a natural set
of incentives to a system, it would significantly penalize the users’ query hit rate. In-
stead, like the file-sharing systems present on the Internet, P2P systems in mobile en-
vironments must rely on developing alternate incentive schemes to ensure that peers
contribute their content.

5 Conclusions

In this paper we used social networking-based simulations to show how three mobile
systems can exploit people’s social relations to improve performance and query hit rate.
We first showed that simple DTN routing protocols that avoid forwarding to strangers
work very well when routing between friends. Next, we found that firewalls allow-
ing traffic from friends while rejecting traffic from strangers are effective at slowing
down the spread of worms in mobile environments. Finally, weshowed that mobile
P2P file-sharing systems must rely on strangers to exchange content to satisfy their
users’ requests.
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