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Abstract
Modern computing has adopted the floating point type as
a default way to describe computations with real numbers.
Thanks to dedicated hardware support, such computations
are efficient on modern architectures, even in double pre-
cision. However, rigorous reasoning about the resulting pro-
grams remains difficult. This is in part due to a large gap bet-
ween the finite floating point representation and the infinite-
precision real-number semantics that serves as the deve-
lopers’ mental model. Because programming languages do
not provide support for estimating errors, some computa-
tions in practice are performed more and some less precisely
than needed.

We present a library solution for rigorous arithmetic com-
putation. Our numerical data type library tracks a (double)
floating point value, but also a guaranteed upper bound on
the error between this value and the ideal value that would
be computed in the real-value semantics. Our implemen-
tation involves a set of linear approximations based on an
extension of affine arithmetic. The derived approximations
cover most of the standard mathematical operations, inclu-
ding trigonometric functions, and are more comprehensive
than any publicly available ones. Moreover, while interval
arithmetic rapidly yields overly pessimistic estimates, our
approach remains precise for several computational tasks of
interest. We evaluate the library on a number of examples
from numerical analysis and physical simulations. We found
it to be a useful tool for gaining confidence in the correctness
of the computation.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Algorithms, Languages, Verification
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1. Introduction
Numerical computation has been one of the driving forces
in the early development of computation devices. Floating
point representations have established themselves as a de-
fault data type for implementing software that approximates
real-valued computations. Today, floating-point-based com-
putations form an important part of scientific computing
applications, but also of cyber-physical systems, which rea-
son about the quantities describing the physical world in
which they are embedded.

The IEEE standard [59] establishes a precise interface for
floating point computation. Over the past years, it has be-
come a common practice to formally verify the hardware
implementing this standard [28, 47, 55]. On the other hand,
the software using floating point arithmetic remains difficult
to reason about. As an example, consider the experiment in
N-version programming [29], in which the largest discrepan-
cies among different software versions were found in nume-
rical computation code.

One of the main difficulties in dealing with numerical
code is understanding how the approximations performed by
the individual arithmetic operation steps (precisely specified
by the standard) compose into an overall error of a com-
plex computation. Such roundoff errors can accumulate to
the point where the computed value is no longer a precise
enough approximation of the real value. Currently, the deve-
lopers have no reliable automated method to determine these
approximation errors. It is striking that, for many important
program correctness properties we now have type systems
and static analyzers that can establish them over all execu-
tions [7, 15, 19, 22, 36, 37, 54], whereas for numerical errors,
we lack practical methods to estimate errors even for one,
given, execution. Namely, it is difficult to determine whether
a given execution is correct in the sense that its final result
is close to the result of the corresponding sequence of ope-
rations in real analysis. In program analysis terminology, we
observe a great desire in the community to expand verifica-
tion techniques to numerical code [39]. At the same time,
we do not even know yet how to test numerical code. Com-
pounding the problem is that the correctness of these app-
lications is difficult to asses by manual inspection (whether
we try to inspect the source code or the computed result).
Both formal and informal reasoning about programs with



floating-points is therefore challenging. As a result, we have
little confidence in the correctness of an increasingly impor-
tant set of applications that reason about the real world.

To remedy this unfortunate situation, we introduce an
easy-to-use system for estimating roundoff errors. Our sys-
tem comes in the form of new data types for the Scala [49]
programming language. These data types act as a drop-in
replacement for the standard floating point data types, such
as Double. They offer support for a comprehensive range of
operations, with a greater precision than in any previously
documented solution. We deploy our techniques in Scala for
easy use on many platforms, although they apply in any pro-
gramming language using floating-point computation.

When faced with the problem of floating point approxi-
mation errors, many existing approaches propose interval
arithmetic (IA) as a solution. However, intervals give too
pessimistic estimates in many cases. The problem is easy to
demonstrate; its essence can be seen already on a very simple
example. If x is an interval [0, a], then interval arithmetic ap-
proximates the expression x− x with [−a, a], although it is,
in fact, always equal to zero. Essentially, interval arithmetic
approximates x−x in the same way as it would approximate
x− y when x and y are unrelated variables that both belong
to [0, a]. Furthermore, when such approaches are used to es-
timate the behavior over a range of input values, they fail to
distinguish two sources of uncertainty:

• uncertainty in the error between the ideal and the floating
point value;

• uncertainty in the actual values of floating point variables
when analyzing code, if the initial values can belong to
any point in a given interval.

Any approach that lumps together these two sources of un-
certainty will quickly become imprecise.

To avoid the above problems, we first examine affine
arithmetic, which was introduced in [17] and can more pre-
cisely track the relations between variables. It turns out,
however, that affine arithmetic by itself cannot be as ea-
sily adapted for reasoning about roundoff errors as inter-
val arithmetic, because it uses mid-points of intervals for
its estimates of nonlinear functions, and roundoff errors in
the end-points of intervals can be greater than for the mid-
point value. We describe a methodology that we used to
derive the appropriate sound approximations. (The actual
approximation rules that we use are publicly available in our
system’s source code.) Building on these, we define a data
type that tracks a floating-point computation and provides,
in addition to the computed value, a guaranteed estimate on
the roundoff error committed. Furthermore, we introduce an
approach that allows the library to track errors over a range
of values. We can therefore answer both of the following
questions:

• What is an upper bound on the roundoff error of the result
of a floating-point computation run, for a concrete input?

• What is the maximum roundoff error of the result, for
inputs ranging over a given input interval?

By introducing a freely available library that addresses these
questions, we provided developers and researchers with an
easy-to-use tool that helps them understand floating-point
properties of code, a tool that provides sound guarantees
on the floating-point roundoff errors committed. We expect
that our system can be easily integrated into verification and
testing systems in the future.

Contributions. We make the following contributions:

• We develop and implement an AffineFloat data type
that supports testing of concrete numerical computa-
tions against their real-valued semantics. Our data type
computes practically useful error bounds while retaining
compatibility with the standard Double data type: not only
are the operations entirely analogous, but the underlying
Double value that it computes is identical to the one com-
puted with the standard Double type alone. This compa-
tibility is important in practice, but requires changes to
the way roundoff errors and affine forms are supported
compared to the existing techniques. As a safe-guard, our
technique falls back onto intervals when the linear appro-
ximation is not appropriate. Furthermore, our solution
goes beyond the (very few) available affine arithmetic
implementations by accurately supporting a substantial
set of non-linear and transcendental functions. The li-
brary also implements a technique to soundly bound the
number of affine error terms, ensuring predictable perfor-
mance without sacrificing much precision.

• We develop and implement a SmartFloat data type that
generalizes AffineFloat to estimate upper bounds on
roundoff errors over an entire range of input values.
SmartFloat also accepts user-specified errors on input vari-
ables (arising from, e.g. physical measurements, or iter-
ative numerical methods). Thanks to SmartFloat, the de-
veloper can show, using a single program run, that the
roundoff error within the entire interval remains small.
Existing methods that merge initial interval width with
roundoff estimates cannot perform such estimates. We
also provide a nested affine implementation, which uses
a linear function of input to represent error terms them-
selves. This technique provides an improved estimate of
relative errors for the input ranges that contain zero.

• We evaluate the precision and performance of our im-
plementation on a number of benchmarks from physics
simulations and numerical analysis, including: Nbody
and spring simulations, spectral norm computation, the
Scimark, Fbench and Whetstone benchmarks [4, 42, 50,
61]. The results show that our library produces (possi-
bly after an initial interval subdivision) precise estimates
that would otherwise require expensive constraint solving
techniques. It also shows that the library scales to long-
running computations.



Our implementation is available at http://lara.epfl.ch.

Paper outline. We continue by illustrating our system
through two examples. We then provide a quick overview of
the basic affine arithmetic approach (Section 3). This back-
ground gives the high-level idea of the approach, but is not
sufficient to obtain our results. We characterize the precision
and the performance of our implementation in Section 4.
We show further applications enabled by our system in Sec-
tion 5.

We then present the new techniques that we introduced
to achieve our results: first for AffineFloat (Section 6) and
then for SmartFloat (Section 7). We describe the integration
into Scala in Section 8, finishing with related work and
conclusions.

2. Examples
Cube root. Intervals have the unfortunate property of ig-
noring correlations between variables and thus often over-
approximate roundoff errors by far too much to be useful.
As an illustration, consider the following code fragment that
uses Halley’s method [57] to compute the cube root of a = 10,
starting from an initial value of xn = 1.6:
for (i← 1 until 5)

xn = xn * ((xn*xn*xn + 2.0*a) / (2.0*xn*xn*xn + a))

Compare the results computed with Double against the re-
sult to 30 digits precision from a popular computer algebra
system (denoted CAS), and the result returned by interval
arithmetic:

Double 2.1544346900318834
CAS 2.154434690031883721...
Interval [2.1544346900317617,

2.154434690032006]
Affine 2.1544346900318834± 1.34 · 10−15

It turns out that the Double value differs from the true real re-
sult only in the very last digit, which amounts to an absolute
error on the order of unit in the last place, ≈ 4.44 ∗ 10−16.
Interval arithmetic however, would quantify this error as ≈
1.23∗10−13. On the other hand, using our affine-arithmetic-
based type we compute an absolute error of 1.34 ∗ 10−15,
which is (by the correctness of our approach) sound, yet two
decimal orders of magnitude more precise than the result in
interval arithmetic. If we relied only on intervals, we might
be led to believe that we cannot compute the value with the
desired precision using Halley’s method. We might have thus
decided to (unnecessarily) adopt a more expensive computa-
tional method, even though Halley’s method actually worked
fine.

Area of a triangle. As another example, consider the code
in Figure 1. triangleTextbook computes the area of a triangle
using the well-known textbook formula. On the other hand,
triangleKahan uses an improved version by Kahan [34]. Run-
ning both versions with our SmartFloat type and with inter-
vals, we get the results listed in Table 1.

def triangleTextbook(a: SmartFloat,
b: SmartFloat,
c: SmartFloat): SmartFloat = {

val s = (a + b + c)/2.0
sqrt(s * (s − a) * (s − b) * (s − c))

}

def triangleKahan(a: SmartFloat, b: SmartFloat,
c: SmartFloat): SmartFloat = {

if(b < a) {
val t = a
if (c < b) { a = c; c = t }
else {

if (c < a) { a = b; b = c; c = t }
else { a = b; b = t }

} } else if (c < b) {
val t = c; c = b;
if (c < a) { b = a; a = t }
else { b = t }

}
sqrt((a+(b+c)) * (c−(a−b)) * (c+(a−b))

* (a+(b−c))) / 4.0
}

Figure 1. Code for computing the area of a triangle using
the classic textbook formula and Kahan’s improved version.
The latter sorts the triangle sides by their lengths (a being the
smallest) and refactors the final formula such that computa-
tions are minimized, and performed in an order that mini-
mizes precision loss.

Interval Arithmetic area rel.roundoff
triangleTextbook
a = 9.0, b = c = [4.71, 4.89] [6.00, 8.96] ?
a = 9.0, b = c = [4.61, 4.79] [4.32, 7.69] ?
a = 9.0, b = c = [4.501, 4.581] [0.42, 3.93] ?
triangleKahan
a = 9.0, b = c = [4.71, 4.89] [6.13, 8.79] ?
a = 9.0, b = c = [4.61, 4.79] [4.41, 7.54] ?
a = 9.0, b = c = [4.501, 4.581] [0.42, 3.89] ?

SmartFloat
triangleTextbook
a = 9.0, b = c = [4.71, 4.89] [6.25, 8.62] 1.10e-14
a = 9.0, b = c = [4.61, 4.79] [4.50, 7.39] 1.97e-14
a = 9.0, b = c = [4.501, 4.581] [0.41, 3.86] 1.95e-12
triangleKahan
a = 9.0, b = c = [4.71, 4.89] [6.25, 8.62] 3.11e-15
a = 9.0, b = c = [4.61, 4.79] [4.49, 7.39] 5.26e-15
a = 9.0, b = c = [4.501, 4.581] [0.39, 3.86] 5.07e-13

Table 1. Area and relative roundoffs computed on the code
from Figure 1 with SmartFloat and intervals for selected va-
lues.

Although interval arithmetic does not over-approximate
the range by much more than affine arithmetic on this parti-
cular example, it fails to quantify the roundoff errors. Based
only on intervals, it is impossible to tell that one version of
the code behaves better than the other. Our SmartFloat on
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the other hand shows an improvement of about one order
of magnitude in favor of Kahan’s formula. Also note that the
computed roundoff errors indicate that for thin triangles re-
lative roundoff errors grow, which is indeed what happens.
This illustrates that our library allows for both formal rea-
soning (by establishing correspondence to real-valued se-
mantics), as well as high-level informal reasoning and ana-
lysis.

Using our implementation of SmartFloat’s, we obtain not
only a more accurate interval for the result, but in fact an up-
per bound on the error across the entire input interval. In in-
terval arithmetic, one could in principle use the width of the
actual interval as the roundoff error bound, but this would
yield unrealistically large errors. In this particular exam-
ple the bound on roundoff errors is more than 1014 times
smaller than the actual width of the interval in which the
output ranges! Therefore, any attempt to use an interval-like
abstraction to simultaneously represent 1) the input range
and 2) the error bound, will spectacularly fail. In contrast,
our technique distinguishes these different quantities, and is
among the first ones to do so. Thanks to this separation, it
can establish that roundoff error is small even though the in-
terval is relatively large.

3. A Quick Tour of Interval and Affine
Arithmetic

Throughout this paper, we use the following general nota-
tion:

• F denotes floating-point values; if not otherwise stated,
in double precision (64 bit).

• R denotes (mathematical) real numbers.
• IF, IR denote the sets of all closed intervals of floating-

point and real numbers, respectively; an interval is given
by its two endpoints.

• [a] is a notation to denote the interval represented by an
expression a, according to some specified semantics.

• ↓x↓ and ↑x↑ denote the result of some expression x
rounded towards −∞ or +∞ respectively. That is, if
x ∈ R is a number not representable in a given floating
point format, ↓x↓ evaluates to the next smaller number
representable in binary. Similarly, ↑x↑ evaluates to the
nearest larger floating-point number. If x has a floating
point representation, then ↓x↓ = ↑x↑ = x.

3.1 IEEE Floating-point Arithmetic
Throughout this paper we assume that floating-point arith-
metic conforms to the IEEE 754 floating-point standard [59].
Recent general-purpose CPUs conform to it, and it is also
generally respected in main programming languages. The
JVM (Java Virtual Machine), on which Scala runs, supports
single- and double-precision floating-point values accord-
ing to the standard, as well as rounding-to-nearest rounding

mode [41]. Also by the standard, the basic arithmetic ope-
rations {+,−, ∗, /,

√

} are rounded correctly, which means
that the result from any such operation must be the closest
representable floating-point number. Hence, provided there
is no overflow, the result of a binary operation in floating-
point arithmetic ◦F satisfies

x◦F y = (x◦Ry)(1+δ), |δ| ≤ ϵM , ◦ ∈ {+,−, ∗, /} (1)

where ◦R is the ideal value in real numbers and ϵM is the
machine epsilon that determines the upper bound on the
relative error. This model provides a basis for our roundoff
error estimates.

Thanks to dedicated hardware floating-point units,
floating-point computations are fast, and our library is cur-
rently set up for double-precision floating-point values (i.e.
ϵM = 2−53). This is also the precision of choice for most
numerical algorithms. It is straightforward to adapt our tech-
niques for single precision, or any other precision with an
analogous semantics.

3.2 Interval Arithmetic
One possibility to perform guaranteed computations in
floating-point arithmetic is to use standard interval arith-
metic [48]. Interval arithmetic computes a bounding interval
for each basic operation as

x ◦F y = [ ↓(x ◦ y)↓ , ↑(x ◦ y)↑ ] (2)

Rounding outwards guarantees that the interval always con-
tains the real result and thus ensures soundness. The error
for square root is computed analogously.

Section 2 already illustrated how quickly interval arith-
metic becomes imprecise. This is a widely recognized phe-
nomenon; to obtain a more precise approximation, we there-
fore use affine arithmetic.

3.3 Affine Arithmetic
Affine arithmetic was originally introduced in [17] and de-
veloped to compute ranges of functions over the domain of
reals, with the actual calculations done in double (finite) pre-
cision. Affine arithmetic addresses the difficulty of interval
arithmetic in handling correlations between variables. It is
one possible range-based method to address this task; we
discuss further methods in Section 9.

Given a function f : R → R, we wish to compute its
approximation in terms of floating-point numbers. Let A be
a set of representations of intervals, with [a] ∈ IR for a ∈ A.
The goal is then to compute an approximation of f by a
function g : A → A that satisfies the fundamental invariant
of range analysis:

PROPERTY 1. For a ∈ A, x ∈ R, if x ∈ [a], then

f(x) ∈ [g(a)]



Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiϵi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol ϵi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ϵ1, then in real number semantics,

x− x = x0 + x1ϵ1 − (x0 + x1ϵ1)

= x0 − x0 + x1ϵ1 − x1ϵ1 = 0

If we subtracted x = x0−x1ϵ1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)ϵi+ ιϵn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.



4. Evaluation of Precision and Performance
We have selected several benchmarks for evaluating our
library. Many of them were originally written in Java or
C; we ported them to Scala as faithfully as possible. Once
written in Scala, we found that changing the code to use
our AffineFloat type instead of Double is a straightforward
process and needs only few manual edits. Scala compiler’s
type checker was particularly helpful in this process.

Many of the existing benchmarks we adopted were ori-
ginally developed for performance and not numerical preci-
sion evaluation. We hope that our library and examples will
stimulate further benchmarking with precision in mind.

The benchmarks we present are the following:1

Nbody simulation is a benchmark from [4] and is a simula-
tion that “should model the orbits of Jovian planets, using
[a] (...) simple symplectic-integrator”.

Spectral norm is a benchmark from [4] and “should calcu-
late the spectral norm of an infinite matrix A, with entries
a11 = 1, a12 = 1

2
, a21 = 1

3
, a13 = 1

4
, a22 = 1

5
, a31 = 1

6
,

etc.”

Scimark [50] is a set of Java benchmarks for scientific com-
putations. We selected three benchmarks that best suit our
purpose: the Fast Fourier Transform (FFT), Jacobi Suc-
cessive Over-relaxation (SOR) and a dense LU matrix
factorization to solve the matrix equation Ax = b. The
exact dimensions of the problems we used are noted in
Table 6.

Fbench was orginally written by Walker [60] as a
“Trigonometry Intense Floating Point Benchmark”. We
used the Java port [61] for our tests.

Whetstone [42] is a classic benchmark for performance
evaluation of floating-point computations.

Spring simulation is our own code from Figure 3, however
for benchmarking we removed the added method errors.

We have also implemented an interval arithmetic type that
can, in the same way as AffineFloat and SmartFloat, replace all
Double types in a program. This type is used throughout this
paper when comparing our library to interval arithmetic.

4.1 AffineFloat Precision
Because AffineFloats represent exactly one floating-point
value, we can compare its precision in computing roundoff
errors to that of interval arithmetic, where each value is ana-
logously represented by one interval. The width of the re-
sulting interval provides the roundoff error.

Table 2 presents our measurements of precision on three
of our benchmarks. These results provide an idea on the or-
der of magnitude of roundoff error estimates, as well as the
scalability of our approach. For the Nbody problem we com-

1 All benchmarks are available from
http://lara.epfl.ch/w/smartfloat .

Benchmark rel. error AF rel. error IA
SOR 5 iter. 2.327e-14 4.869e-14
SOR 10 iter 4.618e-13 3.214e-12
SOR 15 iter 8.854e-12 2.100e-10
SOR 20 iter 1.677e-10 1.377e-8
NBody, initial energy 5.9e-15 6.40e-15
Nbody, 1s, h=0.01 1.58e-13 1.28e-13
Nbody, 1s, h=0.0156 1.04e-13 8.32e-14
Nbody, 5s, h=0.01 2.44e-10 7.17e-10
Nbody, 5s, h=0.015625 1.42e-10 4.67e-10
Spectral norm 2 iter 1.8764e-15 7.1303e-15
Spectral norm 5 iter 4.9296e-15 2.4824e-14
Spectral norm 10 iter 7.5071e-15 5.6216e-14
Spectral norm 15 iter 1.0114e-14 8.8058e-14
Spectral norm 20 iter 1.7083e-14 1.1905e-13

Table 2. Comparison of the relative errors computed by
AffineFloat and interval arithmetic.

actual error AffineFloat IA
with pivoting
LU 5x5 2.22e-16 1.04e-13 6.69e-13
LU 10x10 8.88e-16 7.75e-12 2.13e-10
LU 15x15 4.44e-16 6.10e-10 1.92e-8
no pivoting
LU 5x5 1.78e-15 2.50e-11 1.24e-9
LU 10x 10 5.77e-15 2.38e-10 4.89e-6
LU 15x15 7.15e-13 - -
FFT 512 1.11e-15 9.73e-13 6.43e-12
FFT 256 6.66e-16 3.03e-13 2.38e-12

Table 3. Maximum absolute errors computed by Double,
AffineFloat and interval versions for the LU factorization and
FFT benchmarks. The matrices were random matrices with
entries between 0 and 1.

pute the energy at each step, which changes due to method
errors but also due to accumulated roundoffs. For the Spec-
tral norm we measure the roundoff error of the result after
different numbers of iterations. In the case of SOR, the re-
ported errors are average relative errors for the matrix en-
tries. Because we do not have a possibility to obtain the
hypothetical real-semantics results, we compare the errors
against the errors that would be computed with interval
arithmetic. Note that none of these benchmarks is known
to be particularly unstable for floating-point errors, so that
we cannot observe some particularly bad behavior. We can
see though that except for the second and third (short) run
of the Nbody benchmark our AffineFloat gives consistently
better bounds on the roundoff errors. The numbers for the
SOR benchmark also suggest that the library scales better
on longer computations.

Table 3 shows measurements of precision with
AffineFloat for those benchmarks. These results can
actually be checked knowing the properties of this particular

http://lara.epfl.ch/w/smartfloat


application. In our example application, an LU factorization
of the matrix A is used to compute the solution to the
system of linear equations Ax = b, with b a vector. From
the solution x we can compute Ax and the actual roundoff
errors committed as Ax − b. Note, that because Ax− b is a
vector, we only consider the maximum roundoff error from
the entries. This error is then compared to the maximum
roundoff error attached to x when the solution is computed
with AffineFloats and intervals. For the FFT benchmark,
we can compute the transform and its inverse and compare
it to the original input. We again compare the maximum
roundoff errors from the matrix entries. We applied the LU
factorization to random matrices with and without pivoting.2
We compared the error bounds against interval arithmetic
and the actual error. (Note that the computation of the error
for the LU transform involves some multiplication, hence
these error bounds are not very precise themselves.) Our
AffineForm can show the pivoting approach to be clearly
more accurate and provides consistently better bounds than
interval arithmetic. For LU factorization of size 15x15 both
affine and interval arithmetic compute bounds that are too
large to be useful.

In general, the type of computation has a strong influ-
ence on how fast the over-approximation of error bounds
grows. Affine as well as interval arithmetic compute larger
roundoff bounds for longer computations, because they ac-
cumulate worst-case errors at each step. We have shown that
AffineFloats limit this over-approximation better and provide
smaller bounds than interval arithmetic. In addition, our li-
brary detects the rare cases when a computation is precise
and then includes no new error.

4.2 SmartFloat Precision
In contrast to AffineFloat, one SmartFloat variable represents a
whole interval of values and computes the worst-case round-
off error over the entire interval.

Doppler example. For an evaluation of the SmartFloat type,
consider the Doppler frequency shift. The following equa-
tion computes the frequency change due to the Doppler ef-
fect

z =
dv

du
=

−(331.4 + 0.6T )v

(331.4 + 0.6T + u)2

by decomposing it into the following sub-calculations: q1 =
331.4 + 0.6T , q2 = q1v, q3 = q1 + u, q4 = q23 , z = q2/q4.
The parameters used are −30◦C ≤ T ≤ 50◦C, 20Hz ≤
v ≤ 20000Hz and −100m/s ≤ u ≤ 100m/s. We compare
the results to [35], who chose an SMT-based approach, and
summarize them in Table 4. We can compare not only the
range bounds but also the roundoff errors to the minimum
number of bits required as determined in [35]. Our estimates
show precisely which calculations require more precision,
namely the ones with the largest roundoff errors.

2 Pivoting attempts to select larger elements in the matrix during factoriza-
tion to avoid numerical instability.

B-splines example. Now consider the B-spline basic func-
tions commonly used in image processing [33]

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

with u ∈ [0, 1]. Zhang et al. [62] use these functions to
test their new way to approximate non-linear multiplication
in affine arithmetic. In line with the use case for testing
(subsection 5.3), we use SmartFloat to estimate the ranges
and roundoffs of these functions on the given input interval.
For this purpose, we divide the input interval twice and four
times respectively. Observe the results in Table 5, where we
compare the computed bounds against the ones from [62],
and intervals (with the same dividing procedure). [62] im-
proves the multiplication algorithm for affine arithmetic, but
can only provide the final ranges, whereas our SmartFloat
is able to bound the roundoff errors of the results as well.
Their strategy is sophisticated, but also computationally ex-
pensive. However, Table 5 shows that with a suitable stra-
tegy, SmartFloat can indeed produce very useful and precise
results while at the same time being efficient.

4.3 Performance
Our technique aims to provide much more information than
ordinary floating point execution while using essentially the
same concrete execution. We therefore do not expect the
performance to be comparable to that of an individual dou-
ble precision computation on dedicated floating-point units.
Nonetheless, our technique is effective for unit testing and
for exploring smaller program fragments one at a time.

The runtimes of AffineFloat and SmartFloat are summa-
rized in Table 6. The SmartFloat uses the extra higher-order
information as described in subsection 7.4, which accounts
for the larger runtimes. Note that the computations are long
running (indicated by the operation count of a double pre-
cision computation). This is more than any of the tools we
know can handle, yet the runtimes remain acceptable. Simi-
larly, total memory consumption in these benchmarks was
not measurably large.

4.4 Compacting of Noise Terms
Existing affine arithmetic descriptions generally give no
guidelines on how to choose bounds on the number of linear
terms used in the approximation and how to compact them
once this number is exceeded. Our algorithm for compacting
noise symbols is described in subsection 6.10. In this para-
graph we briefly describe its effect on performance. We ran
experiments with AffineFloat on all our benchmarks and con-
cluded that in general the runtime grows and precision in-
creases according to the maximum number of noise symbols
allowed. The results are summarized in Table 7 and Figure 2.



AA [35] SMT [35] bits [35] SmartFloat (outward-rounded) abs. roundoff
q1 [313, 362] [313, 362] 6 [313.3999,361.4000] 8.6908e-14
q2 [-473252, 7228000] [6267, 7228000] 23 [6267.9999,7228000.0000] 3.3431e-09
q3 [213, 462] [213, 462] 8 [213.3999,461.4000] 1.4924e-13
q4 [25363, 212890] [45539, 212890] 18 [44387.5599,212889.9600] 1.6135e-10
z [-80, 229] [0, 138] 8 [-13.3398,162.7365] 6.8184e-13

Table 4. Doppler example from [35]. Our values were rounded outwards to 4 digits. The third column indicates the minimum
number of bits needed to compute the result.

true ranges ranges [62] Intervals 2 div. Intervals 4 div. SmartFloat 2 div. SmartFloat 4 div. errors for 4 div.
B0 [0, 1

6
] [-0.05, 0.17] [0, 0.1667] [0, 0.1667] [-0.0079, 0.1667] [-3.25·10−4, 0.1667] 1.43e-16

B1 [ 1
6

, 2

3
] [-0.05, 0.98] [-0.2709, 0.9167] [-0.1223, 0.6745] [0.0885, 0.8073] [0.1442, 0.6999] 6.98e-16

B2 [ 1
6

, 2

3
] [-0.02, 0.89] [0.0417, 1.1042] [0.1588, 0.9558] [0.1510, 0.8230] [0.1647, 0.7097] 7.2e-16

B3 [− 1

6
, 0] [-0.17, 0.05] [-0.1667, 0] [-0.1667, 0] [-0.1667, 0.0261] [-0.1667, 0.0033] 1.3e-16

time 358s < 1s < 1s < 1s < 1s

Table 5. B-splines with SmartFloat compared against intervals and [62]. The errors given are absolute errors.

double interval AffineFloat SmartFloat + - * /, √ trig
Nbody (100 steps) 2.1 21 779 33756 9530 3000 14542 2006 0
Spectral norm (10 iter.) 0.6 31 198 778 4020 0 4020 4002 0
Whetstone (10 repeats) 1.2 2 59 680 1470 510 600 110 0
Fbench 0.2 1.3 10 1082 115 120 89 94
Scimark - FFT (512x512) 1.2 18 1220 39987 13806 15814 19438 37 36
Scimark - SOR (100x100) 0.8 25 698 127168 8416 1 19209 0 0
Scimark - LU (50x50) 2.6 30 2419 4914 0 45425 44100 99 0
Spring sim. (10000 steps) 0.2 46 1283 4086 20002 20003 30007 10002 0

Table 6. Running times (in ms) of our set of benchmarks, compared against the running time in pure doubles. The numbers on
the right give the numerical operation count of each benchmark, i.e. the number of operations a double precision computation
performs. Tests were run on a Linux machine with 2.66GHz and 227MB of heap memory available.
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Figure 2. The effect of the number of noise symbols on the average running time (in ms).



20 40 60 80 100
Nbody 1.60e-13 1.58e-13 1.57e-13 1.55e-13 1.56e-13

Spectral 1.94e-14 9.25e-15 6.63e-15 8.73e-15 5.94e-15
Fbench 3.09e-13 1.28e-13 9.48e-14 1.20e-13 5.22e-14

FFT 1.17e-16 1.63e-16 1.17e-16 1.57e-16 2.04e-16
SOR 1.17e-16 1.17e-16 1.32e-16 1.32e-16 1.32e-16
LU 1.16e-16 1.18e-16 1.54e-16 1.14e-16 2.09e-16

Spring 1.81e-09 1.77e-09 1.73e-09 1.69e-09 1.64e-09

Table 7. The effect of the number of noise symbols on
accuracy.

The peaks in the runtime graph for very small thresholds can
be explained by the library spending too much time com-
pacting than doing actual computations. The irregular peaks
for the SOR and FFT benchmarks illustrate that sometimes
the precise characteristics of the calculation problem can in-
fluence running times. Every operation’s runtime is roughly
proportional to the number of noise symbols, and different
compacting thresholds change the number of noise sym-
bols at each operation. It can then happen that with a larger
threshold the compacting happens just before a critical oper-
ation, e.g. one that is executed often, but for a lower thresh-
old the compacting happens earlier and by the time that oper-
ation is reached the number of symbols has grown again and
thus the overall running time is longer. It is thus necessary
that the user has some control over the compacting proce-
dure. Note that the precision is not significantly affected in
most of our experiments, hence the library has a default limit
of around 40 noise symbols as a good compromise between
performance and accuracy.3 The developer may change this
value for particular calculations.

Summary. We have demonstrated in this section that our
library provides an improvement over currently used tech-
niques. In the examples we examined, it provided compara-
ble results to those from a SMT solver, at a fraction of the
time (see Table 4). Furthermore, it often provides dramati-
cally better results compared to intervals. An interval subdi-
vision benefits our approach just as it benefits interval ana-
lysis. Note, however, that systematic interval subdivision is
not feasible when the inputs are, e.g., matrices, as in Table 3.
Namely, the total number of subdivided points increases ex-
ponentially with the number of elements in the matrix, so
the total cost quickly dwarfs the added computational cost
of affine arithmetic. In such cases, our affine arithmetic app-
roach is essential to obtain additional orders of magnitude
more precision over interval arithmetic.

5. Further Applications
Our SmartFloat type can be used to soundly estimate
ranges of floating-point numbers, roundoff errors over an
entire range of floating-point numbers, or both. So far, we
have only discussed immediate applications of these types.

3 Actually, the number used by default is 42.

In this section we suggest further possible use cases, which
also point to a possible integration of our tool into larger
frameworks.

5.1 User-Defined Error Terms
The ranges of a computation are determined chiefly by in-
put intervals and roundoff errors incurred along a computa-
tion path. However, errors can come from different sources
as well. For instance, during the integration of an ordinary
differential equation the numerical algorithm accumulates
method errors, i.e. errors due to the discrete nature of the in-
tegration algorithm. One, albeit simple, example where this
is the case is the simulation of a (undamped and unforced)
spring in Figure 3. For simplicity, we use Euler’s method.
Although this method is known to be too inaccurate for many
applications, it provides a good application showcase for
our library. The comparison failed! line is explained in
subsection 5.2, for now note the method addError in line
14. In this example, we compute a coarse approximation of
the method error by computing the maximum error over the
whole execution. What happens behind the scenes is that our
library adds an additional error to the affine form represen-
ting x, i.e. it adds a new noise term in addition to the errors
already computed.

Now consider the output of the simulation using our li-
brary. Notice that using step sizes 0.1 and 0.01, time t can-
not be computed precisely, whereas using t = 0.125, which
is representable in binary, the result is exact. Now consider
x. We can see that choosing smaller step sizes, the enclo-
sure of the result becomes smaller and thus more accurate,
as expected. But note also, that the use of a smaller step size
also increases the overall roundoff errors. This is also to be
expected, because we have to execute more computations.

Note that this precise analysis of roundoff errors is only
possible with the separation of roundoff errors from other
uncertainties. Our SmartFloat type can thus be used in a more
general framework that guarantees soundness with respect to
a floating-point implementation but that also includes other
sources of errors.

5.2 Robustness
Our library can also show code to be robust in certain cases.
A computation is robust if small changes in the input cause
only small changes in the output. There are two ways in
which a program, starting from some given input, can change
the output.

Change in input causes the control flow to change. In this
case, the program takes a different branch or executes a loop
more or less many times, so that it actually executes differ-
ent code, causing the output to differ. In each case, this in-
volves a comparison in a guard. Our library handles these
comparisons in a special way, by keeping a global boolean
flag which is set if a comparison fails. What we mean by
a comparison failing is that the information computed by



def springSimulation(h: SmartFloat) = {
2 val k: SmartFloat = 1.0

val m: SmartFloat = 1.0
4 val xmax: SmartFloat = 5.0

var x: SmartFloat = xmax //curr. horiz. position
6 var vx: SmartFloat = 0.0 //curr. velocity

var t: SmartFloat = 0.0 //curr. ’time’
8

var methodError = k*m*xmax * (h*h)/2.0
10

while(t < 1.0) {
12 val x_next = x + h * vx

val vx_next = vx − h * k/m * x
14 x = x_next.addError(methodError)

vx = vx_next
16 t = t + h

}
18 println("t: " + t + ", x: " + x)

}

Spring simulation for h = 0.1:
comparison failed!
t: [1.099,1.101] (8.55e-16)
x: [2.174, 2.651] (7.4158e-15)

Spring simulation for h = 0.125:

t: [1.0,1.0] (0.00e+0)
x: [2.618, 3.177] (4.04e-15)

Spring simulation for h = 0.01:

comparison failed!
t: [0.999, 1.001] (5.57e-14)
x: [2.699, 2.706] (6.52e-13)

Figure 3. Simulation of a spring with Euler’s method. The
numbers in parentheses are the maximum absolute roundoff
errors committed. We have rounded the output outwards for
readability reasons.

affine forms is not sufficient to determine whether this value
is smaller or bigger than another one. Hence, for the com-
parison x < y, the difference x− y includes zero.
The user may, when notified by such a situation, choose to
refine the input intervals until no such warning occurs. In
addition, the user may choose that the library emits a war-
ning (comparison failed!) as seen in Figure 3. The same
comparison procedure is also used for the methods abs,
max, min so the library sets the flag, if it detects a robust-
ness problem, for these functions as well.

Computation is numerically unstable. In this case, the
control flow may stay the same, but the input range of the
variables gets amplified, yielding a much larger output in-
terval. The programmer can also detect this case with our
library, as he only needs to compare the input to the out-
put widths of the intervals. Note that our library only gives
estimates on the upper bounds on roundoff errors, but not
on the lower bounds. That is, our library makes inevitably

over-approximations, so the computed output interval may
be larger than the true interval. However, the user can,
if such a case is suspected, rerun the computation using
AffineFloats, which in general give tighter bounds.

Illustration of control-flow robustness check. As an
example for the first case of robustness problem, consider
again the code in Figure 3. Our library set the global com-
parison flag in two of the three runs. Because there is only
one comparison in this code, it is clear that the (possible)
problem occurred in line 12. And in fact, we can see that in
the first case for h = 0.1, the loop was actually executed
once too many, thus also giving a wrong result for the value
of x. In the second case h = 0.125, because the computation
of time is exact, the flag is correctly not set.

5.3 Testing Numerical Code
We can take SmartFloat’s ability to detect when a program
takes different paths within an input interval even further.
Suppose we have a piece of code and, for simplicity, one in-
put variable, for which we assume that the input is within
some finite range [a, b]. To generate a set of input intervals
that exercise all possible paths through the program, we pro-
pose the following procedure: Start with the entire interval
[a, b] and run the program with our SmartFloat type. If the li-
brary does not indicate any robustness problem, we are done
and can read off the maximum roundoff error incurred. If it
detects a possible problem, split the interval and rerun the
program on each of the new input intervals. Repeat until no
problem occurs, or until an error in the program is found. In
addition to test inputs, SmartFloats also provide guaranteed
bounds on the errors for each of the paths. The splitting can,
in addition to control flow changes, also be triggered on too
large roundoff error bounds. In this way, the testing proce-
dure can be refined to obtain error bounds for each run to a
desired precision.

6. AffineFloat Design and Implementation
We will now discuss our contributions in developing an
affine arithmetic library suitable for evaluating floating-point
computations. The main challenge are non-linear approxi-
mations, and this basically for two reasons.

• The precision is unsatisfactory if implemented in a sim-
ple way.

• The roundoff error estimation is not sound if using a
standard approximation method.

6.1 Different Interpretations of Computations
When using a range-based method like interval or affine
arithmetic, it is possible to have different interpretations of
what such a range denotes. In this paper we consider the
following three different interpretations of affine arithmetic.



(a) Chebyshev approximation (b) Min-range approximation

Figure 4. Linear pproximations of the inverse function.

INTERPRETATION 1 (Original Affine Arithmetic). In the
original affine arithmetic, an affine form x̂ represents a
range of real values, that is [x̂] denotes an interval [a, b] for
a, b ∈ R.

This is also the interpretation from [17].

INTERPRETATION 2 (Exact Affine Arithmetic). In exact
affine arithmetic x̄ represents one floating-point value and
its deviation from an ideal real value. That is, if a real
valued computation computed x ∈ R as the result, then
for the corresponding computation in floating-points that
x ∈ [x̄].

The difference to Interpretation 1 is that the central value x0

has to be equal to the actually computed double value at all
times. We will discuss the reason for this in subsection 6.3.

INTERPRETATION 3 (Floating-point Affine Arithmetic).
In floating-point affine arithmetic x̃ represents a range of
floating-point values, that is [x̃] denotes an interval [a, b] for
a, b ∈ F.

Interpretation 3 corresponds to our SmartFloat type and
Interpretation 2 to AffineFloat, the details of which are dis-
cussed in this section.

Usually implementation issues are of minor interest, how-
ever in the case of floating-point computations they are an
important aspect: our tool itself uses floating-point values to
compute roundoff errors, so that we are faced with the very
same problems in our own implementation that we are trying
to quantify.

6.2 Nonlinear Operations
Affine operations are computed as

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)ϵi+ ιϵn+1

For nonlinear operations like multiplication, inverse, or
square root, this formula is not applicable so that the ope-
rations have to be approximated. Multiplication is derived
from expanding and multiplying two affine forms:

x̂ŷ = x0y0 +
n
∑

i=1

(x0yi + y0xi)ϵi + (η + ι)ϵn+1

where ι contains the internal errors and η an over-
approximation of the nonlinear contribution. To compute the
latter, several possibilities exist of varying degree of accu-
racy. In the case of tracking a single floating-point value, the
simplest way η = rad(x̂) · rad(ŷ) is sufficient as the radii
will be in general several orders of magnitude smaller than
the central values. For larger ranges, the nonlinear part of
multiplication unfortunately becomes a notable problem and
is discussed in subsection 7.4. Division x̂/ŷ is computed as
x̂ · (1/ŷ) so that it remains only to define unary nonlinear
function approximations.

For the approximation of unary functions, the problem is
the following: given f(x̂), find α, ζ, δ ∈ F such that

[f(x̂)] ⊂ [αx̂+ ζ ± δ]

α and ζ are determined by a linear approximation of the
function f and δ represents all (roundoff and approximation)
errors committed, thus yielding a rigorous bound.

[17] suggests two approximations for computing
α, ζ, and δ: a Chebyshev (min-max) or a min-range appro-
ximation. Figure 4 illustrates these two on the example
of the inverse functionf(x̂) = x̂−1. For both approxima-
tions, the algorithm first computes the interval represented
by x̂ = [a, b] and then works with its endpoints a and b.
In both cases we want to compute a bounding box around
the result, by computing the slope (α) of the dashed line, its
intersection with the y-axis (ζ) and the maximum deviation
from this middle line (δ). This can be done in the following
two ways:



Min-range Compute the slope α at one of the endpoints a or
b. Compute the intersections of the lines with this slope
that go through either a or b. Fix ζ to be the average of the
two. Compute δ as the maximum deviation, which occurs
by construction at either a or b.

Chebyshev Compute the slope α of the line through both a
and b. This gives one bounding side of the wanted ‘box’
(parallelepiped). To find the opposite side, compute the
point where the curve takes on the same slope again.
Again, compute ζ as the average of the intersections of
the two lines and δ as the maximum deviation at either
the middle point v, a or b.

In general, the Chebyshev approximation computes smaller
parallelepipeds, especially if the slope is significantly differ-
ent at a and b. However, it also needs the additional com-
putation of the middle point. Especially for transcendental
functions like acos, asin, etc., this can involve quite com-
plex computations which are all committing internal round-
off errors. On big intervals, like the one considered in [17]
and [18] these are (probably) not very significant. How-
ever, when keeping track of roundoff errors, our library
deals with intervals on the order of machine epsilon. From
the experience with several versions of transcendental func-
tion approximations we concluded that min-range is the bet-
ter choice. Chebyshev approximations kept returning unex-
pected and wrong results. As discussed in [18], the Cheby-
shev approximation would be the more accurate one in long
running computations, however we simply found it to be too
numerically unstable for our purpose. To our knowledge, this
problem has not been acknowledged before.

Obviously, any linear approximation is only valid when
the input range does not cross any inflection or extreme
points of the function. Should this occur, our library resorts
to computing the result in interval arithmetic and converting
it back into an affine form.

Error estimation for nonlinear library functions like
log, exp, cos, etc. requires specialized rounding, because the
returned results are correct to 1 ulp (unit in the last place)
only [1] (for the standard Scala math library), and hence are
less accurate than elementary arithmetic operations, which
are correct to within 1/2 ulp. The directed rounding pro-
cedure is thus adapted in this case to produce larger error
bounds, so that it is possible to analyze code with the usual
Scala mathematical library functions without modifications.

6.3 Guaranteeing Soundness of Error Estimates
What we have described so far applies to the original affine
arithmetic as well as our AffineFloat. However, our goal is
to quantify roundoff errors, and original affine arithmetic
has not been developed to quantify them, only to compute
sound bounds (i.e. intervals) on output values, interpreted
over ranges of real numbers. It turns out that if affine arith-
metic is modified appropriately, it can be used for the quan-
tification of roundoff errors as in Interpretation 2. For this,

we assume that the central value x0 is exactly the floating-
point value computed with double precision and the noise
symbols xi represent the deviation due to roundoff errors
and approximation inaccuracies from non-affine operations.
A straight-forward re-interpretation of affine arithmetic from
Section 6 is not sound as the following observation shows.

OBSERVATION 2. The algorithm for approximating non-
affine operations using the min-range approximation as de-
fined in subsection 6.2 is unsound under the interpretation
of Interpretation 2.

Namely, the interpretation of affine arithmetic as in Interpre-
tation 2 relies on the assumption that the central value x0

is equal to the floating-point value of the original compu-
tation. This is important, as the roundoff for affine opera-
tions is computed according to Equation 1, i.e. by multipli-
cation of the new central value by some δ. If the central value
does not equal the actual floating-point value, the computed
roundoff will be that of a different result. Affine operations
maintain this invariant. However, non-affine operations de-
fined by computing α, ζ and δ such that the new affine form
is ẑ = α · x̂ + ζ + δϵn+1 do not necessarily enforce that
the actual double value computed in the operation is equal
to the new central value z0 = α · x0 + ζ. That is, in general
(and in most cases), the new z0 will be slightly shifted. In
general the shift is not large, however soundness cannot be
guaranteed any more.

Fortunately, an easy solution exists and is illustrated in
Figure 5. For non-linear operations, the new central value is
computed as z0 = α ·x0+ζ and we want f(x0) = α ·x0+ζ.
Hence, our library computes ζ as

ζ = f(x0)− α · x0

The min-range approximation computes for an input range
[a, b] an enclosing parallepiped of a function as α ·x+ ζ ± δ
that is guaranteed to contain the image of the nonlinear
function from this interval as computed in floating-point
precision. Suppose that ζ = f(x0)−α ·x0, with α computed
at one of the endpoints of the interval. Because we compute
the deviation δ with outwards rounding at both endpoints
and keep the maximum, we soundly over-approximate the
function f in floating-point semantics. Clearly, this approach
only works for input ranges where the function in question
is monotonic. By the Java API [1], the implemented library
functions are guaranteed to be semi-monotic, i.e. whenever
the real function is non-decreasing, so is the floating-point
one.

It is clear from Figure 5 that our modified approximation
computes a bigger parallelepiped than the original min-range
approximation. However, in this case, the intervals are very
small to begin with, so the over-approximations do not have
a big effect on the precision of our library.



Figure 5. Modified min-range approximation of the inverse
function.

6.4 Double-Double Precision for Noise Terms
It turns out that even when choosing the min-range appro-
ximation with input ranges with small widths (order 10−10

and smaller), computing the result of a nonlinear function in
interval arithmetic gives better results. The computation of
α and ζ in our approximation cannot be changed for sound-
ness reasons, but it is possible to limit the size of δ. In order
to avoid arbitrary precision libraries for performance rea-
sons, our library uses double-double precision (denoted as
DD) as a suitable compromise. Each value is represented by
two standard double precision values. Algorithms have been
developed and implemented [16, 51] that allow the compu-
tation of standard arithmetic operations with only ordinary
floating-point operations, making the performance trade-off
bearable. In this way, our library can compute range reduc-
tions for the sine and cosine functions accurately enough. It
can also avoid using intervals to bound δ, an approach we
found not to be sufficiently effective for our purpose.

One condition for these algorithms to work is that the
operations are made in exactly the order as given and with-
out optimizations or fused-multiply instructions. We have
enforced this for our code (which runs on the JVM) by using
the strictfp modifier for the calculations.

Our library uses double-double precision types for the
noise symbols and computations involving them. Keeping
the noise symbols in extended precision and thus reduc-
ing also the internal roundoff errors, we have found that
the accuracy of our library increased sufficiently for most
nonlinear function approximations. To ensure soundness of
double-double computations, we use the outward rounding
mode.

6.5 Precise Handling of Constants
A single value, say 0.03127, is represented in a real valued
interval semantics as the point interval [0.03127, 0.03127]or
in affine arithmetic as x̂ = 0.03127, i.e. without noise terms.
This no longer holds for floating-point values that cannot
be represented exactly in the underlying binary representa-
tion. Our library tests each value for whether it can be re-

presented or not and adds noise terms only when necessary.
In the case of the above example, it creates the following
affine form: 0.03125+(ϵM ·0.03125)ϵn. This limits the over-
approximations committed and provides more precise anal-
yses when possible. For an error estimate according to Inter-
pretation 2, our runtime library has the exact values available
and can thus generally compute tighter bounds compared to
a static analysis-based approach.

6.6 Computing Roundoff Errors
The JVM does not provide access to the different round-
ing modes of the floating-point unit, so that the expressions
that need directed rounding are implemented as native C me-
thods. It turns out that this approach does not incur a big per-
formance penalty, but provides the needed precision, which
cannot be achieved by simulated directed rounding. The na-
tive C code has to be compiled for each architecture sep-
arately, but because no specialized functionality is needed
this is a straightforward process and does not affect the por-
tability of our library. Using directed rounding also enables
the library to determine when a calculation is exact so that
no unnecessary noise symbols are added.

6.7 Soft Policy to Avoid Too Many False Warnings
Our solution follows the ‘soft’ policy advocated in [17],
whereby slight domain breaches for functions that work only
on restricted domains are attributed to the inaccuracy of our
over-approximations and are ignored. For example, with a
‘hard’ policy computing the square root of [−1, 4] results in
a run-time error, as the square root function is not defined on
all of the input interval. It is possible however that the true
interval (in a real semantics) is [0, 4] and the domain problem
is just a result of a previous over-approximation. In order to
not interrupt computations unnecessarily with false alarms, a
‘soft’ policy computation will give the result [0, 2]. Note, that
our library nonetheless generates warnings in these cases if
the user chooses so, so that the policy only affects the tool’s
ability to continue a computation in ambiguous cases, but
not its rigorousness.

6.8 Correctness
The correctness of each step of the interval or affine arith-
metic computation implies the correctness of our overall
approach: for each operation in interval or affine arithmetic
the library computes a rigorous over-approximation, and
thus the overall result is an over-approximation. This means,
that for all computations, the resulting interval is guaranteed
to contain the result that would have been computed on an
ideal real-semantics machine.

The use of assertions certifying that certain invariants
always hold support the correctness of our implementation.
Example invariants for AffineFloat include the statement
that the computed double precision value has to be exactly
the same as the central value of the affine form, a prerequisite
for our roundoff analysis.



In addition, we have tested our library extensively on se-
veral benchmarks (see Section 4) and our implementation
of nonlinear functions against the results from 30 digit pre-
cision results from Mathematica.

We are able to avoid several pitfalls related to floating-
point numbers [9, 46] by writing our library in Scala and
not for example in C, as the JVM is not as permissive to
optimizations that may alter the actual execution of code.

6.9 Using a Library on an Example
To illustrate the use of AffineFloat we present its use on
a classic example, the quadratic formula in Figure 6. This
example illustrates the effect of roundoff errors because it
produces less accurate results (two orders of magnitude in
this particular case), when one root is much smaller. Our
library shows the result of rewriting this code following the
method in [24]. Our library confirms that both roots are now
computed with approximately the same accuracy:

classic r1 = -18.655036847834893 (5.7133e-16),
r2 = -0.0178874602678082 (1.4081e-13)

smarter r1 = -18.655036847834893 (5.7133e-16),
r2 = -0.0178874602678077 (7.7584e-16)

The values in parentheses give the relative errors. Note that
the code looks nearly the same as if it used the standard
Double type, thanks to the techniques we used to integrate
it into Scala (see section 8).

6.10 Managing Noise Symbols in Long Computations
The runtime performance of our library depends on the num-
ber of noise terms in each affine form, because each opera-
tion must access each term at least once. Hence, an appro-
priate compacting strategy of noise symbols becomes crucial
for performance. Compacting too little means that our app-
roach becomes unfeasible, whereas compacting too much
means the loss of too much correlation information.

Compacting algorithm. The goal of compaction is to take
as input a list of noise terms and output a new list with fewer
terms, while preserving the soundness of the roundoff er-
ror approximation and, ideally, keeping the most important
correlation information. Our library performs compaction by
adding up the absolute values of the smallest terms and intro-
ducing them as a fresh noise symbol along with the remain-
ing terms. We propose the following strategy to compute the
fresh noise term:

• Compact all error terms smaller than 10−33. These errors
are smaller than the smallest double value and are thus
internal errors. Our library can manipulate such small
values because it uses double-double precision internally
(section 6.4).

• Compute the average (avrg) and the standard deviation
(stdDev) of the rest of the noise terms. Compact all
terms smaller than avrg ·a+stdDev ·b and keep the rest.

var a = AffineFloat(2.999)
var b = AffineFloat(56.0001)
var c = AffineFloat(1.00074)
val discr = b * b − a * c * 4.0

//classical way
var r2 = (−b + sqrt(discr))/(a * 2.0)
var r1 = (−b − sqrt(discr))/(a * 2.0)
println("classic r1 = " + r1 + ", r2 = " + r2 )

//smarter way
val (rk1: AffineFloat, rk2: AffineFloat) =
if(b*b − a*c > 10.0) {

if(b > 0.0)
((−b − sqrt(discr))/(a * 2.0),

c * 2.0 /(−b − sqrt(discr)))
else if(b < 0.0)

(c * 2.0 /(−b + sqrt(discr)),
(−b + sqrt(discr))/(a * 2.0))

else
((−b − sqrt(discr))/(a * 2.0),
(−b + sqrt(discr))/(a * 2.0))

}
else {

((−b − sqrt(discr))/(a * 2.0),
(−b + sqrt(discr))/(a * 2.0))

}
println("smarter r1 = " + rk1 + ", r2 = " + rk2)

Figure 6. Quadratic formula computed in two different
ways.

The factors a and b are user-controllable positive param-
eters, and can be chosen separately for each computation.
(The result is sound regardless of the particular values.)

• In some cases the above steps are still not enough to en-
sure that the number of symbols is below the threshhold.
This occurs, for example, if nearly all errors have the
same magnitude. If our library detects this case, it re-
peats the above procedure one more time on the newly
computed noise terms. In our examples, at most two iter-
ations were sufficient. In pathological cases in which this
does not suffice, the library compacts all noise symbols
into a single one.

7. SmartFloat Design and Implementation
The implementation described in Section 6 provides a way
to estimate roundoff errors for one single computation. It
provides reasonably tight bounds for the most common ma-
thematical operations and is fast enough for middle sized
computations, hence it can be used to provide some intuition
about the behavior of a calculation. It does not provide, how-
ever, any guarantee as to how large the errors would be if one
chose (even slightly) different input values or constants. In
this section we investigate the following two aspects:

1. computation of a rigorous range of floating-point values
(according to Interpretation 3);



2. computation of sound roundoff error estimates for this
range.

Unfortunately, a straightforward reinterpretation of neither
the original affine arithmetic, nor the modified version for
AffineFloat gives a sound range arithmetic for floating-point
numbers.

OBSERVATION 3. The roundoff computation of affine ope-
rations as defined in Equation 3 is unsound under the inter-
pretation of Interpretation 3.

Namely, when tracking a range of floating-point numbers
and computing the roundoff errors of each computation, we
need to consider the roundoff errors for all values in the
range, not only the central value as is the case in Equation 3.
In addition, the non-linear approximation algorithm does not
explicitly compute the roundoff errors, they are implicitly
included in the computed δ. If we now have input values
given by (possibly wide) ranges, the computed δ will be so
large that no roundoff estimate from them is meaningful.

Our library provides a new type, SmartFloat as a solution
for this problem. A SmartFloat can be constructed from a
double value or a double value with an uncertainty, providing
thus a range of inputs. A SmartFloat variable x̃, then keeps the
initial double value and the following tuple

x̃ = (x0,
∑

xiϵi +
∑

xiui,
∑

riρi), xi, ri ∈ DD

(4)
where x0 ∈ F is the central value as before and xiϵi and
xiui are the noise terms characterizing the range. We now
mark those that come from user-defined uncertainties by spe-
cial noise symbols ui, which we call uncertainties. We keep
these separately, so that for instance during the noise term
compacting, these are preserved. riρi are the error terms
quantifying the roundoff errors committed. The sum

∑

|ri|
gives a sound estimate on the current maximum commit-
ted roundoff error for all values within the range. We now
need to define the computation and propagation of roundoff
errors; the noise terms are handled as before.

7.1 Computation of Roundoffs
To compute the roundoff error of an operation, our library
first computes the new range. It uses either Equation 3 for
affine operations or the min-range approximation for non-
linear ones and then computes the maximum roundoff from
the resulting range. Following the definition of roundoff
from Equation 1 the maximum roundoff is the maximum
absolute value in the range multiplied by ϵM . For the other
operations, correct to within 1 ulp, we adjust the factor to
2 · ϵM .

7.2 Propagation of Roundoffs
The already committed errors ẽx =

∑

riρi in some affine
form x̃ have to be propagated correctly for each operation.

Affine. The propagation is given straightforwardly by
Equation 3. That is, if the operation involves the computa-

tion αx̃+βỹ+ ζ, the errors are transformed as αẽx+βẽy+
(ι+κ)ρn+1, where ι corresponds to the internal errors com-
mitted and κ to the new roundoff error.

Multiplication. The linear part is computed as usual by
multiplication by x0 and y0. The non-linear part in multi-
plication poses the difficulty that it involves cross-terms bet-
ween the noise and error terms. We derive the new propa-
gation, by appending the error terms to the noise term sum
and then compute the multiplication. Then, removing those
terms not involving any error terms, we get the new ηe:

ηe = rad(x̃) · rad(ey) + rad(ỹ) · rad(ex) +
rad(ex) · rad(ey)

Note that this produces an over-approximation, because
some of the errors from the error terms are also included
already in the noise terms.

Non-affine. Because the nonlinear function approxima-
tions compute α, ζ and δ, the propagation of errors reduces
to an affine propagation, with one exception. The factor used
to propagate the roundoff errors must be, instead of α, the
maximum slope of the function over the given input range
to ensure soundness. Because this value does not necessarily
equal α, we need to compute that factor separately.

7.3 Additional Errors
Additional errors, e.g. method errors from a numerical in-
tegration, can be added to the affine form in the following
way. Given x̃ = (x0,

∑

xiϵi,
∑

riρi) and the error to be
added ỹ = (y0,

∑

yiϵi,
∑

siρi), the resulting affine form is
given by

z̃ = (x0,
∑

xiϵi + (|y0|+ rad(
∑

yiϵi))ϵn+1,
∑

riρi,+(rad(
∑

siρi)ρm+1)

That is, the maximum magnitude of the error is added as a
new noise term, and the maximum magnitude of the round-
off committed when computing this error is added as a new
error term.

7.4 Treatment of Range Explosion due to
Multiplication

In Section 6 the naive computation of the non-linear part for
multiplication was sufficiently accurate due to the relatively
small radii of the involved affine forms. This is in general no
longer the case if we consider arbitrary ranges of floating-
point numbers. To illustrate this problem, consider x̃ =
3 + 2ϵ1 and ỹ = 4 + 3ϵ2 Both values are clearly positive,
hence their product should be positive as well. Now, z̃ =
x̃ · ỹ = 12+8ϵ1+9ϵ2+6ϵ3 which gives as resulting interval
[z̃] = [−11, 35]. This result is unacceptable, if this value is
subsequently used in for instance division.

[58, 62] have suggested some approaches, however they
either change the underlying structure by using matrices in-



stead of affine forms or are simply not scalable enough. Be-
cause we do not want to change the underlying data struc-
ture, we chose a different solution for this problem. The
problem is, that by computing η = (

∑n
i=1

|xi|) ·(
∑n

i=1
|yi|)

and appending it with a fresh noise symbol, correlation in-
formation is lost. Affine forms do not provide the possibi-
lity to keep quadratic terms. We can keep, however, ‘source’
information with each noise term. For example, if a noise
term is computed as x1x2ϵ1ϵ2, it results in a new fresh noise
symbol x3ϵ3[1, 2], where the indices in brackets denote the
information that is additionally stored. Similarly, if the prod-
uct involves two noise terms that already contain such infor-
mation, it is combined. Currently, our library supports up to
8 indices, however this value can be extended as needed - at
a performance cost of course. Most operations work exactly
as before; this information is only used when the interval of
an affine form is computed and is essentially an optimiza-
tion problem. One option is to use a brute force approach
and to substitute all possible combinations of −1, 1, 0 for all
ϵi. Because an affine form represents a convex range of va-
lues, the maximum and minimum value of this range has to
necessarily be at ϵi having one of these values. Clearly, this
approach is not very efficient, but for up to 11 noise terms
is still feasible. We use our compacting algorithm to reduce
the number of noise symbols before this optimization is run
to make this approach efficient enough in practice.

The example from Section 4.2 demonstrates the impact
of this simple solution on the Doppler shift problem. [35]
choose an SMT-based approach, precisely for the reason that
affine arithmetic produces too large over-approximations.
We compare the results from the approaches in Table 4. Note
that our library obtains its results in under half a second.

Clearly, the library could compute better bounds if a
better optimization method is used, for instance by using a
dedicated solver.

7.5 Nested Affine Arithmetic
An even smarter version of SmartFloat can provide informa-
tion on how the output roundoff error depends on the input
error, thus providing additional insight about the computa-
tion. This is possible, provided that roundoff errors are com-
puted as functions of the initial uncertainties, and not just
absolute values. Note that if we restrict ourselves to linear
functions, we can use affine forms for the new roundoffs.
That is, for the affine form representing the roundoff errors
ẽx =

∑

riρi, the library now keeps each ri as an affine
form (i.e. affine form of affine forms). It keeps only the lin-
ear terms of uncertainties (and not the noise terms from the
computation itself) and compacts all other terms for perfor-
mance reasons. Finally, the computation of the actual round-
off errors becomes an optimization problem similar to the
one for multiplication. Our library currently reports the as-
signment that minimizes and maximizes the roundoff errors.
Note that due to over-approximations this reported assign-
ment may not necessarily be the one giving the real smallest

or largest roundoff. For this reason, the user may want to
examine the, say, three smallest or largest assignments res-
pectively.

Although this feature is so far only experimental, we
believe that it can become very useful. We will demonstrate
this by returning to the triangle example from Table 1. With
the modified SmartFloat, we can now run the following
code:

val area = triangleArea(9.0,
SmartFloat(4.7, 0.19), SmartFloat(4.7, 0.19))

area.analyzeRoundoff

The output is

analyzing the roundoffs...
maximum relative error: 4.728781774296841E-13
maximizing assignment: 10 -> -1.0, 7 -> -1.0
minimum relative error: 8.920060990068312E-14
minimum assignment: 10 -> 1.0, 7 -> 1.0

To explain this output, the numbers 10 and 7 denote the in-
dices of the uncertainties that were assigned to b and c res-
pectively, that is, those are the indices of their uncertainty
noise symbols. The final analysis reveals that for the assign-
ment of −1.0 to both noise symbols, the roundoff is maxi-
mized. Looking back at the definition of the values we can
see that the assignment of −1.0 corresponds to the input
value of 4.51 for both b and c. This corresponds exactly
to the known property that the relative roundoff errors are
largest for the thinnest triangles. Similarly, the assignment
of 1.0 corresponds to the least thin triangles, as expected.

8. Integration into a Programming Language
This section explains how we integrated AffineFloat and
SmartFloat data types into Scala in a seamless way. Our de-
cision to implement a runtime library was influenced by se-
veral factors. Firstly, a runtime library is especially useful in
the case of floating-point numbers, because the knowledge
of exact values enables us to provide a much tighter analysis
that cannot be achieved in the general case in static analysis.
Also, with our tight integration it is possible to use any Scala
construct, thus not restricting the user to some subset that an
analyzer can handle.

8.1 Our Deployment as a Scala Library
Our library provides wrapper types AffineFloat and SmartFloat
that track the computation errors. These types are meant
to replace the Double types in the user-selected parts of a
program. All that is needed to put our library into action are
two import statements at the beginning of a source file,

import smartfloats.SmartFloat
import smartfloats.SmartFloat._

and the replacement of Double types by one of the AffineFloat
or SmartFloat types. Any remaining conflicts are signaled by
the compiler’s strong typechecker. The new data types han-



dle definitions of variables and the standard arithmetic ope-
rations, as well as many scala.math library functions, inclu-
ding the most useful:

• log, expr, pow, cos, sin, tan acos, asin, atan

• abs,max,min

• constants Pi (π) and E (e)

The library also supports special values NaN and ±∞ with
the same behavior as the original code.

To accomplish such an integration, we needed to address
the following issues.

Operator overloading. Developers should still be able to
use the usual operators +, −, *, / without having to rewrite
them as functions, e.g x.add(y). Fortunately, Scala allows
x m y as syntax for the statement x.m(y) and (nearly) arbitrary
symbols as method names [49] , including +, −, *, /.

Equals. Comparisons should be symmetric, i.e., the fol-
lowing should hold

val x: SmartFloat = 1.0
val y: Double = 1.0
assert(x == y && y == x)

The == will delegate to the equals method, if one of the
operands is not a primitive type. However, this does not
result in a symmetric comparison, because Double, or any
other built-in numeric type, cannot compare itself correctly
to a SmartFloat. Fortunately, Scala also provides the trait
(similar to a Java [25] interface) ScalaNumber which has
a special semantics in comparisons with ==. If y is of
type ScalaNumber, then both x == y and y == x delegate to
y.equals(x) and thus the comparison is symmetric [52].

Mixed arithmetic. Developers should be able to freely
combine our SmartFloats with Scala’s built-in primitive
types, as in the following example

val x: SmartFloat = 1.0
val y = 1.0 + x
if (5.0 < x) {...}

This is made possible with Scala’s implicit conversions,
strong type inference and companion objects [49]. In addi-
tion to the class SmartFloat, the library defines the (singleton)
object SmartFloat, which contains an implicit conversion sim-
ilar to

implicit def double2SmartFloat(d : Double):
SmartFloat = new SmartFloat(d)

As soon as the Scala compiler encounters an expression that
does not type-check, but a suitable conversion is present, the
compiler inserts an automatic conversion from the Double
type in this case to a SmartFloat. Therefore, implicit conver-
sions allow a SmartFloat to show a very similar behavior to
the one exhibited by primitive types and their automatic con-
versions.

Library functions. Having written code that utilizes the
standard mathematical library functions, developers should
be able to reuse their code without modification. Our li-
brary defines these functions with the same signature (with
SmartFloat instead of Double) in the companion SmartFloat ob-
ject and thus it is possible to write code such as

val x: SmartFloat = 0.5
val y = sin(x) * Pi

Concise code. For ease of use and general acceptance it is
desirable not having to declare new variables always with
the new keyword, but to simply write SmartFloat(1.0). This is
possible as this expression is syntactic sugar for the special
apply method which is also placed in the companion object.

8.2 Applicability to Other Languages
The techniques described in this paper can be ported to other
languages, such as C/C++, or to languages specifically tar-
geted for instance for GPU’s or parallel architectures, pro-
vided the semantics of floating-point numbers is well speci-
fied. In fact, language virtualization in Scala [53] can be used
to ultimately generate code for such alternative platforms in-
stead of the JVM.

9. Related Work
Estimating Roundoff Errors in Fluctuat. Closest to our
work is the Fluctuat static analyzer [26] which analyzes nu-
merical code with operations +,−, ∗, / for roundoff errors
and their sources based on abstract interpretation and affine
arithmetic. A comparison solely based on the results re-
ported [26] is difficult, because the results are obtained by
using different user-supplied settings for different examples
(for example, using interval subdivisions, or a larger number
of bits for internal computations). If we do the subdivision
into tens of sub-intervals in our system (using a simple for-
loop in the user’s code), we find that the accuracy on many
of our examples increases further by a decimal order of mag-
nitude. A direct experimental comparison with the Fluctuat
implementation was not possible due to the commercial na-
ture of the tool, but there are several important conceptual
differences.

We do not view our approach as abstract interpretation,
because our library is closer to the actual program execu-
tion, and this makes it more appropriate for (and easier to
use for) testing. We never perform joins and never approxi-
mate objects and other data structures using alias analysis as
in Fluctuat. We do not expect to reach a fixpoint, because we
maintain the exact floating-point value of the numbers. Be-
cause we only replace the floating-point number data type
and keep the structure of the data exact, we generate the
same trace and terminate in the same number of steps as
the original program. This lack of approximation gives us
more precision. Furthermore, our tool supports mathemati-
cal functions beyond the standard four arithmetic operators.



No other work we know of documents the actual approxima-
tions used. As described in Section 6 in detail, this task turns
out to be non-trivial. We also introduced the noise symbol
packing technique (subsection 6.10), which allows us to sup-
port longer-running computations with many floating-point
operations, while having stable time and memory overhead.
[26] does not describe how Fluctuat deals with the grow-
ing numbers of noise symbols, nor does it indicate whether
the computations performed were simply not of the size that
would require it, as in our benchmarks.

We note that in addition to SmartFloat, we also introduced
AffineFloat, which tracks the error of a specific computation,
with concrete input points, instead of an error over an inter-
val. AffineFloat is even closer to concrete execution: it gives
more precise results for one execution (with fewer guar-
antees about other executions). We have further enhanced
AffineFloat precision by using directed rounding to recognize
the cases where the error is actually zero, instead using the
worst case of machine epsilon relative error for each opera-
tion. Because of this, we avoid introducing unnecessary error
terms. As a result, entire series of basic arithmetic computa-
tions can be found to have zero error. We have not seen this
precision enhancement mentioned elsewhere, or performed
by other tools.

Abstract interpretation Further work in abstract interpre-
tation includes the Astrée analyzer [14] and APRON [13,
31]. These systems provide abstract domains that work cor-
rectly in floating-point semantics, but they do not attempt to
quantify roundoff errors (an attempt to treat intervals them-
selves as roundoff errors gives too pessimistic estimates to
be useful). In general, tools based on abstract interpretation
(including Fluctuat) attempt to rigorously establish global
ranges for variables, regardless of what these ranges corre-
spond to. In contrast, we are interested in the correspondence
between the computed value and the ideal mathematical re-
sult.

Another difference is that, instead of focusing only on
embedded domain, we are interested also in scientific com-
putations, which often have transcendental functions (so we
needed to develop approximation rules for them), and non-
trivial data structures. Data structures contain many floating-
point numbers whose values cannot be simply approximated
by joint values as in many static analysis approaches, other-
wise too much precision would be lost.

A recent approach [30] statically detects loss of precision
in floating-point computations using bounded model check-
ing with SMT solvers, but uses interval arithmetic for scal-
ability reasons. [21] uses affine arithmetic to track round-
off errors using a C library; this work is specific to the
signal processing domain. Further approaches to quantify
roundoff errors in floating-point computations are summa-
rized in [44], of which we believe affine arithmetic to be the
most useful one. This also includes stochastic estimations
of the error, which have been implemented in the CADNA

library [32]. However, the stochastic approach does not pro-
vide rigorous bounds, because, for example, in loops, round-
off errors are not uniformly distributed.

Affine Arithmetic. Existing implementations of affine
arithmetic include [2] and [3]. Researchers [62] have pro-
posed a solution to the over-approximation problem of mul-
tiplication by repeatedly refining the approximation until a
desired precision is obtained. While the method provides a
possible solution to the over-approximation problem, it is
also computationally expensive. None of these implemen-
tations can be used to quantify roundoff errors, only to com-
pute ranges in the way described by the original affine arith-
metic [17]. As a result, the problems we describe in this pa-
per do not arise, and the existing systems cannot be used as
such for our purpose. Other range-based methods are sur-
veyed in [45] in the context of plotting curves. We have de-
cided to use affine arithmetic, because it seems to us to be
a good compromise between complexity and functionality.
A library based on Chebyshev and Taylor series is presented
in [20], however it does not provide correlation information
as affine arithmetic does, so its use is directed more towards
non-linear solvers. Affine arithmetic is used in several ap-
plication domains to deal with uncertainties, for example, in
signal processing [27]. Our library is developed for general-
purpose calculations and integrated into a programming lan-
guage to provide information about floating-points for any
application domain.

Robustness Analysis. Our library can detect the cases
when the program would continue to take the same path in
the event of small changes to the input, thanks to the use
of the global sticky flag set upon the unresolved compar-
isons. Therefore, we believe that our library can be useful
for understanding program robustness and continuity prop-
erties, for which sophisticated techniques have been investi-
gated [12, 43].

Finite-Precision Arithmetic. [38] uses affine arithmetic
for bit-width optimization and provides an overview of re-
lated approaches. [56] uses affine arithmetic with a spe-
cial model for floating-points to evaluate the difference bet-
ween a reduced precision implementation and normal float
implementation, but uses probabilistic bounding to tackle
over-approximations. Furthermore, it only allows addition
and multiplication. [35] employs a range refinement method
based on SMT solvers and affine arithmetic, which is one
way to deal with the division-by-zero problem due to over-
approximations. The authors use a timeout to deal with the
case when such computation becomes too expensive. An-
other approach uses automatic differentiation [23] to sym-
bolically compute the sensitivity of the outputs to the inputs.
While this approach could be used for roundoff error analy-
sis as well, the symbolic expressions need to be evaluated,
and thus need to ultimately rely on methods such as interval
or affine arithmetic.



Theorem Proving Approaches. Researchers have used
theorem proving to verify floating-point programs [6, 8, 28,
47, 55]. These approaches provide high assurance and gua-
rantee deep properties. Their cost is that they rely on user-
provided specifications and often require lengthy user inter-
actions. [40] extend previous work using affine arithmetic
by considering the problem of reducing precision for perfor-
mance reasons. However, the resulting system still requires
interactive effort. [11] presents a decision procedure for
checking satisfiability of a floating-point formula by encod-
ing into SAT. Even this approach requires the use of approx-
imations, because of the complexity of the resulting formu-
las. A symbolic execution technique that supports floating-
point values was developed [10], but it does not quantify
roundoff errors. There is a number of general-purpose app-
roaches for reasoning about formulas in non-linear arith-
metic, including the MetiTarski system [5]. Our work can
be used as a first step in verification and debugging of nume-
rical algorithms, by providing the correspondence between
the approximate and real-valued semantics.

10. Conclusions
We have presented a library that introduces numerical types,
SmartFloat and AffineFloat, into Scala. Like the standard
Double type, our data type supports a comprehensive set of
operators. It subsumes Double in that it does compute the
same floating point value. In addition, it also computes a
roundoff error—an estimate of the difference between this
floating-point value and the value of the computation in
an ideal real-number semantics. SmartFloat can compute the
roundoff error not only for a given value, but also for the va-
lues from a given interval, with the interval being possibly
much larger than the roundoff error.

It can be notoriously difficult to reason about computa-
tions with floating-point numbers. Running a computation
with a few sample values can give us some understand-
ing for the computation at hand. The newly developed data
types allow developers to estimate the error behavior on en-
tire classes of inputs using a single run. We have found the
performance and the precision of these data types to be ap-
propriate for unit-testing of numerical computations. We are
therefore confident that our implementation is already very
helpful for reasoning about numerical code, and can be em-
ployed for building future validation techniques.
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