Trustworthy Numerical Computation in Scala

Eva Darulova

Viktor Kuncak *

School of Computer and Communication Sciences (I&C) - Swiss Federal Institute of Technology (EPFL), Switzerland

firstname.lastname@epfl.ch

Abstract

Modern computing has adopted the floating point type as
a default way to describe computations with real numbers.
Thanks to dedicated hardware support, such computations
are efficient on modern architectures, even in double pre-
cision. However, rigorous reasoning about the resulting pro-
grams remains difficult. This is in part due to a large gap bet-
ween the finite floating point representation and the infinite-
precision real-number semantics that serves as the deve-
lopers’ mental model. Because programming languages do
not provide support for estimating errors, some computa-
tions in practice are performed more and some less precisely
than needed.

We present a library solution for rigorous arithmetic com-
putation. Our numerical data type library tracks a (double)
floating point value, but also a guaranteed upper bound on
the error between this value and the ideal value that would
be computed in the real-value semantics. Our implemen-
tation involves a set of linear approximations based on an
extension of affine arithmetic. The derived approximations
cover most of the standard mathematical operations, inclu-
ding trigonometric functions, and are more comprehensive
than any publicly available ones. Moreover, while interval
arithmetic rapidly yields overly pessimistic estimates, our
approach remains precise for several computational tasks of
interest. We evaluate the library on a number of examples
from numerical analysis and physical simulations. We found
it to be a useful tool for gaining confidence in the correctness
of the computation.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Algorithms, Languages, Verification

* This research is supported by the Swiss NSF Grant #200021_132176.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’11, October 22-27, 2011, Portland, Oregon, USA.

Copyright © 2011 ACM 978-1-4503-0940-0/11/10. .. $10.00

1. Introduction

Numerical computation has been one of the driving forces
in the early development of computation devices. Floating
point representations have established themselves as a de-
fault data type for implementing software that approximates
real-valued computations. Today, floating-point-based com-
putations form an important part of scientific computing
applications, but also of cyber-physical systems, which rea-
son about the quantities describing the physical world in
which they are embedded.

The IEEE standard [59] establishes a precise interface for
floating point computation. Over the past years, it has be-
come a common practice to formally verify the hardware
implementing this standard [28, 47, 55]. On the other hand,
the software using floating point arithmetic remains difficult
to reason about. As an example, consider the experiment in
N-version programming [29], in which the largest discrepan-
cies among different software versions were found in nume-
rical computation code.

One of the main difficulties in dealing with numerical
code is understanding how the approximations performed by
the individual arithmetic operation steps (precisely specified
by the standard) compose into an overall error of a com-
plex computation. Such roundoff errors can accumulate to
the point where the computed value is no longer a precise
enough approximation of the real value. Currently, the deve-
lopers have no reliable automated method to determine these
approximation errors. It is striking that, for many important
program correctness properties we now have type systems
and static analyzers that can establish them over all execu-
tions [7, 15,19, 22, 36, 37, 54], whereas for numerical errors,
we lack practical methods to estimate errors even for one,
given, execution. Namely, it is difficult to determine whether
a given execution is correct in the sense that its final result
is close to the result of the corresponding sequence of ope-
rations in real analysis. In program analysis terminology, we
observe a great desire in the community to expand verifica-
tion techniques to numerical code [39]. At the same time,
we do not even know yet how to fest numerical code. Com-
pounding the problem is that the correctness of these app-
lications is difficult to asses by manual inspection (whether
we try to inspect the source code or the computed result).
Both formal and informal reasoning about programs with

floating-points is therefore challenging. As a result, we have
little confidence in the correctness of an increasingly impor-
tant set of applications that reason about the real world.

To remedy this unfortunate situation, we introduce an
easy-to-use system for estimating roundoff errors. Our sys-
tem comes in the form of new data types for the Scala [49]
programming language. These data types act as a drop-in
replacement for the standard floating point data types, such
as Double. They offer support for a comprehensive range of
operations, with a greater precision than in any previously
documented solution. We deploy our techniques in Scala for
easy use on many platforms, although they apply in any pro-
gramming language using floating-point computation.

When faced with the problem of floating point approxi-
mation errors, many existing approaches propose interval
arithmetic (IA) as a solution. However, intervals give too
pessimistic estimates in many cases. The problem is easy to
demonstrate; its essence can be seen already on a very simple
example. If x is an interval [0, a], then interval arithmetic ap-
proximates the expression x — x with [—a, a], although it is,
in fact, always equal to zero. Essentially, interval arithmetic
approximates — x in the same way as it would approximate
x — y when x and y are unrelated variables that both belong
to [0, a]. Furthermore, when such approaches are used to es-
timate the behavior over a range of input values, they fail to
distinguish two sources of uncertainty:

* uncertainty in the error between the ideal and the floating
point value;

* uncertainty in the actual values of floating point variables
when analyzing code, if the initial values can belong to
any point in a given interval.

Any approach that lumps together these two sources of un-
certainty will quickly become imprecise.

To avoid the above problems, we first examine affine
arithmetic, which was introduced in [17] and can more pre-
cisely track the relations between variables. It turns out,
however, that affine arithmetic by itself cannot be as ea-
sily adapted for reasoning about roundoff errors as inter-
val arithmetic, because it uses mid-points of intervals for
its estimates of nonlinear functions, and roundoff errors in
the end-points of intervals can be greater than for the mid-
point value. We describe a methodology that we used to
derive the appropriate sound approximations. (The actual
approximation rules that we use are publicly available in our
system’s source code.) Building on these, we define a data
type that tracks a floating-point computation and provides,
in addition to the computed value, a guaranteed estimate on
the roundoff error committed. Furthermore, we introduce an
approach that allows the library to track errors over a range
of values. We can therefore answer both of the following
questions:

* What is an upper bound on the roundoff error of the result
of a floating-point computation run, for a concrete input?

* What is the maximum roundoff error of the result, for
inputs ranging over a given input interval?

By introducing a freely available library that addresses these
questions, we provided developers and researchers with an
easy-to-use tool that helps them understand floating-point
properties of code, a tool that provides sound guarantees
on the floating-point roundoff errors committed. We expect
that our system can be easily integrated into verification and
testing systems in the future.

Contributions. 'We make the following contributions:

* We develop and implement an AffineFloat data type
that supports testing of concrete numerical computa-
tions against their real-valued semantics. Our data type
computes practically useful error bounds while retaining
compatibility with the standard Double data type: not only
are the operations entirely analogous, but the underlying
Double value that it computes is identical to the one com-
puted with the standard Double type alone. This compa-
tibility is important in practice, but requires changes to
the way roundoff errors and affine forms are supported
compared to the existing techniques. As a safe-guard, our
technique falls back onto intervals when the linear appro-
ximation is not appropriate. Furthermore, our solution
goes beyond the (very few) available affine arithmetic
implementations by accurately supporting a substantial
set of non-linear and transcendental functions. The li-
brary also implements a technique to soundly bound the
number of affine error terms, ensuring predictable perfor-
mance without sacrificing much precision.

We develop and implement a SmartFloat data type that
generalizes AffineFloat to estimate upper bounds on
roundoff errors over an entire range of input values.
SmartFloat also accepts user-specified errors on input vari-
ables (arising from, e.g. physical measurements, or iter-
ative numerical methods). Thanks to SmartFloat, the de-
veloper can show, using a single program run, that the
roundoff error within the entire interval remains small.
Existing methods that merge initial interval width with
roundoff estimates cannot perform such estimates. We
also provide a nested affine implementation, which uses
a linear function of input to represent error terms them-
selves. This technique provides an improved estimate of
relative errors for the input ranges that contain zero.

We evaluate the precision and performance of our im-
plementation on a number of benchmarks from physics
simulations and numerical analysis, including: Nbody
and spring simulations, spectral norm computation, the
Scimark, Fbench and Whetstone benchmarks [4, 42, 50,
61]. The results show that our library produces (possi-
bly after an initial interval subdivision) precise estimates
that would otherwise require expensive constraint solving
techniques. It also shows that the library scales to long-
running computations.

Our implementation is available at http://lara.epfl.ch.

Paper outline. We continue by illustrating our system
through two examples. We then provide a quick overview of
the basic affine arithmetic approach (Section 3). This back-
ground gives the high-level idea of the approach, but is not
sufficient to obtain our results. We characterize the precision
and the performance of our implementation in Section 4.
We show further applications enabled by our system in Sec-
tion 5.

We then present the new techniques that we introduced
to achieve our results: first for AffineFloat (Section 6) and
then for SmartFloat (Section 7). We describe the integration
into Scala in Section 8, finishing with related work and
conclusions.

2. Examples

Cube root. Intervals have the unfortunate property of ig-
noring correlations between variables and thus often over-
approximate roundoff errors by far too much to be useful.
As an illustration, consider the following code fragment that
uses Halley’s method [57] to compute the cube root of a = 10,
starting from an initial value of xn = 1.6:
for (i «+ 1 until 5)

xn = xn * ((xn#xnxxn + 2.0xa) / (2.04«xn+xn+xn + a))
Compare the results computed with Double against the re-
sult to 30 digits precision from a popular computer algebra
system (denoted CAS), and the result returned by interval
arithmetic:

Double 2.1544346900318834

CAS 2.154434690031883721...

Interval [2.1544346900317617,
2.154434690032006]

Affine 2.1544346900318834 + 1.34 - 10~

It turns out that the Double value differs from the true real re-
sult only in the very last digit, which amounts to an absolute
error on the order of unit in the last place, ~ 4.44 10716,
Interval arithmetic however, would quantify this error as ~
1.23 %1073, On the other hand, using our affine-arithmetic-
based type we compute an absolute error of 1.34 * 10712,
which is (by the correctness of our approach) sound, yet two
decimal orders of magnitude more precise than the result in
interval arithmetic. If we relied only on intervals, we might
be led to believe that we cannot compute the value with the
desired precision using Halley’s method. We might have thus
decided to (unnecessarily) adopt a more expensive computa-
tional method, even though Halley’s method actually worked
fine.

Area of a triangle. As another example, consider the code
in Figure 1. triangleTextbook computes the area of a triangle
using the well-known textbook formula. On the other hand,
triangleKahan uses an improved version by Kahan [34]. Run-
ning both versions with our SmartFloat type and with inter-
vals, we get the results listed in Table 1.

def triangleTextbook(a: SmartFloat,
b: SmartFloat,
c: SmartFloat): SmartFloat = {
vals=(a+b+c¢c)/2.0
sqrt(s = (s — a) * (s — b) = (s — ¢))

def triangleKahan(a: SmartFloat, b: SmartFloat,
¢: SmartFloat): SmartFloat = {
if(b < a) {
valt=a
if(c<b){a=c;c=t}
else {
if(c<a){a=b;b=c;c=t}
else {a=b;b=t}
} }elseif (c <b) {
valt=c;c=Db;
if(c<a){b=a,a=t}
else {b=t}
}
sqrt((a+(b+c)) = (c—(a—b)) * (c+(a—b))
% (a+(b—c))) /4.0
}

Figure 1. Code for computing the area of a triangle using
the classic textbook formula and Kahan’s improved version.
The latter sorts the triangle sides by their lengths (a being the
smallest) and refactors the final formula such that computa-
tions are minimized, and performed in an order that mini-
mizes precision loss.

Interval Arithmetic area rel.roundoff
triangleTextbook
a=9.0,b=c=[4.71,4.89] [6.00, 8.96]
a=9.0,b=c=[4.61,4.79] [4.32,7.69]
a=9.0,b=c=[4.501, 4.581] || [0.42,3.93]
triangleKahan
a=9.0,b=c=[4.71,4.89] [6.13, 8.79]
a=9.0,b=c=[4.61,4.79] [4.41,7.54]
a=9.0,b=c=[4.501,4.581] || [0.42,3.89]

SmartFloat

triangleTextbook
a=9.0,b=c=[4.71,4.89] [6.25, 8.62] 1.10e-14
a=9.0,b=c=[4.61,4.79] [4.50, 7.39] 1.97e-14
a=9.0,b=c=[4.501, 4.581] || [0.41, 3.86] 1.95e-12
triangleKahan
a=9.0,b=c=[4.71,4.89] [6.25, 8.62] 3.11e-15
a=9.0,b=c=[4.61,4.79] [4.49, 7.39] 5.26e-15
a=9.0,b=c=[4.501, 4.581] || [0.39, 3.86] 5.07e-13

Table 1. Area and relative roundoffs computed on the code
from Figure 1 with SmartFloat and intervals for selected va-
lues.

Although interval arithmetic does not over-approximate
the range by much more than affine arithmetic on this parti-
cular example, it fails to quantify the roundoff errors. Based
only on intervals, it is impossible to tell that one version of
the code behaves better than the other. Our SmartFloat on

http://lara.epfl.ch

the other hand shows an improvement of about one order
of magnitude in favor of Kahan’s formula. Also note that the
computed roundoff errors indicate that for thin triangles re-
lative roundoff errors grow, which is indeed what happens.
This illustrates that our library allows for both formal rea-
soning (by establishing correspondence to real-valued se-
mantics), as well as high-level informal reasoning and ana-
lysis.

Using our implementation of SmartFloat’s, we obtain not
only a more accurate interval for the result, but in fact an up-
per bound on the error across the entire input interval. In in-
terval arithmetic, one could in principle use the width of the
actual interval as the roundoff error bound, but this would
yield unrealistically large errors. In this particular exam-
ple the bound on roundoff errors is more than 10'* times
smaller than the actual width of the interval in which the
output ranges! Therefore, any attempt to use an interval-like
abstraction to simultaneously represent 1) the input range
and 2) the error bound, will spectacularly fail. In contrast,
our technique distinguishes these different quantities, and is
among the first ones to do so. Thanks to this separation, it
can establish that roundoff error is small even though the in-
terval is relatively large.

3. A Quick Tour of Interval and Affine
Arithmetic

Throughout this paper, we use the following general nota-
tion:

* IF denotes floating-point values; if not otherwise stated,
in double precision (64 bit).

* R denotes (mathematical) real numbers.

* [IF, IR denote the sets of all closed intervals of floating-
point and real numbers, respectively; an interval is given
by its two endpoints.

* [a] is a notation to denote the interval represented by an
expression a, according to some specified semantics.

* lz] and Tz1 denote the result of some expression x
rounded towards —oo or +oo respectively. That is, if
z € R is a number not representable in a given floating
point format, |x| evaluates to the next smaller number
representable in binary. Similarly, T2t evaluates to the
nearest larger floating-point number. If x has a floating
point representation, then |z| = TzT = z.

3.1 IEEE Floating-point Arithmetic

Throughout this paper we assume that floating-point arith-
metic conforms to the IEEE 754 floating-point standard [59].
Recent general-purpose CPUs conform to it, and it is also
generally respected in main programming languages. The
JVM (Java Virtual Machine), on which Scala runs, supports
single- and double-precision floating-point values accord-
ing to the standard, as well as rounding-to-nearest rounding

mode [41]. Also by the standard, the basic arithmetic ope-
rations {+, —, x, /, \/? are rounded correctly, which means
that the result from any such operation must be the closest
representable floating-point number. Hence, provided there
is no overflow, the result of a binary operation in floating-
point arithmetic o satisfies

TOpY = (mORy)(1+6), ‘5| S €M, © S {+7_7*7/} (l)

where op is the ideal value in real numbers and ¢;; is the
machine epsilon that determines the upper bound on the
relative error. This model provides a basis for our roundoff
error estimates.

Thanks to dedicated hardware floating-point units,
floating-point computations are fast, and our library is cur-
rently set up for double-precision floating-point values (i.e.
en = 27°3). This is also the precision of choice for most
numerical algorithms. It is straightforward to adapt our tech-
niques for single precision, or any other precision with an
analogous semantics.

3.2 Interval Arithmetic

One possibility to perform guaranteed computations in
floating-point arithmetic is to use standard interval arith-
metic [48]. Interval arithmetic computes a bounding interval
for each basic operation as

zopy=[Lzoy)l, T(zoy)T])

Rounding outwards guarantees that the interval always con-
tains the real result and thus ensures soundness. The error
for square root is computed analogously.

Section 2 already illustrated how quickly interval arith-
metic becomes imprecise. This is a widely recognized phe-
nomenon; to obtain a more precise approximation, we there-
fore use affine arithmetic.

3.3 Affine Arithmetic

Affine arithmetic was originally introduced in [17] and de-
veloped to compute ranges of functions over the domain of
reals, with the actual calculations done in double (finite) pre-
cision. Affine arithmetic addresses the difficulty of interval
arithmetic in handling correlations between variables. It is
one possible range-based method to address this task; we
discuss further methods in Section 9.

Given a function f : R — R, we wish to compute its
approximation in terms of floating-point numbers. Let A be
a set of representations of intervals, with [a] € IR fora € A.
The goal is then to compute an approximation of f by a
function g : A — A that satisfies the fundamental invariant
of range analysis:

PROPERTY 1. Fora € A, x € R, if x € [a], then

f(z) € [g(a)]

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables

as affine forms
n
T = i) + E €T;€;
i=1

where xo denotes the central value (of the represented in-
terval) and each noise symbol €; is a formal variable de-
noting a deviation from the central value, intended to range
over [—1,1]. The maximum magnitude of each noise rerm
is given by the corresponding z;. Note that the sign of z;
does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take z =
To + T1€1, then in real number semantics,

T —x =x9+ T1€1 — (1‘0+$161)

:IQ—I0+I161—I161:O

If we subtracted x = xo — x1¢€; instead, the resulting interval
would have width 2 % x1 and not zero.
The range represented by an affine form is computed as

[2] = [xo — rad(Z), zo + rad()], rad(z) = Z |z
i=1

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation az + 59 + ¢
consists of addition, subtraction, addition of a constant ({)
or multiplication by a constant («,). Expanding the affine
forms & and y we get

n

g+ B +C = (axo+Byo+¢)+ D (s +Byi)ei+ienta

i=1
3
with o, 3, € T and where ¢ denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.
Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ¢ for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. a * xg + (). We determine the maximum round-
off error of an expression f(v1, .. ., Uy,) using the following

procedure [17]:
= f(’l)l,l}g,...,vm)
Z—oo = \l/f(vlana"wUm)J/
Z4oo = Tf(vlana"wUm)T
t= max(Zjoo — 2,2 — Z—00)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z_
assuming worst-case roundoff errors when rounding towards
—o00, and the analogous result z 4, with rounding towards
400 at each step. As the worst-case committed roundoff
error + we use the maximum difference (¢) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

4. Evaluation of Precision and Performance

We have selected several benchmarks for evaluating our
library. Many of them were originally written in Java or
C; we ported them to Scala as faithfully as possible. Once
written in Scala, we found that changing the code to use
our AffineFloat type instead of Double is a straightforward
process and needs only few manual edits. Scala compiler’s
type checker was particularly helpful in this process.

Many of the existing benchmarks we adopted were ori-
ginally developed for performance and not numerical preci-
sion evaluation. We hope that our library and examples will
stimulate further benchmarking with precision in mind.

The benchmarks we present are the following:'

Nbody simulation is a benchmark from [4] and is a simula-
tion that “should model the orbits of Jovian planets, using
[a] (...) simple symplectic-integrator”.

Spectral norm is a benchmark from [4] and “should calcu-
late the spectral norm of an infinite matrix A, with entries
a1 =1,a12 = 3,091 = 3,013 = §. a2 = . a31 = 5,
etc.”

Scimark [50]is a set of Java benchmarks for scientific com-
putations. We selected three benchmarks that best suit our
purpose: the Fast Fourier Transform (FFT), Jacobi Suc-
cessive Over-relaxation (SOR) and a dense LU matrix
factorization to solve the matrix equation Az = b. The
exact dimensions of the problems we used are noted in
Table 6.

Fbench was orginally written by Walker [60] as a
“Trigonometry Intense Floating Point Benchmark™. We
used the Java port [61] for our tests.

Whetstone [42] is a classic benchmark for performance
evaluation of floating-point computations.

Spring simulation is our own code from Figure 3, however
for benchmarking we removed the added method errors.

We have also implemented an interval arithmetic type that
can, in the same way as AffineFloat and SmartFloat, replace all
Double types in a program. This type is used throughout this
paper when comparing our library to interval arithmetic.

4.1 AffineFloat Precision

Because AffineFloats represent exactly one floating-point
value, we can compare its precision in computing roundoff
errors to that of interval arithmetic, where each value is ana-
logously represented by one interval. The width of the re-
sulting interval provides the roundoff error.

Table 2 presents our measurements of precision on three
of our benchmarks. These results provide an idea on the or-
der of magnitude of roundoff error estimates, as well as the
scalability of our approach. For the Nbody problem we com-

I All benchmarks are available from
http://lara.epfl.ch/w/smartfloat .

Benchmark rel. error AF | rel. error IA
SOR 5 iter. 2.327e-14 4.869¢-14
SOR 10 iter 4.618e-13 3.214e-12
SOR 15 iter 8.854e-12 2.100e-10
SOR 20 iter 1.677e-10 1.377e-8
NBody, initial energy 5.9e-15 6.40e-15
Nbody, 1s, h=0.01 1.58e-13 1.28e-13
Nbody, 1s, h=0.0156 1.04e-13 8.32e-14
Nbody, 5s, h=0.01 2.44e-10 7.17e-10
Nbody, 5s, h=0.015625 1.42e-10 4.67e-10
Spectral norm 2 iter 1.8764e-15 | 7.1303e-15
Spectral norm 5 iter 4.9296e-15 | 2.4824e-14
Spectral norm 10 iter 7.5071e-15 | 5.6216e-14
Spectral norm 15 iter 1.0114e-14 | 8.8058e-14
Spectral norm 20 iter 1.7083e-14 | 1.1905e-13

Table 2. Comparison of the relative errors computed by
AffineFloat and interval arithmetic.

actual error | AffineFloat 1A
with pivoting
LU 5x5 2.22e-16 1.04e-13 6.69e-13
LU 10x10 8.88e-16 7.75e-12 2.13e-10
LU 15x15 4.44¢-16 6.10e-10 1.92¢-8
no pivoting
LU 5x5 1.78e-15 2.50e-11 1.24e-9
LU 10x 10 5.77e-15 2.38e-10 4.89¢-6
LU 15x15 7.15e-13 - -
FFT 512 1.11e-15 9.73e-13 6.43e-12
FFT 256 6.66e-16 3.03e-13 2.38e-12

Table 3. Maximum absolute errors computed by Double,
AffineFloat and interval versions for the LU factorization and
FFT benchmarks. The matrices were random matrices with
entries between 0 and 1.

pute the energy at each step, which changes due to method
errors but also due to accumulated roundoffs. For the Spec-
tral norm we measure the roundoff error of the result after
different numbers of iterations. In the case of SOR, the re-
ported errors are average relative errors for the matrix en-
tries. Because we do not have a possibility to obtain the
hypothetical real-semantics results, we compare the errors
against the errors that would be computed with interval
arithmetic. Note that none of these benchmarks is known
to be particularly unstable for floating-point errors, so that
we cannot observe some particularly bad behavior. We can
see though that except for the second and third (short) run
of the Nbody benchmark our AffineFloat gives consistently
better bounds on the roundoff errors. The numbers for the
SOR benchmark also suggest that the library scales better
on longer computations.

Table 3 shows measurements of precision with
AffineFloat for those benchmarks. These results can
actually be checked knowing the properties of this particular

http://lara.epfl.ch/w/smartfloat

application. In our example application, an LU factorization
of the matrix A is used to compute the solution to the
system of linear equations Az = b, with b a vector. From
the solution x we can compute Az and the actual roundoff
errors committed as Az — b. Note, that because Az — bis a
vector, we only consider the maximum roundoff error from
the entries. This error is then compared to the maximum
roundoff error attached to x when the solution is computed
with AffineFloats and intervals. For the FFT benchmark,
we can compute the transform and its inverse and compare
it to the original input. We again compare the maximum
roundoff errors from the matrix entries. We applied the LU
factorization to random matrices with and without pivoting.?
We compared the error bounds against interval arithmetic
and the actual error. (Note that the computation of the error
for the LU transform involves some multiplication, hence
these error bounds are not very precise themselves.) Our
AffineForm can show the pivoting approach to be clearly
more accurate and provides consistently better bounds than
interval arithmetic. For LU factorization of size 15x15 both
affine and interval arithmetic compute bounds that are too
large to be useful.

In general, the type of computation has a strong influ-
ence on how fast the over-approximation of error bounds
grows. Affine as well as interval arithmetic compute larger
roundoff bounds for longer computations, because they ac-
cumulate worst-case errors at each step. We have shown that
AffineFloats limit this over-approximation better and provide
smaller bounds than interval arithmetic. In addition, our li-
brary detects the rare cases when a computation is precise
and then includes no new error.

4.2 SmartFloat Precision

In contrast to AffineFloat, one SmartFloat variable represents a
whole interval of values and computes the worst-case round-
off error over the entire interval.

Doppler example. For an evaluation of the SmartFloat type,
consider the Doppler frequency shift. The following equa-
tion computes the frequency change due to the Doppler ef-

fect
_dv —(331.4+0.6T)v

T du T (3314+0.6T +u)?

by decomposing it into the following sub-calculations: ¢; =
3314+ 0.6T, g2 = 10, g3 = 1 + U, @4 = G35, 2 = q2/qa.
The parameters used are