
Simplifying Friendlist Management

Yabing Liu
Northeastern University
ybliu@ccs.neu.edu

Bimal Viswanath
MPI-SWS

bviswana@mpi-sws.org

Mainack Mondal
MPI-SWS

mainack@mpi-sws.org

Krishna Gummadi
MPI-SWS

gummadi@mpi-sws.org

Alan Mislove
Northeastern University

amislove@ccs.neu.edu

ABSTRACT

Online social networks like Facebook allow users to connect,
communicate, and share content. The popularity of these
services has lead to an information overload for their users;
the task of simply keeping track of different interactions has
become daunting. To reduce this burden, sites like Facebook
allows the user to group friends into specific lists, known as
friendlists, aggregating the interactions and content from
all friends in each friendlist. While this approach greatly
reduces the burden on the user, it still forces the user to
create and populate the friendlists themselves and, worse,
makes the user responsible for maintaining the membership
of their friendlists over time.

We show that friendlists often have a strong correspon-
dence to the structure of the social network, implying that
friendlists may be automatically inferred by leveraging the
social network structure. We present a demonstration of
Friendlist Manager, a Facebook application that proposes
friendlists to the user based on the structure of their lo-
cal social network, allows the user to tweak the proposed
friendlists, and then automatically creates the friendlists for
the user.

1. INTRODUCTION
Online social networking sites (OSNs) like Facebook are now
a popular way for users to connect, communicate, and share
content. As a result, OSNs have changed the role of users on
the Web: Today, instead of just being content consumers,
individual end users are now required to be both content
consumers and managers. In other words, for every piece
of information a user uploads to Facebook—every wall post,
photo, status update, and video—she must decide which
other users should be able to access the content. With an
average of over 130 friends per user [3] and 90 pieces of
content uploaded per user per month [3], the result is a
significant burden both in terms of aggregating content from
friends and setting access control for one’s own content.

To help users share content with members of their social
network, Facebook introduced the friendlist mechanism [4].
Each friendlist contains a subset of a user’s Facebook friends,
and the membership of the friendlist is private to the user by
default. Facebook then allows users to (a) share content only
with members of the friendlist and (b) aggregate and view
the content that is uploaded by the members of the friendlist.
For example, a user can create a friendlist containing all her
high school friends whom she is friends with on Facebook.
She can then share content with only her high school friends,

and also selectively view all the content that is uploaded by
her high school friends.

Unfortunately, the usefulness of the friendlist mechanism
is impeded by two large burdens that are placed on the user.
First, there are no friendlists created by default; the user
must have the foresight to determine the appropriate set of
friendlists to create.1 Second, the user alone is responsi-
ble for populating the membership of these friendlists, and
maintaining the correct membership over time as relation-
ships are formed and changed. As a result, it is unsurpris-
ing that many Facebook users do not use the friendlist fea-
ture [7].

In this paper, we take the first steps towards address-
ing this situation by automating the creation and mainte-
nance of Facebook friendlists. Recent work [7] has shown
that the friendlists have a correspondence with the struc-
ture of the social network. In particular, many of the user-
created friendlists correspond to communities in the user’s
1-hop social network, and hold the potential to be detected
by existing community detection algorithms (e.g., [1]). We
present the Facebook application Friendlist Manager, which
analyzes a user’s 1-hop social network, detects communi-
ties, proposes the communities to the user as friendlists, al-
lows the user to tweak the friendlists, and finally creates the
friendlists for the user. Additionally, Friendlist Manager ex-
amines any previously existing friendlists to locate friends
who may be tightly connected to friends in the friendlist
but not a member of the friendlist; if such friends are found,
they are also presented to the user for consideration.

In the remainder of this paper, we discuss motivation and
implementation of Friendlist Manager in Section 2. We then
present the user interface of Friendlist Manager in Section
3, and describe a small experimental deployment.

2. AUTOMATICALLY INFERRING

FRIENDLISTS
The intuition behind Friendlist Manager is that users typ-
ically group their friends based on shared attributes (e.g.,
friends who attended the same high school, friends who
work for the same employer, members of the same family,
or friends who have similar interests). Our intuition is sup-
ported by previous studies [8] that demonstrate the existence

1Recently, Facebook introduced smart lists [5], which are
essentially automatically created friendlists based on profile
attributes (such as high school attended). Unfortunately,
many users do not provide the detailed attribute information
necessary, so the smart lists created by Facebook typically
only contain a subset of the “correct” users.

Network Nodes Links Avg. deg.
Facebook City A [14] 3.0 M 46 M 15.2
Facebook City B [14] 2.9 M 40 M 14.2

Facebook New Orleans [13] 63 K 1.6 M 25.6

Table 1: Number of nodes, links, and average user
degree in the samples of the Facebook networks used
to evaluate community detection algorithms.

of attribute-based communities on Facebook. In this work,
we leverage this observation to provide the users with more
natural and effective ways to aggregate friends’ content and
express privacy controls on their own content.

2.1 Detecting communities
Community detection in large networks is a well-studied
problem with a rich literature and many proposed ap-
proaches [1,6,9,10,12]. We leverage existing work on commu-
nity detection to automatically infer friendlists. We require
two types of community detection algorithms: one, which
detects remaining members of a community if a partial set
of community members are given, and second, those which
globally partitions a given network into multiple communi-
ties. The use of above two classes of algorithms helps us to
to expand existing friendlists (i.e those which the user has
already created) and to create new friendlists for the user.
It should be noted that new friendlists created can be over-
lapping friendlists, because a friend of a user could belong to
multiple friendlists (e.g. a friend could be part of a “football
team” and also a part of “hometown friends”).

Since Facebook only allows applications to have knowl-
edge of each user’s 1-hop social network (i.e., only the user’s
friends and the connections between them), we use the 1-
hop network of a user to detect communities. To create
new friendlists for a user, we use the BGLL algorithm pro-
posed by Blondel et al. [1].2 In brief, BGLL works in the
following way: It initializes each node of the graph as an
isolated community. Then, it searches for ways to merge
two existing communities that would result in the highest
increase in modularity [9]. The algorithm continues until all
of the nodes are in a single community, and then picks the
stage in the algorithm with the highest modularity as the fi-
nal division. BGLL has a very low computational overhead,
allowing our application to give results quickly.

Unfortunately, the BGLL algorithm only assigns each
friend to a single community. To further detect overlap-
ping friendlists for the user, we expand each of the BGLL-
detected communities using the algorithm proposed by Mis-
love et. al. [8] that detects other members of a commu-
nity, given a partial set of community members by finding
members (outside the existing community) which are tightly
connected to the existing members.

Finally, to propose new members to existing friendlists, we
again leverage the algorithm by Mislove et. al. to expand
existing communities [8].

2.2 Simulating Friendlist Manager
In this section, we evaluate the potential for detecting com-

2We experimented with other off-the-shelf community detec-
tion algorithms as well and observed similar results. More
details are in Section 2.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized conductance

BGLL
CNM

Walktrap

Figure 1: Cumulative distribution of the maximum
normalized conductance values per user in Facebook
New Orleans [13]. In 40% of cases BGLL creates
communities with conductance greater than 0.2, and
all methods create communities with almost equally
good conductance values(the results are similar for
the other two Facebook networks).

munities in the 1-hop network of a user using community
detection algorithms. We focus only on detecting non-
overlapping communities in the user’s 1-hop network. Work
in [8] shows evidence of existence of overlapping communities
in social networks and evaluates the possibility of expanding
the set of potential community members given a seed set of
existing members.

In order to rate the “quality” of a detected community,
we use normalized conductance (a metric proposed in [8])
to evaluate the community’s strength. Normalized conduc-
tance is defined as the fraction of the community’s links that
lie within the community, relative to what would be expected
from a random graph with the same degree distribution.
Similar to modularity, the value of normalized conductance
varies from -1 to 1, with a positive value indicating com-
munity quality better than random, 0 representing no more
community structure than random and a negative value in-
dicates worse community quality than a random graph.

We use 3 datasets collected from Facebook to evaluate the
quality of communities detected. The first two are Facebook
City A and Facebook City B, two (anonymized) Facebook
regional networks collected by Wilson et al. [14]. We also
use the Facebook New Orleans network [13]. The high-level
statistics of these networks are shown in Table 1. We se-

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

C
D

F

Community size

BGLL
CNM

Walktrap

Figure 2: Cumulative distribution of the size of the
communities per user in Facebook New Orleans. In
more than 90% of cases, BGLL creates communities
with fewer than 20 members.

Figure 3: Screenshot of user interface of the appli-
cation with proposed new friendlists.

lected 1,000 users at random from each of these networks
for our study.

We detect communities for each of them using three dif-
ferent algorithms: BGLL, CNM [2], and Walktrap [11]. We
present the cumulative distribution of the maximal normal-
ized conductance per user for Facebook New Orleans in Fig-
ure 1 (results for the other networks are similar). Figure 1
shows that almost 40 % of the communities that the algo-
rithms detect have normalized conductance value more than
0.2, indicating that the algorithms are able to find reason-
ably good quality communities for many users. Also, we
notice that all three of these algorithms find communities of
similar quality. So, we do not compromise on the quality of
the communities by choosing the BGLL algorithm. When
looking at the community quality of detected communities
at a per-user level, we observe that a majority of users (56%)
have at least 10% of their total number of communities with
normalized conductance greater than 0.2. This suggests that
for most users, there are a few communities that are tightly
knit in their local neighborhood.

Figure 2 presents a cumulative distribution of the commu-
nity sizes that are found; this further indicates that BGLL
is able to find small communities. At a per-user level, we
find that 94% of users have a median community size less
than 20.

Since we observe that automatically detected communi-
ties have good conductance values, they are likely to repre-
sent small groups of closely knit friends. This observation
is compatible with our intuition that these communities can
be directly converted into meaningful and useful friendlists
for users.

3. DEMO: FRIENDLIST MANAGER
We now present the user interface of Friendlist Manager and
explain the functionalities we provide for Facebook users.

(a) Existing friendlist (b) New friendlist

Figure 4: Screenshot of (a) an existing friendlist
with proposed additions and (b) a newly proposed
friendlist with merge friendlist functionality.

We then describe the results from a small deployment of the
application to the authors of this paper.

3.1 User interface
The Facebook application Friendlist Manager is available at
http://apps.facebook.com/friendlist_manager. The ap-
plication first requests permissions to access the user’s data,
and then downloads and analyzes the user’s local social net-
work. The user is then taken through two steps. In the
first step, if the user has existing friendlists on Facebook,
Friendlist Manager proposes new additions to each existing
friendlist. The user can update existing friendlists with any
of the proposed additions, or can skip to the next step di-
rectly. In the second step, the user is presented with a set
of proposed new friendlists. A screenshot of our application
in step two is shown in Figure 3. The user is allowed to re-
move users from friendlists or drag-and-drop users between
friendlists in both steps.

Figure 4(a) shows the interface for proposed additions to
existing friendlists, with the following functionalities:

• Collapsible tab groups We present two tabs within
each friendlist box – one showing the existing members
of the friendlist and the second showing the proposed
new additions to that friendlist. The newly proposed
members are shown in red.

• Delete members The user can delete any members
shown in the friendlist box (both newly proposed ad-
ditions and existing members) by clicking the minus
button next to each member.

• Drag-and-drop friend allows the user to drag one
friend out of the friendlist and drop into another
friendlist, if the user feels that this friend should be-
long to another friendlist.

Links between Friendlists detected Friendlists created Total time in
User Friends friends by Friendlist Manager by user Friendlist Manager

1 51 126 6 5 2.4 min

2 121 608 12 9 5.1 min

3 613 18,820 20 9 4.3 min

4 94 622 6 5 8.8 min

5 149 1,219 5 3 1.1 min

Table 2: Topological characteristics of authors’ 1-hop Facebook subgraph along with number of friendlists
detected by Friendlist Manager, number of friendlists finally users create on Facebook and time taken by
users to use Friendlist Manager for modifying and creating these friendlists on Facebook.

• Update friendlist Once the user has finished editing
the friendlist, she can save the friendlist to Facebook
by clicking ”Update List” button at the bottom of each
friendlist.

Figure 4(b) shows the interface for newly proposed
friendlists, with the following functionalities:

• Merge friendlists The user can merge two or more of
the proposed friendlists by selecting the merge button
on one friendlist and selecting others from a drop-down
menu.

• Delete friendlists The user can delete any friendlist
which is not meaningful.

• Delete members This is the same feature as provided
in step one.

• Drag-and-drop friend This is the same feature as
provided in step one.

• Create friendlist Create the friendlist on Facebook.

Here, we give more explanation about the Friendlist Man-
ager’s functionality: First, in each proposed friendlist, the
order of the friends is based on the number of common
friends with the user, meaning that the first friend in each
friendlist has the highest number of common friends with
the user. This results in an ordering of members in each
friendlist from most-strongly-connected to least-strongly-
connected. Second, the per-friend delete button and the
drag-and-drop functionality allow the user to edit the pro-
posed friendlists in a precise way, correcting all errors in
assignment that are made by the algorithm. Third, in each
friendlist, the two buttons “View all names” and “Hide some
names” are used to make the interface more clear for users
(especially when users have many friends resulting in large
proposed friendlists). Finally, the button“Create List”auto-
matically creates the proposed friendlist on Facebook; after
it is created, the friendlist disappears from the screen.

More information about using Friendlist Manager is avail-
able at: http://friendlist-manager.mpi-sws.org/.

3.2 Experimental evaluation
Next, we briefly describe the results of the Friendlist Man-
ager application deployed to the five authors of this paper.
In this evaluation, we focus on the new friendlists created
by each user. We present some basic information on the au-
thors’ social networks in Table 2. From the Table 2, we ob-
serve that totally all 5 authors created 31 friendlists on their
Facebook accounts and on average each user created 69% of
the friendlists proposed by Friendlist Manager. Moreover,
each user spent an average of 4 minutes to create all their
friendlists.

3.3 Future work
We are exploring mechanisms for automatically suggesting
names for the friendlists, further removing the burden on
the user. Also, we are actively improving the user interface
to make it more intuitive and easy to understand.

4. REFERENCES
[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and

E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, (10), 2008.

[2] A. Clauset, M. E. J. Newman, , and C. Moore.
Finding community structure in very large networks.
Physical Review E, 70:1– 6, 2004.

[3] Facebook Statistics. http:
//www.facebook.com/press/info.php?statistics.

[4] Facebook lists.
https://www.facebook.com/help/friends/lists.

[5] Facebook smart lists.
http://techcrunch.com/2011/09/13/
facebook-officially-unveils-smart-friend-lists/.

[6] S. Fortunato. Community detection in graphs. Physics
Reports, 486:75, 2010.

[7] Y. Liu, K. Gummadi, B. Krishnamurthy, and
A. Mislove. Analyzing Facebook privacy settings: User
expectations vs. reality. In Proc. ACM/USENIX
Internet Measurement Conference (IMC), 2011.

[8] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel. You are who you know: Inferring user
profiles in online social networks. In ACM
International Conference on Web Search and Data
Mining (WSDM), 2010.

[9] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. Physical Review E,
69(6), 2004.

[10] M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

[11] P. Pons and M. Latapy. Computing communities in
large networks using random walks. Journal of Graph
Algorithms and Applications, 10:284–293, 2004.

[12] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi. Defining and identifying communities in
networks. Proceedings of the National Academy of
Sciences, 101(9):2658, 2004.

[13] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the Evolution of User Interaction in
Facebook. In Proc. ACM SIGCOMM Workshop on
Social Networks (WOSN), 2009.

[14] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and
B. Y. Zhao. User Interactions in Social Networks and
their Implications. In Proc. European Conference on
Computer Systems (EuroSys), 2009.

