
Beyond Distributive Fairness in Algorithmic Decision Making:
Feature Selection for Procedurally Fair Learning
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Abstract

With widespread use of machine learning methods in numer-
ous domains involving humans, several studies have raised
questions about the potential for unfairness towards certain
individuals or groups. A number of recent works have pro-
posed methods to measure and eliminate unfairness from ma-
chine learning models. However, most of this work has fo-
cused on only one dimension of fair decision making: dis-
tributive fairness, i.e., the fairness of the decision outcomes.
In this work, we leverage the rich literature on organizational
justice and focus on another dimension of fair decision mak-
ing: procedural fairness, i.e., the fairness of the decision mak-
ing process. We propose measures for procedural fairness that
consider the input features used in the decision process, and
evaluate the moral judgments of humans regarding the use
of these features. We operationalize these measures on two
real world datasets using human surveys on the Amazon Me-
chanical Turk (AMT) platform, demonstrating that our mea-
sures capture important properties of procedurally fair deci-
sion making. We provide fast submodular mechanisms to op-
timize the tradeoff between procedural fairness and predic-
tion accuracy. On our datasets, we observe empirically that
procedural fairness may be achieved with little cost to out-
come fairness, but that some loss of accuracy is unavoidable.

1 Introduction
As machine learning methods are increasingly being used
in decision making scenarios that affect human lives (such
as credit risk assessments and recidivism risk prediction),
there are growing concerns about the fairness of such de-
cision making. These concerns have spawned much recent
research on detecting and avoiding unfairness in decision
making (Dwork et al. 2012; Feldman et al. 2015; Kami-
ran and Calders 2010; Luong, Ruggieri, and Turini 2011;
Pedreschi, Ruggieri, and Turini 2008; Zafar et al. 2017b;
Zemel et al. 2013).

In this work, we revisit the foundational notions of fair-
ness that underlie these studies. We begin by observing
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that fairness concerns about decision making are multi-
dimensional. Specifically, we leverage the rich literature on
organizational justice (Greenberg 1987) to distinguish be-
tween two primary categories (types) of fairness concerns,
namely distributive and procedural fairness. Distributive
fairness refers to the fairness of the outcomes (ends) of deci-
sion making, while procedural fairness refers to the fairness
of the decision making processes (means) that lead to the
outcomes. In the rest of this paper, we use “distributive fair-
ness” and “outcome fairness” interchangeably. We similarly
use the terms “procedural fairness” and “process fairness”
interchangeably.

To date, most works on fair learning have focused on
achieving a fair distribution of decision outcomes, with little
attention to the decision processes generating the outcomes.
These works are inspired by various anti-discrimination
laws that focus on the relationships between certain sensitive
attributes (e.g., gender or race) and decision outcomes (Civil
Rights Act 1964; Barocas and Selbst 2016). For instance, the
notions of “individual fairness” (Dwork et al. 2012), “sit-
uational testing” (Luong, Ruggieri, and Turini 2011), and
“disparate treatment” (Zafar et al. 2017b) consider individ-
uals who belong to different sensitive attribute groups (e.g.,
males and females), yet share similar non-sensitive features
(qualifications), and require them to receive similar decision
outcomes. Similarly, the notions of “group fairness” (Zemel
et al. 2013) and “disparate impact” (Zafar et al. 2017b) are
based on requiring that different sensitive attribute groups
receive beneficial decision outcomes in similar proportions.
Finally, the notions of “disparate mistreatment” (Zafar et al.
2017a) and “equal opportunity” (Hardt, Price, and Srebro
2016) aim to achieve similar rates of errors in decision out-
comes for different sensitive attribute groups.

In this paper, we propose notions of procedural (rather
than distributive) fairness, based on which input features are
used in the decision process and how including or exclud-
ing the features would affect outcomes. While existing fair
learning mechanisms can efficiently leverage input features
and their correlations with the sensitive attributes in order
to resolve indirect discrimination and achieve distributively
fair outcomes, they overlook several important considera-
tions which are addressed by procedural fairness. For ex-
ample, these considerations include whether or not the per-
ceived fairness of using an individual’s feature in the deci-



sion making process is affected by the following:
1. Feature volitionality: Does the feature represent the re-
sult of volitional (i.e., voluntarily chosen) decisions made
by the individual (e.g., number of prior offenses); or rather
is it the result of circumstances beyond their control (e.g.,
age or race) (Beahrs 1991)?
2. Feature reliability: How reliably can a feature be assessed
(e.g., in credit assessments, opinions towards bankruptcy
may be harder to reliably assess than number of prior
bankruptcies) (Trankell 1972)?
3. Feature privacy: Does use of the feature give rise to a
violation of the individual’s privacy (GDPR 2016)?
4. Feature relevance: Is the feature causally related or not to
the decision outcomes (Kilbertus et al. 2017; Kusner et al.
2017)?

The above procedural fairness considerations reflect an
understanding of the potential harmful impact on society
by unacceptable use of input features in a decision pro-
cess. Note that these considerations depend on background
knowledge about the input features and societal context that
is often not captured in the data at hand. The challenge we
then face is: how should one account for procedural fairness
in decision making?

In this work, we explore a novel approach to procedurally
fair learning. Our key insight, inspired by the work of Yaari
and Bar-Hillel (1984) is to rely on humans’ moral judgments
or instincts about the fairness of using input features in a de-
cision making context. As we shall show, humans (even lay
users) exhibit a moral sense for whether or not it is fair to use
a feature in a decision making scenario, that captures sev-
eral of the procedural fairness considerations listed above.
Their collective opinions – rooted in prevailing cultural or
social norms, political beliefs, and legal regulations – reflect
societal consensus on the desirability of using particular fea-
tures.1 These opinions (implicitly) provide the missing back-
ground knowledge needed to evaluate the fair use of input
features in a given decision process.

In this paper, we propose and evaluate measures and
mechanisms for procedurally fair learning. Our measures go
beyond binary legal specifications – which mark each fea-
ture as either sensitive or not – by examining a scalar mea-
sure of the extent to which people judge each input feature
to be (un)fair to use. Our measures are designed to avoid the
traditional pitfalls of relying on human judgments. Specifi-
cally, we observe that while humans tend to have a good un-
derstanding of feature volitionality, reliability, privacy, and
relevance in a decision making scenario, they tend to be bad
at predicting what impact using a feature might have on the
decision outcomes (Agan and Starr 2016). In fact, the im-
pact of input features on outcomes is best assessed from the
data itself. Accordingly, our measures explicitly seek to in-
corporate people’s judgments of fairness of using a feature,
conditioned on its impact on outcomes.

1Previous work has demonstrated the importance and validity of
measuring perception of normative phenomena via human surveys,
for example language impartiality (Zafar, Gummadi, and Danescu-
Niculescu-Mizil 2016) and politeness (Danescu-Niculescu-Mizil et
al. 2013).

We highlight the following contributions of our paper:

• We introduce three scalar measures of procedural fairness.
In contrast to existing distributive fairness measures that
are centered around decision outcomes, our measures ac-
count for fairness concerns about the use of input features
in the process of decision making.

• We operationalize the measures by assembling user judg-
ments of fairness of features in the context of recidi-
vism risk estimation using the ProPublica COMPAS
dataset (Larson et al. 2016). We also analyze the New
York Police stop-question-and-frisk (SQF) dataset (SQF
Dataset 2017), in the context of prediction of illegal
weapon possession.

• We model the tradeoff between procedural fairness and
the accuracy of a classifier as constrained submodular op-
timization problems over the set of features. We select
subsets of features that optimize for accuracy and pro-
cedural fairness using fast and scalable methods for sub-
modular optimization with submodular constraints, and
demonstrate good performance empirically.

• On the datasets we considered, our results suggest that
high procedural fairness, perhaps surprisingly, leads also
to high distributive fairness, but that some loss of accuracy
is unavoidable.

Related work in other disciplines. In moral philoso-
phy (Blackburn 2003): a deontological approach considers
certain moral truths to be absolute regardless of situation or
outcome, which corresponds well with our notion of process
fairness. In contrast, a teleological or utilitarian approach
focuses on the outcomes, which corresponds well with the
notion of outcome fairness.

Prior work in economics, law, and political science dis-
tinguishes between direct and indirect discrimination, sug-
gesting that the “wrong” of direct discrimination (which we
identify with violating process fairness) should be distin-
guished from the “wrong” of indirect discrimination (which
we identify with violating outcome fairness) (Altman 2016).

2 Defining process fairness
We consider a classifier C trained using a subset of features
F from a set F̄ of all possible features. We define the process
fairness of C to be the fraction of all users who consider
the use of every feature in F to be fair. We may use the
phrase “process fairness of a classifier” interchangeably with
“process fairness of the set of features used by the classifier”.

Our process fairness definition relies critically on users’
judgments about the use of individual features when making
decisions. A user’s judgment about a feature may change
after learning how the use of the feature impacts decision
outcomes. Some effects on decision outcomes are consid-
ered desirable, and might increase the perceived fairness of
the feature. For instance, a user who initially considered a
feature unfair for predicting recidivism risk might change
their mind and deem the feature fair to use after learning
that using the feature significantly improves the accuracy of
prediction. On the other hand, other effects are considered
undesirable, and may subsequently decrease the perceived
fairness. For example, a user might change their mind after



learning that using a feature would increase disparity in de-
cision outcomes for different sensitive attribute groups (e.g.,
men vs. women, white vs. non-white people).

In this paper, we focus on how the perceived fairness
of a feature is affected by additional knowledge about a
desirable effect: an increase in accuracy, and an undesir-
able effect: an increase in disparity in decision outcomes.
Accordingly, we define three measures of process fair-
ness: feature-apriori fairness, feature-accuracy fairness and
feature-disparity fairness. Let U denote the set of all queried
individuals (“users”).
Feature-apriori fairness. For a given feature f ∈ F̄ , let
Uf ⊆ U denote the set of all users who consider the feature
f fair to use without a priori knowledge of how its usage
affects outcomes. For a given set of features F ⊆ F̄ , we
define the feature-apriori fairness of F as the fraction of
users who consider all of the features f ∈ F fair. More
formally,

feature-apriori fairness(F) :=
|
⋂
f∈F Uf |
|U|

. (1)

Feature-accuracy fairness. Let UAf ⊆ U denote the set of
all users who consider the feature f fair to use if it increases
the accuracy of a designated classifier. Given a set of fea-
tures F ⊆ F̄ , we define:

feature-accuracy fairness(F) :=
|
⋂
f∈F A(Uf ,UAf )|

|U|
,

A(Uf ,UAf ) =

{
UAf , if f increases accuracy
Uf , otherwise.

(2)

Feature-disparity fairness. Let UDf ⊆ U denote the set of
all users who consider the feature f fair to use even if it
increases disparity in outcomes of a designated classifier. In
this paper, we use disparate mistreatment (Zafar et al. 2017a)
as a measure of disparity in outcomes (see Section 6), but
other measures such as disparate impact (Zafar et al. 2017b)
could be used as well. Given a set of features F ⊆ F̄ , we
define:

feature-disparity fairness(F) :=
|
⋂
f∈F D(Uf ,UDf )|

|U|
,

D(Uf ,UDf ) =

{
UDf , if f increases disparity
Uf , otherwise.

(3)

Following similar reasoning as for feature-accuracy and
feature-disparity fairness, one could define measures of pro-
cess fairness that capture other desirable and undesirable ef-
fects of using features.
Unfairness measures. Our fairness measures are set func-
tions: they take a subset of features F ⊆ F̄ and return a
real number as a fairness value between 0 (completely un-
fair) and 1 (completely fair). For each of our three measures
of process fairness, we define corresponding measures of
unfairness, each defined as 1 minus the respective fairness
measure.
Details of implementation. For definitions (2) and (3), the
classifier C must be specified in order to determine theA and

D condition functions. Furthermore, to determine if using a
feature f increases accuracy or disparity, we must specify:
(i) a minimum threshold level ε for the increase; and (ii) the
base set of features with respect to which f increases the
property. For (i), we set ε = 5% of the full range of values
realized by the null classifier and the classifier which uses all
features F̄ . For (ii) we used the empty set of features as the
base set. Other reasonable choices yield qualitatively similar
results on our datasets.
Properties of (un)fairness measures. In Proposition 1 be-
low, we show key properties of our measures which will be
critical to enable us in Section 4 to develop scalable opti-
mization methods for establishing fairness-accuracy trade-
offs. We first need the following definitions. Let F̄ be a finite
set. Let g be a set function g : 2F̄ → R, where 2F̄ denotes
the power set of F̄ .

Definition 1 The function g is supermodular if for allFA ⊆
FB ⊂ F̄ , f ∈ F̄ \ FB ,

g(FA ∪ {f})− g(FA) ≤ g(FB ∪ {f})− f(FB). (4)

Intuitively, a set function is supermodular if it exhibits in-
creasing marginal gains. A function is submodular if and
only if its negative is supermodular.

Definition 2 The function g is non-increasing monotone if:

g(F ∪ {f})− g(F) ≤ 0, ∀F ⊆ F̄ , f ∈ F̄ \ F . (5)

Proposition 1 All three measures of process fairness
(feature-apriori, feature-accuracy and feature-disparity) are
monotone non-increasing supermodular set functions with
respect to features. Equivalently, the respective unfairness
measures are monotone non-decreasing submodular func-
tions.

Proof Let g be any of the three measures of process fairness.
We must show that, for any two FA,FB such that FA ⊆
FB ⊂ F̄ , and for any f ∈ F̄ \FB , inequality (4) is satisfied.

For ease of exposition, assume feature-apriori fairness,
and let F∩ denote

⋂
f∈F Uf . Since |U| > 0 is a constant,

to show that inequality (4) holds, it is sufficient to show that:

|F∩A | − |F∩A ∩ {f}∩| ≥ |F∩B | − |F∩B ∩ {f}∩| , (6)

or, since for any X and v, X = (X ∩{v})∪ (X \{v}), that:

|F∩A \ {f}∩| ≥ |F∩B \ {f}∩| . (7)

Since FA ⊆ FB , it must be the case that F∩B ⊆ F∩A . It
follows that F∩B \{f}∩ ⊆ F∩A \{f}∩. Hence, inequality (7)
holds and g is supermodular.

For any set F ⊆ F̄ , f ∈ F̄ \ F , it holds that
|F∩ ∩ {f}∩| ≤ |F∩|, hence inequality (5) also holds
and the result follows.

3 Measuring process fairness
Here we apply the measures of process fairness defined in
Section 2 to the ProPublica COMPAS dataset and the NYPD
SQF dataset.
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Figure 1: ProPublica COMPAS dataset. [Left] – Feature-apriori (apr.), feature-accuracy (acc.) and feature-disparity (disp.)
fairness measured using judgments of AMT workers. [Right] – Fairness measured using judgments of very liberal (lib.) and
very conservative (cons.) AMT workers.
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Figure 2: NYPD SQF dataset. Feature-apriori, feature-accuracy and feature-disparity fairness measured using judgments of
AMT workers.

Our goal here is to utilize human judgments of fairness,
in order to capture background knowledge (missing in the
dataset) about a feature’s volitionality, relevance, and other
properties. In this paper, we survey users of Amazon Me-
chanical Turk (AMT) platform to gather human judgments
of fairness. However, we note that such judgments can be
gathered from any other group of people, ranging from
crowd workers to domain experts. We do not claim that
AMT users are the right group to obtain these judgments
from. We first describe how we surveyed users to gather
these judgments.

3.1 Gathering human judgments
For gathering human judgments, we use the Amazon Me-
chanical Turk (AMT) platform where users (or workers)
can volunteer to perform a wide range of online tasks for
pay (Buhrmester, Kwang, and Gosling 2011; Mason and
Suri 2012).

For each of the datasets, we describe the prediction task,
and then present one feature at a time, asking the user each
time to respond with yes or no to three questions: Q. 1: Do
you believe it is fair or unfair to use this information? Q. 2:
Do you believe it is fair or unfair to use this information, if it

increases the accuracy of the prediction? Q. 3: Do you be-
lieve it is fair or unfair to use this information, if it makes one
group of people (e.g., African American people) more likely
to be falsely predicted as having a higher risk of recidivism
than another group of people (e.g., white people)?

We intentionally did not define fair in our questions in or-
der to gather users’ intuitive sense of fairness. As we discuss
in Section 1, users’ fairness judgments reflect many complex
considerations.

For a given dataset, we gather responses to the above
questions from 200 different AMT workers (that is, each fea-
ture is judged by 200 different workers). Since the tasks we
consider relate to the U.S. criminal justice system, we only
recruited workers who are from the U.S. To ensure the qual-
ity of the judgments, we only recruited AMT master workers
who have a reputation on the AMT platform for perform-
ing their tasks reliably (The Mechanical Turk Blog 2011).
Additionally, we filtered out the fairness judgments from a
small fraction (less than 5%) of users, who provided out-
lier (anomalous) responses: (i) marking a feature as unfair
to use apriori to knowing its impact, but marking it as fair
when it increases disparity and (ii) marking a feature as fair
to use apriori to knowing its impact, but marking it as unfair



when it increases accuracy. Below, we describe the ProPub-
lica COMPAS and NYPD SQF datasets.
ProPublica COMPAS dataset. The ProPublica COMPAS
dataset (Larson et al. 2016) relates to recidivism risk pre-
diction (predicting if a criminal defendant will commit an
offense within a certain future time). The dataset is gath-
ered by ProPublica (Larson et al. 2016), with information
on all criminal defendants who were subject to screening by
COMPAS, a commercial recidivism risk assessment tool, in
Broward County, Florida, in 2013-2014. Our set of features
was the following: “number of prior criminal offenses”,
“arrest charge description” (e.g., grand theft, possession of
drugs), “charge degree” (misdemeanor or felony), “num-
ber of juvenile felony offenses”, “juvenile misdemeanor of-
fenses”, “other juvenile offenses”, “age” of the defendant,
“sex” of the defendant and “race” of the defendant. A sub-
set of these features was considered in recent studies re-
lated to racial biases in recidivism risk prediction (Flores,
Lowenkamp, and Bechtel 2016; Zafar et al. 2017a). The
dataset also contains information on whether the defendant
actually recidivated or not.
NYPD SQF dataset. We also gathered responses from
AMT workers for a dataset related to New York Police
Department’s Stop-Question-and-Frisk (NYPD SQF) pro-
gram (SQF Dataset 2017), where police officers stop and
investigate civilians on the suspicion of being involved in
a criminal activity. The dataset is publicly available (SQF
Dataset 2017) and has been studied by various prior works
in the context of outcome fairness (Goel, Rao, and Shroff
2015). It contains data on all of the stops made by po-
lice officers, including the accompanying circumstances and
reasons for the stop. In a recent study, Goel, Rao, and
Shroff (2015) designed a learning task based on appropriate
features present in the datasets to predict whether a person
is carrying an illegal weapon or not. We used the same pre-
diction task and a similar set of 30 features as considered
by Goel, Rao, and Shroff (2015), on the NYPD SQF data
for 2011. The class distribution of the SQF dataset is highly
skewed, with 97% of the instances belonging to the positive
class. A classifier trained on such a dataset predicts all points
as positive, while achieving an accuracy of 0.97. Therefore,
we subsample the dataset to have equal class distribution.

3.2 Analyzing human judgments of fairness
For each feature, we computed the fraction of AMT workers
who considered it fair under each of the questions Q. 1, 2 and
3, which correspond to notions of feature-apriori, feature-
accuracy and feature-disparity fairness respectively. The re-
sults are shown in Figures 1 [Left] and 2, for the ProPublica
COMPAS and NYPD SQF datasets respectively. Responses
varied significantly across features, while the ranking of fea-
tures was consistent across the three measures. As expected,
compared to feature-apriori fairness, feature-accuracy fair-
ness is higher and feature-disparity fairness is significantly
lower.
ProPublica COMPAS dataset. In Figure 1 [Left], we see
that the features from the ProPublica COMPAS dataset
neatly fall into three subsets, with declining levels of re-
ported fairness. The first subset consists of features which

are directly related to the issue at hand, such as the nature of
the current charge. Next are distantly related features which
provide information about the defendant’s past record as a
juvenile. The third set contains features which appear unre-
lated, such as sex and race. With this perspective, the users’
responses may appear reasonable. In addition, note that the
first two (most fair) sets contain volitional features, that is
they relate to actions which the defendant chose to take, and
hence might reasonably be considered predictive of the de-
fendant’s future actions; whereas the third (most unfair) set
comprises features which are physiological and beyond the
defendant’s control. The third set is often considered pro-
tected by law (Civil Rights Act 1964). However, our results
provide a more nuanced, scalar view of the judged fairness
of all features.
NYPD SQF dataset. In the NYPD SQF dataset, we observe
similar trends as in the ProPublica COMPAS dataset: fea-
tures that are directly related to the issue at hand, such as
“suspicion of engaging in a violent crime” (“susp. crime”),
are rated as more fair than distantly related features, like
“acting furtively”, which are in turn rated as more fair than
unrelated features, such as “sex” and “race”. Similar conclu-
sions as for the COMPAS dataset can be made about voli-
tional and physiological features, as well, even though there
are some exceptions, since “fitting a relevant description” is
a directly related, but physiological feature.
Dependence on population demographics. For each AMT
worker, we also gathered information on gender, race and
political stance. Results were qualitatively similar across
gender and race. However, “very liberal” and “very conser-
vative” workers responded differently, as shown in Figure 1
[Right]. Conservative users rated the features as more fair
than liberal users. Further, if a feature increased disparity,
liberal users decreased their perceived fairness substantially
more than conservative ones. This suggests that liberal users
may be more sensitive to disparate outcomes, which is con-
sistent with literature in the social sciences indicating that
different political views may relate to different “moral foun-
dations” (Graham et al. 2012).

4 Training procedurally fair classifiers
Thus far, we have used human judgments to quantify process
fairness of each of the individual features in the ProPublica
COMPAS and NYPD SQF datasets. Here, we begin to ex-
amine the process fairness of sets of features and their cor-
responding classifiers, using the definitions from Section 2.
While excluding features deemed highly unfair from a clas-
sifier’s inputs will increase its process fairness, it may lead
to significantly lower prediction accuracy. We empirically
analyze this tradeoff between process fairness and accuracy.
Classifier. Throughout this paper, we always use logistic re-
gression with L2-regularization.2 We chose this classifier for

2The classifier is implemented with the Python Scikit-learn
package (Pedregosa et al. 2011). For all reported results, we ran-
domly split the data into 50%/50% train/test folds 5 times and re-
port average statistics. We use a regularization parameter of 1, as in
(Kamishima et al. 2012). Other reasonable choices yielded similar
results.
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Figure 3: Tradeoffs between accuracy and feature-apriori fairness. The plots show the feature-apriori fairness (x-axis) and
accuracy (y-axis) of classifiers trained on [Left] all 29 = 512 subsets of the 9 features from the ProPublica COMPAS dataset,
and [Right] a random sample of 5000 out of 216 = 65, 536 different classifiers, trained on the 16 most informative features
from the NYPD SQF dataset.

two reasons: (i) it has been used frequently in earlier works
in this area (e.g., (Goel, Rao, and Shroff 2015)); and (ii) it
has attractive properties which will facilitate our approach to
scalable optimization. We next explain these attractive prop-
erties.

For a given set of features S ⊆ F̄ (where F̄ represents all
the features that are available in the dataset under consider-
ation), let acc(S) be the set function given by the accuracy
of our chosen classifier trained on the feature set S. Intu-
itively, as features are added to S, we expect that acc(S) will
rise but with diminishing returns. That is, we might expect
that acc(S) is monotonically nondecreasing and submodu-
lar. In practice, these properties do not always hold exactly
(e.g., due to curse of dimensionality). By leveraging the con-
nection between strong convexity and submodularity, Elen-
berg et al. (2016) showed that acc(S) is weakly submodular,
which still enables fast approximate optimization.
Accuracy-fairness tradeoff. For the ProPublica COMPAS
dataset, we train 29 = 512 different classifiers – one for
each possible subset of the 9 features present in the dataset.
However, our NYPD SQF dataset has 30 features, which
would lead to training 1.1 billion different classifiers, which
is unworkable. Hence we selected a subset of the 16 most
informative features using L1 feature selection (Tibshirani
1994),3 and trained all 216 = 65, 536 different classifiers.

Figure 3 shows plots of feature-apriori process fairness
against accuracy (results for feature-accuracy and feature-
disparity fairness are similar, omitted due to space con-
straints). Feature sets that correspond to high fairness (rep-
resented by points at the right side of the figures) come at
the cost of accuracy. This effect is visible for both datasets,
but it is even clearer for the NYPD SQF dataset in Figure 3
[Right].

We establish the optimal tradeoff in fair feature selec-

3We trained a logistic regression classifier with L1-
regularization on all 30 features and selected the 16 features
with highest absolute weights from the weight vector. These 16
features also cover the range of process fairness well, as seen in
Figure 3 [Right].

tion by finding solutions that lie along the upper envelope
of points shown in Figure 3. Specifically, the key challenge
lies in selecting a subset of features that either (1) optimize
for accuracy, given a desired fairness threshold; or (2) opti-
mize for fairness, given a desired accuracy threshold.4 More
formally:
(1) Maximizing accuracy under (un)fairness constraints:
Consider a dataset DNi=1 consisting of N records, each with
a corresponding set of features F̄ . For each record Di, let
yi ∈ {−1, 1} be the decision variable. Assume that DS ,
where S ⊆ F̄ , denotes the part of the dataset where for
all records, only a subset S of all features F̄ is selected.
Given this information, one can formulate the problem of
training the most accurate classifier subject to process un-
fairness constraints as:

maximize
S⊆F̄

acc(S)

subject to unf(S) ≤ t,
(8)

where acc(S) and unf(S) are set functions of S ⊆ F̄ ,
denoting the accuracy and unfairness of the corresponding
classifiers. t is a desired threshold, specifying the maxi-
mum level of unfairness (minimum level of fairness) that
is tolerable. For logistic regression (and linear classifiers in
general), the accuracy, acc(S), of a feature set S, is com-
puted as: 1

N

∑N
i=1 1(sign(< θ∗,DSi >) = yi),5 where

“<>” represents a dot product and θ∗ represents the op-
timal decision boundary parameters learned though empir-
ical risk minimization. For logistic regression classifiers
with L2-regularization, the optimal decision boundary θ∗

can be found by solving the following maximum likelihood

4Similar problems have previously been studied in the con-
text of feature selection (Iyer and Bilmes 2012), sensor place-
ment (Krause, Singh, and Guestrin 2008), diversification (Ahmed,
Dickerson, and Fuge 2017; Ashkan et al. 2015), document summa-
rization (Lin and Bilmes 2011) and data subset selection (Lin and
Bilmes 2009).

5To accommodate the classifier bias (or the intercept) term, we
assume that all records in the dataset are padded with a dummy
feature with constant value 1.



problem: θ∗ = argminθ −
∑N
i=1 log p(yi|DSi ,θ) + λ‖θ‖2,

where p(yi = 1|DSi ,θ) = 1

1+e−<θ,DS
i

>
, and λ ∈ R+ spec-

ifies the regularization strength (see footnote 2). In our ex-
periments, we use λ = 1. The (un)fairness unf(S) is defined
according to three different notions (feature-apriori, feature-
accuracy and feature disparity) presented in Section 2.

The optimization problem (8) can be solved rapidly pro-
vided that accuracy and unfairness are monotone and sub-
modular set functions of S. In this scenario, the above
optimization formulation matches the canonical form of
the submodular cost submodular knapsack (SCSK) prob-
lem (Iyer and Bilmes 2013), for which rapid approxi-
mate solutions have been proposed. Specifically, the iterated
submodular-cost knapsack (ISK) algorithm proposed in Iyer
and Bilmes (2013) offers

[
1− e−1,

Kunf

1+(Kunf−1)(1−κunf )

]
performance bounds (on acc and unf respectively), where
Kunf = max{|S| : unf(S) ≤ t} and κunf = 1 −
minf∈S

unf(S)−unf(S\{f})
unf({f}) is the total curvature of unf .

We have already showed in Section 2 that unfairness is a
monotone submodular set function of S. As discussed near
the beginning of this section, Elenberg et al. (2016) showed
that the accuracy of our classifier (L2-regularized logistic
regression) is weakly submodular. Since accuracy is neither
strictly monotone nor submodular, while solving (8) using
the ISK algorithm (Iyer and Bilmes 2013), the performance
bounds provided by Iyer and Bilmes (2013) need not hold
precisely. However, as our empirical results on two different
datasets in the next section show, in practice, solutions to (8)
yielded by these algorithms are very close to the optimum.
(2) Minimizing unfairness under accuracy constraints: If
instead one would like to achieve the least unfair (most fair)
solution under a given accuracy performance constraint,6 the
tradeoff can alternatively be considered as follows:

minimize
S⊆F̄

unf(S)

subject to acc(S) ≥ t.
(9)

Assuming unf(S) and acc(S) to be submodular set func-
tions, problem (9) matches the canonical form of submodu-
lar cost submodular cover (SCSC) problem (Iyer and Bilmes
2013) and can be solved by using the iterated submodular set
cover (ISSC) algorithm proposed in Iyer and Bilmes (2013),
which offers nHacc

1+(n−1)(1−κunf ) bound on unf , where κunf is
the curvature of unf , n is the number of features and Hacc

is the approximation factor of the submodular set cover us-
ing the function acc (details on the bounds can be found in
Iyer and Bilmes (2013)). As pointed out before, due to weak
submodularity and non-monotonicity of acc, these bounds
need not hold, but the empirical results obtained in the next
section are very close to the optimum.

6Examples of cases where, for outcome fairness, one is legally
bound to ensure that a decision making process yields the fairest so-
lution under certain performance constraints are discussed at length
in (Barocas and Selbst 2016).

5 Evaluation
Here, we evaluate the effectiveness of applying the con-
strained submodular optimization methods of Iyer and
Bilmes (2013) to problems (8) and (9). An open-source code
implementation is available at: http://fate-computing.mpi-
sws.org/. We show that empirically these methods rapidly
provide near-optimal tradeoffs between process fairness and
accuracy.

5.1 Experimental setup & performance measures
We address problems (8) and (9) using the iterated
submodular-cost knapsack (ISK) and iterated submodu-
lar set cover (ISSC) methods proposed by Iyer and
Bilmes (2013). These methods require training classifiers on
various feature subsets of the training data. To ensure (weak)
submodularity of accuracy, we use logistic regression clas-
sifiers with L2-regularization (Elenberg et al. 2016).

To examine a broad range of tradeoffs between process
fairness and accuracy, we obtain solutions for (8) and (9) us-
ing multiple thresholds for unfairness and accuracy respec-
tively. For each problem, we use 21 different threshold val-
ues, covering the full range of possible values of accuracy
and unfairness, with constant step size.

In each case, we compare the performance of the con-
strained submodular optimization method with the true op-
timum achieved by brute force exhaustive enumeration over
all the 2k possible classifiers, where k is the total number
of features that are available in the dataset under consider-
ation. As stated in Section 4, for the NYPD SQF dataset,
we calculated the optimal results using brute force methods
only for a subset of 16 most informative features. However,
the scalability of the constrained submodular optimization
methods allows us to approximate solutions for the full set
of 30 features as well.

5.2 Results
We discuss results for maximizing accuracy subject to max-
imum feature-apriori unfairness constraints (8), as shown in
Figure 4. The y-axis shows accuracy attained for approxi-
mate submodular and optimal (exhaustive search) methods,
as the unfairness threshold is varied on the x-axis.Results for
other notions of process fairness defined in Section 2, as well
as the results for minimizing unfairness subject to accuracy
(9) are qualitatively similar.
Observations. Our fast methods for constrained submodu-
lar optimization work very well empirically, achieving re-
sults that are close to optimal. This is encouraging since
these methods are highly scalable. Below, we describe our
observations in detail for the ProPublica COMPAS dataset.
Similar holds for NYPD SQF data.

We observe several stages of the accuracy / fairness trade-
off in Figure 4 [Left] as the maximum unfairness threshold
is varied. For an unfairness threshold of 0 (a perfectly fair
classifier), an empty feature set is selected, which achieves
the accuracy of the null classifier. As the unfairness thresh-
old rises, accuracy first increases sharply, due to the addition
of highly fair and informative features (“number of prior of-
fenses”), and then slowly, by adding highly fair but less in-
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Figure 4: Finding a subset of features that maximizes accuracy, subject to unfairness constraints for [Left] the ProPublica
COMPAS dataset and [Right] the NYPD SQF dataset. For a given maximum threshold of unfairness (x-axis), the plots show
the accuracy (y-axis) of the classifier trained on the respective subset of features. The optimal (brute force) solutions for the 9
ProPublica COMPAS features and 16 most informative NYPD SQF features are shown in green, and the approximate solutions
(Problem (8)) in yellow. Additionally, we show the approximate solutions for all 30 features from the NYPD SQF dataset in
blue. In the left plot, the annotations with arrows show some specific features selected at various unfairness thresholds.

formative features (e.g., “arrest charge description”). By in-
creasing the threshold to 0.55, previously selected features
are discarded, and a significantly unfair yet highly informa-
tive feature (“age”) is added, leading to another sharp rise in
accuracy. As the threshold rises higher, accuracy plateaus,
since the remaining features do not add substantial predic-
tive power.

We also note that when maximizing accuracy under fair-
ness constraint, as the maximum unfairness constraint is re-
laxed, we do not simply see more features being gradually
added and never removed. Rather, we sometimes see a sig-
nificant change in the whole feature set used, in order to op-
timize the objective. Some features, such as “age”, can have
very high predictive power yet very low fairness.
Discussion. We comment on feasibility of the returned so-
lutions. When we maximized accuracy subject to an unfair-
ness constraint (8), for all runs, the fast method always re-
turned a feasible solution (satisfying the constraint). How-
ever, when we minimized unfairness subject to a minimum
accuracy threshold, occasionally the fast method returned
solutions which were slightly infeasible, i.e., the accuracy of
the returned solution was marginally below the given thresh-
old. For the ProPublica COMPAS dataset, this happened for
1/21 runs; the maximum extent of infeasibility was 0.001
(e.g., if a specified accuracy threshold of 0.65, 0.649 was
returned). For the NYPD SQF dataset with 16 features, this
happened 2/21 times with maximum infeasibility of 0.001.
For the full NYPD SQF dataset with 30 features, this hap-
pened 6/21 times with maximum infeasibility of 0.006.

These empirical results suggest that it may be wise in
practice to prefer the approach for maximizing accuracy
subject to unfairness constraint, particularly for datasets
with many features. However, we advise caution since in
fact, if both unfairness and accuracy were exactly monotone
and submodular, then the ISK algorithm for maximizing ac-
curacy is not theoretically guaranteed to return a feasible
solution (though infeasibility would be bounded), whereas
when minimizing unfairness subject to accuracy with the
ISSC algorithm, it is guaranteed to be feasible (Iyer and

Bilmes 2013). Finally, note that if an infeasible solution is
returned in practice, then it is simple just to move the thresh-
old slightly and try again.

6 Process versus outcome fairness
Thus far, our evaluations have focused on our new process
fairness measures, ignoring earlier measures of outcome
fairness (Dwork et al. 2012; Feldman et al. 2015; Kami-
ran and Calders 2010; Luong, Ruggieri, and Turini 2011;
Pedreschi, Ruggieri, and Turini 2008; Zafar et al. 2017b;
2017a; Zemel et al. 2013). We now examine empirically
the relationship between process fairness and an established
measure of outcome fairness, and consider their joint trade-
offs with accuracy.

The outcome fairness measure we use examines false pos-
itive and false negative rates for whites (w) and non-whites
(nw). Specifically, we define:

outcome unfairness =

|FPRw − FPRnw|+ |FNRw − FNRnw|,
(10)

outcome fairness = − outcome unfairness.

Outcome fairness values can vary between -2 (very unfair)
and 0 (very fair). This measure is inspired by recent studies
related to fairness in criminal risk assessment (Kleinberg,
Mullainathan, and Raghavan 2017; Angwin et al. 2016;
Zafar et al. 2017a). Other measures of outcome fairness
(e.g., disparate impact considered by Zafar et al. (2017b))
could be used, but for the types of risk assessment analysis
we consider, our definition may be more suitable (Angwin
et al. 2016; Zafar et al. 2017a).

To study the tradeoff between process fairness, outcome
fairness and accuracy, we train classifiers (optimizing for ac-
curacy) with all possible combinations of features from the
ProPublica COMPAS dataset (29 = 512 classifiers), as well
as for a subset of 16 features from the NYPD SQF dataset
(216 = 65, 536), and compute these three statistics (accu-
racy, process and outcome fairness) for all the classifiers.
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Figure 5: Tradeoffs between outcome fairness and feature-apriori fairness. The plots show the feature-apriori fairness (x-axis)
and outcome fairness (y-axis), measured as disparity in mistreatment (Zafar et al. 2017a). The color of each point indicates the
accuracy of the corresponding classifier. We report values for [Left] all 29 = 512 ProPublica COMPAS classifiers, [Right] a
random sample of 5000 out of 216 = 65, 536 NYPD SQF classifiers. In these datasets, high process fairness appears to imply
high outcome fairness.

Figure 5 shows the outcome fairness and accuracy vs.
feature-apriori fairness (results for feature-accuracy and
feature-disparity fairness are similar, omitted due to size
constraints). Further to the right on the x-axis indicates
greater process fairness, and further up on the y-axis indi-
cates higher outcome fairness. The color of each point indi-
cates the accuracy of the corresponding classifier. We make
the following observations:
High process fairness appears to imply high outcome
fairness. The plots in Figure 5 show a distinctive inverted L-
shape: we observe that ensuring high process fairness leads
to high outcome fairness. We emphasize that this may not
hold for all datasets but it is striking that it holds so clearly
here on both datasets.

Intuitively, process fairness seems to be a stronger notion,
in that it imposes very restrictive constraints on the classi-
fier. Examining our datasets, we found that the requirement
of high process fairness is restricting the feature set to fea-
tures which many people feel are fair. In our datasets, these
features exhibited very low correlation (measured as mutual
information) to race or other very sensitive features, and
high process fairness thereby indirectly induced high out-
come fairness. However, when features considered fair are
correlated with sensitive features, high process fairness does
not need to lead to outcome fairness.
Tradeoff with accuracy. As just observed, for our datasets,
ensuring high process fairness always leads to high outcome
fairness. Hence, it might be sufficient to optimize only the
process fairness / accuracy tradeoff (using mechanisms dis-
cussed in Section 4) with at least moderately high process
fairness threshold, which will thereby also reap high out-
come fairness as a by-product.

In contrast, mechanisms proposed in prior fair learning
works that optimize for outcome fairness and accuracy do
not similarly guarantee high process fairness. Also, while
these prior works have shown that one can maintain very
high classification accuracy (close to the most accurate clas-
sifier) and still achieve a very high value of outcome fair-
ness, the same is not true for process fairness. That is, the
mechanisms for our datasets, and we imagine for many oth-

ers, requiring high process fairness will prevent high classi-
fication accuracy, since this requirement will force informa-
tive features to be dropped (as explained in Section 5).

7 Conclusion
Much of the recent work on fairness in machine learning
has either focused on analyzing outcomes, or has been in-
spired by and restricted to notions explored in the anti-
discrimination literature, where specific features are deemed
to be either sensitive (unusable) or not sensitive (usable). In
this work, we complement earlier work by adding fairness
notions beyond binary discrimination. Specifically, we in-
troduce three new scalar measures of fairness that explicitly
account for individuals’ moral sense for whether or not it is
fair to use various input features in the decision making pro-
cess. We show how we can operationalize these notions by
gathering human judgments about using features in the con-
text of two real-world scenarios: recidivism risk estimation
and prediction of illegal weapon possession. We show how
finding a good tradeoff between process fairness and accu-
racy of a classifier can be modeled as fast, scalable, con-
strained submodular optimization problems over the set of
features, and demonstrate good empirical performance. For
the datasets we consider, our results show that when we op-
timize for high process fairness, we also achieve high out-
come fairness as a byproduct. We do not expect this relation-
ship to hold in general. In future work we aim to develop a
deeper understanding of this phenomenon.

References
Agan, A. Y., and Starr, S. B. 2016. Ban the Box, Criminal Records,
and Statistical Discrimination: A Field Experiment. In Univer-
sity of Michigan Law & Economics Research Paper No. 16012.
Ahmed, F.; Dickerson, J. P.; and Fuge, M. 2017. Diverse Weighted
Bipartite b-Matching. arXiv:1702.07134.
Altman, A. 2016. Discrimination. In The Stanford Encyclope-
dia of Philosophy. Metaphysics Research Lab, Stanford University.
https://plato.stanford.edu/archives/win2016/entries/ discrimi-
nation/.



Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016.
Machine Bias: There’s Software Used Across the Coun-
try to Predict Future Criminals. And it’s Biased Against
Blacks. https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.
Ashkan, A.; Kveton, B.; Berkovsky, S.; and Wen, Z. 2015. Optimal
Greedy Diversity for Recommendation. In IJCAI.
Barocas, S., and Selbst, A. D. 2016. Big Data’s Disparate Impact.
California Law Review.
Beahrs, J. O. 1991. Volition, Deception, and the Evolution of
Justice. Bulletin of the American Academy of Psychiatry & the
Law.
Blackburn, S. 2003. Being Good: A Short Introduction to Ethics.
OUP Oxford.
Buhrmester, M.; Kwang, T.; and Gosling, S. D. 2011. Amazon’s
Mechanical Turk: A New Source of Inexpensive, Yet High-Quality,
Data? Perspectives on Psychological Science.
Civil Rights Act. 1964. Civil Rights Act of 1964, Title VII, Equal
Employment Opportunities.
Danescu-Niculescu-Mizil, C.; Sudhof, M.; Jurafsky, D.; Leskovec,
J.; and Potts, C. 2013. A Computational Approach to Politeness
with Application to Social Factors. In ACL.
Dwork, C.; Hardt, M.; Pitassi, T.; and Reingold, O. 2012. Fairness
Through Awareness. In ITCSC.
Elenberg, E. R.; Khanna, R.; Dimakis, A. G.; and Negahban, S.
2016. Restricted Strong Convexity Implies Weak Submodularity.
arXiv:1612.00804.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.; and
Venkatasubramanian, S. 2015. Certifying and Removing Disparate
Impact. In KDD.
Flores, A. W.; Lowenkamp, C. T.; and Bechtel, K. 2016. False Pos-
itives, False Negatives, and False Analyses: A Rejoinder to ”Ma-
chine Bias: There’s Software Used Across the Country to Predict
Future Criminals. And it’s Biased Against Blacks.”.
GDPR. 2016. GDPR Portal: Site Overview.
http://www.eugdpr.org/.
Goel, S.; Rao, J. M.; and Shroff, R. 2015. Precinct or Prejudice?
Understanding Racial Disparities in New York City’s Stop-and-
Frisk Policy. Annals of Applied Statistics.
Graham, J.; Haidt, J.; Koleva, S.; Motyl, M.; Iyer, R.; Wojcik, S.;
and Ditto, P. 2012. Moral Foundations Theory: The Pragmatic Va-
lidity of Moral Pluralism. Advances in Experimental Social Psy-
chology.
Greenberg, J. 1987. A Taxonomy of Organizational Justice Theo-
ries. Academy of Management Review.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of Opportunity
in Supervised Learning. In NIPS.
Iyer, R., and Bilmes, J. 2012. Algorithms for Approximate Min-
imization of the Difference Between Submodular Functions, With
Applications. In UAI.
Iyer, R., and Bilmes, J. A. 2013. Submodular Optimization with
Submodular Cover and Submodular Knapsack Constraints. In
NIPS.
Kamiran, F., and Calders, T. 2010. Classification with No Discrim-
ination by Preferential Sampling. In BENELEARN.
Kamishima, T.; Akaho, S.; Asoh, H.; and Sakuma, J. 2012.
Fairness-aware Classifier with Prejudice Remover Regularizer.
Machine Learning and Knowledge Discovery in Databases.

Kilbertus, N.; Rojas-Carulla, M.; Parascandolo, G.; Hardt, M.;
Janzing, D.; and Schölkopf, B. 2017. Avoiding Discrimination
through Causal Reasoning. In NIPS.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2017. Inherent
Trade-Offs in the Fair Determination of Risk Scores. In ITCS.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-Optimal Sensor
Placements in Gaussian Processes: Theory, Efficient Algorithms
and Empirical Studies. Journal of Machine Learning Research.
Kusner, M. J.; Loftus, J. R.; Russell, C.; and Silva, R. 2017. Coun-
terfactual Fairness. In NIPS.
Larson, J.; Mattu, S.; Kirchner, L.; and Angwin, J. 2016. Data and
Analysis for ‘How We Analyzed the COMPAS Recidivism Algo-
rithm’. https://github.com/propublica/compas-analysis.
Lin, H., and Bilmes, J. 2009. How to Select a Good Training-
Data Subset for Transcription: Submodular Active Selection for
Sequences. In Interspeech.
Lin, H., and Bilmes, J. 2011. A Class of Submodular Functions for
Document Summarization. In ACL HLT.
Luong, B. T.; Ruggieri, S.; and Turini, F. 2011. kNN as an Imple-
mentation of Situation Testing for Discrimination Discovery and
Prevention. In KDD.
Mason, W., and Suri, S. 2012. Conducting Behavioral Research on
Amazon’s Mechanical Turk. Behavior Research Methods.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research.
Pedreschi, D.; Ruggieri, S.; and Turini, F. 2008. Discrimination-
Aware Data Mining. In KDD.
SQF Dataset. 2017. http://www1.nyc.gov/site/nypd/stats/
reports-analysis/stopfrisk.page.
The Mechanical Turk Blog. 2011. Get Better Re-
sults with Less Effort with Mechanical Turk Masters.
http://mechanicalturk.typepad.com/blog/2011/06/get-better-
results-with-less-effort-with-mechanical-turk-masters-.html.
Tibshirani, R. 1994. Regression Selection and Shrinkage via the
Lasso. Journal of the Royal Statistical Society: Series B.
Trankell, A. 1972. Reliability of Evidence: Methods for Analyzing
and Assessing Witness Statements. Beckmans.
Yaari, M. E., and Bar-Hillel, M. 1984. On Dividing Justly. Social
Choice and Welfare.
Zafar, M. B.; Valera, I.; Rodriguez, M. G.; and Gummadi, K. P.
2017a. Fairness Beyond Disparate Treatment & Disparate Impact:
Learning Classification without Disparate Mistreatment. In WWW.
Zafar, M. B.; Valera, I.; Rodriguez, M. G.; and Gummadi, K. P.
2017b. Fairness Constraints: Mechanisms for Fair Classification.
In AISTATS.
Zafar, M. B.; Gummadi, K. P.; and Danescu-Niculescu-Mizil, C.
2016. Message Impartiality in Social Media Discussions. In
ICWSM.
Zemel, R.; Wu, Y.; Swersky, K.; Pitassi, T.; and Dwork, C. 2013.
Learning Fair Representations. In ICML.


